1
|
Pimentel MIS, Beltrão EMB, de Oliveira ÉM, Martins LR, Jucá MB, Lopes ACDS. Virulent Klebsiella pneumoniae ST11 clone carrying blaKPC and blaNDM from patients with and without COVID-19 in Brazil. J Appl Microbiol 2024; 135:lxae079. [PMID: 38520165 DOI: 10.1093/jambio/lxae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
AIMS Investigated and compared the occurrence of virulence genes fimH, mrkD, irp2, entB, cps, rmpA, and wabG, resistance genes blaKPC and blaNDM, and the genetic variability and clonal relationship of 29 Klebsiella pneumoniae clinical isolates of patients with and without COVID-19, from a hospital in Brazil. METHODS AND RESULTS All isolates were resistant to beta-lactams. The genes were investigated by PCR, and for molecular typing, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and MLST were used. The detection of blaNDM was greater (n = 23) when compared to that of blaKPC (n = 14). The virulence genes that most occurred were fimH, entB, cps, and wabG, which are responsible for adhesins, siderophore enterobactin, capsule, and lipopolysaccharides, respectively. Among the isolates, 21 distinct genetic profiles were found by ERIC-PCR, with multiclonal dissemination. Four isolates belonged to the ST11 clone. CONCLUSIONS The occurrence of the ST11 is worrying as it is a high-risk clone involved in the dissemination of virulent strains throughout the world.
Collapse
Affiliation(s)
- Maria Izabely Silva Pimentel
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | - Elizabeth Maria Bispo Beltrão
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | - Érica Maria de Oliveira
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | - Lamartine Rodrigues Martins
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| | | | - Ana Catarina de Souza Lopes
- Universidade Federal de Pernambuco-UFPE, Laboratório de Microbiologia, Área de Medicina Tropical, Centro de Ciências Médicas-CCM, 50670-901, Recife-PE, Brasil
| |
Collapse
|
2
|
Ge X, Zhou Y, Jin H, Liu K, Zhu K, Yu Y, Xue J, Wang Q, Du X, Wang H, Xiang Y, Li W, Tian S, Yan Z, Qiu S. Genomic insights and antimicrobial resistance profiles of CRKP and non-CRKP isolates in a Beijing geriatric medical center: emphasizing the blaKPC-2 carrying high-risk clones and their spread. Front Microbiol 2024; 15:1359340. [PMID: 38414769 PMCID: PMC10897042 DOI: 10.3389/fmicb.2024.1359340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024] Open
Abstract
Background The escalating resistance of Klebsiella pneumoniae, a prevalent pathogen in healthcare settings, especially its carbapenem-resistant K. pneumoniae (CRKP), to a wide array of antibiotics, notably β-lactams, constitutes a formidable challenge for healthcare and global public health management. Methods This research compared the resistance phenotypes and genomic profiles of CRKP and Non-CRKP isolates in a Beijing hospital, focusing on high-risk blaKPC-2 gene-bearing CRKP clones and the structure of mobile genetic elements facilitating their spread across hospital departments. Forty K. pneumoniae isolates were collected from various departments of the hospital and subjected to antimicrobial susceptibility testing and whole-genome sequencing to analyze their resistance phenotypes and genomic features. Results The study revealed that among the 31 CRKP isolates, ST11 is the most common sequence type, with K47 and OL101 being the dominant capsule types, primarily observed in the respiratory department. In terms of antimicrobial susceptibility: 87.5% of the isolates exhibited multidrug resistance (MDR), with a high resistance rate of 30% against tigecycline. All CRKP isolates demonstrated resistance to multiple drug classes (≥5 CLSI classes). Non-CRKP isolates also showed high resistance rates to minocycline and doxycycline (77.8%). the ST11-KL47-OL101 type emerged as the predominant clone among the CRKP isolates carrying the blaKPC-2 gene. This dominance appears to be mediated by the pKpnR03_2 plasmid, which harbors not only blaKPC-2 and rmtb but also gene clusters pertinent to iron transport and arsenic resistance. These isolates, clustering in the C3 clade of the phylogenetic tree, exhibited minor genetic variations and close evolutionary relationships, suggesting a plasmid-driven spread across various hospital departments. Conclusion In summary, our study highlights the extensive spread of antibiotic-resistant K. pneumoniae across various departments in our hospital, with a particular emphasis on the dominant clonal proliferation of the ST11-KL47-OL101 CRKP strain. This finding underscores the significant role of plasmid-mediated gene transfer in the evolution and dissemination of resistant strains within hospital environments. The study emphasizes the necessity for ongoing surveillance of antibiotic resistance and genomic analysis in hospital settings to effectively monitor and manage these challenges.
Collapse
Affiliation(s)
- Xin Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yu Zhou
- Department of Laboratory Medicine, The Second Medical Center of PLA General Hospital, Beijing, China
| | - Hang Jin
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangkang Liu
- Academy of Military Medical Sciences, Beijing, China
| | - Kunpeng Zhu
- Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, China
| | - Yulong Yu
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingzhuang Xue
- Beijing University of Chemical Technology, Beijing, China
| | - Qi Wang
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xinying Du
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hui Wang
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ying Xiang
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Wenjun Li
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Sai Tian
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhongqiang Yan
- Department of Disease Prevention and Control, The Second Medical Center of PLA General Hospital, Beijing, China
| | - Shaofu Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Zhao J, Pu D, Li Z, Liu X, Zhang Y, Wu Y, Zhang F, Li C, Zhuo X, Lu B, Cao B. In vitro activity of cefiderocol, a siderophore cephalosporin, against carbapenem-resistant hypervirulent Klebsiella pneumoniae in China. Antimicrob Agents Chemother 2023; 67:e0073523. [PMID: 38014944 PMCID: PMC10720542 DOI: 10.1128/aac.00735-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2023] Open
Abstract
Cefiderocol is a siderophore cephalosporin that binds ferric iron and utilizes iron transporters to cross the cell membrane. Hypervirulent Klebsiella pneumoniae (hvKp) is known to produce more siderophores; in this case, the uptake of cefiderocol may be decreased. Therefore, the objective of this study was to evaluate the in vitro activity of cefiderocol against hvKp isolates. A total of 320 carbapenem-resistant K. pneumoniae (CRKp) isolates were collected in China between 2014 and 2022, including 171 carbapenem-resistant hvKp (CR-hvKp) and 149 carbapenem-resistant classical K. pneumoniae (CR-cKp). Quantitative detection of siderophores showed that the average siderophore production of CR-hvKp (234.6 mg/L) was significantly higher than that of CR-cKp (68.9 mg/L, P < 0.001). The overall cefiderocol resistance rate of CR-hvKp and CR-cKp was 5.8% (10/171) and 2.7% (4/149), respectively. The non-susceptible rates of both cefiderocol and siderophore production of CR-hvKp isolates were higher than those of CR-cKp in either NDM-1- or KPC-2-producing groups. The MIC90 and MIC50 for CR-hvKp and CR-cKp were 8 mg/L and 2 mg/L and 4 mg/L and 1 mg/L, respectively. The cumulative cefiderocol MIC distribution for CR-hvKp was significantly lower than that of CR-cKp isolates (P = 0.003). KL64 and KL47 consisted of 53.9% (83/154) and 75.7% (53/70) of the ST11 CR-hvKp and CR-cKp, respectively, and the former had significantly higher siderophore production. In summary, cefiderocol might be less effective against CR-hvKp compared with CR-cKp isolates, highlighting the need for caution regarding the prevalence of cefiderocol-resistant K. pneumoniae strains, particularly in CR-hvKp isolates.
Collapse
Affiliation(s)
- Jiankang Zhao
- National Center for Respiratory Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Danni Pu
- National Center for Respiratory Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ziyao Li
- National Center for Respiratory Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinmeng Liu
- National Center for Respiratory Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yulin Zhang
- National Center for Respiratory Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongli Wu
- National Center for Respiratory Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Feilong Zhang
- National Center for Respiratory Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Chen Li
- Liuyang Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Xianxia Zhuo
- National Center for Respiratory Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Binghuai Lu
- National Center for Respiratory Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Bin Cao
- National Center for Respiratory Medicine, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
- Department of Respiratory Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Jesser KJ, Trueba G, Konstantinidis KT, Levy K. Why are so many enteric pathogen infections asymptomatic? Pathogen and gut microbiome characteristics associated with diarrhea symptoms and carriage of diarrheagenic E. coli in northern Ecuador. Gut Microbes 2023; 15:2281010. [PMID: 37992406 PMCID: PMC10730187 DOI: 10.1080/19490976.2023.2281010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023] Open
Abstract
A high proportion of enteric infections, including those caused by diarrheagenic Escherichia coli (DEC), are asymptomatic for diarrhea. The factors responsible for the development of diarrhea symptoms, or lack thereof, remain unclear. Here, we used DEC isolate genome and whole stool microbiome data from a case-control study of diarrhea in Ecuador to examine factors associated with diarrhea symptoms accompanying DEC carriage. We investigated i) pathogen abundance, ii) gut microbiome characteristics, and iii) strain-level pathogen characteristics from DEC infections with diarrhea symptoms (symptomatic infections) and without diarrhea symptoms (asymptomatic infections). We also included data from individuals with and without diarrhea who were not infected with DEC (uninfected cases and controls). i) E. coli relative abundance in the gut microbiome was highly variable, but higher on-average in individuals with symptomatic compared to asymptomatic DEC infections. Similarly, the number and relative abundances of virulence genes in the gut were higher in symptomatic than asymptomatic DEC infections. ii) Measures of microbiome diversity were similar regardless of diarrhea symptoms or DEC carriage. Proteobacterial families that have been described as pathobionts were enriched in symptomatic infections and uninfected cases, whereas potentially beneficial taxa, including the Bacteroidaceae and Bifidobacteriaceae, were more abundant in individuals without diarrhea. An analysis of high-level gene functions recovered in metagenomes revealed that genes that were differentially abundant by diarrhea and DEC infection status were more abundant in symptomatic than asymptomatic DEC infections. iii) DEC isolates from symptomatic versus asymptomatic individuals showed no significant differences in virulence or accessory gene content, and there was no phylogenetic signal associated with diarrhea symptoms. Together, these data suggest signals that distinguish symptomatic from asymptomatic DEC infections. In particular, the abundance of E. coli, the virulence gene content of the gut microbiome, and the taxa present in the gut microbiome have an apparent role.
Collapse
Affiliation(s)
- Kelsey J Jesser
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Wang S, Wang L, Jin J, Li G, Shao H, Song Y, Sun Y, Zhang Y, Cheng J, Li L. Genomic Epidemiology and Characterization of Carbapenem-Resistant Klebsiella pneumoniae in ICU Inpatients in Henan Province, China: a Multicenter Cross-Sectional Study. Microbiol Spectr 2023; 11:e0419722. [PMID: 37212684 PMCID: PMC10269698 DOI: 10.1128/spectrum.04197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has disseminated globally and is difficult to treat, causing increased morbidity and mortality rates in critically ill patients. We conducted a multicenter cross-sectional study of intensive care unit (ICU) inpatients in 78 hospitals to investigate the prevalence and molecular characteristics of CRKP in Henan Province, China, a hyperepidemic region. A total of 327 isolates were collected and downsampled to 189 for whole-genome sequencing. Molecular typing revealed that sequence type 11 (ST11) of clonal group 258 (CG258) was predominant (88.9%, n = 168), followed by ST2237 (5.8%, n = 11) and ST15 (2.6%, n = 5). We used core genome multilocus sequence typing (cgMLST) to further classified the population into 13 subtypes. Capsule polysaccharide (K-antigen) and lipopolysaccharide (LPS; O-antigen) typing revealed that K64 (48.1%, n = 91) and O2a (49.2%, n = 93) were the most common. We studied isolates collected from both the airway and the gut of the same patients and showed that intestinal carriage was associated with respiratory colonization (odds ratio = 10.80, P < 0.0001). Most isolates (95.2%, n = 180) showed multiple drug resistance (MDR), while 59.8% (n = 113) exhibited extensive drug resistance (XDR), and all isolates harbored either blaKPC-2 (98.9%, n = 187) or blaCTX-M and blaSHV extended-spectrum beta-lactamases (ESBLs) (75.7%, n = 143). However, most were susceptible to ceftazidime-avibactam (CZA) (94.7%, n = 179) and colistin (97.9%, n = 185). We found mgrB truncations in isolates conferring resistance to colistin and mutations in blaSHV and OmpK35 and OmpK36 osmoporins in CZA-resistant isolates. Using a regularized regression model, we found that the aerobactin sequence type and the salmochelin sequence type, among others, were predictors of the hypermucoviscosity phenotype. IMPORTANCE In this study, we address the ongoing epidemic of carbapenem-resistant Klebsiella pneumoniae, a critical threat to public health. The alarming genotypic and phenotypic convergence of multidrug resistance and virulence highlights the increasingly aggravated threat posed by K. pneumoniae. This calls for a combined effort of physicians and scientists to study the potential mechanisms and establish guidelines for antimicrobial therapies and interventions. To this end, we have conducted a genomic epidemiology and characterization study using isolates collected in a coordinated effort of multiple hospitals. Innovative biological discoveries of clinical importance are made and brought to the attention of clinical researchers and practitioners. This study presents an important advance in the application of genomics and statistics to recognize, understand, and control an infectious disease of concern.
Collapse
Affiliation(s)
- Shanmei Wang
- Department of Clinical Microbiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Lei Wang
- Department of Bioinformatics Research, Genskey Co., Ltd., Beijing, China
| | - Jing Jin
- Department of Pathogen Biology and Immunology, Henan Medical College, Zhengzhou, Henan, China
| | - Gang Li
- Department of Clinical Microbiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Huanzhang Shao
- Department of Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yang Song
- Department of Bioinformatics Research, Genskey Co., Ltd., Beijing, China
| | - Yuanzheng Sun
- Clinical Laboratory, Yuzhou Jundu Hospital, Xuchang, Henan, China
| | - Yan Zhang
- Clinical Laboratory, Yima People’s Hospital, Sanmenxia, Henan, China
| | - Jianjian Cheng
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Lifeng Li
- Department of Bioinformatics Research, Genskey Co., Ltd., Beijing, China
| |
Collapse
|
6
|
Shen C, Lv T, Huang G, Zhang X, Zheng L, Chen Y. Genomic Insights Into Molecular Characteristics and Phylogenetic Linkage Between the Cases of Carbapenem-Resistant Klebsiella pneumoniae From a Non-tertiary Hospital in China: A Cohort Study. Jundishapur J Microbiol 2023. [DOI: 10.5812/jjm-133210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) strains have been listed as one of the major clinical concerns. Objectives: We investigated CPKP isolates from non-tertiary hospitals to find disseminated clones and analyze extensive phenotypic and genetic diversity in this study. Methods: In this cohort study, a total of 49 CRKP isolates from 3 hospitals in the same region were collected in 2021. The prevalence and antimicrobial susceptibility patterns were analyzed. Clinical data were retrieved from electronic medical record systems. The molecular types, antimicrobial resistance (AMR) profiles, plasmid replicons, and virulence factors were analyzed. The maximum-likelihood phylogenetic tree and transmission networks were constructed using single-nucleotide polymorphisms (SNPs). Results: The median age of patients (N = 49) was 66.0 years, and 85.7% were male. The most common CRKP infection was nosocomial pneumonia (75.5%), followed by bacteremia (10.2%). More than 53% of isolates were resistant to ceftazidime-avibactam (CAZ/AVI). Forty-five isolates were successfully sequenced; the predominant carbapenem-resistant gene was blaKPC-2 (93.3%). The 30-day mortality in our cohort was 24.5%. The most dominant sequence type (ST) was ST11 (60.0%), followed by ST15 (13.3%). Whole genome sequencing (WGS) analysis exhibited dissemination of ST11 strain clones, ST420, and ST15 clones, both within and outside the given hospital. Conclusions: In this surveillance study, several dissemination chains of CRKP were discovered in the hospital and the region, as ST11 was the main epidemic clone. Our findings suggest that effective infection control practices and antimicrobial stewardship are needed in non-tertiary hospitals in China.
Collapse
|
7
|
Recombination Drives Evolution of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 KL47 to KL64 in China. Microbiol Spectr 2023; 11:e0110722. [PMID: 36622219 PMCID: PMC9927301 DOI: 10.1128/spectrum.01107-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae, especially carbapenemase-producing Klebsiella pneumoniae, is an urgent problem in health care facilities worldwide. K. pneumoniae isolates classified as sequence type 11 (ST11) are largely responsible for the spread of carbapenem-resistant K. pneumoniae (CRKP) in China. Our previous phylogenetic reconstruction suggested that CRKP ST11 capsular locus 64 (KL64) was derived from an ST11-KL47 ancestor through recombination. However, the molecular origin of KL64 remains largely unknown, and our understanding of the recombination is incomplete. Here, we screened a global sample of 22,600 K. pneumoniae genomes and searched for KL64-harboring STs, which were found to be ST1764, ST3685, ST1764-1LV, ST30, ST505, ST147, and ST11, wherein ST1764, ST3685, ST1764-1LV, and ST30 belonged to a clonal complex, CC1764. We compared the genetic structures of representative strains from ST11-KL47, ST11-KL64, CC1764-KL64, ST505-KL64, and ST147-KL64 and further performed phylogenetic analysis and single-nucleotide polymorphism analysis among 248 isolates from all these STs. The results suggested a recombination event has occurred in a homologous ~154-kb region covering KL and the lipopolysaccharide biosynthesis locus (OL) between a recipient ST11-KL47-OL101 and a donor CC1764 (except ST30), giving rise to ST11-KL64-O2v1 strains (recombination I). Furthermore, we also found an infrequent ST11-KL64-O2v1 subclone which was not produced by recombination I but was hybridized from ST11-KL47-OL101 and ST147-KL64-O2v1 strains through recombination of a homologous ~485-kb region covering KL and OL (recombination II). Our findings provide important insights into the role of recombination in the evolution of clinical strains and the diversity of capsule and lipopolysaccharide of widely distributed KPC-associated ST11 K. pneumoniae in China. IMPORTANCE Chromosomal recombination events are considered to contribute to the genetic diversification and ultimate success of many bacterial pathogens. A previous study unravelled the molecular evolution history of ST258 strains, which have been largely responsible for the spread of KPC in the United States. Here, we used comparative genomic analyses to discover two recombination events in ST11 CRKP strains, which is a predominant KPC-associated CRKP clone in China. Two new ST11-CRKP subclones with altered capsule and lipopolysaccharide, which are two primary determinants of antigenicity and antigenic diversity among K. pneumoniae, were produced through these two recombination events, respectively. Horizontal transfer of the KL and OL appears to be a crucial element driving the molecular evolution of K. pneumoniae strains. These findings not only extend our understanding of the molecular evolutionary history of ST11 but also are an important step toward the development of preventive, diagnostic, and therapeutic strategies for CRKP.
Collapse
|
8
|
Clinical and Molecular Characterizations of Carbapenem-Resistant Klebsiella pneumoniae Causing Bloodstream Infection in a Chinese Hospital. Microbiol Spectr 2022; 10:e0169022. [PMID: 36190403 PMCID: PMC9603270 DOI: 10.1128/spectrum.01690-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bloodstream infection (BSI) caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) is a serious and urgent threat for hospitalized patients. This study aims to describe the clinical and molecular characteristics of CRKP causing BSI in a tertiary-care hospital in Beijing, China. A total of 146 CRKP strains and 39 carbapenem-susceptible K. pneumoniae (CSKP) strains collected in the hospital from 2017 to 2020 were sent for whole-genome sequencing. Univariate and multivariate analyses were used to evaluate risk factors for in-hospital mortality of CRKP-BSI cases. Thirty (20.5%) of 146 CRKP-BSI patients and three (7.7%) of 39 CSKP-BSI patients died at discharge (χ2 = 3.471, P = 0.062). Multivariate logistic regression analysis indicated that age and use of urinary catheters were independent risk factors for the death of CRKP-BSI. The 146 CRKP isolates belonged to 9 sequence types (STs) and 11 serotypes, while the 39 CSKP isolates belonged to 23 STs and 27 serotypes. The mechanism of carbapenem resistance for all the CRKP strains was the acquisition of carbapenemase, mainly KPC-2 (n = 127). There were 2 predominant serotypes for ST11 CRKP, namely, KL47 (n = 82) and KL64 (n = 42). Some virulent genes, including rmpA2, iucABCD and iutA, and repB gene, which was involved in plasmid replication, were detected in all ST11-KL64 strains. Evolutionary transmission analysis suggested that ST11 CRKP strains might have evolved from KL47 into KL64 and were accompanied by multiple outbreak events. This study poses an urgent need for enhancing infection control measures in the hospital, especially in the intensive care unit where the patients are at high-risk for acquiring CRKP-BSI. IMPORTANCE CRKP-BSI is demonstrated to cause high mortality. In this study, we demonstrated that ST11 CRKP strains might carry many virulent genes. Meanwhile, outbreak events occurred several times in the strains collected. Carbapenemase acquisition (mainly KPC-2 carbapenemase) was responsible for carbapenem resistance of all the 146 CRKP strains. As 2 predominant strains, all ST11-KL64 strains, but not ST11-KL47 strains, carried rmpA2, iucABCD, iutA, as well as a plasmid replication initiator (repB). Our study suggested that the occurrence of region-specific recombination events manifested by the acquisition of some virulence genes might contribute to serotype switching from ST11-KL47 to ST11-KL64. The accumulation of virulent genes in epidemic resistant strains poses a great challenge for the prevention and treatment of BSI caused by K. pneumoniae in high-risk patients.
Collapse
|
9
|
Genomic Evolution of ST11 Carbapenem-Resistant Klebsiella pneumoniae from 2011 to 2020 Based on Data from the Pathosystems Resource Integration Center. Genes (Basel) 2022; 13:genes13091624. [PMID: 36140792 PMCID: PMC9498433 DOI: 10.3390/genes13091624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
(1) Objective: ST11 carbapenem-resistant Klebsiella pneumoniae (CRKP) is widespread throughout the world, and the mechanisms for the transmission and evolution of major serotypes, ST11-KL47 and ST11-KL64, were analyzed to investigate the global distribution and evolutionary characteristics of ST11 CRKP; (2) Methods: The Pathosystems Resource Integration Center (PATRIC) database was downloaded and all K. pneumoniae from 2011 to 2020 were screened to obtain ST11 CRKP genome assemblies with basic information. The relationship of serotype evolution between KL47 and KL64 was then investigated using statistical and bioinformatic analysis; (3) Results: In total, 386 ST11 CRKP isolates were included for analysis. Blood (31.09%, 120/386), respiratory tract (23.06%, 89/386), and feces (20.21%, 78/386) were the major sources of samples. China was the leading country where ST11 CRKP was isolated. KL47 and KL64 were found to be the most prevalent serotypes. ST11-KL64 CRKP [median 78(P25~P75: 72~79.25)] had remarkably more virulence genes than the KL47 [median 63(P25~P75: 63~69)], and the distinction was statistically significant (p < 0.001). A differential comparison of virulence genes between KL47 and KL64 revealed 35 differential virulence genes, including rmpA/rmpA2, iucABCD, iutA, etc. The comparison of the recombination of serotype-determining regions between the two serotypes revealed that KL64 CRKP carried more nucleotide sequences in the CD1-VR2-CD2 region than KL47 CRKP. More nucleotide sequences added approximately 303 base pairs (bp) with higher GC content (58.14%), which might facilitate the evolution of the serotype toward KL64; (4) Conclusions: KL47 and KL64 have become the predominant serotypes of ST11 CRKP. KL64 CRKP carries more virulence genes than KL47 and has increased by approximately 303 bp through recombinant mutations, thus facilitating the evolution of KL47 to KL64. Stricter infection prevention and control measures should be developed to deal with the epidemic transmission of ST11-KL64 CRKP.
Collapse
|
10
|
Liang S, Cao H, Ying F, Zhang C. Report of a Fatal Purulent Pericarditis Case Caused by ST11-K64 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae. Infect Drug Resist 2022; 15:4749-4757. [PMID: 36034175 PMCID: PMC9416326 DOI: 10.2147/idr.s379654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
The report describes a 44-year-old female patient who died of the rare acute purulent pericarditis caused by Klebsiella pneumoniae (KP). The genomic analysis revealed an extensively drug-resistant ST11-K64 KP strain from five isolates (blood cultures, urine, ascites, pericardial effusion, and sputum). Several high virulence (hv) and carbapenem-resistant (CR) genes were identified in the pericardial effuse isolate. The isolates showed low resistance to healthy human serum. This study highlights the potential lethality of CR-hvKP infections in patients suffering from underlying comorbidities such as diabetes mellitus and chronic ailments.
Collapse
Affiliation(s)
- Shiwei Liang
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China.,School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, People's Republic of China
| | - Huijun Cao
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Fei Ying
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Chenchen Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, People's Republic of China
| |
Collapse
|
11
|
Conceição-Neto OC, da Costa BS, Pontes LDS, Silveira MC, Justo-da-Silva LH, de Oliveira Santos IC, Teixeira CBT, Tavares e Oliveira TR, Hermes FS, Galvão TC, Antunes LCM, Rocha-de-Souza CM, Carvalho-Assef APD. Polymyxin Resistance in Clinical Isolates of K. pneumoniae in Brazil: Update on Molecular Mechanisms, Clonal Dissemination and Relationship With KPC-Producing Strains. Front Cell Infect Microbiol 2022; 12:898125. [PMID: 35909953 PMCID: PMC9334684 DOI: 10.3389/fcimb.2022.898125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
In Brazil, the production of KPC-type carbapenemases in Enterobacteriales is endemic, leading to widespread use of polymyxins. In the present study, 502 Klebsiella pneumoniae isolates were evaluated for resistance to polymyxins, their genetic determinants and clonality, in addition to the presence of carbapenem resistance genes and evaluation of antimicrobial resistance. Resistance to colistin (polymyxin E) was evaluated through initial selection on EMB agar containing 4% colistin sulfate, followed by Minimal Inhibitory Concentration (MIC) determination by broth microdilution. The susceptibility to 17 antimicrobials was assessed by disk diffusion. The presence of blaKPC, blaNDM and blaOXA-48-like carbapenemases was investigated by phenotypic methods and conventional PCR. Molecular typing was performed by PFGE and MLST. Allelic variants of the mcr gene were screened by PCR and chromosomal mutations in the pmrA, pmrB, phoP, phoQ and mgrB genes were investigated by sequencing. Our work showed a colistin resistance frequency of 29.5% (n = 148/502) in K. pneumoniae isolates. Colistin MICs from 4 to >128 µg/mL were identified (MIC50 = 64 µg/mL; MIC90 >128 µg/mL). All isolates were considered MDR, with the lowest resistance rates observed for amikacin (34.4%), and 19.6% of the isolates were resistant to all tested antimicrobials. The blaKPC gene was identified in 77% of the isolates, in consonance with the high rate of resistance to polymyxins related to its use as a therapeutic alternative. Through XbaI-PFGE, 51 pulsotypes were identified. MLST showed 21 STs, with ST437, ST258 and ST11 (CC11) being the most prevalent, and two new STs were determined: ST4868 and ST4869. The mcr-1 gene was identified in 3 K. pneumoniae isolates. Missense mutations in chromosomal genes were identified, as well as insertion sequences in mgrB. Furthermore, the identification of chromosomal mutations in K. pneumoniae isolates belonging from CC11 ensures its success as a high-risk epidemic clone in Brazil and worldwide.
Collapse
Affiliation(s)
- Orlando C. Conceição-Neto
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Estácio de Sá (UNESA), Rio de Janeiro, Brazil
| | - Bianca Santos da Costa
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Leilane da Silva Pontes
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Melise Chaves Silveira
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Ivson Cassiano de Oliveira Santos
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Camila Bastos Tavares Teixeira
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Thamirys Rachel Tavares e Oliveira
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Fernanda Stephens Hermes
- Laboratório de Genômica Funcional e Bioinformática (LAGFB), Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática (LAGFB), Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - L. Caetano M. Antunes
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ana P. D. Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- *Correspondence: Ana P. D. Carvalho-Assef,
| |
Collapse
|
12
|
Guo L, Wang L, Zhao Q, Ye L, Ye K, Ma Y, Shen D, Yang J. Genomic Analysis of KPC-2-Producing Klebsiella pneumoniae ST11 Isolates at the Respiratory Department of a Tertiary Care Hospital in Beijing, China. Front Microbiol 2022; 13:929826. [PMID: 35783384 PMCID: PMC9244631 DOI: 10.3389/fmicb.2022.929826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Background Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an important pathogen causing hospital-associated outbreaks worldwide. The spread of K. pneumoniae carbapenemase-2 (KPC-2)-producing CRKP is primarily associated with sequence type (ST) 11. Methods A total of 152 KPC-2-producing K. pneumoniae ST11 isolates were collected from the respiratory department of a tertiary care hospital in Beijing, China between 2009 and 2018. The genome sequencing of these isolates was performed on the HiSeq X Ten sequencer. Multilocus sequence typing (MLST), capsular type, plasmid replicon types and resistance genes were identified. Fifteen isolates were selected for the subsequent single-molecule real-time (SMRT) sequencing on the PacBio RS II. Alignment of the complete sequences of the plasmids carrying blaKPC–2 and/or virulence genes was performed by using BRIG and Easyfig. Results From 2012 to 2018, the detection rate of the blaKPC–2-carrying CRKP rose rapidly from 3.3 to 28.1%. KPC-2-producing K. pneumoniae ST11 isolates were dominant in CRKP, which emerged in 2012 and caused several outbreaks. Most isolates exhibited multidrug-resistant to commonly used antibiotics, while all the isolates remained susceptible to tigecycline and polymyxin B. The single nucleotide polymorphism (SNP) analysis showed that all these 152 KPC-2-producing K. pneumoniae ST11 isolates could be divided into three genetically distinct clades (A, B, and C) and eleven subclades (A1–A9 and B1–B2). The majority belonged to clade A with KL47 serotype (n = 117, 77.0%), while KL64 and KL16 were identified in clades B and C, respectively. The blaKPC–2-carrying plasmids exhibited diverse types, namely, IncFII (pHN7A8)/IncR(6/15), IncFII (pHN7A8)/IncpA1763–KPC (5/15), IncFII (pHN7A8) (1/15), IncR (1/15), and IncpA1763–KPC (1/15). The genetic environment of blaKPC–2 showed nine IS26-based composite transposons, which had a basic core structure ISKpn27-blaKPC–2-ΔISKpn6. About 27.6% (42/152) isolates co-carried 2 to 4 virulence marker genes (namely, peg344, iucA, iroB, rmpA, and rmpA2) for hvKp strains. At least three isolates were identified to harbor virulence gene-carrying plasmids. Conclusion KPC-2-producing K. pneumoniae ST11 was highly heterogeneous in our hospital. Transmission of these strains was mainly mediated by twelve high-risk clones. The blaKPC–2-carrying plasmids and genetic environment of blaKPC–2 genes exhibited active evolution in K. pneumoniae ST11. More attention should be paid to the tendency of KPC-2-ST11 to acquire hypervirulent plasmids.
Collapse
|
13
|
Yang P, Wu Z, Liu C, Zheng J, Wu N, Wu Z, Yi J, Lu M, Shen N. Clinical Outcomes and Microbiological Characteristics of Sequence Type 11 Klebsiella pneumoniae Infection. Front Med (Lausanne) 2022; 9:889020. [PMID: 35652076 PMCID: PMC9149164 DOI: 10.3389/fmed.2022.889020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
Background Sequence type 11 (ST11) Klebsiella pneumoniae (Kp) is highly prevalent in China and is a typical sequence type among KPC-producing isolates. This study aimed to evaluate the clinical outcomes and microbiological features of ST11 Kp infections. Methods A retrospective cohort study was conducted at Peking University Third Hospital from January 2017 to March 2021. Clinical data were collected from medical records. Antimicrobial susceptibility testing and string tests were performed. Whole-genome sequencing was used to analyze the capsular serotypes, detect virulence-associated genes, and perform multilocus sequence typing. The risk of all-cause mortality in ST11 Kp-infected patients was compared to that in non-ST11 Kp-infected patients. Results From 139 patients infected with Kp, 49 ST11 Kp (35.3%) strains were isolated. The Charlson comorbidity index in the ST11 group was higher than that in the non-ST11 group (3.94 ± 1.59 vs. 2.41 ± 1.54, P = 0.001). A greater number of ST11 Kp-infected patients required ICU admission (46.9 vs. 16.7%, P < 0.001) and mechanical ventilation (28.6 vs. 10.0%, P = 0.005). All ST11 isolates presented a multidrug-resistant (MDR) phenotype, and twenty-nine (59.2%) hypervirulent Kp (hvKp) were identified. Twenty-four ST11 strains presented with hypermucoviscosity. The presence of capsular types K47 and K64 was frequent in the ST11 Kp strains (P < 0.001). The key virulence-associated genes rmpA, rmpA2, iucA, iroB, and peg344 were present in 26.5, 42.9, 59.2, 0, and 26.5% of the isolates, respectively, in the ST11 group. Twenty-one ST11 isolates harbored the combination of iucA+rmpA2. The 30-day mortality rate and sequential organ failure assessment (SOFA) score were significantly higher in ST11 Kp-infected patients than in non-ST11 Kp-infected patients (P < 0.01). ST11 Kp infection appeared to be an independent risk factor for mortality in ST11 Kp-infected patients. Conclusions A high prevalence of the ST11 clone was found in the hospital, which accounted for elevated antimicrobial resistance and exhibited great molecularly inferred virulence. Patients with ST11 Kp infection had a tendency toward increased 30-day mortality and SOFA scores. ST11 Kp infection was an independent risk factor for mortality, suggesting that enhanced surveillance and management are essential.
Collapse
Affiliation(s)
- Ping Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chao Liu
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Jiajia Zheng
- Laboratory of Clinical Microbiology, Peking University Third Hospital, Beijing, China
| | - Nan Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zhangli Wu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Juan Yi
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Ming Lu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.,Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.,Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Dong N, Yang X, Chan EWC, Zhang R, Chen S. Klebsiella species: Taxonomy, hypervirulence and multidrug resistance. EBioMedicine 2022; 79:103998. [PMID: 35405387 PMCID: PMC9010751 DOI: 10.1016/j.ebiom.2022.103998] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Members of the genus Klebsiella have rapidly evolved within the past decade, generating organisms that simultaneously exhibit both multidrug resistance and hypervirulence (MDR-hv) phenotypes; such organisms are associated with severe hospital- and community-acquired infections. Carbapenem-resistant infections with unknown optimal treatment regime were of particular concern among the MDR-hv Klebsiella strains. Recent studies have revealed the molecular features and the mobile resistance elements they harbour, allowing identification of genetic loci responsible for transmission, stable inheritance, and expression of mobile resistance or virulence-encoding elements that confer the new phenotypic characteristics of MDR-hv Klebsiella spp. Here, we provide a comprehensive review on the taxonomic position, species composition and different phylotypes of Klebsiella spp., describing the diversity and worldwide distribution of the MDR-hv clones, the genetic mutation and horizontal gene transfer events that drive the evolution of such clones, and the potential impact of MDR-hv infections on human health.
Collapse
Affiliation(s)
- Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong polytechnic University, Hung Hom, Hong Kong, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
15
|
Shankar C, Vasudevan K, Jacob JJ, Baker S, Isaac BJ, Neeravi AR, Sethuvel DPM, George B, Veeraraghavan B. Hybrid Plasmids Encoding Antimicrobial Resistance and Virulence Traits Among Hypervirulent Klebsiella pneumoniae ST2096 in India. Front Cell Infect Microbiol 2022; 12:875116. [PMID: 35573787 PMCID: PMC9094440 DOI: 10.3389/fcimb.2022.875116] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/21/2022] [Indexed: 12/05/2022] Open
Abstract
Background Hypervirulent variants of Klebsiella pneumoniae (HvKp) were typically associated with a broadly antimicrobial susceptible clone of sequence type (ST) 23 at the time of its emergence. Concerningly, HvKp is now also emerging within multidrug-resistant (MDR) clones, including ST11, ST15, and ST147. MDR-HvKp either carry both the virulence and resistance plasmids or carry a large hybrid plasmid coding for both virulence and resistance determinants. Here, we aimed to genetically characterize a collection of MDR-HvKp ST2096 isolates haboring hybrid plasmids carrying both antimicrobial resistance (AMR) and virulence genes. Methods Nine K. pneumoniae ST2096 isolated over 1 year from the blood sample of hospitalized patients in southern India that were MDR and suspected to be HvKp were selected. All nine isolates were subjected to short-read whole-genome sequencing; a subset (n = 4) was additionally subjected to long-read sequencing to obtain complete genomes for characterization. Mucoviscosity assay was also performed for phenotypic assessment. Results Among the nine isolates, seven were carbapenem-resistant, two of which carried blaNDM-5 on an IncFII plasmid and five carried blaOXA-232 on a ColKP3 plasmid. The organisms were confirmed as HvKp, with characteristic virulence genes (rmpA2, iutA, and iucABCD) carried on a large (~320 kbp) IncFIB–IncHI1B co-integrate. This hybrid plasmid also carried the aadA2, armA, blaOXA-1, msrE, mphE, sul1, and dfrA14 AMR genes in addition to the heavy-metal resistance genes. The hybrid plasmid showed about 60% similarity to the IncHI1B virulence plasmid of K. pneumoniae SGH10 and ~70% sequence identity with the first identified IncHI1B pNDM-MAR plasmid. Notably, the hybrid plasmid carried its type IV-A3 CRISPR-Cas system which harbored spacer regions against traL of IncF plasmids, thereby preventing their acquisition. Conclusion The convergence of virulence and AMR is clinically concerning in K. pneumoniae. Our data highlight the role of hybrid plasmids carrying both AMR and virulence genes in K. pneumoniae ST2096, suggesting that MDR-HvKp is not confined to selected clones; we highlight the continued emergence of such genotypes across the species. The convergence is occurring globally amidst several clones and is of great concern to public health.
Collapse
Affiliation(s)
- Chaitra Shankar
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Jobin John Jacob
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Barney J. Isaac
- Department of Pulmonary Medicine, Christian Medical College and Hospital, Vellore, India
| | - Ayyan Raj Neeravi
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | | | - Biju George
- Department of Haematology, Christian Medical College and Hospital, Vellore, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
- *Correspondence: Balaji Veeraraghavan,
| |
Collapse
|
16
|
Lázaro-Perona F, Dahdouh E, Sotillo A, Pérez-Blanco V, Villa J, Viedma E, Ruiz-Carrascoso G, Mingorance J. Dissemination of a single ST11 clone of OXA-48-producing Klebsiella pneumoniae within a large polyclonal hospital outbreak determined by genomic sequencing. Microb Genom 2022; 8. [PMID: 35394416 PMCID: PMC9453077 DOI: 10.1099/mgen.0.000808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The population structure of a set of OXA-48-producing Klebsiella pneumoniae isolates belonging to sequence type 11 (ST11 Kp-OXA) and obtained from two hospitals in Madrid in the period from 2012 to 2015 was studied by genome sequencing. Overall, 97 ST11 Kp-OXA isolates were sequenced and their population structure and demography were studied by Bayesian phylodynamic analysis using core-genome SNVs. In total, 92 isolates were from Hospital La Paz, 57 of them from two selected units. The remaining five isolates were from different units of Hospital Doce de Octubre. Altogether, 96 out of the 97 ST11 Kp-OXA isolates could be ascribed to a single lineage that evolved into three sublineages. Demographic inference showed an expansion of the ST11 Kp-OXA in the first half of 2013 in agreement with the registered incidences. Dated phylogeny showed transmission clusters within hospital wards, between wards and between hospitals. The ST11 Kp-OXA outbreak in Hospital La Paz was largely due to the expansion of a single clone that was transmitted between different units and to Hospital Doce de Octubre. This clone diverged into three sub-lineages and spread out following a mixed mode of neutral core-genome evolution with some features of antibiotic selection, frequent large deletions and plasmid loss and gain events.
Collapse
Affiliation(s)
- Fernando Lázaro-Perona
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Elias Dahdouh
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Alma Sotillo
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Verónica Pérez-Blanco
- Servicio de Medicina Preventiva, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Jennifer Villa
- Servicio de Microbiología, Hospital Universitario 12 de Octubre, Imas12, Avenida de Córdoba sn, Madrid 28041, Spain
| | - Esther Viedma
- Servicio de Microbiología, Hospital Universitario 12 de Octubre, Imas12, Avenida de Córdoba sn, Madrid 28041, Spain
| | - Guillermo Ruiz-Carrascoso
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de La Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
17
|
Liu C, Wu Y, Fang Y, Sang Z, Huang L, Dong N, Zeng Y, Lu J, Zhang R, Chen G. Emergence of an ST1326 (CG258) Multi-Drug Resistant Klebsiella pneumoniae Co-harboring mcr-8.2, ESBL Genes, and the Resistance-Nodulation-Division Efflux Pump Gene Cluster tmexCD1-toprJ1 in China. Front Microbiol 2022; 13:800993. [PMID: 35369441 PMCID: PMC8969419 DOI: 10.3389/fmicb.2022.800993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/15/2022] [Indexed: 01/29/2023] Open
Abstract
CG258 is the dominant carbapenemase-producing Klebsiella pneumoniae clone worldwide and treatment of infections caused by this clone relies largely on the last-line antibiotics, colistin, and tigecycline. However, the emergence and global dissemination of mcr and tmexCD1-toprJ1 genes have significantly compromised their clinical applications. CG258 K. pneumoniae carrying both mcr and tmexCD1-toprJ1 have not been reported. A colistin-resistant strain T698-1 belonging to ST1326, a member of CG258, was isolated from the intestinal sample of a patient and characterized by the antimicrobial susceptibility testing, conjugation assay, WGS and bioinformatics analysis. It was resistant to colistin, tetracycline, aminoglycoside, fluoroqinolone, phenicols, sulfonamide, and some β-lactams, and positive for mcr-8.2, tmexCD1-toprJ1, and ESBL genes (blaDHA–1 and blaCTX–M–15). The tmexCD1-toprJ1 gene cluster was located in an multi-drug resistant (MDR) region flanked by TnAs1 elements on an IncHI1B/FIB plasmid. The genetic context of tmexCD1-toprJ1 was slightly distinct from previously reported Tn5393-like structures, with an IS26 element disrupting the upstream Tn5393 and its adjacent genetic elements. The mcr-8.2 gene was inserted into the backbone of an IncFII/FIA plasmid with the genetic context of ISEcl1-mcr-8.2-orf-ISKpn26. To our knowledge, this is the first report of co-occurrence of mcr-8.2 and tmexCD1-toprJ1 in a CG258 K. pneumoniae strain. Though this strain is tigecycline sensitive, the acquisition of colistin and tigecycline resistance determinants by the endemic CG258 K. pneumoniae clone still poses a serious public health concern. CG258, which became resistant to multiple last resort antibiotics, would be the next emerging superbug.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yinfei Fang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zi Sang
- Department of Clinical Laboratory, Dali Bai Autonomous Prefecture People’s Hospital, Dali, China
| | - Ling Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Department of Clinical Laboratory Medicine, Maternal and Child Health Hospital of Linping District, Hangzhou, China
| | - Ning Dong
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China
| | - Yu Zeng
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- *Correspondence: Gongxiang Chen,
| |
Collapse
|
18
|
NDM-1 Introduction in Portugal through a ST11 KL105 Klebsiella pneumoniae Widespread in Europe. Antibiotics (Basel) 2022; 11:antibiotics11010092. [PMID: 35052969 PMCID: PMC8773016 DOI: 10.3390/antibiotics11010092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022] Open
Abstract
The changing epidemiology of carbapenem-resistant Klebsiella pneumoniae in Southern European countries is challenging for infection control, and it is critical to identify and track new genetic entities (genes, carbapenemases, clones) quickly and with high precision. We aimed to characterize the strain responsible for the first recognized outbreak by an NDM-1-producing K. pneumoniae in Portugal, and to elucidate its diffusion in an international context. NDM-1-producing multidrug-resistant K. pneumoniae isolates from hospitalized patients (2018–2019) were characterized using FTIR spectroscopy, molecular typing, whole-genome sequencing, and comparative genomics with available K. pneumoniae ST11 KL105 genomes. FT-IR spectroscopy allowed the rapid (ca. 4 h after incubation) identification of the outbreak strains as ST11 KL105, supporting outbreak control. Epidemiological information supports a community source but without linkage to endemic regions of NDM-1 producers. Whole-genome comparison with previous DHA-1-producing ST11 KL105 strains revealed the presence of different plasmid types and antibiotic resistance traits, suggesting the entry of a new strain. In fact, this ST11 KL105 clade has successfully disseminated in Europe with variable beta-lactamases, but essentially as ESBL or DHA-1 producers. We expand the distribution map of NDM-1-producing K. pneumoniae in Europe, at the expense of a successfully established ST11 KL105 K. pneumoniae clade circulating with variable plasmid backgrounds and beta-lactamases. Our work further supports the use of FT-IR as an asset to support quick infection control.
Collapse
|
19
|
Feng J, Xiang Q, Ma J, Zhang P, Li K, Wu K, Su M, Li R, Hurley D, Bai L, Wang J, Yang Z. Characterization of Carbapenem-Resistant Enterobacteriaceae Cultured From Retail Meat Products, Patients, and Porcine Excrement in China. Front Microbiol 2021; 12:743468. [PMID: 35002997 PMCID: PMC8734966 DOI: 10.3389/fmicb.2021.743468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence and dissemination of carbapenem-resistant Enterobacteriaceae (CRE) is a growing concern to animal and public health. However, little is known about the spread of CRE in food and livestock and its potential transmission to humans. To identify CRE strains from different origins and sources, 53 isolates were cultured from 760 samples including retail meat products, patients, and porcine excrement. Antimicrobial susceptibility testing was carried out, followed by phylogenetic typing, whole-genome sequencing, broth mating assays, and plasmids analyses. Forty-three Escherichia coli, nine Klebsiella pneumoniae, and one Enterobacter cloacae isolates were identified, each exhibiting multidrug-resistant phenotypes. Genetically, the main sequence types (STs) of E. coli were ST156 (n = 7), ST354 (n = 7), and ST48 (n = 7), and the dominant ST of K. pneumoniae is ST11 (n = 5). blaNDM–5 (n = 40) of E. coli and blaKPC–2 (n = 5) were the key genes that conferred carbapenem resistance phenotypes in these CRE strains. Additionally, the mcr-1 gene was identified in 17 blaNDM-producing isolates. The blaNDM–5 gene from eight strains could be transferred to the recipients via conjugation assays. Two mcr-1 genes in the E. coli isolates could be co-transferred along with the blaNDM–5 genes. IncF and IncX3 plasmids have been found to be predominantly associated with blaNDM gene in these strains. Strains isolated in our study from different sources and regions tend to be concordant and overlap. CRE strains from retail meat products are a reservoir for transition of CRE strains between animals and humans. These data also provide evidence of the dissemination of CRE strains and carbapenem-resistant genes between animal and human sources.
Collapse
Affiliation(s)
- Jie Feng
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qian Xiang
- Department of Healthcare Associated Infection Control, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangang Ma
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Pei Zhang
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Kun Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ke Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Mengru Su
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ruichao Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Daniel Hurley
- UCD-Centre for Food Safety, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Li Bai
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
- *Correspondence: Li Bai,
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Juan Wang,
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Zengqi Yang,
| |
Collapse
|
20
|
Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:4188. [PMID: 34234121 PMCID: PMC8263825 DOI: 10.1038/s41467-021-24448-3] [Citation(s) in RCA: 398] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is a leading cause of antimicrobial-resistant (AMR) healthcare-associated infections, neonatal sepsis and community-acquired liver abscess, and is associated with chronic intestinal diseases. Its diversity and complex population structure pose challenges for analysis and interpretation of K. pneumoniae genome data. Here we introduce Kleborate, a tool for analysing genomes of K. pneumoniae and its associated species complex, which consolidates interrogation of key features of proven clinical importance. Kleborate provides a framework to support genomic surveillance and epidemiology in research, clinical and public health settings. To demonstrate its utility we apply Kleborate to analyse publicly available Klebsiella genomes, including clinical isolates from a pan-European study of carbapenemase-producing Klebsiella, highlighting global trends in AMR and virulence as examples of what could be achieved by applying this genomic framework within more systematic genomic surveillance efforts. We also demonstrate the application of Kleborate to detect and type K. pneumoniae from gut metagenomes.
Collapse
Affiliation(s)
- Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stephen C Watts
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Louise T Cerdeira
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
21
|
Virulence among different types of hypervirulent Klebsiella pneumoniae with multi-locus sequence type (MLST)-11, Serotype K1 or K2 strains. Gut Pathog 2021; 13:40. [PMID: 34154656 PMCID: PMC8218402 DOI: 10.1186/s13099-021-00439-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Two different types of hypervirulent K. pneumoniae (HvKp), the MLST-11 and serotype K1/K2 strains, have been frequently described in recent studies. Although these two types of strains were described to be HvKp, their virulence was not compared. In this study, in vitro and in vivo approaches were used to assess differences in virulence. Materials and methods A total of twenty-nine isolates, including 6 strains of each of serotype K1 and K2 isolates and 17 strains of ST11 isolates, were selected for this study. Phenotypic tests of virulence were performed by the string test and analysis of the virulent associated genes was detected by PCR. In vitro models of serum resistance and phagocytosis were used as the parameters to assess the virulence. In-frame deletion of virulence-associated genes was performed to study their contributions to virulence. The median lethal dose, i.e., the LD50, in mice was determined following IP injection. Results Although serotype K1 and K2 strains and ST11 isolates had similar virulence gene profiles, the ST11 isolates showed less serum and phagocytic resistance than the serotype K1/K2 isolates. The mouse lethality test revealed that all ST11 isolates were unable to cause lethality, even at > 107 CFU, while serotypes K1 and K2 showed an LD50 at ≤ 103 CFU. Aerobactin or capsule knockout mutants exhibited a lower LD50 than the parental strain, while capsule mutants showed a more significant decrease in LD50. Conclusion Since there was a significant difference in virulence levels between the two types of HvKp when assessed in in vitro and in vivo models, it may be better to use the designation "HvKp" for some strains based on animal studies to avoid confusion. Virulence and non-virulence could be analysed in a relative manner, especially in comparison studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00439-z.
Collapse
|
22
|
Huang QS, Liao W, Xiong Z, Li D, Du FL, Xiang TX, Wei D, Wan LG, Liu Y, Zhang W. Prevalence of the NTE KPC-I on IncF Plasmids Among Hypervirulent Klebsiella pneumoniae Isolates in Jiangxi Province, South China. Front Microbiol 2021; 12:622280. [PMID: 34234750 PMCID: PMC8256152 DOI: 10.3389/fmicb.2021.622280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Infection caused by carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) has become a tricky health care threat in China and KPC-2 enzyme is a main factor mediating resistance to carbapenems of K. pneumoniae. Here, we report the characterization of the genetic environment of the blaKPC-2 gene in CR-hvKP clinical isolates from South China. Forty-five non-duplicated CR-hvKP isolates collected in Jiangxi Province from 2018 to 2019 were analyzed. Each of them were multidrug-resistant due to the presence not only of blaKPC-2 gene but also of other resistance determinants, including Metallo-β-lactamases (NDM-1), extended-spectrum β-lactamases (TEM-1, CTX-M-14, SHV-1), and plasmid-mediated quinolone resistance determinants (qnrS, aac(6′)-Ib-cr). After plasmid analyses of PCR-based replicon typing (PBRT), mapping PCR, amplicon sequencing, and whole-genome sequencing (WGS) were used to analyze the genetic environment of the blaKPC-2 gene. PCR analysis of pLVPK-like plasmids, Southern Blot, and mouse lethality assay were used to characterize the virulence phenotype of K. pneumoniae. Multilocus sequence typing (MLST) analysis showed ST11 CR-hvKP was the predominant clone. In conclusion, this is the first analysis of diverse genetic structures blaKPC-2 gene in CR-hvKP isolates from south China. Both the NTEKPC-I on the IncF plasmids and pLVPK-like virulence plasmids make contributions to the formation of CR-hvKP especially ST11 which need more attention.
Collapse
Affiliation(s)
- Qi-Sen Huang
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wenjian Liao
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Zhijuan Xiong
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Dan Li
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Fang-Ling Du
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Tian-Xin Xiang
- Department of Infectious Disease, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - DanDan Wei
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - La-Gen Wan
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yang Liu
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Sugawara Y, Akeda Y, Hagiya H, Zin KN, Aye MM, Takeuchi D, Matsumoto Y, Motooka D, Nishi I, Tomono K, Hamada S. Characterization of bla NDM-5-harbouring Klebsiella pneumoniae sequence type 11 international high-risk clones isolated from clinical samples in Yangon General Hospital, a tertiary-care hospital in Myanmar. J Med Microbiol 2021; 70. [PMID: 34038339 DOI: 10.1099/jmm.0.001348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fifteen Klebsiella pneumoniae isolates harbouring bla NDM genes were identified from blood and sputum specimens of patients at a tertiary-care facility (Yangon General Hospital, Yangon, Myanmar) in 2018. Two of the isolates belonged to sequence type (ST) 11, an international high-risk clone. Whole-genome sequencing and phylogenetic analyses revealed that these two isolates were clustered together with other ST11 isolates originating from other countries. The isolates harboured the bla NDM-5 gene on an IncFII-type plasmid that is prevalent among carbapenemase-producing Enterobacteriaceae in Yangon but has rarely been found in other ST11 isolates. Our data suggests the regional presence of the ST11 international high-risk clone and its acquisition of an endemic bla NDM-5-carrying plasmid.
Collapse
Affiliation(s)
- Yo Sugawara
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yukihiro Akeda
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Japan.,Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hideharu Hagiya
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Khwar Nyo Zin
- Clinical Laboratory Department, Yangon General Hospital, Yangon, Myanmar
| | - Mya Mya Aye
- Bacteriology Research Division, Department of Medical Research, Yangon, Myanmar
| | - Dan Takeuchi
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Isao Nishi
- Laboratory for Clinical Investigation, Osaka University Hospital, Suita, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
24
|
Hou C, Xu C, Yi B, Huang X, Cao C, Lee Y, Chen S, Yao X. Mechano-Induced Assembly of a Nanocomposite for "Press-N-Go" Coatings with Highly Efficient Surface Disinfection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19332-19341. [PMID: 33871976 DOI: 10.1021/acsami.1c03156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using antimicrobial coatings to control the spread of pathogenic microbes is appreciated in public and healthcare settings, but the performance of most antimicrobial coatings could not fulfill the increasing requirements, particularly the ease of preparation, high durability, rapid response, and high killing efficiency. Herein, we develop a new type of mechano-induced assembly of nanocomposite coating by simple "Press-N-Go" procedures on various substrates such as glassware, gloves, and fabrics, in which the coating shows strong adhesion, high shear stability, and high stiffness, making it durable in daily use to withstand common mechanical deformation and scratches. The coating also shows remarkable disinfection effectiveness over 99.9% to clinically significant multiple drug-resistant bacterial pathogens upon only 6 s near-infrared irradiation, which can be further improved to over 99.9999% upon another 6 s treatment. We envision that the coating can provide convenience and values to control pathogen spread for easily contaminated substrates in high-risk areas.
Collapse
Affiliation(s)
- Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Chen Xu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Bo Yi
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Xin Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Youngjin Lee
- Department of Neuroscience, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518075, P. R. China
| |
Collapse
|
25
|
ESBL-producing Klebsiella pneumoniae in a University hospital: Molecular features, diffusion of epidemic clones and evaluation of cross-transmission. PLoS One 2021; 16:e0247875. [PMID: 33760834 PMCID: PMC7990301 DOI: 10.1371/journal.pone.0247875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
The worldwide spread of Klebsiella pneumoniae producing extended-spectrum β-lactamase (ESBL-Kp) is a significant threat. Specifically, various pandemic clones of ESBL-Kp are involved in hospital outbreaks and caused serious infections. In that context, we assessed the phenotypic and molecular features of a collection of ESBL-Kp isolates in a French university hospital and evaluated the occurrence of potential cross-transmissions. Over a 2-year period (2017-2018), 204 non-duplicate isolates of ESBL-Kp were isolated from clinical (n = 118, 57.8%) or screening (n = 86, 42.2%) sample cultures. These isolates were predominantly resistant to cotrimoxazole (88.8%) and ofloxacin (82.8%) but remained susceptible to imipenem (99.3%) and amikacin (93.8%). CTX-M-15 was the most frequent ESBL identified (83.6%). Multilocus sequence typing and pulse-field gel electrophoresis analysis showed an important genetic variability with 41 sequence types (ST) and 50 pulsotypes identified, and the over representation of the international epidemic clones ST307 and ST405. An epidemiological link attesting probable cross-transmission has been identified for 16 patients clustered in 4 groups during the study period. In conclusion, we showed here the dissemination of pandemic clones of ESBL-Kp in our hospital on a background of clonal diversity.
Collapse
|
26
|
Zhou K, Xiao T, David S, Wang Q, Zhou Y, Guo L, Aanensen D, Holt KE, Thomson NR, Grundmann H, Shen P, Xiao Y. Novel Subclone of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 with Enhanced Virulence and Transmissibility, China. Emerg Infect Dis 2021; 26:289-297. [PMID: 31961299 PMCID: PMC6986851 DOI: 10.3201/eid2602.190594] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We aimed to clarify the epidemiologic and clinical importance of evolutionary events that occurred in carbapenem-resistant Klebsiella pneumoniae (CRKP). We collected 203 CRKP causing bloodstream infections in a tertiary hospital in China during 2013-2017. We detected a subclonal shift in the dominant clone sequence type (ST) 11 CRKP in which the previously prevalent capsular loci (KL) 47 had been replaced by KL64 since 2016. Patients infected with ST11-KL64 CRKP had a significantly higher 30-day mortality rate than other CRKP-infected patients. Enhanced virulence was further evidenced by phenotypic tests. Phylogenetic reconstruction demonstrated that ST11-KL64 is derived from an ST11-KL47-like ancestor through recombination. We identified a pLVPK-like virulence plasmid carrying rmpA and peg-344 in ST11-KL64 exclusively from 2016 onward. The pLVPK-like-positive ST11-KL64 isolates exhibited enhanced environmental survival. Retrospective screening of a national collection identified ST11-KL64 in multiple regions. Targeted surveillance of this high-risk CRKP clone is urgently needed.
Collapse
|
27
|
Zhao B, Hu R, Gong L, Wang X, Zhu Y, Wu G. Pyogenic Liver Abscess and Endogenous Endophthalmitis Due to K64-ST1764 Hypervirulent Klebsiella pneumoniae: A Case Report. Infect Drug Resist 2021; 14:71-77. [PMID: 33469321 PMCID: PMC7811456 DOI: 10.2147/idr.s289088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Klebsiella pneumoniae (K. pneumoniae, KP) are divided into two types: classic K. pneumoniae (cKP) and hypervirulent K. pneumoniae (hvKP). hvKP causes liver abscess and metastatic infection. Here, we report one case with pyogenic liver abscess (PLA) and endogenous endophthalmitis (EE) due to a relatively rarely reported serotype of K. pneumoniae in China. PATIENT CONCERNS An 80-year old man presented with nausea, vomiting, and epigastric discomfort for 2 weeks. DIAGNOSES PLA was identified by CT scan and abdominal ultrasound. Urgent ophthalmologic consultation was performed. B-scan ocular ultrasound was done and he was diagnosed as EE. INTERVENTIONS Antibiotic treatment, intravitreal injection of eyes and eye drops were given. Percutaneous needle aspiration, evisceration, and drainage of the right eye were performed. OUTCOMES Cultures of the blood, the aspirated pus from the liver abscess, and the contents of the eyeball all yielded K. pneumoniae with a positive string test. The capsular serotype was K64. According to the existence of multiple virulence genes and the severe invasive clinical manifestation, this strain is regarded as a hvKp strain. Multilocus sequence typing (MLST) revealed the sequence type (ST) of this strain was K64-ST1764. Antimicrobial resistance genes, bla NDM-1 and bla KPC-2, were not detected in the genome. The patient lost his eyesight but his symptoms subsided. During 15 months follow-up, the result was satisfactory. LESSONS Here, we report one case with PLA due to a relatively rarely reported serotype of K. pneumoniae in China. This K64 K. pneumoniae strain is confirmed as hvKp by multiple methods. It is noteworthy that the sequence type is K64-ST1764 instead of the commonest ST11. Moreover, this strain is not considered a K. pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) or a carbapenem-resistant K. pneumoniae (CRKP) as it is usually. Further follow-up and research are required to investigate this strain.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Gastroenterology, The Affiliated Wuxi Second People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Renjing Hu
- Department of Clinical Laboratory, The Affiliated Wuxi Second People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Lei Gong
- Department of Gastroenterology, The Affiliated Wuxi Second People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Xiaoyun Wang
- Department of Gastroenterology, The Affiliated Wuxi Second People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
- Correspondence: Xiaoyun Wang Department of Gastroenterology, The Affiliated Wuxi Second People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of ChinaTel +86 15061857125Fax +86 510 685662052 Email
| | - Yingwei Zhu
- Department of Gastroenterology, The Affiliated Wuxi Second People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Gaojue Wu
- Department of Gastroenterology, The Affiliated Wuxi Second People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| |
Collapse
|
28
|
Liu C, Du P, Xiao N, Ji F, Russo TA, Guo J. Hypervirulent Klebsiella pneumoniae is emerging as an increasingly prevalent K. pneumoniae pathotype responsible for nosocomial and healthcare-associated infections in Beijing, China. Virulence 2020; 11:1215-1224. [PMID: 32921250 PMCID: PMC7549996 DOI: 10.1080/21505594.2020.1809322] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Hypervirulent Klebsiella pneumoniae(hvKp) is an increasingly important pathogen. Tracking its epidemiology and evolving antimicrobial resistance will facilitate care. METHODS A retrospective study was conducted in two hospitals. We collected the clinical data. Antimicrobial and virulence-associated phenotype and genotype, sequence type, and whole genome sequencing of selected strains were performed. HvKp was defined by the presence of some combination of prmpA, prmpA2, iucA, iroB, and peg-344, genes shown to accurately identify hvKp. RESULTS Of 158 Kp clinical isolates, 79 (50%) were hvKp. Interestingly, 53/79 (67.1%) of hvKp strains were isolated from patients with nosocomial infection and 19/79 (24.1%) from patients with healthcare-associated infection, but only 7/79 (8.8%) from patients with community-acquired infections. Importantly, 27/53 (50.9%) and 4/19 (21.1%) of hvKp nosocomial and healthcare-associated isolates, respectively, were multi-drug-resistant (MDR); 25/53 (47.2%) and 5/19 (26.3%) expressed ESBLs and 14/53 (26.4%) and 2/19 (10.5%) were carbapenem-resistant. Of the hvKp isolates from community-acquired infection, 0/7 (0%) were MDR and 0/7 (0%) were carbapenem-resistant. Additionally, unique characteristics of nosocomial, healthcare-associated, and community-acquired hvKp infection were identified. In summary, 50% of K. pneumoniae infections were caused by hvKp. A concerning, novel finding from this report is a major shift in hvKp epidemiology. Ninety-one percent of hvKp infections were nosocomial or healthcare-associated, and 43.1% of these isolates were MDR. CONCLUSIONS These data suggest that hvKp may be replacing classical K. pneumoniae as the dominant nosocomial and healthcare-associated pathotype. Ongoing surveillance is needed to determine if this trend is occurring elsewhere.
Collapse
Affiliation(s)
- Chao Liu
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Pengcheng Du
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, and Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Nan Xiao
- Department of Clinical Laboratory, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Fansen Ji
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Thomas A. Russo
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA
- Veterans Administration Western New York Healthcare System, Buffalo, New York, USA
| | - Jun Guo
- Department of Pulmonary and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
da Silva KE, Thi Nguyen TN, Boinett CJ, Baker S, Simionatto S. Molecular and epidemiological surveillance of polymyxin-resistant Klebsiella pneumoniae strains isolated from Brazil with multiple mgrB gene mutations. Int J Med Microbiol 2020; 310:151448. [PMID: 33092694 DOI: 10.1016/j.ijmm.2020.151448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
The prevalence of polymyxin-resistant Enterobacteriaceae is increasing worldwide. Their emergence is worrisome and limits therapeutic options for severely ill patients. We aimed to investigate the molecular and epidemiological characteristics of polymyxin-resistant Klebsiella pneumoniae circulating in Brazilian hospitals. Polymyxin-resistant K. pneumoniae isolates from two Brazilian healthcare facilities were characterized phenotypically and subjected to whole genome sequencing (WGS). Using the WGS data we determined their sequence type, resistance gene content (resistome), their composition of virulence genes and plasmids. ST11 was the most common (80 %) sequence type among the isolates followed by ST345, ST15 and ST258. A resistome analysis revealed the common presence of blaKPC-2 and less frequently blaSHV-11, blaTEM-1, blaCTX-M-15, and blaOXA-9. Genes conferring resistance to aminoglycosides, fluoroquinolones, phenicols, sulphonamides, tetracyclines, trimethoprim and macrolide-lincosamide-streptogramin were also detected. We observed a clonal spread of polymyxin-resistant K. pneumoniae isolates, with polymyxin-resistance associated with various alterations in the mgrB gene including inactivation by an insertion sequence and nonsense point mutations. We additionally identified a novel 78-bp repeat sequence, encoding a MgrB protein with 26 amino acids duplicated in six isolates. This is the first observation of this type of alteration being associated with polymyxin resistance. Our findings demonstrate that mgrB alterations were the most common source of polymyxin-resistance in Brazilian clinical settings. Interestingly, distinct genetic events were identified among clonally related isolates, including a new amino acid alteration. The clinical implications and investigation of the resistance mechanisms is of great importance to patient safety and control of these infections, particularly in long-term care facilities.
Collapse
Affiliation(s)
- Kesia Esther da Silva
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, MS, Brazil
| | - To Nguyen Thi Nguyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Christine J Boinett
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Stephen Baker
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK; Department of Medicine, Cambridge University, Cambridge, UK
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, MS, Brazil.
| |
Collapse
|
30
|
A Front Line on Klebsiella pneumoniae Capsular Polysaccharide Knowledge: Fourier Transform Infrared Spectroscopy as an Accurate and Fast Typing Tool. mSystems 2020; 5:5/2/e00386-19. [PMID: 32209717 PMCID: PMC7093823 DOI: 10.1128/msystems.00386-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Klebsiella pneumoniae is nowadays recognized as one of the most defiant human pathogens, whose infections are increasingly more challenging to treat and control. Whole-genome sequencing (WGS) has been key for clarifying the population structure of K. pneumoniae, and it is still instrumental to provide insights into potential pathogenicity and evolutionary markers, such as the capsular locus. However, this information and WGS are still far from being accessible and translated into routine clinical microbiology laboratories as quick and cost-efficient strain diagnostic tools. Here, we propose a biochemical fingerprinting approach based on Fourier transform infrared spectroscopy (FT-IR) and multivariate data analysis tools for K. pneumoniae capsular typing that, because of its high resolution, speed, and low cost, can be an asset to provide enough information to support real-time epidemiology and infection control decisions. Besides, it provides a simple framework for phenotypic/biochemical validation of K. pneumoniae capsular diversity. Genomics-based population analysis of multidrug-resistant (MDR) Klebsiella pneumoniae motivated a renewed interest on the capsule as an evolutionary and virulence marker of clinically relevant strains. Whole-genome sequencing (WGS)-based approaches have provided great insights into the genetic variability of the capsular locus, but genotypic-biochemical capsular (K)-type correlations are lacking, hindering the establishment of a reliable framework for K-type characterization and typing. To fill this gap, we combined molecular, comparative genomics, and multivariate data analysis tools with biochemical data on the capsular locus to support the usefulness of Fourier transform infrared (FT-IR) spectroscopy as a reliable K typing tool. To validate our approach, we used a representative collection of well-defined MDR K. pneumoniae lineages involved in local or nationwide epidemics in multiple countries. With this, we demonstrate a high accuracy and resolution of our FT-IR-based spectroscopy approach for K-type discrimination that is even higher than that provided by WGS. Moreover, the specific associations established between certain K types and specific K. pneumoniae lineages with high clinical relevance, together with the accuracy, simplicity, short time to result, and inexpensive features of the method, support the value of the developed FT-IR-based approach for an easy, fast, and cost-effective strain typing. This fulfills a still unmet need for tools to support real-time monitoring and control of K. pneumoniae infections. In addition, the genotypic-biochemical correlations established provide insights on sugar composition/structure of newly defined K. pneumoniae capsular types. IMPORTANCEKlebsiella pneumoniae is nowadays recognized as one of the most defiant human pathogens, whose infections are increasingly more challenging to treat and control. Whole-genome sequencing (WGS) has been key for clarifying the population structure of K. pneumoniae, and it is still instrumental to provide insights into potential pathogenicity and evolutionary markers, such as the capsular locus. However, this information and WGS are still far from being accessible and translated into routine clinical microbiology laboratories as quick and cost-efficient strain diagnostic tools. Here, we propose a biochemical fingerprinting approach based on Fourier transform infrared spectroscopy (FT-IR) and multivariate data analysis tools for K. pneumoniae capsular typing that, because of its high resolution, speed, and low cost, can be an asset to provide enough information to support real-time epidemiology and infection control decisions. Besides, it provides a simple framework for phenotypic/biochemical validation of K. pneumoniae capsular diversity.
Collapse
|
31
|
Fuzi M, Rodriguez Baño J, Toth A. Global Evolution of Pathogenic Bacteria With Extensive Use of Fluoroquinolone Agents. Front Microbiol 2020; 11:271. [PMID: 32158437 PMCID: PMC7052298 DOI: 10.3389/fmicb.2020.00271] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
It is well-established that the spread of many multidrug-resistant (MDR) bacteria is predominantly clonal. Interestingly the international clones/sequence types (STs) of most pathogens emerged and disseminated during the last three decades. Strong experimental evidence from multiple laboratories indicate that diverse fitness cost associated with high-level resistance to fluoroquinolones contributed to the selection and promotion of the international clones/STs of hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA), extended-spectrum β-lactamase-(ESBL)-producing Klebsiella pneumoniae, ESBL-producing Escherichia coli and Clostridioides difficile. The overwhelming part of the literature investigating the epidemiology of the pathogens as a function of fluoroquinolone use remain in concordence with these findings. Moreover, recent in vitro data clearly show the potential of fluoroquinolone exposure to shape the clonal evolution of Salmonella Enteritidis. The success of the international clones/STs in all these species was linked to the strains' unique ability to evolve multiple energetically beneficial gyrase and topoisomerase IV mutations conferring high-level resistance to fluorquinolones and concomittantly permitting the acquisition of an extra resistance gene load without evoking appreciable fitness cost. Furthermore, by analyzing the clonality of multiple species, the review highlights, that in environments under high antibiotic exposure virulence factors play only a subsidiary role in the clonal dynamics of bacteria relative to multidrug-resistance coupled with favorable fitness (greater speed of replication). Though other groups of antibiotics should also be involved in selecting clones of bacterial pathogens the role of fluoroquinolones due to their peculiar fitness effect remains unique. It is suggested that probably no bacteria remain immune to the influence of fluoroquinolones in shaping their evolutionary dynamics. Consequently a more judicious use of fluoroquinolones, attuned to the proportion of international clone/ST isolates among local pathogens, would not only decrease resistance rates against this group of antibiotics but should also ameliorate the overall antibiotic resistance landscape.
Collapse
Affiliation(s)
- Miklos Fuzi
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Jesus Rodriguez Baño
- Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine, Department of Medicine, Hospital Universitario Virgen Macarena, University of Seville - Biomedicine Institute of Seville (IBiS), Seville, Spain
| | - Akos Toth
- Department of Bacteriology, Mycology and Parasitology, National Public Health Center, Budapest, Hungary
| |
Collapse
|
32
|
Abstract
Klebsiella pneumoniae is a common cause of antimicrobial-resistant opportunistic infections in hospitalized patients. The species is naturally resistant to penicillins, and members of the population often carry acquired resistance to multiple antimicrobials. However, knowledge of K. pneumoniae ecology, population structure or pathogenicity is relatively limited. Over the past decade, K. pneumoniae has emerged as a major clinical and public health threat owing to increasing prevalence of healthcare-associated infections caused by multidrug-resistant strains producing extended-spectrum β-lactamases and/or carbapenemases. A parallel phenomenon of severe community-acquired infections caused by 'hypervirulent' K. pneumoniae has also emerged, associated with strains expressing acquired virulence factors. These distinct clinical concerns have stimulated renewed interest in K. pneumoniae research and particularly the application of genomics. In this Review, we discuss how genomics approaches have advanced our understanding of K. pneumoniae taxonomy, ecology and evolution as well as the diversity and distribution of clinically relevant determinants of pathogenicity and antimicrobial resistance. A deeper understanding of K. pneumoniae population structure and diversity will be important for the proper design and interpretation of experimental studies, for interpreting clinical and public health surveillance data and for the design and implementation of novel control strategies against this important pathogen.
Collapse
|
33
|
Huang H, Dong N, Shu L, Lu J, Sun Q, Chan EWC, Chen S, Zhang R. Colistin-resistance gene mcr in clinical carbapenem-resistant Enterobacteriaceae strains in China, 2014-2019. Emerg Microbes Infect 2020; 9:237-245. [PMID: 31996107 PMCID: PMC7034111 DOI: 10.1080/22221751.2020.1717380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate whether introduction of colistin into the clinical settings selected colistin-resistant CRE, we performed molecular epidemiological study of 1868 CRE strains collected from different geographical locales in China during the period 2014–2019. 1755 (96.18%) isolates carried the carbapenemase genes blaKPC and blaNDM; 14 Escherichia coli isolates (0.75%) carrying mcr-1 and blaNDM (MCR-CREC) were also identified. Importantly, the number and relative prevalence of MCR-CREC isolates increased from 5 (0.41%) to 9 (1.38%) after introduction of polymyxin into clinical practice. Consistently, results of genetic analysis indicated that MCR-CREC strains collected before December 2017 were genetically diverse, yet those collected after that date exhibited more closely related genetic profiles, indicating that specific MCR-CREC strains were rapidly selected as a result of increased usage of colistin in clinical settings. The resistance level of MCR-CREC isolates to colistin increased after the introduction of polymyxin into clinical use with the MIC to colistin from <2 mg/L in 80% strains to 2 mg/L in 100% strains. Further dissemination of MCR-CREC strains, which exhibit resistance to the last-line drugs of carbapenems and colistin, is expected to pose a severe threat to human health.
Collapse
Affiliation(s)
- Hong Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lingbin Shu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Edward Wai-Chi Chan
- Department of Applied Biology and Chemical Technology, State Key Lab of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
34
|
Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob 2020; 19:1. [PMID: 31918737 PMCID: PMC7050612 DOI: 10.1186/s12941-019-0343-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/27/2019] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES This review fills the paucity of information on K. pneumoniae as a nosocomial pathogen by providing pooled data on epidemiological risk factors, resistant trends and profiles and resistant and virulent genes of this organism in Asia. METHODS Exhaustive search was conducted using PubMed, Web of Science, and Google scholar for most studies addressing the prevalence, risk factors, drug resistant-mediated genes and/or virulent factors of K. pneumoniae in Asia. Data extracted for meta-analysis were analyzed using comprehensive meta-analysis version 3. Trends data for the isolation rate and resistance rates were entered into Excel spread sheet and the results were presented in graphs. RESULTS The prevalence rate of drug resistance in K. pneumoniae were; amikacin (40.8%) [95% CI 31.9-50.4], aztreonam (73.3%) [95% CI 59.9-83.4], ceftazidime (75.7%) [95% CI 65.4-83.6], ciprofloxacin (59.8%) [95% CI 48.6-70.1], colistin (2.9%) [95% CI 1.8-4.4], cefotaxime (79.2%) [95% CI 68.0-87.2], cefepime (72.6) [95% CI 57.7-83.8] and imipenem (65.6%) [95% CI 30.8-89.0]. TEM (39.5%) [95% CI 15.4-70.1], SHV-11 (41.8%) [95% CI 16.2-72.6] and KPC-2 (14.6%) [95% CI 6.0-31.4] were some of the resistance mediated genes observed in this study. The most virulent factors utilized by K. pneumoniae are; hypermucoviscous phenotype and mucoviscosity-related genes, genes for biosynthesis of lipopolysaccharide, iron uptake and transport genes and finally, adhesive genes. CONCLUSION It can be concluded that, antimicrobial resistant in K. pneumoniae is a clear and present danger in Asia which needs strong surveillance to curb this menace. It is very important for public healthcare departments to monitor and report changes in antimicrobial-resistant isolates.
Collapse
Affiliation(s)
- Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, 450052, China
| | - Shaohua Liu
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, 450052, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
35
|
Palmieri M, Wyres KL, Mirande C, Qiang Z, Liyan Y, Gang C, Goossens H, van Belkum A, Yan Ping L. Genomic evolution and local epidemiology of Klebsiella pneumoniae from a major hospital in Beijing, China, over a 15 year period: dissemination of known and novel high-risk clones. Microb Genom 2019; 7:000520. [PMID: 33629946 PMCID: PMC8627660 DOI: 10.1099/mgen.0.000520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/05/2021] [Indexed: 11/18/2022] Open
Abstract
Klebsiella pneumoniae is a frequent cause of nosocomial and severe community-acquired infections. Multidrug-resistant (MDR) and hypervirulent (hv) strains represent major threats, and tracking their emergence, evolution and the emerging convergence of MDR and hv traits is of major importance. We employed whole-genome sequencing (WGS) to study the evolution and epidemiology of a large longitudinal collection of clinical K. pneumoniae isolates from the H301 hospital in Beijing, China. Overall, the population was highly diverse, although some clones were predominant. Strains belonging to clonal group (CG) 258 were dominant, and represented the majority of carbapenemase-producers. While CG258 strains showed high diversity, one clone, ST11-KL47, represented the majority of isolates, and was highly associated with the KPC-2 carbapenemase and several virulence factors, including a virulence plasmid. The second dominant clone was CG23, which is the major hv clone globally. While it is usually susceptible to multiple antibiotics, we found some isolates harbouring MDR plasmids encoding for ESBLs and carbapenemases. We also reported the local emergence of a recently described high-risk clone, ST383. Conversely to strains belonging to CG258, which are usually associated to KPC-2, ST383 strains seem to readily acquire carbapenemases of different types. Moreover, we found several ST383 strains carrying the hypervirulence plasmid. Overall, we detected about 5 % of simultaneous carriage of AMR genes (ESBLs or carbapenemases) and hypervirulence genes. Tracking the emergence and evolution of such strains, causing severe infections with limited treatment options, is fundamental in order to understand their origin and evolution and to limit their spread. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Mattia Palmieri
- bioMérieux, Data Analytics Unit, La Balme Les Grottes, France
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Zhao Qiang
- Center for Clinical Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Ye Liyan
- Center for Clinical Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Chen Gang
- Center for Clinical Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Belgium
| | - Alex van Belkum
- bioMérieux, Data Analytics Unit, La Balme Les Grottes, France
| | - Luo Yan Ping
- Center for Clinical Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
36
|
Fu P, Tang Y, Li G, Yu L, Wang Y, Jiang X. Pandemic spread of bla among Klebsiella pneumoniae ST11 in China is associated with horizontal transfer mediated by IncFII-like plasmids. Int J Antimicrob Agents 2019; 54:117-124. [DOI: 10.1016/j.ijantimicag.2019.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/04/2019] [Accepted: 03/09/2019] [Indexed: 12/19/2022]
|
37
|
Ojdana D, Kochanowicz J, Sacha P, Sieńko A, Wieczorek P, Majewski P, Hauschild T, Mariak Z, Tryniszewska E. Infection caused by Klebsiella pneumoniae ST11 in a patient after craniectomy. Folia Microbiol (Praha) 2019; 65:205-209. [PMID: 31119589 PMCID: PMC6971140 DOI: 10.1007/s12223-019-00718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/09/2019] [Indexed: 11/09/2022]
Abstract
Klebsiella pneumoniae infections have always been an important problem in public health, but today, the increasing resistance of these bacteria to antibiotics due to β-lactamases production has renewed interest in K. pneumoniae infections. The aim of the study was to present a case of a neurosurgical patient with multidrug-resistant K. pneumoniae ST11 infection after craniectomy. Four K. pneumoniae isolates from various clinical materials of the patient undergone identification and susceptibility testing with the Vitek2 system. Tests for β-lactamases production were performed according to EUCAST guidelines. Strains were analyzed for bla genes responsible for β-lactamase production (blaTEM, blaSHV, blaCTX-M, blaVIM, blaIMP, blaNDM, blaKPC, blaOXA-48) using PCR. Moreover, the genetic relatedness of these isolates was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). All tested strain presented multidrug resistance. The highest susceptibility was observed for imipenem, meropenem, and ertapenem. The strain isolated from the nervous system was ESBL-positive with blaSHV-11, blaTEM-1, and blaCTX-M-15 genes. Additionally, the strain from urine was blaKPC-3-positive. Molecular typing revealed that all strains belonged to the same clone and identified two PFGE profiles. The analysis of MLST allelic profile showed that tested K. pneumoniae strains belonged to ST11. Identification of ST11 K. pneumoniae as etiological factor of infection unfavorably impacts on prognosis among neurosurgical patient after craniectomy.
Collapse
Affiliation(s)
- Dominika Ojdana
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, 15a Waszyngtona Street, 15-269, Bialystok, Poland.
| | - Jan Kochanowicz
- Department of Neurosurgery, University Hospital of Bialystok, 24a M. Sklodowskiej-Cure Street, 15-276, Bialystok, Poland
| | - Paweł Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, 15a Waszyngtona Street, 15-269, Bialystok, Poland
| | - Anna Sieńko
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, 15a Waszyngtona Street, 15-269, Bialystok, Poland
| | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, 15a Waszyngtona Street, 15-269, Bialystok, Poland
| | - Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, 15a Waszyngtona Street, 15-269, Bialystok, Poland
| | - Tomasz Hauschild
- Department of Microbiology, Institute of Biology, University of Bialystok, 1J Ciolkowskiego Street, 15-245, Bialystok, Poland
| | - Zenon Mariak
- Department of Neurosurgery, University Hospital of Bialystok, 24a M. Sklodowskiej-Cure Street, 15-276, Bialystok, Poland
| | - Elżbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, 15a Waszyngtona Street, 15-269, Bialystok, Poland
| |
Collapse
|
38
|
Cocarriage of Distinct bla KPC-2 and bla OXA-48 Plasmids in a Single Sequence Type 11 Carbapenem-Resistant Klebsiella pneumoniae Isolate. Antimicrob Agents Chemother 2019; 63:AAC.02282-18. [PMID: 30962338 DOI: 10.1128/aac.02282-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
39
|
Heinz E, Brindle R, Morgan-McCalla A, Peters K, Thomson NR. Caribbean multi-centre study of Klebsiella pneumoniae: whole-genome sequencing, antimicrobial resistance and virulence factors. Microb Genom 2019; 5:e000266. [PMID: 31038449 PMCID: PMC6562249 DOI: 10.1099/mgen.0.000266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
The surveillance of antimicrobial-resistant isolates has proven to be one of the most valuable tools to understand the global rise of multidrug-resistant bacterial pathogens. We report the first insights into the current situation in the Caribbean, where a pilot project to monitor antimicrobial resistance (AMR) through phenotypic resistance measurements combined with whole-genome sequencing was set up in collaboration with the Caribbean Public Health Agency (CARPHA). Our first study focused on Klebsiella pneumoniae, a highly relevant organism amongst the Gram-negative opportunistic pathogens worldwide causing hospital- and community-acquired infections. Our results show that not only carbapenem resistance, but also hypervirulent strains, are circulating in patients in the Caribbean. Our current data does not allow us to infer their prevalence in the population. We argue for the urgent need to further support AMR surveillance and stewardship in this almost uncharted territory, which can make a significant impact on the reduction of antimicrobial usage. This article contains data hosted by Microreact (https://microreact.org).
Collapse
Affiliation(s)
- Eva Heinz
- Wellcome Trust Sanger Institute, Hinxton, UK
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Richard Brindle
- Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago
- University of Bristol, Bristol, UK
| | - Andrina Morgan-McCalla
- Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago
- University of the West Indies, Mona, Jamaica
| | - Keisha Peters
- Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago
| | - Nicholas R. Thomson
- Wellcome Trust Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
40
|
Lepuschitz S, Schill S, Stoeger A, Pekard-Amenitsch S, Huhulescu S, Inreiter N, Hartl R, Kerschner H, Sorschag S, Springer B, Brisse S, Allerberger F, Mach RL, Ruppitsch W. Whole genome sequencing reveals resemblance between ESBL-producing and carbapenem resistant Klebsiella pneumoniae isolates from Austrian rivers and clinical isolates from hospitals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:227-235. [PMID: 30690357 DOI: 10.1016/j.scitotenv.2019.01.179] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
In 2016, the Austrian Agency for Health and Food Safety started a pilot project to investigate antimicrobial resistance in surface water. Here we report on the characterisation of carbapenem resistant and ESBL-producing K. pneumoniae isolates from Austrian river water samples compared to 95 clinical isolates recently obtained in Austrian hospitals. Ten water samples were taken from four main rivers, collected upstream and downstream of major cities in 2016. For subtyping and comparison, public core genome multi locus sequence typing (cgMLST) schemes were used. The presence of AMR genes, virulence genes and plasmids was extracted from whole genome sequence (WGS) data. In total three ESBL-producing strains and two carbapenem resistant strains were isolated. WGS based comparison of these five water isolates to 95 clinical isolates identified three clusters. Cluster 1 (ST11) and cluster 2 (ST985) consisted of doublets of carbapenem resistant strains (one water and one clinical isolate each). Cluster 3 (ST405) consisted of three ESBL-producing strains isolated from one water sample and two clinical specimens. The cities, in which patient isolates of cluster 2 and 3 were collected, were in concordance with the water sampling locations downstream from these cities. The genetic concordance between isolates from river water samples and patient isolates raises concerns regarding the release of wastewater treatment plant effluents into surface water. From a public health perspective these findings demand attention and strategies are required to minimize the spread of multiresistant strains to the environment.
Collapse
Affiliation(s)
- Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria; TU Wien, Research Area of Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria.
| | - Simone Schill
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Anna Stoeger
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Shiva Pekard-Amenitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Steliana Huhulescu
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Norbert Inreiter
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Rainer Hartl
- Ordensklinikum Linz Elisabethinen, Institute of Hygiene, Microbiology and Tropical Medicine, National Reference Centre for Nosocomial Infections and Antimicrobial Resistance, Linz, Austria
| | - Heidrun Kerschner
- Ordensklinikum Linz Elisabethinen, Institute of Hygiene, Microbiology and Tropical Medicine, National Reference Centre for Nosocomial Infections and Antimicrobial Resistance, Linz, Austria
| | - Sieglinde Sorschag
- Department of Hospital Hygiene and Infectious Diseases, Community-Hospital Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Burkhard Springer
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Franz Allerberger
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Robert L Mach
- TU Wien, Research Area of Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria; University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna, Austria
| |
Collapse
|
41
|
Ribeiro TG, Novais Â, Rodrigues C, Nascimento R, Freitas F, Machado E, Peixe L. Dynamics of clonal and plasmid backgrounds of Enterobacteriaceae producing acquired AmpC in Portuguese clinical settings over time. Int J Antimicrob Agents 2019; 53:650-656. [PMID: 30878669 DOI: 10.1016/j.ijantimicag.2019.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The objective of this work was to provide detailed molecular data on clinically acquired AmpC (qAmpC)-producing Enterobacteriaceae from two different periods (2002-2008 and 2010-2013) in order to clarify the contribution of clonal and plasmid genetic platforms for the current epidemiological scenario concerning extended-spectrum beta-lactams resistance. METHODS We analysed 1246 Enterobacteriaceae non-susceptible to third-generation cephalosporins from two hospitals and one community laboratory between 2010 and 2013. Bacterial identification, antibiotic susceptibility, identification of qAmpC and plasmid-mediated quinolone resistance genes, clonal (pulsed-field gel electrophoresis (PFGE), Multilocus sequence typing (MLST)) and plasmid (S1-/I-CeuI-PFGE, replicon typing, hybridization) analysis were performed by standard methods. Whole-genome sequencing (WGS) was performed in two ST11-Klebsiella pneumoniae isolates harbouring DHA-1. RESULTS The occurrence of qAmpC was lower (2.6%) than that observed in a previous survey (7.4%), and varied slightly over time. Isolates produced DHA-1 (53%), CMY-2 (44%) or DHA-6 (3%), but significant epidemiological changes were observed in the two surveys. While DHA-1 persisted in different institutions by selection of a worldwide epidemic IncR plasmid in an ST11 harbouring KL105, CMY-2 rates increased over time linked to IncI1 plasmids (instead of IncK or IncA/C2) in multiple Escherichia coli clones. CONCLUSIONS The higher frequency of DHA-1 qAmpC in these species contrasts with the scenario in most European countries. Furthermore, the different genetic backgrounds associated with either extended-spectrum β-lactamases (ESBLs) or acquired AmpC β-lactamases (qAmpC) in our country might have contributed to their differential expansion.
Collapse
Affiliation(s)
- T G Ribeiro
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Â Novais
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - C Rodrigues
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - R Nascimento
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - F Freitas
- Centro Hospitalar Tondela-Viseu, Portugal
| | - E Machado
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; FP-ENAS/CEBIMED. Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| | - L Peixe
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
42
|
An IncR Plasmid Harbored by a Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae Strain Possesses Five Tandem Repeats of the bla KPC-2::NTE KPC-Id Fragment. Antimicrob Agents Chemother 2019; 63:AAC.01775-18. [PMID: 30530604 DOI: 10.1128/aac.01775-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Completed sequences of three plasmids from a carbapenem-resistant hypervirulent Klebsiella pneumoniae isolate, SH9, were obtained. In addition to the pLVPK-like virulence-conferring plasmid (pVir-CR-HvKP_SH9), the two multidrug-resistant plasmids (pKPC-CR-HvKP4_SH9 and pCTX-M-CR-HvKP4_SH9) were predicted to originate from a single pKPC-CR-HvKP4-like multireplicon plasmid through homologous recombination. Interestingly, the bla KPC-2 gene was detectable in five tandem repeats exhibiting the format of an NTEKPC-Id-like transposon (IS26-ΔTn3-ISKpn8-bla KPC-2-ΔISKpn6-korC-orf-IS26). The data suggest an important role of DNA recombination in mediating active plasmid evolution.
Collapse
|
43
|
Multiplex PCR Analysis for Rapid Detection of Klebsiella pneumoniae Carbapenem-Resistant (Sequence Type 258 [ST258] and ST11) and Hypervirulent (ST23, ST65, ST86, and ST375) Strains. J Clin Microbiol 2018; 56:JCM.00731-18. [PMID: 29925644 DOI: 10.1128/jcm.00731-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
Carbapenem-resistant and hypervirulent Klebsiella pneumoniae strains have emerged recently. These strains are both hypervirulent and multidrug resistant and may also be highly transmissible and able to cause severe infections in both the hospital and the community. Clinical and public health needs require a rapid and comprehensive molecular detection assay to identify and track the spread of these strains and provide timely infection control information. Here, we develop a rapid multiplex PCR assay capable of distinguishing K. pneumoniae carbapenem-resistant isolates of sequence type 258 (ST258) and ST11, and hypervirulent ST23, ST65/ST375, and ST86 clones, as well as capsular types K1, K2, K locus type 47 (KL47), and KL64, and virulence genes rmpA, rmpA2, iutA, and iroN The assay demonstrated 100% concordance with 118 previously genotyped K. pneumoniae isolates and revealed different populations of carbapenem-resistant and hypervirulent strains in two collections in China and the United States. The results showed that carbapenem-resistant and hypervirulent K. pneumoniae strains are still rare in the United States, whereas in China, ∼50% of carbapenem-resistant strains carry rmpA/rmpA2 and iutA virulence genes, which are largely associated with the epidemic ST11 strains. Similarly, a high prevalence of hypervirulent strains was found in carbapenem-susceptible isolates in two Chinese hospitals, but these primarily belong to ST23, ST65/ST375, and ST86, which are distinct from the carbapenem-resistant strains. Taken together, our results demonstrated that this PCR assay can be a useful tool for molecular surveillance of carbapenem-resistant and hypervirulent K. pneumoniae strains.
Collapse
|
44
|
Dong N, Yang X, Zhang R, Chan EWC, Chen S. Tracking microevolution events among ST11 carbapenemase-producing hypervirulent Klebsiella pneumoniae outbreak strains. Emerg Microbes Infect 2018; 7:146. [PMID: 30100608 PMCID: PMC6087712 DOI: 10.1038/s41426-018-0146-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
The recent convergence of genetic elements encoding phenotypic carbapenem-resistance and hypervirulence within a single Klebsiella pneumoniae host strain represents a major public concern. To obtain a better understanding of the genetic characteristic of this emerging 'superbug', the complete genomes of 3 isolates of ST11 carbapenemase-producing hypervirulent K. pneumoniae were generated using the Oxford nanopore MinION platform. Comparative whole-genome analysis identified 13 SNPs and 3 major regions of indels in the chromosomes of the clonally disseminated isolates. ISKpn18-mediated disruption in the mgrB gene, which was associated with colistin resistance, was identified in two later strains, leading to the emergence of hypervirulent K. pneumoniae that was simultaneously colistin- and carbapenem-resistant. Five plasmids were recovered from each isolate, including a 178 Kb IncHI1B/FIB-type rmpA2-bearing virulence plasmid, a 177.5 Kb IncFII/R self-transferable blaKPC-2-bearing MDR plasmid, a 99.7 Kb Incl1 plasmid and two ColRNAI-type plasmids of sizes of 11.9 and 5.6 Kb, respectively. The presence of homologous regions between the non-conjugative virulence plasmid and conjugative blaKPC-2-bearing MDR plasmid suggests that transmission of the virulence plasmid from ST23 K. pneumoniae to ST11 CRKP may be mediated by the co-integrated transfer of these two plasmids. Emergence of colistin-resistant and carbapenemase-producing hypervirulent K. pneumoniae strains further emphasizes the urgency for the establishment of a coordinated global program to eradicate hypervirulent and/or pan-drug-resistant strains of K. pneumoniae from clinical settings and the community.
Collapse
Affiliation(s)
- Ning Dong
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute, Shenzhen, China
- State Key Lab of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xuemei Yang
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute, Shenzhen, China
- State Key Lab of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Rong Zhang
- Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Edward Wai-Chi Chan
- State Key Lab of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute, Shenzhen, China.
- State Key Lab of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
45
|
In Vitro Activity of Ceftazidime-Avibactam against Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae Isolates. Antimicrob Agents Chemother 2018; 62:AAC.01031-18. [PMID: 29891605 DOI: 10.1128/aac.01031-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
Carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKp) strains have emerged while antimicrobial treatment options remain limited. Herein, we tested the in vitro activity of ceftazidime-avibactam and other comparator antibiotics against 65 CR-hvKp isolates. Ceftazidime-avibactam, colistin, and tigecycline are highly active in vitro against CR-hvKp isolates (MIC90, ≤1 μg/ml), including K. pneumoniae carbapenemase 2 (KPC-2)-producing ST11 CR-hvKp. On the basis of previous clinical experience and the in vitro data presented herein, we posit that ceftazidime-avibactam is a therapeutic option against CR-hvKp infections.
Collapse
|
46
|
Li HY, Kao CY, Lin WH, Zheng PX, Yan JJ, Wang MC, Teng CH, Tseng CC, Wu JJ. Characterization of CRISPR-Cas Systems in Clinical Klebsiella pneumoniae Isolates Uncovers Its Potential Association With Antibiotic Susceptibility. Front Microbiol 2018; 9:1595. [PMID: 30061876 PMCID: PMC6054925 DOI: 10.3389/fmicb.2018.01595] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Prokaryotic CRISPR-Cas systems limit the acquisition of genetic elements and provide immunity against invasive bacteriophage. The characteristics of CRISPR-Cas systems in clinical Klebsiella pneumoniae isolates are still unknown. Here, 97 K. pneumoniae genomes retrieved from the Integrated Microbial Genomes & Microbiomes genome database and 176 clinical isolates obtained from patients with bloodstream (BSI, n = 87) or urinary tract infections (UTI, n = 89) in Taiwan, were used for analysis. Forty out of ninety-seven genomes (41.2%) had CRISPR-Cas systems identified by the combination of CRISPRFinder and cas1 gene sequence alignment. The phylogenetic trees revealed that CRISPR-Cas systems in K. pneumoniae were divided into two types (type I-E, 23; subtype I-E∗, 17) based on the sequences of Cas1 and Cas3 proteins and their location in the chromosome. The distribution of type I-E and I-E∗ CRISPR-Cas systems was associated with the multilocus sequence typing and the pulsed-field gel electrophoresis results. Importantly, no CRISPR-Cas system was identified in published genomes of clonal complex 258 isolates (ST11 and ST258), which comprise the largest multi-drug resistant K. pneumoniae clonal group worldwide. PCR with cas-specific primers showed that 30.7% (54/176) of the clinical isolates had a CRISPR-Cas system. Among clinical isolates, more type I-E CRISPR-Cas systems were found in UTI isolates (BSI, 5.7%; UTI, 11.2%), and subtype I-E∗ CRISPR-Cas systems were dominant in BSI isolates (BSI, 28.7%; UTI, 15.7%) (p = 0.042). Isolates which had subtype I-E∗ CRISPR-Cas system were more susceptible to ampicillin-sulbactam (p = 0.009), cefazolin (p = 0.016), cefuroxime (p = 0.039), and gentamicin (p = 0.012), compared to the CRISPR-negative isolates. The strains containing subtype I-E∗ CRISPR-Cas systems had decreased numbers of plasmids, prophage regions, and acquired antibiotic resistance genes in their published genomes. Here, we first revealed subtype I-E∗ CRISPR-Cas system in K. pneumoniae potentially interfering with the acquisition of phages and plasmids harboring antibiotic resistance determinants, and thus maintained these isolates susceptible to antibiotics.
Collapse
Affiliation(s)
- Hsin-Yu Li
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Cheng-Yen Kao
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Xing Zheng
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Jing-Jou Yan
- Department of Pathology, Cheng Ching Hospital at Chung Kang, Taichung, Taiwan
| | - Ming-Cheng Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Chung Tseng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|