1
|
Vu NT, Kim H, Hwang IS, Oh CS. Colanic acid and lipopolysaccharide in Pectobacterium carotovorum Pcc21 serve as receptors for the bacteriophage phiPccP-2. Microbiol Res 2025; 290:127939. [PMID: 39471582 DOI: 10.1016/j.micres.2024.127939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Bacteriophages (phages) are viruses that specifically bind to and infect target bacteria. The phage phiPccP-2, belonging to the Myoviridae family, efficiently controls Pectobacterium spp. In the present study, we aimed to elucidate the mechanism of recognition of P. carotovorum Pcc21 by phiPccP-2. The EZ-Tn5 transposon mutant library of Pcc21 was used to screen for phage-resistant mutants. Among 4072 mutants screened, 12 harbored disruptions in genes associated with the biosynthesis of either colanic acid (CA) or lipopolysaccharide (LPS) showed resistance to phiPccP-2. Complementation of 4 representative phage-resistant mutants with the corresponding genes fully restored the binding ability and lytic activity of PhiPccP-2. The amounts of CA or LPS structure in these mutants were significantly altered compared with those in the wild-type strain. Adsorption competition assays between CA and LPS extracted from Pcc21 and the natural receptors in Pcc21 showed that unbound phages were significantly increased, indicating that both CA and LPS are associated with the adsorption of the phiPccP-2 to Pcc21. In contrast, the adsorption of phiPccP-2 to extracted CA or LPS did not inactivate the lytic activity of phiPccP-2, indicating that the adsorption to the extracted CA or LPS is not sufficient for DNA injection. Treatment with polymyxin B, which disrupts LPS, interfered with phiPccP-2 adsorption to Pcc21. Furthermore, phage-resistant mutants showed reduced virulence in the host plant, suggesting a trade-off between phage resistance and bacterial virulence. Overall, our results indicate that both CA and LPS serve as receptors for the binding of phiPccP-2 to P. carotovorum Pcc21.
Collapse
Affiliation(s)
- Nguyen Trung Vu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeongsoon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Sik Oh
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University. Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Programs in Agricultural Genomics, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Lee SY, Kim SJ, Ha JH. Quantification of Pectobacterium carotovorum subsp. carotovorum in kimchi cabbage using a surface-enhanced Raman scattering platform with silver nanostructures. Biosens Bioelectron 2025; 267:116766. [PMID: 39265428 DOI: 10.1016/j.bios.2024.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Pectobacterium carotovorum subsp. carotovorum (PCC) is a notorious plant pathogen responsible for severe soft rot in kimchi cabbage, which results in significant economic losses. To detect PCC rapidly and accurately in kimchi cabbage, we developed a surface-enhanced Raman scattering (SERS) substrate on which silver nanospheres (AgNSs), nanowires (AgNWs), and nanoseeds are combined on a polydimethylsiloxane (PDMS) platform. The incorporation of Ag nanoseeds creates a higher density of hotspots, which ensures a low detection limit of 1.001 CFU/mL. Electron microscopy and spectroscopic analyses confirmed the successful fabrication of the substrate and its enhanced sensitivity. The SERS substrate exhibits excellent selectivity by effectively distinguishing PCC from other bacteria commonly found in kimchi cabbage. The substrate gives rise to strong Raman signals across PCC concentrations ranging from 101 to 106 CFU/mL. Additionally, a predictive model was developed for accurately detecting PCC in real kimchi cabbage samples, and the results were validated by polymerase chain reaction measurements. A sensitive, selective, and rapid approach for PCC detection in kimchi cabbage that offers a promising improvement over existing methodologies is presented.
Collapse
Affiliation(s)
- Seong Youl Lee
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea
| | - Su-Ji Kim
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea
| | - Ji-Hyoung Ha
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea.
| |
Collapse
|
3
|
Vu NT, Kim H, Lee S, Hwang IS, Kwon CT, Oh CS. Bacteriophage cocktail for biocontrol of soft rot disease caused by Pectobacterium species in Chinese cabbage. Appl Microbiol Biotechnol 2024; 108:11. [PMID: 38159122 DOI: 10.1007/s00253-023-12881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 01/03/2024]
Abstract
Pectobacterium spp. are necrotrophic plant pathogens that cause the soft rot disease in Chinese cabbage, resulting in severe yield loss. The use of conventional antimicrobial agents, copper-based bactericides, and antibiotics has encountered several limitations, such as bioaccumulation on plants and microbial resistance. Bacteriophages (phages) are considered promising alternative antimicrobial agents against diverse phytopathogens. In this study, we isolated and characterized two virulent phages (phiPccP-2 and phiPccP-3) to develop a phage cocktail. Morphological and genomic analyses revealed that two phages belonged to the Tevenvirinae and Mccorquodalevirinae subfamilies, respectively. The phiPccP-2 and phiPccP-3 phages, which have a broad host range, were stable at various environmental conditions, such as various pHs and temperatures and exposure to ultraviolet light. The phage cocktail developed using these two lytic phages inhibited the emergence of phage-resistant bacteria compared to single-phage treatments in in vitro challenge assays. The phage cocktail treatment effectively prevented the development of soft rot symptom in matured Chinese cabbage leaves. Additionally, the phage cocktail comprising three phages (phiPccP-1, phiPccP-2, and phiPccP-3) showed superior biocontrol efficacy against the mixture of Pectobacterium strains in Chinese cabbage seedlings. These results suggest that developing phage cocktails is an effective approach for biocontrol of soft rot disease caused by Pectobacterium strains in crops compared to single-phage treatments. KEY POINTS: •Two newly isolated Pectobacterium phages, phiPccP-2 and phiPccP-3, infected diverse Pectobacterium species and effectively inhibited the emergence of phage-resistant bacteria. •Genomic and physiological analyses suggested that both phiPccP-2 and phiPccP-3 are lytic phages and that their lytic activities are stable in the environmental conditions under which Chinese cabbage grows. •Treatment using a phage cocktail comprising phiPccP-2 and phiPccP-3 efficiently suppressed soft rot disease in detached mature leaves and seedlings of Chinese cabbage, indicating the applicability of the phage cocktail as an alternative antimicrobial agent.
Collapse
Affiliation(s)
- Nguyen Trung Vu
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyeongsoon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soohong Lee
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choon-Tak Kwon
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Chang-Sik Oh
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Sun Y, Utpal H, Wu Y, Sun Q, Feng Z, Shen Y, Zhang R, Zhou X, Wu J. Comparative genomic and transcriptome analyses of two Pectobacterium brasiliense strains revealed distinct virulence determinants and phenotypic features. Front Microbiol 2024; 15:1362283. [PMID: 38800750 PMCID: PMC11116658 DOI: 10.3389/fmicb.2024.1362283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Potato soft rot caused by Pectobacterium spp. are devastating diseases of potato which cause severe economic losses worldwide. Pectobacterium brasiliense is considered as one of the most virulent species. However, the virulence mechanisms and pathogenicity factors of this strain have not been fully elucidated. Here, through pathogenicity screening, we identified two Pectobacterium brasiliense isolates, SM and DQ, with distinct pathogenicity levels. SM exhibits higher virulence compared to DQ in inducing aerial stem rot, blackleg and tuber soft rot. Our genomic and transcriptomic analyses revealed that SM encodes strain specific genes with regard to plant cell wall degradation and express higher level of genes associated with bacterial motility and secretion systems. Our plate assays verified higher pectinase, cellulase, and protease activities, as well as fast swimming and swarming motility in SM. Importantly, a unique endoglucanase S specific to SM was identified. Expression of this cellulase in DQ greatly enhances its virulence compared to wild type strain. Our study sheds light on possible determinants causing different pathogenicity of Pectobacterium brasiliense species with close evolutionary distance and provides new insight into the direction of genome evolution in response to host variation and environmental stimuli.
Collapse
Affiliation(s)
- Yue Sun
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Handique Utpal
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yajuan Wu
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qinghua Sun
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhiwen Feng
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | | | - Ruofang Zhang
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xiaofeng Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jian Wu
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
5
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
6
|
Kang J, Yoon HM, Jung J, Yu S, Choi SY, Bae HW, Cho YH, Chung EH, Lee Y. Pleiotropic effects of N-acylhomoserine lactone synthase ExpI on virulence, competition, and transmission in Pectobacterium carotovorum subsp. carotovorum Pcc21. PEST MANAGEMENT SCIENCE 2024; 80:687-697. [PMID: 37758685 DOI: 10.1002/ps.7797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Pectobacterium species are necrotrophic phytopathogenic bacteria that cause soft rot disease in economically important crops. The successful infection of host plants relies on interactions among virulence factors, competition, and transmission within hosts. Pectobacteria primarily produce and secrete plant cell-wall degrading enzymes (PCWDEs) for virulence. The regulation of PCWDEs is controlled by quorum sensing (QS). Thus, the QS system is crucial for disease development in pectobacteria through PCWDEs. RESULTS In this study, we identified a Tn-insertion mutant, M2, in the expI gene from a transposon mutant library of P. carotovorum subsp. carotovorum Pcc21 (hereafter Pcc21). The mutant exhibited reduced production and secretion of PCWDEs, impaired flagellar motility, and increased sensitivity to hydrogen peroxide, resulting in attenuated soft rot symptoms in cabbage and potato tubers. Transcriptomic analysis revealed the down-regulation of genes involved in the production and secretion in the mutant, consistent with the observed phenotype. Furthermore, the Pcc21 wild-type transiently colonized in the gut of Drosophila melanogaster within 12 h after feeding, while the mutant compromised colonization phenotype. Interestingly, Pcc21 produces a bacteriocin, carocin D, to compete with other bacteria. The mutant exhibited up-regulation of carocin D-encoding genes (caroDK) and inhibited the growth of a closely related bacterium, P. wasabiae. CONCLUSION Our results demonstrated the significance of ExpI in the overall pathogenic lifestyle of Pcc21, including virulence, competition, and colonization in plant and insect hosts. These findings suggest that disease outcome is a result of complex interactions mediated by ExpI across multiple steps. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jihee Kang
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Hye Min Yoon
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seonmi Yu
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Shin-Yae Choi
- Department of Pharmacy, and Institutes of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Hee-Won Bae
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, and Institutes of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yunho Lee
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
7
|
Mei Y, Lei J, Liu W, Yue Z, Hu Q, Tao P, Li B, Zhao Y. Transcriptomic and Proteomic Analyses Unveil the Role of Nitrogen Metabolism in the Formation of Chinese Cabbage Petiole Spot. Int J Mol Sci 2024; 25:1366. [PMID: 38338646 PMCID: PMC10855159 DOI: 10.3390/ijms25031366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
Chinese cabbage is the most widely consumed vegetable crop due to its high nutritional value and rock-bottom price. Notably, the presence of the physiological disease petiole spot significantly impacts the appearance quality and marketability of Chinese cabbage. It is well known that excessive nitrogen fertilizer is a crucial factor in the occurrence of petiole spots; however, the mechanism by which excessive nitrogen triggers the formation of petiole spots is not yet clear. In this study, we found that petiole spots initially gather in the intercellular or extracellular regions, then gradually extend into intracellular regions, and finally affect adjacent cells, accompanied by cell death. Transcriptomic and proteomic as well as physiology analyses revealed that the genes/proteins involved in nitrogen metabolism exhibited different expression patterns in resistant and susceptible Chinese cabbage lines. The resistant Chinese cabbage line has high assimilation ability of NH4+, whereas the susceptible one accumulates excessive NH4+, thus inducing a burst of reactive oxygen species (ROS). These results introduce a novel perspective to the investigation of petiole spot induced by the nitrogen metabolism pathway, offering a theoretical foundation for the development of resistant strains in the control of petiole spot.
Collapse
Affiliation(s)
- Ying Mei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Juanli Lei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Wenqi Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhichen Yue
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Qizan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Peng Tao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Biyuan Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| |
Collapse
|
8
|
Li X, Li G, Yi L, Zeng K. Soft rot of postharvest pepper: bacterial pathogen, pathogenicity and its biological control using Lactobacillus farciminis LJLAB1. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:443-455. [PMID: 37638860 DOI: 10.1002/jsfa.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Soft rot is the most important bacterial disease of postharvest pepper during storage and transportation. The main objectives of this study were to investigate the bacterial pathogen species causing pepper soft rot and seek for an antagonistic bacterium to control this disease. RESULTS Pathogens Pectobacterium carotovorum, Enterobacter sp., Klebsiella sp., Pseudomonas sp. and Bacillus sp. were verified to be the causes of soft rot which were isolated from rotten peppers. Among them, P. carotovorum had the highest prevalence, including P. carotovorum subsp. carotovorum (Pcc) and P. carotovorum subsp. brasilisesis (Pcb). The result of pathogenicity analysis showed that Pcb Jm2 had strong pathogenicity at 25 °C even at a cell concentration of 103 CFU mL-1 . Its pathogenicity decreased at 4 °C. Multiple pathogenic factors were identified in the draft genome of Pcb Jm2, including cellulase, pectinase, pectin methylesterase, pectinesterase, pectin lyase, polygalacturonase and so forth. Further, the disease control ability of Lactobacillus farciminis LJLAB1 was investigated. The cell-free supernatant (CFS) and crude bacteriocin of L. farciminis LJLAB1 had good antibacterial activities to Pcb Jm2 in vitro, but CFS exhibited a better disease control effect in vivo. CFS treatment prevented the damage of pepper epidermal structure caused by Pcb Jm2, and 99.26% of pathogen cells on pepper were killed by it. Moreover, CFS treatment delayed firmness decrease, soluble solid content loss, weight loss, yellowing and malonaldehyde accumulation of pepper during storage after pathogen infection. CONCLUSION L. farciminis LJLAB1 can be an effective biological control agent to control pepper soft rot caused by Pcb. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaofen Li
- College of Food Science, Southwest University, Chongqing, China
| | - Guang Li
- College of Food Science, Southwest University, Chongqing, China
| | - Lanhua Yi
- College of Food Science, Southwest University, Chongqing, China
- Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, China
- Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
9
|
Su Y, Li X, Li L, Lukianova A, Tokmakova A, Chen C, Fu L, Tian Y, Shi Y, Xie J, Miroshnikov KA, Yang J, Xie H. Occurrence, Characteristics, and qPCR-Based Identification of Pectobacterium versatile Causing Soft Rot of Chinese Cabbage in China. PLANT DISEASE 2023; 107:2751-2762. [PMID: 36973901 DOI: 10.1094/pdis-12-22-2770-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pectobacterium is one of the most important genera of phytopathogenic bacteria. It can cause soft-rot diseases on a wide range of plant species across the world. In this study, three Pectobacterium strains (KC01, KC02, and KC03) were isolated from soft-rotted Chinese cabbage in Beijing, China. These three strains were identified as Pectobacterium versatile based on phylogenetic analysis of Pectobacterium 16S ribosomal RNA, pmrA, and 504 Pectobacterium core genes, as well as a genomic average nucleotide identity analysis. Their biochemical characteristics were found to be similar to the P. versatile type strain ICMP9168T but differed in response to citric acid, stachyose, D-glucuronic acid, dextrin, and N-acetyl-β-D-mannosamine. All of the tested P. versatile strains showed different carbohydrate utilization abilities compared with P. carotovorum and P. odoriferum, particularly in their ability to utilize D-arabitol, L-rhamnose, and L-serine. Under laboratory conditions, the maceration ability of P. versatile on Chinese cabbage was the highest at 28°C, compared with those at 13, 28, 23, and 33°C. Additionally, P. versatile could infect all of the 17 known Pectobacterium host plants, except for Welsh onion (Allium fistulosum). A SYBR Green quantitative PCR (qPCR) detection system was developed to distinguish P. versatile from other soft-rot bacteria based on the combined performance of melting curve (with a single melting peak at around 85°C) and fluorescence curve (with cycle threshold <30) when the bacterial genomic DNA concentration was in the range of 10 pg/µl to 10 ng/µl. This study is the first to report the presence of P. versatile on Chinese cabbage in China, as well as a specific and sensitive qPCR assay that can be used to quickly identify P. versatile. The work contributes to a better understanding of P. versatile and will facilitate the effective diagnosis of soft-rot disease, ultimately benefitting commercial crop production.
Collapse
Affiliation(s)
- Yanyan Su
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoying Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anna Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Changlong Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lu Fu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yu Tian
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianbo Xie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Jungang Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hua Xie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
10
|
Tsers I, Parfirova O, Moruzhenkova V, Petrova O, Gogoleva N, Vorob’ev V, Gogolev Y, Gorshkov V. A Switch from Latent to Typical Infection during Pectobacterium atrosepticum-Tobacco Interactions: Predicted and True Molecular Players. Int J Mol Sci 2023; 24:13283. [PMID: 37686094 PMCID: PMC10487725 DOI: 10.3390/ijms241713283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Phytopathogenic microorganisms, being able to cause plant diseases, usually interact with hosts asymptomatically, resulting in the development of latent infections. Knowledge of the mechanisms that trigger a switch from latent to typical, symptomatic infection is of great importance from the perspectives of both fundamental science and disease management. No studies to date have compared, at the systemic molecular level, the physiological portraits of plants when different infection types (typical and latent) are developed. The only phytopathogenic bacterium for which latent infections were not only widely described but also at least fluently characterized at the molecular level is Pectobacterium atrosepticum (Pba). The present study aimed at the comparison of plant transcriptome responses during typical and latent infections caused by Pba in order to identify and then experimentally verify the key molecular players that act as switchers, turning peaceful plant-Pba coexistence into a typical infection. Based on RNA-Seq, we predicted plant cell wall-, secondary metabolism-, and phytohormone-related genes whose products contributed to the development of the disease or provided asymptomatic plant-Pba interactions. By treatment tests, we confirmed that a switch from latent to typical Pba-caused infection is determined by the plant susceptible responses mediated by the joint action of ethylene and jasmonates.
Collapse
Affiliation(s)
- Ivan Tsers
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
| | - Varvara Moruzhenkova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
| | - Vladimir Vorob’ev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
11
|
Yu S, Kang J, Chung EH, Lee Y. Disruption of the metC Gene Affects Methionine Biosynthesis in Pectobacterium carotovorum subsp. carotovorum Pcc21 and Reduces Soft-Rot Disease. THE PLANT PATHOLOGY JOURNAL 2023; 39:62-74. [PMID: 36760050 PMCID: PMC9929172 DOI: 10.5423/ppj.oa.09.2022.0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Plant pathogenic Pectobacterium species cause severe soft rot/blackleg diseases in many economically important crops worldwide. Pectobacterium utilizes plant cell wall degrading enzymes (PCWDEs) as the main virulence determinants for its pathogenicity. In this study, we screened a random mutant, M29 is a transposon insertion mutation in the metC gene encoding cystathionine β-lyase that catalyzes cystathionine to homocysteine at the penultimate step in methionine biosynthesis. M29 became a methionine auxotroph and resulted in growth defects in methionine-limited conditions. Impaired growth was restored with exogenous methionine or homocysteine rather than cystathionine. The mutant exhibited reduced soft rot symptoms in Chinese cabbages and potato tubers, maintaining activities of PCWDEs and swimming motility. The mutant was unable to proliferate in both Chinese cabbages and potato tubers. The reduced virulence was partially restored by a complemented strain or 100 µM of methionine, whereas it was fully restored by the extremely high concentration (1 mM). Our transcriptomic analysis showed that genes involved in methionine biosynthesis or transporter were downregulated in the mutant. Our results demonstrate that MetC is important for methionine biosynthesis and transporter and influences its virulence through Pcc21 multiplication in plant hosts.
Collapse
Affiliation(s)
- Seonmi Yu
- Department of Food Science and Biotechnology, CHA University, Pocheon 11160,
Korea
| | - Jihee Kang
- Department of Food Science and Biotechnology, CHA University, Pocheon 11160,
Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul 02841,
Korea
| | - Yunho Lee
- Department of Food Science and Biotechnology, CHA University, Pocheon 11160,
Korea
| |
Collapse
|
12
|
Zhu X, Chen WJ, Bhatt K, Zhou Z, Huang Y, Zhang LH, Chen S, Wang J. Innovative microbial disease biocontrol strategies mediated by quorum quenching and their multifaceted applications: A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1063393. [PMID: 36714722 PMCID: PMC9878147 DOI: 10.3389/fpls.2022.1063393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 06/12/2023]
Abstract
With the increasing resistance exhibited by undesirable bacteria to traditional antibiotics, the need to discover alternative (or, at least, supplementary) treatments to combat chemically resistant bacteria is becoming urgent. Quorum sensing (QS) refers to a novel bacterial communication system for monitoring cell density and regulation of a network of gene expression that is mediated by a group of signaling molecules called autoinducers (AIs). QS-regulated multicellular behaviors include biofilm formation, horizontal gene transfer, and antibiotic synthesis, which are demonstrating increasing pathogenicity to plants and aquacultural animals as well as contamination of wastewater treatment devices. To inhibit QS-regulated microbial behaviors, the strategy of quorum quenching (QQ) has been developed. Different quorum quenchers interfere with QS through different mechanisms, such as competitively inhibiting AI perception (e.g., by QS inhibitors) and AI degradation (e.g., by QQ enzymes). In this review, we first introduce different signaling molecules, including diffusible signal factor (DSF) and acyl homoserine lactones (AHLs) for Gram-negative bacteria, AIPs for Gram-positive bacteria, and AI-2 for interspecies communication, thus demonstrating the mode of action of the QS system. We next exemplify the QQ mechanisms of various quorum quenchers, such as chemical QS inhibitors, and the physical/enzymatic degradation of QS signals. We devote special attention to AHL-degrading enzymes, which are categorized in detail according to their diverse catalytic mechanisms and enzymatic properties. In the final part, the applications and advantages of quorum quenchers (especially QQ enzymes and bacteria) are summarized in the context of agricultural/aquacultural pathogen biocontrol, membrane bioreactors for wastewater treatment, and the attenuation of human pathogenic bacteria. Taken together, we present the state-of-the-art in research considering QS and QQ, providing theoretical evidence and support for wider application of this promising environmentally friendly biocontrol strategy.
Collapse
Affiliation(s)
- Xixian Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Junxia Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Host plant physiological transformation and microbial population heterogeneity as important determinants of the Soft Rot Pectobacteriaceae-plant interactions. Semin Cell Dev Biol 2023; 148-149:33-41. [PMID: 36621443 DOI: 10.1016/j.semcdb.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Pectobacterium and Dickeya species belonging to the Soft Rot Pectobacteriaceae (SRP) are one of the most devastating phytopathogens. They degrade plant tissues by producing an arsenal of plant cell wall degrading enzymes. However, SRP-plant interactions are not restricted to the production of these "brute force" weapons. Additionally, these bacteria apply stealth behavior related to (1) manipulation of the host plant via induction of susceptible responses and (2) formation of heterogeneous populations with functionally specialized cells. Our review aims to summarize current knowledge on SRP-induced plant susceptible responses and on the heterogeneity of SRP populations. The review shows that SRP are capable of adjusting the host's hormonal balance, inducing host-mediated plant cell wall modification, promoting iron assimilation by the host, stimulating the accumulation of reactive oxygen species and host cell death, and activating the synthesis of secondary metabolites that are ineffective in limiting disease progression. By this means, SRP facilitate host plant susceptibility. During host colonization, SRP populations produce various functionally specialized cells adapted for enhanced virulence, increased resistance, motility, vegetative growth, or colonization of the vascular system. This enables SRP to perform self-contradictory tasks, which benefits a population's overall fitness in various environments, including host plants. Such stealthy tactical actions facilitate plant-SRP interactions and disease progression.
Collapse
|
14
|
Development of a Bacteriophage Cocktail against Pectobacterium carotovorum Subsp. carotovorum and Its Effects on Pectobacterium Virulence. Appl Environ Microbiol 2022; 88:e0076122. [PMID: 36165651 PMCID: PMC9552609 DOI: 10.1128/aem.00761-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum is a necrotrophic plant pathogen that secretes plant cell wall-degrading enzymes (PCWDEs) that cause soft rot disease in various crops. Bacteriophages have been under consideration as harmless antibacterial agents to replace antibiotics and copper-based pesticides. However, the emergence of bacteriophage resistance is one of the main concerns that should be resolved for practical phage applications. In this study, we developed a phage cocktail with three lytic phages that recognize colanic acid (phage POP12) or flagella (phages POP15 and POP17) as phage receptors to minimize phage resistance. The phage cocktail effectively suppressed the emergence of phage-resistant P. carotovorum subsp. carotovorum compared with single phages in in vitro challenge assays. The application of the phage cocktail to napa cabbage (Brassica rapa subsp. pekinensis) resulted in significant growth retardation of P. carotovorum subsp. carotovorum (P < 0.05) and prevented the symptoms of soft rot disease. Furthermore, phage cocktail treatments of young napa cabbage leaves in a greenhouse environment indicated effective prevention of soft rot disease compared to that in the nonphage negative control. We isolated 15 phage-resistant mutants after a phage cocktail treatment to assess the virulence-associated phenotypes compared to those of wild-type (WT) strain Pcc27. All mutants showed reduced production of four different PCWDEs, leading to lower levels of tissue softening. Ten of the 15 phage-resistant mutants additionally exhibited decreased swimming motility. Taken together, these results show that the phage cocktail developed here, which targets two different types of phage receptors, provides an effective strategy for controlling P. carotovorum subsp. carotovorum in agricultural products, with a potential ability to attenuate P. carotovorum subsp. carotovorum virulence. IMPORTANCE Pectobacterium carotovorum subsp. carotovorum is a phytopathogen that causes soft rot disease in various crops by producing plant cell wall-degrading enzymes (PCWDEs). Although antibiotics and copper-based pesticides have been extensively applied to inhibit P. carotovorum subsp. carotovorum, the emergence of antibiotic-resistant bacteria and demand for harmless antimicrobial products have emphasized the necessity of finding alternative therapeutic strategies. To address this problem, we developed a phage cocktail consisting of three P. carotovorum subsp. carotovorum-specific phages that recognize colanic acids and flagella of P. carotovorum subsp. carotovorum. The phage cocktail treatments significantly decreased P. carotovorum subsp. carotovorum populations, as well as soft rot symptoms in napa cabbage. Simultaneously, they resulted in virulence attenuation in phage-resistant P. carotovorum subsp. carotovorum, which was represented by decreased PCWDE production and decreased flagellum-mediated swimming motility. These results suggested that preparations of phage cocktails targeting multiple receptors would be an effective approach to biocontrol of P. carotovorum subsp. carotovorum in crops.
Collapse
|
15
|
Zhou J, Hu M, Hu A, Li C, Ren X, Tao M, Xue Y, Chen S, Tang C, Xu Y, Zhang L, Zhou X. Isolation and Genome Analysis of Pectobacterium colocasium sp. nov. and Pectobacterium aroidearum, Two New Pathogens of Taro. FRONTIERS IN PLANT SCIENCE 2022; 13:852750. [PMID: 35557713 PMCID: PMC9088014 DOI: 10.3389/fpls.2022.852750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Bacterial soft rot is one of the most destructive diseases of taro (Colocasia esculenta) worldwide. In recent years, frequent outbreaks of soft rot disease have seriously affected taro production and became a major constraint to the development of taro planting in China. However, little is known about the causal agents of this disease, and the only reported pathogens are two Dickeya species and P. carotovorum. In this study, we report taro soft rot caused by two novel Pectobacterium strains, LJ1 and LJ2, isolated from taro corms in Ruyuan County, Shaoguan City, Guangdong Province, China. We showed that LJ1 and LJ2 fulfill Koch's postulates for taro soft rot. The two pathogens can infect taro both individually and simultaneously, and neither synergistic nor antagonistic interaction was observed between the two pathogens. Genome sequencing of the two strains indicated that LJ1 represents a novel species of the genus Pectobacterium, for which the name "Pectobacterium colocasium sp. nov." is proposed, while LJ2 belongs to Pectobacterium aroidearum. Pan-genome analysis revealed multiple pathogenicity-related differences between LJ1, LJ2, and other Pectobacterium species, including unique virulence factors, variation in the copy number and organization of Type III, IV, and VI secretion systems, and differential production of plant cell wall degrading enzymes. This study identifies two new soft rot Pectobacteriaceae (SRP) pathogens causing taro soft rot in China, reports a new case of co-infection of plant pathogens, and provides valuable resources for further investigation of the pathogenic mechanisms of SRP.
Collapse
Affiliation(s)
- Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Anqun Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xinyue Ren
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Min Tao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shanshan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chongzhi Tang
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
| | - Yiwu Xu
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
- Qingyuan Agricultural Science and Technology Service Co., Ltd., Qingyuan, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Mallick T, Mishra R, Mohanty S, Joshi RK. Genome Wide Analysis of the Potato Soft Rot Pathogen Pectobacterium carotovorum Strain ICMP 5702 to Predict Novel Insights into Its Genetic Features. THE PLANT PATHOLOGY JOURNAL 2022; 38:102-114. [PMID: 35385916 PMCID: PMC9343900 DOI: 10.5423/ppj.oa.12.2021.0190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Pectobacterium carotovorum subsp. carotovorum (Pcc) is a gram-negative, broad host range bacterial pathogen which causes soft rot disease in potatoes as well as other vegetables worldwide. While Pectobacterium infection relies on the production of major cell wall degrading enzymes, other virulence factors and the mechanism of genetic adaptation of this pathogen is not yet clear. In the present study, we have performed an in-depth genome-wide characterization of Pcc strain ICMP5702 isolated from potato and compared it with other pathogenic bacteria from the Pectobacterium genus to identify key virulent determinants. The draft genome of Pcc ICMP5702 contains 4,774,457 bp with a G + C content of 51.90% and 4,520 open reading frames. Genome annotation revealed prominent genes encoding key virulence factors such as plant cell wall degrading enzymes, flagella-based motility, phage proteins, cell membrane structures, and secretion systems. Whereas, a majority of determinants were conserved among the Pectobacterium strains, few notable genes encoding AvrE-family type III secretion system effectors, pectate lyase and metalloprotease in addition to the CRISPR-Cas based adaptive immune system were uniquely represented. Overall, the information generated through this study will contribute to decipher the mechanism of infection and adaptive immunity in Pcc.
Collapse
Affiliation(s)
- Tista Mallick
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 751022, Odisha, India
| | - Sasmita Mohanty
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| |
Collapse
|
17
|
Chandrashekar BS, PrasannaKumar MK, Parivallal PB, Pramesh D, Banakar SN, Patil SS, Mahesh HB. Host range and virulence diversity of Pectobacterium carotovorum subsp. brasiliense strain RDKLR infecting radish in India, and development of a LAMP-based diagnostics. J Appl Microbiol 2022; 132:4400-4412. [PMID: 35353430 DOI: 10.1111/jam.15553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/27/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
AIM This work aimed at determining the pathogenicity, molecular characterization, host range and rapid detection of Pectobacterium carotovorum subsp. brasiliense (Pcb) causing soft rot disease in radish. METHOD AND RESULTS The four isolated isolates were inoculated to radish, typical soft rot symptoms were observed and Koch's postulates were proved. The most virulent strain RDKLR was morphologically and biochemically distinct. Pcb showed a positive potato soft rot test and elicited hypersensitivity response on Nicotiana tobaccum. The genes Pel2 and pmrA were used for sub-species characterization of Pcb. It has a wide host range and infection was observed on slices of carrot, tomato, cauliflower, cabbage, chili, knol-khol, bell pepper and cucumber. Infectivity was also seen in seedlings under glasshouse conditions. Pcb produced cell wall degrading enzymes in semi-quantification assay and is a strong biofilm producer. The LAMP technique was standardized to help rapid detection and take prophylactic measures to manage the disease. CONCLUSION This work reports Pcb as a new soft rot causing organism of radish in India. Pcb is highly virulent with a broad host range. The LAMP technique helps in rapid detection. SIGNIFICANCE AND IMPACT OF STUDY Pcb-induced soft rot causes significant yield loss, decreased market value, damage in transit, storage, and the market. Disease characterisation and early identification aid in disease management and prevention in the field.
Collapse
Affiliation(s)
- B S Chandrashekar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore, India
| | - M K PrasannaKumar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore, India
| | - P Buela Parivallal
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore, India
| | - D Pramesh
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, Gangavathi, University of Agricultural Sciences, Raichur, India
| | - Sahana N Banakar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore, India
| | - Swathi S Patil
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore, India
| | - H B Mahesh
- Department of Genetics and Plant Breeding, College of Agriculture, V. C. Farm, Mandya, India
| |
Collapse
|
18
|
Helmann TC, Filiatrault MJ, Stodghill PV. Genome-Wide Identification of Genes Important for Growth of Dickeya dadantii and Dickeya dianthicola in Potato (Solanum tuberosum) Tubers. Front Microbiol 2022; 13:778927. [PMID: 35145503 PMCID: PMC8821946 DOI: 10.3389/fmicb.2022.778927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Dickeya species are causal agents of soft rot diseases in many economically important crops, including soft rot disease of potato (Solanum tuberosum). Using random barcode transposon-site sequencing (RB-TnSeq), we generated genome-wide mutant fitness profiles of Dickeya dadantii 3937, Dickeya dianthicola ME23, and Dickeya dianthicola 67-19 isolates collected after passage through several in vitro and in vivo conditions. Though all three strains are pathogenic on potato, D. dadantii 3937 is a well-characterized model while D. dianthicola strains ME23 and 67-19 are recent isolates. Strain ME23 specifically was identified as a representative strain from a 2014 outbreak on potato. This study generated comparable gene fitness measurements across ecologically relevant conditions for both model and non-model strains. Tubers from the potato cultivars “Atlantic,” “Dark Red Norland,” and “Upstate Abundance” provided highly similar conditions for bacterial growth. Using the homolog detection software PyParanoid, we matched fitness values for orthologous genes in the three bacterial strains. Direct comparison of fitness among the strains highlighted shared and variable traits important for growth. Bacterial growth in minimal medium required many metabolic traits that were also essential for competitive growth in planta, such as amino acid, carbohydrate, and nucleotide biosynthesis. Growth in tubers specifically required the pectin degradation gene kduD. Disruption in three putative DNA-binding proteins had strain-specific effects on competitive fitness in tubers. Though the Soft Rot Pectobacteriaceae can cause disease with little host specificity, it remains to be seen the extent to which strain-level variation impacts virulence.
Collapse
Affiliation(s)
- Tyler C. Helmann
- Emerging Pests and Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
| | - Melanie J. Filiatrault
- Emerging Pests and Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Paul V. Stodghill
- Emerging Pests and Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- *Correspondence: Paul V. Stodghill,
| |
Collapse
|
19
|
He X, Zhang J, Wang S, Yang Z, Zhang H, Zhou X. Cloning, expression, purification, and biochemical characterization of CpxR protein from pectobacterium carotovorum. Biotechnol Appl Biochem 2021; 69:898-905. [PMID: 33811674 DOI: 10.1002/bab.2161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/26/2021] [Indexed: 11/09/2022]
Abstract
The cpxR gene, encoding a new cytoplasmic response regulator, which effects virulence, biofilm formation, chemotaxis, resistance to antimicrobials, and controls soft rot, was amplified by the polymerase chain reaction, cloned into the prokaryotic expression vector pET-15b, and expressed through the induction of isopropyl-β-d-thiogalactoside in Escherichia coli BL21 (DE3). Then, highly purified and stable CpxR protein was produced by nickel affinity chromatography and fast protein liquid chromatography, digested by thrombin and identified by Western blotting. Furthermore, the structure of the CpxR protein was estimated by circular dichroism spectroscopy and SWISS-MODEL. The CpxR protein was a functional part in signal transduction and bacterial resistance for Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The resear ch of the protein stability indicated the CpxR protein had excellent thermal stability and was suitable for crystallization. Then the small crystals of CpxR protein were found in the crystallizing tank. The latest 34 cpxR sequences from the public database were selected and analyzed by molecular clustering and multisequence alignment. These cpxR sequences were roughly divided into four categories. These results laid an important foundation for the further structural study of the CpxR protein.
Collapse
Affiliation(s)
- Xiaoliang He
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhang, Hebei, China
| | - Jing Zhang
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhang, Hebei, China
| | - Shuai Wang
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhang, Hebei, China
| | - Zi Yang
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhang, Hebei, China
| | - Huan Zhang
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhang, Hebei, China
| | - Xiaohui Zhou
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhang, Hebei, China
| |
Collapse
|
20
|
Neik TX, Amas J, Barbetti M, Edwards D, Batley J. Understanding Host-Pathogen Interactions in Brassica napus in the Omics Era. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1336. [PMID: 33050509 PMCID: PMC7599536 DOI: 10.3390/plants9101336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host-pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way.
Collapse
Affiliation(s)
- Ting Xiang Neik
- Sunway College Kuala Lumpur, Bandar Sunway 47500, Selangor, Malaysia;
| | - Junrey Amas
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Martin Barbetti
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| |
Collapse
|
21
|
Draft Genome Sequence of Enterobacter kobei M4-VN, Isolated from Potatoes with Soft Rot Disease. Microbiol Resour Announc 2020; 9:9/36/e00908-20. [PMID: 32883798 PMCID: PMC7471391 DOI: 10.1128/mra.00908-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterobacter kobei M4-VN, isolated from potatoes with soft rot disease in Vietnam, contains a total of 4,754,309 bp with 4,424 predicted coding sequences and a G+C content of 55.1%.
Collapse
|
22
|
Jee S, Choi JG, Lee YG, Kwon M, Hwang I, Heu S. Distribution of Pectobacterium Species Isolated in South Korea and Comparison of Temperature Effects on Pathogenicity. THE PLANT PATHOLOGY JOURNAL 2020; 36:346-354. [PMID: 32788893 PMCID: PMC7403519 DOI: 10.5423/ppj.oa.09.2019.0235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Pectobacterium, which causes soft rot disease, is divided into 18 species based on the current classification. A total of 225 Pectobacterium strains were isolated from 10 main cultivation regions of potato (Solanum tuberosum), napa cabbage (Brassica rapa subsp. pekinensis), and radish (Raphanus sativus) in South Korea; 202 isolates (90%) were from potato, 18 from napa cabbage, and five from radish. Strains were identified using the Biolog test and phylogenetic analysis. The pathogenicity and swimming motility were tested at four different temperatures. Pectolytic activity and plant cell-wall degrading enzyme (PCWDE) activity were evaluated for six species (P. carotovorum subsp. carotovorum, Pcc; P. odoriferum, Pod; P. brasiliense, Pbr; P. versatile, Pve; P. polaris, Ppo; P. parmentieri, Ppa). Pod, Pcc, Pbr, and Pve were the most prevalent species. Although P. atrosepticum is a widespread pathogen in other countries, it was not found here. This is the first report of Ppo, Ppa, and Pve in South Korea. Pectobacterium species showed stronger activity at 28°C and 32°C than at 24°C, and showed weak activity at 37°C. Pectolytic activity decreased with increasing temperature. Activity of pectate lyase was not significantly affected by temperature. Activity of protease, cellulase, and polygalacturonase decreased with increasing temperature. The inability of isolated Pectobacterium to soften host tissues at 37°C may be a consequence of decreased motility and PCWDE activity. These data suggest that future increases in temperature as a result of climate change may affect the population dynamics of Pectobacterium.
Collapse
Affiliation(s)
- Samnyu Jee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Jang-Gyu Choi
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Young-Gyu Lee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Min Kwon
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Sunggi Heu
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| |
Collapse
|
23
|
Zaczek-Moczydłowska MA, Young GK, Trudgett J, Plahe C, Fleming CC, Campbell K, O’ Hanlon R. Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions. PLoS One 2020; 15:e0230842. [PMID: 32240203 PMCID: PMC7117878 DOI: 10.1371/journal.pone.0230842] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
Globally, there is a high economic burden caused by pre- and post-harvest losses in vegetables, fruits and ornamentals due to soft rot diseases. At present, the control methods for these diseases are limited, but there is some promise in developing biological control products for use in Integrated Pest Management. This study sought to formulate a phage cocktail which would be effective against soft rot Pectobacteriaceae species affecting potato (Solanum tuberosum L.), with potential methods of application in agricultural systems, including vacuum-infiltration and soil drench, also tested. Six bacteriophages were isolated and characterized using transmission electron microscopy, and tested against a range of Pectobacterium species that cause soft rot/blackleg of potato. Isolated bacteriophages of the family Podoviridae and Myoviridae were able to control isolates of the Pectobacterium species: Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum. Genomic analysis of three Podoviridae phages did not indicate host genes transcripts or proteins encoding toxin or antibiotic resistance genes. These bacteriophages were formulated as a phage cocktail and further experiments showed high activity in vitro and in vivo to suppress Pectobacterium growth, potentially indicating their efficacy in formulation as a microbial pest control agent to use in planta.
Collapse
Affiliation(s)
- Maja A. Zaczek-Moczydłowska
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
- * E-mail:
| | - Gillian K. Young
- Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - James Trudgett
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, United Kingdom
| | - Cali Plahe
- School of Biological Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| | - Colin C. Fleming
- Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
- School of Biological Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| | - Richard O’ Hanlon
- Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
- School of Biological Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
24
|
van den Bosch TJM, Niemi O, Welte CU. Single gene enables plant pathogenic Pectobacterium to overcome host-specific chemical defence. MOLECULAR PLANT PATHOLOGY 2020; 21:349-359. [PMID: 31872947 PMCID: PMC7036374 DOI: 10.1111/mpp.12900] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/30/2019] [Accepted: 11/27/2019] [Indexed: 05/04/2023]
Abstract
Plants of the Brassicales order, including Arabidopsis and many common vegetables, produce toxic isothiocyanates to defend themselves against pathogens. Despite this defence, plant pathogenic microorganisms like Pectobacterium cause large yield losses in fields and during storage of crops. The bacterial gene saxA was previously found to encode isothiocyanate hydrolase that degrades isothiocyanates in vitro. Here we demonstrate in planta that saxA is a virulence factor that can overcome the chemical defence system of Brassicales plants. Analysis of the distribution of saxA genes in Pectobacterium suggests that saxA from three different phylogenetic origins are present within this genus. Deletion of saxA genes representing two of the most common classes from P. odoriferum and P. versatile resulted in significantly reduced virulence on Arabidopsis thaliana and Brassica oleracea. Furthermore, expressing saxA from a plasmid in a potato-specific P. parmentieri strain that does not naturally harbour this gene significantly increased the ability of the strain to macerate Arabidopsis. These findings suggest that a single gene may have a significant role in defining the host range of a plant pathogen.
Collapse
Affiliation(s)
- Tijs J. M. van den Bosch
- Department of MicrobiologyInstitute for Water and Wetland Research, Radboud UniversityNijmegenNetherlands
| | - Outi Niemi
- Viikki Plant Science CentreFaculty of Biological and Environmental SciencesUniversity of HelsinkiFinland
| | - Cornelia U. Welte
- Department of MicrobiologyInstitute for Water and Wetland Research, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
25
|
Genome-Wide Analyses Revealed Remarkable Heterogeneity in Pathogenicity Determinants, Antimicrobial Compounds, and CRISPR-Cas Systems of Complex Phytopathogenic Genus Pectobacterium. Pathogens 2019; 8:pathogens8040247. [PMID: 31756888 PMCID: PMC6963963 DOI: 10.3390/pathogens8040247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Pectobacterium genus comprises pectolytic enterobacteria defined as the causal agents of soft rot, blackleg, and aerial stem rot diseases of potato and economically important crops. In this study, we undertook extensive genome-wide comparative analyses of twelve species that conform the Pectobacterium genus. Bioinformatics approaches outlined a low nucleotide identity of P. parmentieri and P. wasabiae with other species, while P. carotovorum subsp. odoriferum was shown to harbor numerous pseudogenes, which suggests low coding capacity and genomic degradation. The genome atlases allowed for distinguishing distinct DNA structures and highlighted suspicious high transcription zones. The analyses unveiled a noteworthy heterogeneity in the pathogenicity determinants. Specifically, phytotoxins, polysaccharides, iron uptake systems, and the type secretion systems III-V were observed in just some species. Likewise, a comparison of gene clusters encoding antimicrobial compounds put in evidence for high conservation of carotovoricin, whereas a few species possessed the phenazine, carbapenem, and carocins. Moreover, three clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems: I-E, I-F, and III-A were identified. Surrounding some CRISPR-Cas regions, different toxin and antitoxin systems were found, which suggests bacterial suicide in the case of an immune system failure. Multiple whole-genome alignments shed light on to the presence of a novel cellobiose phosphotransferase system (PTS) exclusive to P. parmenteri, and an unreported T5SS conserved in almost all species. Several regions that were associated with virulence, microbe antagonism, and adaptive immune systems were predicted within genomic islands, which underscored the essential role that horizontal gene transfer has imparted in the dynamic evolution and speciation of Pectobacterium species. Overall, the results decipher the different strategies that each species has developed to infect their hosts, outcompete for food resources, and defend against bacteriophages. Our investigation provides novel genetic insights that will assist in understanding the pathogenic lifestyle of Pectobacterium, a genus that jeopardizes the agriculture sustainability of important crops worldwide.
Collapse
|
26
|
Li Y, Xue H, Bian DR, Xu G, Piao C. Acetylome analysis of lysine acetylation in the plant pathogenic bacterium Brenneria nigrifluens. Microbiologyopen 2019; 9:e00952. [PMID: 31677250 PMCID: PMC6957402 DOI: 10.1002/mbo3.952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/28/2022] Open
Abstract
Protein lysine acetylation, a dynamic and reversible posttranslational modification, plays a crucial role in several cellular processes, including cell cycle regulation, metabolism, enzymatic activities, and protein interactions. Brenneria nigrifluens is a pathogen of walnut trees with shallow bark canker and can cause serious disease in walnut trees. Until now, a little has been known about the roles of lysine acetylation in plant pathogenic bacteria. In the present study, the lysine acetylome of B. nigrifluens was determined by high‐resolution LC‐MS/MS analysis. In total, we identified 1,866 lysine acetylation sites distributed in 737 acetylated proteins. Bioinformatics results indicated that acetylated proteins participate in many different biological functions in B. nigrifluens. Four conserved motifs, namely, LKac, Kac*F, I*Kac, and L*Kac, were identified in this bacterium. Protein interaction network analysis indicated that all kinds of interactions are modulated by protein lysine acetylation. Overall, 12 acetylated proteins were related to the virulence of B. nigrifluens.
Collapse
Affiliation(s)
- Yong Li
- The Key Laboratory of National Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Han Xue
- The Key Laboratory of National Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Dan-Ran Bian
- The Key Laboratory of National Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Guantang Xu
- The Key Laboratory of National Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Chungen Piao
- The Key Laboratory of National Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
27
|
Morohoshi T, Ogasawara Y, Xie X, Hamamoto H, Someya N. Genetic and Biochemical Diversity for N-acylhomoserine Lactone Biosynthesis in the Plant Pathogen Pectobacterium carotovorum subsp. carotovorum. Microbes Environ 2019; 34:429-435. [PMID: 31666459 PMCID: PMC6934387 DOI: 10.1264/jsme2.me19105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The plant pathogen Pectobacterium carotovorum subsp. carotovorum (Pcc) regulates the expression of virulence factors by N-acylhomoserine lactone (AHL)-mediated quorum sensing. The LuxI family protein, ExpI, catalyzes AHL biosynthesis in Pcc. The structure of the predominant AHL produced by ExpI differs among Pcc strains, which may be divided into two quorum-sensing classes (QS classes) based on the AHL produced. In the present study, AHL produced by 282 Pcc strains were extracted and identified by LC-MS/MS. Seventy Pcc strains produced N-(3-oxooctanoyl)-l-homoserine lactone (3-oxo-C8-HSL) as the predominant AHL and were categorized into QS class I. Two hundred Pcc strains produced N-(3-oxohexanoyl)-l-homoserine lactone (3-oxo-C6-HSL) as the predominant AHL, and were categorized into QS class II-1. Twelve Pcc strains produced only small amounts of 3-oxo-C6-HSL, and were categorized into QS class II-2. The phylogenetic analysis revealed that the amino acid sequences of ExpI may be divided into two major clades (I and II). The Pcc strains categorized into ExpI clades I and II entirely matched QS classes I and II, respectively. A multiple alignment analysis demonstrated that only 6 amino acid substitutions were observed among ExpI from QS classes II-1 and II-2. Furthermore, many amino acid substitutions between QS classes I and II were concentrated at the C-terminal region. These amino acid substitutions are assumed to cause significant reductions in 3-oxo-C6-HSL in QS class II-2 or affect the substrate specificity of ExpI between QS classes I and II.
Collapse
Affiliation(s)
- Tomohiro Morohoshi
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University
| | - Yuto Ogasawara
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University
| | - Hiroshi Hamamoto
- Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University
| | - Nobutaka Someya
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization
| |
Collapse
|
28
|
Kang M, Kim SJ, Yoon SR, Lee HW, Lee JY, Ha JH. Determination of Transfer Patterns of Pectobacterium carotovorum subsp. carotovorum Planktonic Cells and Biofilms During Mechanical Cutting of Kimchi Cabbage. J Food Sci 2019; 84:2603-2609. [PMID: 31518463 DOI: 10.1111/1750-3841.14749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/29/2022]
Abstract
Cross-contamination of Pectobacterium carotovorum subsp. carotovorum (PCC) from a stainless-steel surface to cabbage (Brassica rapa L. subsp. pekinensis) was evaluated. To investigate the PCC transfer pattern from mechanical knife surfaces to cabbage during 100 cuts, two mathematical models (power and logarithmic model) were fitted to the mean log10 detection data from cabbage. Overall, regression analysis determined that the best-fitting regression curves of planktonic cells and detached cells from biofilms transferred onto fresh cabbage were Y = 3.7X-0.41 , RMSE = 0.371 and Y = 4.6X-0.35 , RMSE = 0.254, respectively. For salted cabbage, the best-fit regression curves of planktonic cells and biofilm were Y = 5.8X-0.38 , RMSE = 0.209 and Y = 5.4X-0.23 , RMSE = 0.195, respectively. Our data provide a meaningful indication of the level of PCC cross-contamination.
Collapse
Affiliation(s)
- Miran Kang
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| | - Su-Ji Kim
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| | - So-Ra Yoon
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| | - Hae-Won Lee
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| | - Jae Yong Lee
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| |
Collapse
|
29
|
Li L, Yuan L, Shi Y, Xie X, Chai A, Wang Q, Li B. Comparative genomic analysis of Pectobacterium carotovorum subsp. brasiliense SX309 provides novel insights into its genetic and phenotypic features. BMC Genomics 2019; 20:486. [PMID: 31195968 PMCID: PMC6567464 DOI: 10.1186/s12864-019-5831-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Background Pectobacterium carotovorum subsp. brasiliense is a broad host range bacterial pathogen, which causes blackleg of potatoes and bacterial soft rot of vegetables worldwide. Production of plant cell wall degrading enzymes is usually critical for Pectobacterium infection. However, other virulence factors and the mechanisms of genetic adaptation still need to be studied in detail. Results In this study, the complete genome of P. carotovorum subsp. brasiliense strain SX309 isolated from cucumber was compared with eight other pathogenic bacteria belonging to the Pectobacterium genus, which were isolated from various host plants. Genome comparison revealed that most virulence genes are highly conserved in the Pectobacterium strains, especially for the key virulence determinants involved in the biosynthesis of extracellular enzymes and others including the type II and III secretion systems, quorum sensing system, flagellar and chemotactic genes. Nevertheless, some variable regions of the T6SS and the CRISP-Cas immune system are unique for P. carotovorum subsp. brasiliense. Conclusions The extensive comparative genomics analysis revealed highly conserved virulence genes in the Pectobacterium strains. However, several variable regions of type VI secretion system and two subtype Cas mechanism-Cas immune systems possibly contribute to the process of Pectobacterium infection and adaptive immunity. Electronic supplementary material The online version of this article (10.1186/s12864-019-5831-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
30
|
Wang J, Lin J, Zhang Y, Zhang J, Feng T, Li H, Wang X, Sun Q, Zhang X, Wang Y. Activity Improvement and Vital Amino Acid Identification on the Marine-Derived Quorum Quenching Enzyme MomL by Protein Engineering. Mar Drugs 2019; 17:md17050300. [PMID: 31117226 PMCID: PMC6562636 DOI: 10.3390/md17050300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022] Open
Abstract
MomL is a marine-derived quorum-quenching (QQ) lactonase which can degrade various N-acyl homoserine lactones (AHLs). Intentional modification of MomL may lead to a highly efficient QQ enzyme with broad application potential. In this study, we used a rapid and efficient method combining error-prone polymerase chain reaction (epPCR), high-throughput screening and site-directed mutagenesis to identify highly active MomL mutants. In this way, we obtained two candidate mutants, MomLI144V and MomLV149A. These two mutants exhibited enhanced activities and blocked the production of pathogenic factors of Pectobacterium carotovorum subsp. carotovorum (Pcc). Besides, seven amino acids which are vital for MomL enzyme activity were identified. Substitutions of these amino acids (E238G/K205E/L254R) in MomL led to almost complete loss of its QQ activity. We then tested the effect of MomL and its mutants on Pcc-infected Chinese cabbage. The results indicated that MomL and its mutants (MomLL254R, MomLI144V, MomLV149A) significantly decreased the pathogenicity of Pcc. This study provides an efficient method for QQ enzyme modification and gives us new clues for further investigation on the catalytic mechanism of QQ lactonase.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jing Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yunhui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jingjing Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Tao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Hui Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xianghong Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Qingyang Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiaohua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
31
|
Figaj D, Ambroziak P, Przepiora T, Skorko-Glonek J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2019; 20:ijms20030672. [PMID: 30720762 PMCID: PMC6386880 DOI: 10.3390/ijms20030672] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
A pathogenic lifestyle is inextricably linked with the constant necessity of facing various challenges exerted by the external environment (both within and outside the host). To successfully colonize the host and establish infection, pathogens have evolved sophisticated systems to combat the host defense mechanisms and also to be able to withstand adverse environmental conditions. Proteases, as crucial components of these systems, are involved in a variety of processes associated with infection. In phytopathogenic bacteria, they play important regulatory roles and modulate the expression and functioning of various virulence factors. Secretory proteases directly help avoid recognition by the plant immune systems, and contribute to the deactivation of the defense response pathways. Finally, proteases are important components of protein quality control systems, and thus enable maintaining homeostasis in stressed bacterial cells. In this review, we discuss the known protease functions and protease-regulated signaling processes associated with virulence of plant pathogenic bacteria.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Patrycja Ambroziak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | | |
Collapse
|
32
|
Royet K, Parisot N, Rodrigue A, Gueguen E, Condemine G. Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants. MOLECULAR PLANT PATHOLOGY 2019; 20:287-306. [PMID: 30267562 PMCID: PMC6637903 DOI: 10.1111/mpp.12754] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The identification of the virulence factors of plant-pathogenic bacteria has relied on the testing of individual mutants on plants, a time-consuming process. Transposon sequencing (Tn-seq) is a very powerful method for the identification of the genes required for bacterial growth in their host. We used this method in a soft-rot pathogenic bacterium to identify the genes required for the multiplication of Dickeya dadantii in chicory. About 100 genes were identified showing decreased or increased fitness in the plant. Most had no previously attributed role in plant-bacterium interactions. Following our screening, in planta competition assays confirmed that the uridine monophosphate biosynthesis pathway and the purine biosynthesis pathway were essential to the survival of D. dadantii in the plant, as the mutants ∆carA, ∆purF, ∆purL, ∆guaB and ∆pyrE were unable to survive in the plant in contrast with the wild-type (WT) bacterium. This study also demonstrated that the biosynthetic pathways of leucine, cysteine and lysine were essential for bacterial survival in the plant and that RsmC and GcpA were important in the regulation of the infection process, as the mutants ∆rsmC and ∆gcpA were hypervirulent. Finally, our study showed that D. dadantii flagellin was glycosylated and that this modification conferred fitness to the bacterium during plant infection. Assay by this method of the large collections of environmental pathogenic strains now available will allow an easy and rapid identification of new virulence factors.
Collapse
Affiliation(s)
- Kévin Royet
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Nicolas Parisot
- University of LyonINSA‐Lyon, INRA, BF2I, UMR0203F‐69621VilleurbanneFrance
| | - Agnès Rodrigue
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Erwan Gueguen
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Guy Condemine
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| |
Collapse
|
33
|
Liu M, Wu F, Wang S, Lu Y, Chen X, Wang Y, Gu A, Zhao J, Shen S. Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. HORTICULTURE RESEARCH 2019; 6:68. [PMID: 31231526 PMCID: PMC6544662 DOI: 10.1038/s41438-019-0149-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 05/20/2023]
Abstract
Pectobacterium carotovorum ssp. carotovorum (Pcc) is a necrotrophic bacterial species that causes soft rot disease in Chinese cabbage. In this study, plants harboring the resistant mutant sr gene, which confers resistance against Pcc, were screened from an 800 M2 population mutated by ethyl methane sulfonate (EMS) and scored in vitro and in vivo for lesion size. The transcript profiles showed ~512 differentially expressed genes (DEGs) between sr and WT plants occurring between 6 and 12 h postinoculation (hpi), which corresponded to the important defense regulation period (resistance) to Pcc in Chinese cabbage. The downstream defense genes (CPK, CML, RBOH MPK3, and MPK4) of pathogen pattern-triggered immunity (PTI) were strongly activated during infection at 12 hpi in resistant mutant sr; PTI appears to be central to plant defense against Pcc via recognition by three putative pattern recognition receptors (PRRs; BrLYM1-BrCERK1, BrBKK1/SERK4-PEPR1, BrWAKs). Pcc triggered the upregulation of the jasmonic acid (JA) and ethylene (ET) biosynthesis genes in mutant sr, but auxins and other hormones may have affected some negative signals. Endogenous hormones (auxins, JAs, and SA), as well as exogenous auxins (MEJA and BTH), were also verified as functioning in the immune system. Concurrently, the expression of glucosinolate and lignin biosynthesis genes was increased at 12 hpi in resistant mutant sr, and the accumulation of glucosinolate and lignin also indicated that these genes have a functional defensive role against Pcc. Our study provides valuable information and elucidates the resistance mechanism of Chinese cabbage against Pcc infection.
Collapse
Affiliation(s)
- Mengyang Liu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Fang Wu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Shan Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Xueping Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Yanhua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Aixia Gu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Shuxing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| |
Collapse
|
34
|
See-Too WS, Convey P, Pearce DA, Chan KG. Characterization of a novel N-acylhomoserine lactonase, AidP, from Antarctic Planococcus sp. Microb Cell Fact 2018; 17:179. [PMID: 30445965 PMCID: PMC6240239 DOI: 10.1186/s12934-018-1024-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-acylhomoserine lactones (AHLs) are well-studied signalling molecules produced by some Gram-negative Proteobacteria for bacterial cell-to-cell communication or quorum sensing. We have previously demonstrated the degradation of AHLs by an Antarctic bacterium, Planococcus versutus L10.15T, at low temperature through the production of an AHL lactonase. In this study, we cloned the AHL lactonase gene and characterized the purified novel enzyme. RESULTS Rapid resolution liquid chromatography analysis indicated that purified AidP possesses high AHL-degrading activity on unsubstituted, and 3-oxo substituted homoserine lactones. Liquid chromatography-mass spectrometry analysis confirmed that AidP functions as an AHL lactonase that hydrolyzes the ester bond of the homoserine lactone ring of AHLs. Multiple sequence alignment analysis and phylogenetic analysis suggested that the aidP gene encodes a novel AHL lactonase enzyme. The amino acid composition analysis of aidP and the homologous genes suggested that it might be a cold-adapted enzyme, however, the optimum temperature is 28 °C, even though the thermal stability is low (reduced drastically above 32 °C). Branch-site analysis of several aidP genes of Planococcus sp. branch on the phylogenetic trees also showed evidence of episodic positive selection of the gene in cold environments. Furthermore, we demonstrated the effects of covalent and ionic bonding, showing that Zn2+ is important for activity of AidP in vivo. The pectinolytic inhibition assay confirmed that this enzyme attenuated the pathogenicity of the plant pathogen Pectobacterium carotovorum in Chinese cabbage. CONCLUSION We demonstrated that AidP is effective in attenuating the pathogenicity of P. carotovorum, a plant pathogen that causes soft-rot disease. This anti-quorum sensing agent is an enzyme with low thermal stability that degrades the bacterial signalling molecules (AHLs) that are produced by many pathogens. Since the enzyme is most active below human body temperature (below 28 °C), and lose its activity drastically above 32 °C, the results of a pectinolytic inhibition assay using Chinese cabbage indicated the potential of this anti-quorum sensing agent to be safely applied in the field trials.
Collapse
Affiliation(s)
- Wah Seng See-Too
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Peter Convey
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - David A Pearce
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Applied Sciences, University of Northumbria at Newcastle, Newcastle-upon-Tyne, NE1 8ST, UK
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
35
|
Biological control of the soft rot bacterium Pectobacterium carotovorum by Bacillus amyloliquefaciens strain Ar10 producing glycolipid-like compounds. Microbiol Res 2018; 217:23-33. [PMID: 30384906 DOI: 10.1016/j.micres.2018.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 11/21/2022]
Abstract
Four hundred and fifty bacteria were evaluated for antagonistic activity against bacterial soft rot of potato caused by Pectobacterium carotovorum sp strain II16. A strain Ar10 exhibiting potent antagonist activity has been identified as Bacillus amyloliquefaciens on the basis of biochemical and molecular characterization. Cell free supernatant showed a broad spectrum of antibacterial activity against human and phytopathogenic bacteria in the range of 10-60 AU/mL. Incubation of P. carotovorum cells with increasing concentrations of the antibacterial compound showed a killing rate of 94.8 and 96% at MIC and 2xMIC respectively. In addition, the antibacterial agent did not exert haemolytic activity at the active concentration and has been preliminary characterized by TLC and GC-MS as a glycolipid compound. Treatment of potato tubers with strain Ar10 for 72 h significantly reduced the severity of disease symptoms (100 and 85.05% reduction of necrosis deep / area and weight loss respectively). The same levels in disease symptoms severity was also recorded following treatment of potato tubers with cell free supernatant for 1 h. Data suggest that protection against potato soft rot disease may be related to glycolipid production by strain Ar10. The present study affords new alternatives for anti-Pectobacterium carotovorum bioactive compounds against the soft rot disease of potato.
Collapse
|
36
|
Tamborindeguy C, Huot OB, Ibanez F, Levy J. The influence of bacteria on multitrophic interactions among plants, psyllids, and pathogen. INSECT SCIENCE 2017; 24:961-974. [PMID: 28493539 DOI: 10.1111/1744-7917.12474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 05/10/2023]
Abstract
The recent emergence of several plant diseases caused by psyllid-borne bacterial pathogens worldwide (Candidatus Liberibacter spp.) has created renewed interest on the interaction between psyllids and bacteria. In spite of these efforts to understand psyllid association with bacteria, many aspects of their interactions remain poorly understood. As more organisms are studied, subtleties on the molecular interactions as well as on the effects of the bacteria on the psyllid host are being uncovered. Additionally, psyllid-borne bacterial phytopathogens can also affect the host plant, which in turn can impact psyllid physiology and behavior. Here, we review the current literature on different aspects of the influence of bacteria on multitrophic interactions among plants, psyllids, and pathogens. We then highlight gaps that need to be addressed to advance this field, which can have significant implications for controlling these newly emergent and other plant diseases.
Collapse
Affiliation(s)
| | - Ordom Brian Huot
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
37
|
Nieckarz M, Raczkowska A, Jaworska K, Stefańska E, Skorek K, Stosio D, Brzostek K. The Role of OmpR in the Expression of Genes of the KdgR Regulon Involved in the Uptake and Depolymerization of Oligogalacturonides in Yersinia enterocolitica. Front Cell Infect Microbiol 2017; 7:366. [PMID: 28861396 PMCID: PMC5559549 DOI: 10.3389/fcimb.2017.00366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023] Open
Abstract
Oligogalacturonide (OGA)-specific porins of the KdgM family have previously been identified and characterized in enterobacterial plant pathogens. We found that deletion of the gene encoding response regulator OmpR causes the porin KdgM2 to become one of the most abundant proteins in the outer membrane of the human enteropathogen Yersinia enterocolitica. Reporter gene fusion and real-time PCR analysis confirmed that the expression of kdgM2 is repressed by OmpR. We also found that kdgM2 expression is subject to negative regulation by KdgR, a specific repressor of genes involved in the uptake and metabolism of pectin derivatives in plant pathogens. The additive effect of kdgR and ompR mutations suggested that KdgR and OmpR regulate kdgM2 expression independently. We confirmed that kdgM2 occurs in an operon with the pelP gene, encoding the periplasmic pectate lyase PelP. A pectinolytic assay showed strong upregulation of PelP production/activity in a Y. enterocolitica strain lacking OmpR and KdgR, which corroborates the repression exerted by these regulators on kdgM2. In addition, our data showed that OmpR is responsible for up regulation of the kdgM1 gene encoding the second specific oligogalacturonide porin KdgM1. This indicates the involvement of OmpR in the reciprocal regulation of both KdgM1 and KdgM2. Moreover, we demonstrated the negative impact of OmpR on kdgR transcription, which might positively affect the expression of genes of the KdgR regulon. Binding of OmpR to the promoter regions of the kdgM2-pelP-sghX operon, and kdgM1 and kdgR genes was confirmed using the electrophoretic mobility shift assay, suggesting that OmpR can directly regulate their transcription. We also found that the overexpression of porin KdgM2 increases outer membrane permeability. Thus, OmpR-mediated regulation of the KdgM porins may contribute to the fitness of Y. enterocolitica in particular local environments.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Karolina Jaworska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Ewa Stefańska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Karolina Skorek
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Dorota Stosio
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| |
Collapse
|
38
|
Haque MM, Oliver MMH, Nahar K, Alam MZ, Hirata H, Tsuyumu S. CytR Homolog of Pectobacterium carotovorum subsp. carotovorum Controls Air-Liquid Biofilm Formation by Regulating Multiple Genes Involved in Cellulose Production, c-di-GMP Signaling, Motility, and Type III Secretion System in Response to Nutritional and Environmental Signals. Front Microbiol 2017; 8:972. [PMID: 28620360 PMCID: PMC5449439 DOI: 10.3389/fmicb.2017.00972] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/15/2017] [Indexed: 01/22/2023] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum [Pcc (formerly Erwinia carotovora subsp. carotovora)] PC1 causes soft-rot disease in a wide variety of plant species by secreting multiple pathogenicity-related traits. In this study, regulatory mechanism of air-liquid (AL) biofilm formation was studied using a cytR homolog gene deletion mutant (ΔcytR) of Pcc PC1. Compared to the wild type (Pcc PC1), the ΔcytR mutant produced fragile and significantly (P < 0.001) lower amounts of AL biofilm on salt-optimized broth plus 2% glycerol (SOBG), yeast peptone dextrose adenine, and also on King’s B at 27°C after 72 h incubation in static condition. The wild type also produced significantly higher quantities of AL biofilm on SOBGMg– (magnesium deprived) containing Cupper (Cu2+), Zinc (Zn2+), Manganese (Mn2+), Magnesium (Mg2+), and Calcium (Ca2+) compared to the ΔcytR mutant. Moreover, the wild type was produced higher amounts of biofilms compared to the mutant while responding to pH and osmotic stresses. The ΔfliC (encoding flagellin), flhD::Tn5 (encoding a master regulator) and ΔmotA (a membrane protein essential for flagellar rotation) mutants produced a lighter and more fragile AL biofilm on SOBG compared to their wild counterpart. All these mutants resulted in having weak bonds with the cellulose specific dye (Calcofluor) producing lower quantities of cellulose compared to the wild type. Gene expression analysis using mRNA collected from the AL biofilms showed that ΔcytR mutant significantly (P < 0.001) reduced the expressions of multiple genes responsible for cellulose production (bcsA, bcsE, and adrA), motility (flhD, fliA, fliC, and motA) and type III secretion system (hrpX, hrpL, hrpA, and hrpN) compared to the wild type. The CytR homolog was therefore, argued to be able to regulate the AL biofilm formation by controlling cellulose production, motility and T3SS in Pcc PC1. In addition, all the mutants exhibited poorer attachment to radish sprouts and AL biofilm cells of the wild type was resistant than stationary-phase and planktonic cells to acidity and oxidative stress compared to the same cells of the ΔcytR mutant. The results of this study therefore suggest that CytR homolog is a major determinant of Pcc PC1’s virulence, attachment and its survival mechanism.
Collapse
Affiliation(s)
- M M Haque
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - M M H Oliver
- Department of Agricultural Engineering, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Kamrun Nahar
- Plant Breeding Division, Bangladesh Agricultural Research InstituteGazipur, Bangladesh
| | - Mohammad Z Alam
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Hisae Hirata
- Faculty of Agriculture, Shizuoka UniversityShizuoka, Japan
| | - Shinji Tsuyumu
- Faculty of Agriculture, Shizuoka UniversityShizuoka, Japan
| |
Collapse
|
39
|
Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing. Appl Environ Microbiol 2017; 83:AEM.03028-16. [PMID: 28039131 DOI: 10.1128/aem.03028-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022] Open
Abstract
Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli, are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism.IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes being one of the common culprits. Recent studies also suggest that these human pathogens can use plants as alternate hosts as a part of their life cycle. While dual (animal/plant) lifestyles of other members of the Enterobacteriaceae family are well known, the strategies with which Salmonella colonizes plants are only partially understood. Therefore, we undertook a high-throughput characterization of the functions required for Salmonella persistence within tomatoes. The results of this study were compared with what is known about genes required for Salmonella virulence in animals and interactions of plant pathogens with their hosts to determine whether Salmonella repurposes its virulence repertoire inside plants or whether it behaves more as a phytopathogen during plant colonization. Even though Salmonella utilized some of its virulence-related genes in tomatoes, plant colonization required a distinct set of functions.
Collapse
|
40
|
Djami-Tchatchou AT, Ntushelo K. Expression Profile of Stress-responsive Arabidopsis thaliana miRNAs and their Target Genes in Response to Inoculation with Pectobacterium carotovorum subsp. carotovorum. Pak J Biol Sci 2017; 20:147-153. [PMID: 29023006 DOI: 10.3923/pjbs.2017.147.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND Pectobacterium carotovorum subsp. carotovorum (Pcc) is a soft rot bacterium which upon entry into the plant macerates plant tissues by producing plant cell wall degrading enzymes. It has a wide host range which includes carrot, potato, tomato, leafy greens, squash and other cucurbits, onion, green peppers and cassava. During plant-microbe interactions, one of the ways of plant response to pathogen infection is through the small RNA silencing mechanism. Under pathogen attack the plant utilizes microRNAs to regulate gene expression by means of mediating gene silencing at transcriptional and post-transcriptional level. This study aims to assess for the first time, the expression profile of some stress-responsive miRNA and differential expression pattern of their target genes in Arabidopsis thaliana inoculated with Pcc. MATERIALS AND METHODS Leaves of five weeks old Arabidopsis thaliana plants were infected with Pcc and the quantitative real time-PCR, was used to investigate after 0, 24, 48 and 72 h post infection, the expression profiling of the stress-responsive miRNAs which include: miR156, miR159, miR169, miR393, miR396 miR398, miR399 and miR408 along with their target genes which include: Squamosa promoter-binding-like protein, myb domain protein 101, nuclear factor Y subunit A8, concanavalin A-like lectin protein kinase, growth regulating factor 4, copper superoxide dismutase, ubiquitin-protein ligase and plantacyanin respectively. RESULTS The findings showed that the overexpression of 6 miRNAs at 24, 48 and 72 h after infection resulted in the repression of their target genes and the expression of 2 miRNAs didn't affect their target genes. CONCLUSION These results provide the first indication of the miRNAs role in response to the infection of Pcc in A. thaliana and open new vistas for a better understanding of miRNA regulation of plant response to Pcc.
Collapse
Affiliation(s)
- A T Djami-Tchatchou
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, 1710 Florida, South Africa
| | - K Ntushelo
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, 1710 Florida, South Africa
| |
Collapse
|
41
|
Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper. Int J Syst Evol Microbiol 2016; 66:4065-4070. [DOI: 10.1099/ijsem.0.001311] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Yao J, Saenkham P, Levy J, Ibanez F, Noroy C, Mendoza A, Huot O, Meyer DF, Tamborindeguy C. Interactions "Candidatus Liberibacter solanacearum"-Bactericera cockerelli: Haplotype Effect on Vector Fitness and Gene Expression Analyses. Front Cell Infect Microbiol 2016; 6:62. [PMID: 27376032 PMCID: PMC4899927 DOI: 10.3389/fcimb.2016.00062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/25/2016] [Indexed: 01/18/2023] Open
Abstract
"Candidatus Liberibacter solanacearum" (Lso) has emerged as a serious threat world-wide. Five Lso haplotypes have been identified so far. Haplotypes A and B are present in the Americas and/or New Zealand, where they are vectored to solanaceous plants by the potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae). The fastidious nature of these pathogens has hindered the study of the interactions with their eukaryotic hosts (vector and plant). To understand the strategies used by these pathogens to infect their vector, the effects of each Lso haplotype (A or B) on psyllid fitness was investigated, and genome-wide transcriptomic and RT-qPCR analyses were performed to evaluate Lso gene expression in association with its vector. Results showed that psyllids infected with haplotype B had significantly lower percentage of nymphal survival compared to psyllids infected with haplotype A. Although overall gene expression across Lso genome was similar between the two Lso haplotypes, differences in the expression of key candidate genes were found. Among the 16 putative type IV effector genes tested, four of them were differentially expressed between Lso haplotypes, while no differences in gene expression were measured by qPCR or transcriptomic analysis for the rest of the genes. This study provides new information regarding the pathogenesis of Lso haplotypes in their insect vector.
Collapse
Affiliation(s)
- Jianxiu Yao
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Panatda Saenkham
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M UniversityCollege Station, TX, USA
| | - Freddy Ibanez
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Christophe Noroy
- CIRAD, UMR CMAEEPetit-Bourg, Guadeloupe, France
- Institut National de la Recherche Agronomique, UMR1309 CMAEEMontpellier, France
- Université des Antilles, Pointe-à-PitreGuadeloupe, France
| | - Azucena Mendoza
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Ordom Huot
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Damien F. Meyer
- CIRAD, UMR CMAEEPetit-Bourg, Guadeloupe, France
- Institut National de la Recherche Agronomique, UMR1309 CMAEEMontpellier, France
| | | |
Collapse
|
43
|
Olher VGA, Ferreira NP, Souza AG, Chiavelli LUR, Teixeira AF, Santos WD, Santin SMO, Ferrarese Filho O, Silva CC, Pomini AM. Acyl-homoserine Lactone from Saccharum × officinarum with Stereochemistry-Dependent Growth Regulatory Activity. JOURNAL OF NATURAL PRODUCTS 2016; 79:1316-1321. [PMID: 27192014 DOI: 10.1021/acs.jnatprod.5b01075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acyl-homoserine lactones (AHLs) are a class of compounds produced by Gram-negative bacteria that are used in a process of chemical communication called quorum sensing. Much is known about how bacteria use these chemical compounds to control the expression of important factors; however, there have been few reports about the presence and effects of AHLs in plants. In this study, the phytochemical study of leaves and culms of sugar cane (Saccharum × officinarum) led to the identification of N-(3-oxo-octanoyl)homoserine lactone. Since the absolute configuration of the natural product could not be determined, both R and S enantiomers of N-(3-oxo-octanoyl)homoserine lactone were synthesized and tested in sugar cane culms. The enantiomers caused changes in the mass and length of buds and roots when used at micromolar concentrations. Using the sugar cane RB96-6928 variety, the S enantiomer increased sprouting of roots more effectively than the R enantiomer. Furthermore, scanning electron microscopy showed that both the R and S enantiomers led to more stretched root cells compared with the control.
Collapse
Affiliation(s)
- Vanessa G A Olher
- Instituto Federal do Paraná, Campus Paranavaí , Rua José Felipe Tequinha 1400, 87703-536, Paranavaí-PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Joshi JR, Burdman S, Lipsky A, Yariv S, Yedidia I. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation. MOLECULAR PLANT PATHOLOGY 2016; 17:487-500. [PMID: 26177258 PMCID: PMC6638513 DOI: 10.1111/mpp.12295] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several studies have reported effects of the plant phenolic acids cinnamic acid (CA) and salicylic acid (SA) on the virulence of soft rot enterobacteria. However, the mechanisms involved in these processes are not yet fully understood. Here, we investigated whether CA and SA interfere with the quorum sensing (QS) system of two Pectobacterium species, P. aroidearum and P. carotovorum ssp. brasiliense, which are known to produce N-acyl-homoserine lactone (AHL) QS signals. Our results clearly indicate that both phenolic compounds affect the QS machinery of the two species, consequently altering the expression of bacterial virulence factors. Although, in control treatments, the expression of QS-related genes increased over time, the exposure of bacteria to non-lethal concentrations of CA or SA inhibited the expression of QS genes, including expI, expR, PC1_1442 (luxR transcriptional regulator) and luxS (a component of the AI-2 system). Other virulence genes known to be regulated by the QS system, such as pecS, pel, peh and yheO, were also down-regulated relative to the control. In agreement with the low levels of expression of expI and expR, CA and SA also reduced the level of the AHL signal. The effects of CA and SA on AHL signalling were confirmed in compensation assays, in which exogenous application of N-(β-ketocaproyl)-l-homoserine lactone (eAHL) led to the recovery of the reduction in virulence caused by the two phenolic acids. Collectively, the results of gene expression studies, bioluminescence assays, virulence assays and compensation assays with eAHL clearly support a mechanism by which CA and SA interfere with Pectobacterium virulence via the QS machinery.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Alexander Lipsky
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Shaked Yariv
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| |
Collapse
|
45
|
SaxA-Mediated Isothiocyanate Metabolism in Phytopathogenic Pectobacteria. Appl Environ Microbiol 2016; 82:2372-2379. [PMID: 26873319 DOI: 10.1128/aem.04054-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/03/2016] [Indexed: 01/07/2023] Open
Abstract
Pectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae. To infect cabbage crops, these plant pathogens need to overcome the plant's antibacterial defense mechanisms, where isothiocyanates are liberated by hydrolysis of glucosinolates. Here, we found that a Pectobacterium isolate from the gut of cabbage root fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundant Brassica root metabolite 2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. The Pectobacterium isolate harbored a naturally occurring mobile plasmid that contained a sax operon. We hypothesized that SaxA was the enzyme responsible for the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It belongs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam antibiotics. We discovered that several copies of the saxA gene are widespread in full and draft Pectobacterium genomes and therefore hypothesize that SaxA might be a new pathogenicity factor of the genus Pectobacterium, possibly compromising food preservation strategies using isothiocyanates.
Collapse
|
46
|
Abstract
Chemical signaling between cells is an effective way to coordinate behavior within a community. Although cell-to-cell signaling has mostly been studied in single species, it is now appreciated that the sensing of chemical signals across kingdoms can be an important regulator of nutrient acquisition, virulence, and host defense. In this review, we focus on the role of interkingdom signaling in the interactions that occur between bacterial pathogens and their mammalian hosts. We discuss the quorum-sensing (QS) systems and other mechanisms used by these bacteria to sense, respond to, and modulate host signals that include hormones, immune factors, and nutrients. We also describe cross talk between these signaling pathways and strategies used by the host to interfere with bacterial signaling, highlighting the complex bidirectional signaling networks that are established across kingdoms.
Collapse
|
47
|
Weigel WA, Demuth DR. QseBC, a two-component bacterial adrenergic receptor and global regulator of virulence in Enterobacteriaceae and Pasteurellaceae. Mol Oral Microbiol 2015; 31:379-97. [PMID: 26426681 PMCID: PMC5053249 DOI: 10.1111/omi.12138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/11/2022]
Abstract
The QseBC two-component system (TCS) is associated with quorum sensing and functions as a global regulator of virulence. Based on sequence similarity within the sensor domain and conservation of an acidic motif essential for signal recognition, QseBC is primarily distributed in the Enterobacteriaceae and Pasteurellaceae. In Escherichia coli, QseC responds to autoinducer-3 and/or epinephrine/norepinephrine. Binding of epinephrine/norepinephrine is inhibited by adrenergic antagonists; hence QseC functions as a bacterial adrenergic receptor. Aggregatibacter actinomycetemcomitans QseC is activated by a combination of epinephrine/norepinephrine and iron, whereas only iron activates the Haemophilus influenzae sensor. QseC phosphorylates QseB but there is growing evidence that QseB is activated by non-cognate sensors and regulated by dephosphorylation via QseC. Interestingly, the QseBC signaling cascades and regulons differ significantly. In enterohemorrhagic E. coli, QseC induces expression of a second adrenergic TCS and phosphorylates two non-cognate response regulators, each of which induces specific sets of virulence genes. This signaling pathway integrates with other regulatory mechanisms mediated by transcriptional regulators QseA and QseD and a fucose-sensing TCS and likely controls the level and timing of virulence gene expression. In contrast, A. actinomycetemcomitans QseC signals through QseB to regulate genes involved in anaerobic metabolism and energy production, which may prime cellular metabolism for growth in an anaerobic host niche. QseC represents a novel target for therapeutic intervention and small molecule inhibitors already show promise as broad-spectrum antimicrobials. Further characterization of QseBC signaling may identify additional differences in QseBC function and inform further development of new therapeutics to control microbial infections.
Collapse
Affiliation(s)
- W A Weigel
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - D R Demuth
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA
| |
Collapse
|
48
|
Joshi JR, Burdman S, Lipsky A, Yedidia I. Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium. Res Microbiol 2015; 166:535-45. [PMID: 25981538 DOI: 10.1016/j.resmic.2015.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/15/2023]
Abstract
Pectobacterium spp. are among the most devastating necrotrophs, attacking more than 50% of angiosperm plant orders. Their virulence strategy is based mainly on the secretion of exoenzymes that degrade the cell walls of their hosts, providing nutrients to the bacteria, but conversely, exposing the bacteria to plant defense compounds. In the present study, we screened plant-derived antimicrobial compounds, mainly phenolic acids and polyphenols, for their ability to affect virulence determinants including motility, biofilm formation and extracellular enzyme activities of different Pectobacteria: Pectobacterium carotovorum, P. brasiliensis, P. atrosepticum and P. aroidearum. In addition, virulence assays were performed on three different plant hosts following exposure of the bacteria to selected phenolic compounds. These experiments showed that cinnamic, coumaric, syringic and salicylic acids and catechol can considerably reduce disease severity, ranging from 20 to 100%. The reduced disease severity was not only the result of reduced bacterial growth, but also of a direct effect of the compounds on important bacterial virulence determinants, including pectolytic and proteolytic exoenzyme activities, that were reduced by 50-100%. This is the first report revealing a direct effect of phenolic compounds on virulence factors in a wide range of Pectobacterium strains.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| | - Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Alexander Lipsky
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
49
|
Lim JA, Lee DH, Heu S. Isolation and Genomic Characterization of the T4-Like Bacteriophage PM2 Infecting Pectobacterium carotovorum subsp. carotovorum. THE PLANT PATHOLOGY JOURNAL 2015; 31:83-89. [PMID: 25774115 PMCID: PMC4356610 DOI: 10.5423/ppj.nt.09.2014.0099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
In order to control Pectobacterium carotovorum subsp. carotovorum, a novel virulent bacteriophage PM2 was isolated. Bacteriophage PM2 can infect 48% of P. carotovorum subsp. carotovorum and 78% of P. carotovorum subsp. brasilliensis but none of atrosepticum, betavasculorum, odoriferum and wasabiae isolates had been infected with PM2. PM2 phage belongs to the family Myoviridae, and contains a large head and contractile tail. It has a 170,286 base pair genome that encodes 291 open reading frames (ORFs) and 12 tRNAs. Most ORFs in bacteriophage PM2 share a high level of homology with T4-like phages including IME08, RB69, and JS98. Phylogenetic analysis based on the amino acid sequence of terminase large subunits confirmed that PM2 is classified as a T4-like phage. It contains no integrase- or no repressor-coding genes related to the lysogenic cycle, and lifestyle prediction using PHACT software suggested that PM2 is a virulent bacteriophage.
Collapse
Affiliation(s)
| | | | - Sunggi Heu
- Corresponding author. Phone) +82-63-238-3403, FAX) +82-63-238-3840, E-mail)
| |
Collapse
|
50
|
Lee DH, Kim JB, Lim JA, Han SW, Heu S. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea. THE PLANT PATHOLOGY JOURNAL 2014; 30:117-24. [PMID: 25288994 PMCID: PMC4174852 DOI: 10.5423/ppj.oa.12.2013.0117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 05/20/2023]
Abstract
The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed.
Collapse
Affiliation(s)
- Dong Hwan Lee
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Jin-Beom Kim
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Jeong-A Lim
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong 456-756, Korea
| | - Sunggi Heu
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
- Corresponding author. Phone) +82-31-290-0455, FAX) +82-31-290-0407, E-mail)
| |
Collapse
|