1
|
Gong Y, Lou Y, Han X, Chen K, Zhao Y, Zhang H, Zhang J, Xiong Y, Fu W, Ding S. Serum proteomic profiling of precancerous gastric lesions and early gastric cancer reveals signatures associated with systemic inflammatory response and metaplastic differentiation. Front Mol Biosci 2024; 11:1252058. [PMID: 38584705 PMCID: PMC10995311 DOI: 10.3389/fmolb.2024.1252058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
The noninvasive detection technique using serum for large-scale screening is useful for the early diagnosis of gastric cancer (GC). Herein, we employed liquid chromatography mass spectrometry to determine the serum proteome signatures and related pathways in individuals with gastric precancerous (pre-GC) lesions and GC and explore the effect of Helicobacter pylori (H. pylori) infection. Differentially expressed proteins in GC and pre-GC compared with non-atrophic gastritis (NAG) group were identified. APOA4, a protein associated with metaplastic differentiation, and COMP, an extracellular matrix protein, were increased in the serum of patients with pre-GC lesions and GC. In addition, several inflammation-associated proteins, such as component C3, were decreased in the GC and pre-GC groups, which highlight a tendency for the inflammatory response to converge at the gastric lesion site during the GC cascade. Moreover, the abundance of proteins associated with oxidant detoxification was higher in the GC group compared with that in the NAG group, and these proteins were also increased in the serum of the H. pylori-positive GC group compared with that in the H. pylori-negative GC patients, reflecting the importance of oxidative stress pathways in H. pylori infection. Collectively, the findings of this study highlight pathways that play important roles in GC progression, and may provide potential diagnostic biomarkers for the detection of pre-GC lesions.
Collapse
Affiliation(s)
- Yueqing Gong
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Yaxin Lou
- Medical and Health Analytical Center, Peking University, Beijing, China
| | - Xiurui Han
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Keyan Chen
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Yang Zhao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Hejun Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Ying Xiong
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Weiwei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| |
Collapse
|
2
|
Dündar A. Investigation of serum ischemic-modified albumin, galectin-3, paraoxonase-1, and myeloperoxidase activity levels in patients with acute brucellosis. Redox Rep 2023; 28:2289727. [PMID: 38054459 PMCID: PMC11001275 DOI: 10.1080/13510002.2023.2289727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVES Infection remains current as an important discussion topic in the etiological factors of atherosclerosis. Ischemic-modified albumin (IMA), galectin-3 (gal-3), paraoxonase-1 (PON-1), and myeloperoxidase (MPO) are biomolecules that play an important role in the pathogenesis of atherosclerosis. Our aim is to investigate serum IMA, gal-3, PON-1, and MPO activity in acute brucellosis infection. MATERIALS AND METHODS Forty patients with acute brucellosis and 40 healthy individuals were included in the study. Serum IMA, gal-3, PON-1, and MPO activity were analyzed by the ELISA method. RESULTS In acute brucellosis infection, serum gal-3, IMA, and MPO activities were found to be significantly increased compared to the control group, and PON-1 activity was found to be significantly decreased compared to the control group (p < 0.001). There was a positive correlation between serum IMA, and MPO activity (r = 0.707 p = 0.000) and a negative correlation (r = -0.943, p = 0.000) between PON-1 activity. There was a positive correlation between serum gal-3 and MPO activity (r = 0.683, p = 0.000) and IMA level (r = 0.927, p = 0.000) and a negative correlation between PON-1 activity (r = -0.951, p = 0.000).Conclusion, it was found that serum gal-3, IMA levels and MPO activity increased, while PON-1 activity decreased. These results showed that the oxidant-anti-oxidant balance is impaired in acute brucellosis infection. In addition, these results indicate that brucella infection may be increase the risk of atherosclerosis. Further studies are needed to support our findings.
Collapse
Affiliation(s)
- Ahmet Dündar
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Program, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
3
|
Wang W, Liu MY, Fei CJ, Li CH, Chen J. Molecular and functional characterization of a ladderlectin-like molecule from ayu (Plecoglossus altivelis). FISH & SHELLFISH IMMUNOLOGY 2022; 131:419-430. [PMID: 36257553 DOI: 10.1016/j.fsi.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Ladderlectin is a member of C-type lectins (CTLs) in teleost fish and involved in innate immune defense. In this study, ayu (Plecoglossus altivelis) ladderlecin-like (PaLL-like) sequence was cloned, which encodes a polypeptide of 172 amino acids that includes a signal peptide and characteristic C-type lectin-like domains (CTLDs). Phylogenetically, PaLL-like was most closely related to its teleost counterpart from shishamo smelt (Spirinchus lanceolatus). Expression analysis revealed a ubiquitous expression profile, with highest expression detected in liver and its expression was up-regulated following Vibiro anguillarum infection. Similar to canonical CTLs, PaLL-like exhibited carbohydrate-binidng capacities to a wide range of well-defined mono-/di-saccharides and likely confer PaLL-like the ability to agglutinate all tested bacterial, including three Gram-positive species (i.e., Listeria monocytogenes, Staphylococcus aureus and Streptococcus iniae) and eight Gram-negative species (i.e., Edwardsiella tarda, Aeromonas (A.) hydrophila, Escherichia coli, Vibrio (V.) harveyi, V. anguillarum, V. parahemolyticus, A. versoni and V. vulnificus), in a calcium-dependent manner. Further functional studies revealed that PaLL-like displayed immunomodulatory activities leading to enhanced bactericidal activity of serum, pathogen opsonization and macrophage activation with increased expression of pro-inflammatory cytokines (i.e., PaIL-1β and PaTNF-α). Collectively, these immunomodulatory activities of PaLL-like suppressed proliferations of V. anguillarum in targeted tissued in vivo and likely contributed to the increased survival rate of infected-fish. Overall, our results demonstrated PaLL-like is a critical component of innate immunity and provides protective effects against bacterial infection.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Mei-Yi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| |
Collapse
|
4
|
Iftimie S, Hernández-Aguilera A, López-Azcona AF, Castañé H, Rodríguez-Tomàs E, Baiges-Gaya G, Camps J, Castro A, Joven J. Measurement of Plasma Galectin-3 Concentrations in Patients with Catheter Infections: A Post Hoc Retrospective Cohort Study. Diagnostics (Basel) 2022; 12:diagnostics12102418. [PMID: 36292107 PMCID: PMC9599992 DOI: 10.3390/diagnostics12102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
Catheter-related infections (CRIs) include catheter-associated urinary tract infections (CAUTIs) and central line-associated bloodstream infections (CLABSIs), and they are associated with high morbidity, mortality, and healthcare costs. The diagnosis of a CRI is made difficult by its non-specific symptoms. We aimed to investigate the factors influencing the plasma concentration of galectin-3 in catheter-bearing patients and to explore its potential usefulness as an index for CRIs. Circulating the concentrations of galectin-3, we measured the chemokine (C-C) motif ligand 2, procalcitonin, and C-reactive protein in 110 patients with a central catheter, in 165 patients with a urinary catheter, and in 72 control subjects. Catheter-bearing patients had higher concentrations (p < 0.001) of galectin-3 than the control group [central catheter: 19.1 (14.0−23.4) µg/L; urinary catheter: 17.1 (12.7−25.4) µg/L; control group: 6.1 (5.0−8.7) µg/L]. We identified chronic kidney disease as an independent determinant of galectin-3 concentrations in patients with a central catheter, and serum creatinine, cardiovascular disease, and number of days that the catheter was indwelling were identified as determinants in urinary catheter patients. We found that measuring galectin-3 concentrations in urinary catheter patients with a CRI was more accurate for diagnosis than the other parameters. We conclude that the measurement of galectin-3 concentration may be useful for assessing the inflammatory status of catheter-bearing patients and may contribute to the diagnosis of CRIs in those with a urinary catheter.
Collapse
Affiliation(s)
- Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Ana F. López-Azcona
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
- Correspondence: ; Tel.: +34-977-310-300
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| |
Collapse
|
5
|
Evaluation of Galectin-3 and CD19 in Helicobacter pylori patients infected with stomach cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Rahardja F, Prasetyo D, Shahib MN, Tjahjani S. The Influence of Lactobacillus Acidophilus on MUC1, GAL-3, IL-1β and IL-17 Gene Expression in BALB/c Mice Stomach. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background and Objective:
Lactobacillus acidophilus has been widely used for the management of gastrointestinal carcinoma owing to its immunomodulation effect; however, the role of L. acidophilus and its specific mechanism of action in the stomach is not fully comprehended. The present study evaluated the expression profile of MUC-1, GAL-3, IL -1β, and IL-17 in the L. acidophilus treated mice stomach.
Methods:
The study was conducted utilizing three groups of mice, 6 mice for each group, administered with different doses of L. acidophilus and a control group treated with normal saline. The results were analyzed with the Mann-Whitney Test.
Results:
The results demonstrated that L. acidophilus elevated IL-1β insignificantly and inhibited the expression of IL-17. The MUC-1 expression is influenced by L. acidophilus and inversely proportional to GAL-3 expression.
Conclusion:
Lactobacillus acidophilus plays a prominent role against inflammatory responses and has a potential in the treatment of gastrointestinal cancer.
Collapse
|
7
|
Li H, Li J, Xiao W, Zhang Y, Lv Y, Yu X, Zheng J. The Therapeutic Potential of Galectin-3 in the Treatment of Intrahepatic Cholangiocarcinoma Patients and Those Compromised With COVID-19. Front Mol Biosci 2021; 8:666054. [PMID: 34109213 PMCID: PMC8180910 DOI: 10.3389/fmolb.2021.666054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
The novel coronavirus pneumonia COVID-19 is characterized by all age susceptibility, which imposes a dramatic threat to the human species all over the world. According to current available data, the cytokine storm appears to be the most life-threatening symptom of severe COVID-19 cases accompanied with lung fibrosis. Galectin-3 (Gal-3), a member of soluble β-galactoside-binding lectin families, has been implicated as a key regulator in various inflammation conditions in addition to its well-documented roles in cancer. The pro-inflammatory activity of Gal-3 in the inflammatory response and lung fibrosis of COVID-19 has been proposed by emerging studies, which suggested that inhibition of Gal-3 may represent a novel treatment approach for COVID-19 patients. Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with poor prognosis. ICC accounts for 10-25% of primary liver cancers with limited therapeutic options, which has higher incidence in Asian countries, particularly in China. Cancer patients, including ICC patients, are highly vulnerable to COVID-19 due to their impaired immune system. It is thus undoubtedly a challenge for our oncology department to establish effective treatment strategies under the influence of the COVID-19 crisis. According to our management procedures in the COVID-19 era, emergency treatment will be applied to ICC patients who are under life-threatening conditions, despite the COVID-19 infection. To the best of our knowledge, the modulatory function of Gal-3 in ICC is still barely explored to date. In order to evaluate the therapeutic potential of Gal-3 for ICC patients or those comprised with COVID-19, we herein report our preliminary investigation into roles of Gal-3 in ICC. Our results exhibited that the expression of Gal-3 was significantly up-regulated in ICC tissues, and a significant correlation was observed between its overexpression and malignant progression of ICC cells. We further discussed the activity and possible molecular mechanisms of Gal-3 in ICC, which may pave the ways for further exploring the possibility of Gal-3 as a potential therapeutic target for treating ICC patients or those with COVID-19-related conditions.
Collapse
Affiliation(s)
- Hao Li
- Biliary Tract Surgery Laboratory, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China.,Hunan Research Center of Biliary Disease, the First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jianmin Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wei Xiao
- Department of Medical Administration, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yujing Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yuan Lv
- The Key Laboratory of Molecular Epidemiology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xing Yu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jiao Zheng
- Department of Drug Clinical Trial, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Velickovic M, Arsenijevic A, Acovic A, Arsenijevic D, Milovanovic J, Dimitrijevic J, Todorovic Z, Milovanovic M, Kanjevac T, Arsenijevic N. Galectin-3, Possible Role in Pathogenesis of Periodontal Diseases and Potential Therapeutic Target. Front Pharmacol 2021; 12:638258. [PMID: 33815121 PMCID: PMC8017193 DOI: 10.3389/fphar.2021.638258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontal diseases are chronic inflammatory diseases that occur due to the imbalance between microbial communities in the oral cavity and the immune response of the host that lead to destruction of tooth supporting structures and finally to alveolar bone loss. Galectin-3 is a β-galactoside-binding lectin with important roles in numerous biological processes. By direct binding to microbes and modulation of their clearence, Galectin-3 can affect the composition of microbial community in the oral cavity. Galectin-3 also modulates the function of many immune cells in the gingiva and gingival sulcus and thus can affect immune homeostasis. Few clinical studies demonstrated increased expression of Galectin-3 in different forms of periodontal diseases. Therefore, the objective of this mini review is to discuss the possible effects of Galectin-3 on the process of immune homeostasis and the balance between oral microbial community and host response and to provide insights into the potential therapeutic targeting of Gal-3 in periodontal disease.
Collapse
Affiliation(s)
- Milica Velickovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Acovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Dimitrijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
9
|
Blanda V, Bracale UM, Di Taranto MD, Fortunato G. Galectin-3 in Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21239232. [PMID: 33287402 PMCID: PMC7731136 DOI: 10.3390/ijms21239232] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding protein belonging to the lectin family with pleiotropic regulatory activities and several physiological cellular functions, such as cellular growth, proliferation, apoptosis, differentiation, cellular adhesion, and tissue repair. Inflammation, tissue fibrosis and angiogenesis are the main processes in which Gal-3 is involved. It is implicated in the pathogenesis of several diseases, including organ fibrosis, chronic inflammation, cancer, atherosclerosis and other cardiovascular diseases (CVDs). This review aims to explore the connections of Gal-3 with cardiovascular diseases since they represent a major cause of morbidity and mortality. We herein discuss the evidence on the pro-inflammatory role of Gal-3 in the atherogenic process as well as the association with plaque features linked to lesion stability. We report the biological role and molecular mechanisms of Gal-3 in other CVDs, highlighting its involvement in the development of cardiac fibrosis and impaired myocardium remodelling, resulting in heart failure and atrial fibrillation. The role of Gal-3 as a prognostic marker of heart failure is described together with possible diagnostic applications to other CVDs. Finally, we report the tentative use of Gal-3 inhibition as a therapeutic approach to prevent cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Valeria Blanda
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (V.B.); (G.F.)
- Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Umberto Marcello Bracale
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, 80131 Naples, Italy;
| | - Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (V.B.); (G.F.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-7463530
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (V.B.); (G.F.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
| |
Collapse
|
10
|
Ayona D, Fournier PE, Henrissat B, Desnues B. Utilization of Galectins by Pathogens for Infection. Front Immunol 2020; 11:1877. [PMID: 32973776 PMCID: PMC7466766 DOI: 10.3389/fimmu.2020.01877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Galectins are glycan-binding proteins which are expressed by many different cell types and secreted extracellularly. These molecules are well-known regulators of immune responses and involved in a broad range of cellular and pathophysiological functions. During infections, host galectins can either avoid or facilitate infections by interacting with host cells- and/or pathogen-derived glycoconjugates and less commonly, with proteins. Some pathogens also express self-produced galectins to interfere with host immune responses. This review summarizes pathogens which take advantage of host- or pathogen-produced galectins to establish the infection.
Collapse
Affiliation(s)
- Diyoly Ayona
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
- USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
11
|
Galectin-3 Is a Potential Mediator for Atherosclerosis. J Immunol Res 2020; 2020:5284728. [PMID: 32149158 PMCID: PMC7042544 DOI: 10.1155/2020/5284728] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is a multifactorial chronic inflammatory arterial disease forming the pathological basis of many cardiovascular diseases such as coronary heart disease, heart failure, and stroke. Numerous studies have implicated inflammation as a key player in the initiation and progression of atherosclerosis. Galectin-3 (Gal-3) is a 30 kDa β-galactose, highly conserved and widely distributed intracellularly and extracellularly. Gal-3 has been demonstrated in recent years to be a novel inflammatory factor participating in the process of intravascular inflammation, lipid endocytosis, macrophage activation, cellular proliferation, monocyte chemotaxis, and cell adhesion. This review focuses on the role of Gal-3 in atherosclerosis and the mechanism involved and several classical Gal-3 agonists and antagonists in the current studies.
Collapse
|
12
|
Oyenuga A, Folsom AR, Fashanu O, Aguilar D, Ballantyne CM. Plasma Galectin-3 and Sonographic Measures of Carotid Atherosclerosis in the Atherosclerosis Risk in Communities Study. Angiology 2019; 70:47-55. [PMID: 29879846 PMCID: PMC6239970 DOI: 10.1177/0003319718780772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Galectin-3 is a β-galactoside-binding lectin that plays a role in the regulation of several conditions that are associated with atherosclerosis. The goal of this cross-sectional study was to assess the association of plasma galectin-3 concentrations with sonographic measures of carotid atherosclerosis in the Atherosclerosis Risk in Communities study. Linear regression was used to determine the difference and 95% confidence intervals (CIs) for carotid intima-media thickness (cIMT) by categorical and continuous representations of galectin-3. Logistic regression was used to determine the odds ratio and 95% CI, separately, for dichotomized cIMT (75th percentile = 0.9 mm) and carotid plaque and/or shadowing. Compared to those in the first quintile of galectin-3, those in the fifth quintile of galectin-3 level had higher cIMT (mean difference: 0.020 mm after multivariable adjustment; P trend = .04). Moreover, compared to those in the lowest galectin-3 quintile, those in the highest galectin-3 quintile had higher odds of carotid plaque/and or shadowing (odds ratio 1.13 after multivariable adjustment; P trend = .014). Higher levels of galectin-3 are associated with greater carotid atherosclerosis. Our findings provide support for the role of inflammatory biomarkers in the pathogenesis of atherosclerosis and suggest galectin-3 as a possible target for intervention in the prevention or management of atherosclerotic disease.
Collapse
Affiliation(s)
- Abayomi Oyenuga
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Aaron R. Folsom
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Oluwaseun Fashanu
- Department for the Prevention of Heart Disease, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - David Aguilar
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Ciccarone Center, Houston, Texas, USA.
| | - Christie M. Ballantyne
- Department of Medicine, Baylor College of Medicine and Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA.
| |
Collapse
|
13
|
Ferrer MF, Scharrig E, Charo N, Rípodas AL, Drut R, Carrera Silva EA, Nagel A, Nally JE, Montes de Oca DP, Schattner M, Gómez RM. Macrophages and Galectin 3 Control Bacterial Burden in Acute and Subacute Murine Leptospirosis That Determines Chronic Kidney Fibrosis. Front Cell Infect Microbiol 2018; 8:384. [PMID: 30425972 PMCID: PMC6218566 DOI: 10.3389/fcimb.2018.00384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
Previous studies have suggested that macrophages may contribute to acute Leptospira dissemination, as well as having a major role in kidney fibrosis. Our aim was to characterize the role of macrophages and galectin 3 (Gal-3) on the survival, clinical course, bacterial burden, interstitial nephritis, and chronic kidney fibrosis in Leptospira interrogans serovar Copenhageni (LIC)-induced experimental murine leptospirosis. C57BL/6J mice depleted of macrophages by liposome-encapsulated clodronate treatment and infected with LIC presented a higher bacterial burden, had reduced subacute nephritis and enhanced chronic kidney fibrosis relative to untreated, infected mice. Moreover, LIC infection in mice whose Gal-3 was disrupted (Lgals3−/–) had a higher bacterial burden and enhanced subacute nephritis and chronic kidney fibrosis when compared to C57BL/6J wild-type mice. Chronic fibrosis did not correlate with higher transcription levels of TGF-β1 or IL-13 in the kidneys. Kidney fibrosis was found in chronically infected rats as well as in wild infected rats. On the other hand, human fibroblast cultures exhibited enhanced differentiation to myofibroblasts after treatment with LIC. Our results demonstrate that macrophages and Gal-3 play a critical role in controlling the LIC burden but has a minor role in subsequent fibrosis. Instead, kidney fibrosis was better correlated with bacterial burden. Taken together, our results do not support a role for macrophages to disseminate leptospires during acute infection, nor in chronic kidney fibrosis.
Collapse
Affiliation(s)
- María F Ferrer
- Laboratory of Animal Viruses, Institute of Biotechnology and Molecular Biology, UNLP-CONICET, La Plata, Argentina
| | - Emilia Scharrig
- Laboratory of Animal Viruses, Institute of Biotechnology and Molecular Biology, UNLP-CONICET, La Plata, Argentina
| | - Nancy Charo
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine, National Academy of Medicine-CONICET, Buenos Aires, Argentina
| | | | - Ricardo Drut
- Division of Pathology, Children Hospital "Superiora Sor María Ludovica", La Plata, Argentina
| | - Eugenio A Carrera Silva
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine, National Academy of Medicine-CONICET, Buenos Aires, Argentina
| | - Ariel Nagel
- Biotechnology Institute, National Institute of Agricultural Technology (INTA-CONICET), Buenos Aires, Argentina
| | - Jarlath E Nally
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| | - Daniela P Montes de Oca
- Ecology, Genetics and Evolution Department, Exact and Natural Sciences Faculty, and Ecology, Genetics and Evolution Institute of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine, National Academy of Medicine-CONICET, Buenos Aires, Argentina
| | - Ricardo M Gómez
- Laboratory of Animal Viruses, Institute of Biotechnology and Molecular Biology, UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
14
|
Li FY, Weng IC, Lin CH, Kao MC, Wu MS, Chen HY, Liu FT. Helicobacter pylori induces intracellular galectin-8 aggregation around damaged lysosomes within gastric epithelial cells in a host O-glycan-dependent manner. Glycobiology 2018; 29:151-162. [DOI: 10.1093/glycob/cwy095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
Galectin-8, a beta-galactoside-binding lectin, is upregulated in the gastric tissues of rhesus macaques infected with Helicobacter pylori. In this study, we found that H. pylori infection triggers intracellular galectin-8 aggregation in human-derived AGS gastric epithelial cells, and that these aggregates colocalize with lysosomes. Notably, this aggregation is markedly reduced following the attenuation of host O-glycan processing. This indicates that H. pylori infection induces lysosomal damage, which in turn results in the accumulation of cytosolic galectin-8 around damaged lysosomes through the recognition of exposed vacuolar host O-glycans. H. pylori-induced galectin-8 aggregates also colocalize with autophagosomes, and galectin-8 ablation reduces the activation of autophagy by H. pylori. This suggests that galectin-8 aggregates may enhance autophagy activity in infected cells. We also observed that both autophagy and NDP52, an autophagy adapter, contribute to the augmentation of galectin-8 aggregation by H. pylori. Additionally, vacuolating cytotoxin A, a secreted H. pylori cytotoxin, may contribute to the increased galectin-8 aggregation and elevated autophagy response in infected cells. Collectively, these results suggest that H. pylori promotes intracellular galectin-8 aggregation, and that galectin-8 aggregation and autophagy may reciprocally regulate each other during infection.
Collapse
Affiliation(s)
- Fang-Yen Li
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA, USA
| |
Collapse
|
15
|
Long B, Yu Z, Zhou H, Ma Z, Ren Y, Zhan H, Li L, Cao H, Jiao Z. Clinical characteristics and prognostic significance of galectins for patients with gastric cancer: A meta-analysis. Int J Surg 2018; 56:242-249. [PMID: 29940258 DOI: 10.1016/j.ijsu.2018.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To explore the relationships between the expression level of different galectins and its prognostic value for patients with gastric cancer. METHODS The PubMed, EMbase, the Cochrane Library and Web of Science databases were systematically searched. All the eligible studies were included according to the inclusion and exclusion criteria. All the relevant data was extracted by two independent researchers. The quality assessment was conducted according to the evaluation of the quality of prognosis study which published by Harden in 2006. The STATA 12.0 software was used to perform a meta-analysis. RESULTS All of 8 retrospective case-controlled studies involving 2093 patients with gastric cancer were included in this study. The results of meta-analysis presented that the elevated galectin-1 which is related to the poor overall survival (HR = 1.85, 95% CI: 1.33-2.58; P < 0.001) may predicted a larger tumor size (OR = 2.20, 95% CI: 1.35-3.35; P = 0.001) and was positively associated with the higher expression of VEGF (OR = 1.44, 95% CI: 1.14-1.82; P = 0.002). Moreover, the decreased galectin-3 (HR = 0.49, 95% CI: 0.36-0.67; P < 0.001), galectin-8 (HR = 0.49, 95% CI: 0.36-0.67; P < 0.001) and galectin-9 (HR = 0.78, 95% CI: 0.66-0.92; P = 0.003) were also significantly associated with poorer prognosis. Our meta-analysis also showed that lower expression of galectin-3 was also related to lymphatic vessel invasion (OR = 0.48, 95% CI: 0.26-0.89; P = 0.018), worse TNM stages (OR = 0.47, 95% CI: 0.32-0.40; P < 0.001), deeper invasive depth (OR = 0.33, 95% CI: 0.21-0.51; P < 0.001) and poorer differentiation grade (OR = 0.10, 95% CI: 0.04-0.25; P < 0.001). CONCLUSIONS High expression of galectin-1 or low expression of galectin-3, -8 and -9 were significantly related to a poorer prognosis for patients with gastric cancer. The expression level of galectins was associated with clinical characteristics and were potential independent prognostic predictor for GC patients.
Collapse
Affiliation(s)
- Bo Long
- The First Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zeyuan Yu
- The First Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Huinian Zhou
- The First Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhijian Ma
- The First Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yanxian Ren
- The First Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Hao Zhan
- The First Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Long Li
- The First Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Hongtai Cao
- The First Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zuoyi Jiao
- The First Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
16
|
Robinson BS, Arthur CM, Kamili NA, Stowell SR. Galectin Regulation of Host Microbial Interactions. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1738.1se] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Brian S. Robinson
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Connie M. Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Nourine A. Kamili
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Sean R. Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| |
Collapse
|
17
|
Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB, Ricci A. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Int J Mol Sci 2018; 19:ijms19020379. [PMID: 29373564 PMCID: PMC5855601 DOI: 10.3390/ijms19020379] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 (Gal-3) regulates basic cellular functions such as cell-cell and cell-matrix interactions, growth, proliferation, differentiation, and inflammation. It is not surprising, therefore, that this protein is involved in the pathogenesis of many relevant human diseases, including cancer, fibrosis, chronic inflammation and scarring affecting many different tissues. The papers published in the literature have progressively increased in number during the last decades, testifying the great interest given to this protein by numerous researchers involved in many different clinical contexts. Considering the crucial role exerted by Gal-3 in many different clinical conditions, Gal-3 is emerging as a new diagnostic, prognostic biomarker and as a new promising therapeutic target. The current review aims to extensively examine the studies published so far on the role of Gal-3 in all the clinical conditions and diseases, listed in alphabetical order, where it was analyzed.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Luca Lavra
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Morgante
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Ulivieri
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Fiorenza Magi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Gian Paolo De Francesco
- Department of Oncological Science, Breast Unit, St Andrea University Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Carlo Bellotti
- Operative Unit Surgery of Thyroid and Parathyroid, Sapienza University of Rome, S. Andrea Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Leila B Salehi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy.
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
18
|
Boziki M, Polyzos SA, Deretzi G, Kazakos E, Katsinelos P, Doulberis M, Kotronis G, Giartza-Taxidou E, Laskaridis L, Tzivras D, Vardaka E, Kountouras C, Grigoriadis N, Thomann R, Kountouras J. A potential impact of Helicobacter pylori-related galectin-3 in neurodegeneration. Neurochem Int 2017; 113:137-151. [PMID: 29246761 DOI: 10.1016/j.neuint.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/03/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Neurodegeneration represents a component of the central nervous system (CNS) diseases pathogenesis, either as a disability primary source in the frame of prototype neurodegenerative disorders, or as a secondary effect, following inflammation, hypoxia or neurotoxicity. Galectins are members of the lectin superfamily, a group of endogenous glycan-binding proteins, able to interact with glycosylated receptors expressed by several immune cell types. Glycan-lectin interactions play critical roles in the living systems by involving and mediating a variety of biologically important normal and pathological processes, including cell-cell signaling shaping cell communication, proliferation and migration, immune responses and fertilization, host-pathogen interactions and diseases such as neurodegenerative disorders and tumors. This review focuses in the role of Galectin-3 in shaping responses of the immune system against microbial agents, and concretely, Helicobacter pylori (Hp), thereby potentiating effect of the microbe in areas distant from the ordinary site of colonization, like the CNS. We hereby postulate that gastrointestinal Hp alterations in terms of immune cell functional phenotype, cytokine and chemokine secretion, may trigger systemic responses, thereby conferring implications for remote processes susceptible in immunity disequilibrium, namely, the CNS inflammation and/or neurodegeneration.
Collapse
Affiliation(s)
- Marina Boziki
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Georgia Deretzi
- Department of Neurology, Multiple Sclerosis Unit, Papageorgiou Hospital, Thessaloniki, Greece
| | - Evangelos Kazakos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Panagiotis Katsinelos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Michael Doulberis
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Georgios Kotronis
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Evaggelia Giartza-Taxidou
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Leonidas Laskaridis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitri Tzivras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Elisabeth Vardaka
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Constantinos Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| |
Collapse
|
19
|
The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediators Inflamm 2017; 2017:9247574. [PMID: 28607536 PMCID: PMC5457773 DOI: 10.1155/2017/9247574] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023] Open
Abstract
Galectins are a group of evolutionarily conserved proteins with the ability to bind β-galactosides through characteristic carbohydrate-recognition domains (CRD). Galectin-3 is structurally unique among all galectins as it contains a C-terminal CRD linked to an N-terminal protein-binding domain, being the only chimeric galectin. Galectin-3 participates in many functions, both intra- and extracellularly. Among them, a prominent role for Galectin-3 in inflammation has been recognized. Galectin-3 has also been shown to directly bind to pathogens and to have various effects on the functions of the cells of the innate immune system. Thanks to these two properties, Galectin-3 participates in several ways in the innate immune response against invading pathogens. Galectin-3 has been proposed to function not only as a pattern-recognition receptor (PRR) but also as a danger-associated molecular pattern (DAMP). In this review, we analyze the various roles that have been assigned to Galectin-3, both as a PRR and as a DAMP, in the context of immune responses against pathogenic microorganisms.
Collapse
|