1
|
Middendorf PS, Zomer AL, Bergval IL, Jacobs-Reitsma WF, den Besten HMW, Abee T. Host associations of Campylobacter jejuni and Campylobacter coli isolates carrying the L-fucose or d-glucose utilization cluster. Int J Food Microbiol 2024; 425:110855. [PMID: 39191191 DOI: 10.1016/j.ijfoodmicro.2024.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
Campylobacter was considered asaccharolytic, but is now known to carry saccharide metabolization pathways for L-fucose and d-glucose. We hypothesized that these clusters are beneficial for Campylobacter niche adaptation and may help establish human infection. We investigated the distribution of d-glucose and L-fucose clusters among ∼9600 C. jejuni and C. coli genomes of different isolation sources in the Netherlands, the United Kingdom, the United States of America and Finland. The L-fucose utilization cluster was integrated at the same location in all C. jejuni and C. coli genomes, and was flanked by the genes rpoB, rpoC, rspL, repsG and fusA, which are associated with functions in transcription as well as translation and in acquired drug resistance. In contrast, the flanking regions of the d-glucose utilization cluster were variable among the isolates, and integration sites were located within one of the three different 16S23S ribosomal RNA areas of the C. jejuni and C. coli genomes. In addition, we investigated whether acquisition of the L-fucose utilization cluster could be due to horizontal gene transfer between the two species and found three isolates for which this was the case: one C. jejuni isolate carrying a C. coli L-fucose cluster, and two C. coli isolates which carried a C. jejuni L-fucose cluster. Furthermore, L-fucose utilization cluster alignments revealed multiple frameshift mutations, most of which were commonly found in the non-essential genes for L-fucose metabolism, namely, Cj0484 and Cj0489. These findings support our hypothesis that the L-fucose cluster was integrated multiple times across the C. coli/C. jejuni phylogeny. Notably, association analysis using the C. jejuni isolates from the Netherlands showed a significant correlation between human C. jejuni isolates and C. jejuni isolates carrying the L-fucose utilization cluster. This correlation was even stronger when the Dutch isolates were combined with the isolates from the UK, the USA and Finland. No such correlations were observed for C. coli or for the d-glucose cluster for both species. This research provides insight into the spread and host associations of the L-fucose and d-glucose utilization clusters in C. jejuni and C. coli, and the potential benefits in human infection and/or proliferation in humans, conceivably after transmission from any reservoir.
Collapse
Affiliation(s)
- Pjotr S Middendorf
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands; National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Aldert L Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands; WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Indra L Bergval
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands.
| |
Collapse
|
2
|
Delaporte E, Karki AB, Fakhr MK. Aerotolerancy of Campylobacter spp.: A Comprehensive Review. Pathogens 2024; 13:842. [PMID: 39452714 PMCID: PMC11510350 DOI: 10.3390/pathogens13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Campylobacter spp. constitute a group of microaerophilic bacteria that includes strains that are aerotolerant and capable of surviving in aerobic conditions. Recent studies have shown that aerotolerant strains are highly prevalent in meats, animals, and clinical settings. Changes in growth media and other environmental conditions can affect the aerotolerance of Campylobacter strains and must be considered when studying their aerotolerance in vitro. Polymicrobial interactions and biofilms also play a significant role in the ability of Campylobacter to survive oxygen exposure. Continuous subculturing may foster aerotolerance, and studies have demonstrated a positive correlation between aerotolerance and virulence and between aerotolerance and the ability to survive stressful environmental conditions. Various mechanisms and genetic origins for aerotolerance have been proposed; however, most of the potential genes involved in aerotolerance require further investigation, and many candidate genes remain unidentified. Research is also needed to investigate if there are any clinical implications for Campylobacter aerotolerance. Understanding the aerotolerance of Campylobacter remains an important target for further research, and it will be an important step towards identifying potential targets for intervention against this clinically important food-borne pathogen.
Collapse
Affiliation(s)
- Elise Delaporte
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
| | - Anand B. Karki
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
| |
Collapse
|
3
|
Cao X, van Putten JP, Wösten MM. Campylobacter jejuni benefits from the bile salt deoxycholate under low-oxygen condition in a PldA dependent manner. Gut Microbes 2023; 15:2262592. [PMID: 37768138 PMCID: PMC10540661 DOI: 10.1080/19490976.2023.2262592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Enteric bacteria need to adapt to endure the antibacterial activities of bile salts in the gut. Phospholipase A (PldA) is a key enzyme in the maintenance of bacterial membrane homeostasis. Bacteria respond to stress by modulating their membrane composition. Campylobacter jejuni is the most common cause of human worldwide. However, the mechanism by which C. jejuni adapts and survives in the gut environment is not fully understood. In this study, we investigated the roles of PldA, bile salt sodium deoxycholate (DOC), and oxygen availability in C. jejuni biology, mimicking an in vivo situation. Growth curves were used to determine the adaptation of C. jejuni to bile salts. RNA-seq and functional assays were employed to investigate the PldA-dependent and DOC-induced changes in gene expression that influence bacterial physiology. Survival studies were performed to address oxidative stress defense in C. jejuni. Here, we discovered that PldA of C. jejuni is required for optimal growth in the presence of bile salt DOC. Under high oxygen conditions, DOC is toxic to C. jejuni, but under low oxygen conditions, as is present in the lumen of the gut, C. jejuni benefits from DOC. C. jejuni PldA seems to enable the use of iron needed for optimal growth in the presence of DOC but makes the bacterium more vulnerable to oxidative stress. In conclusion, DOC stimulates C. jejuni growth under low oxygen conditions and alters colony morphology in a PldA-dependent manner. C. jejuni benefits from DOC by upregulating iron metabolism in a PldA-dependent manner.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P.M. van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M.S.M. Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Insights into the Orchestration of Gene Transcription Regulators in Helicobacter pylori. Int J Mol Sci 2022; 23:ijms232213688. [PMID: 36430169 PMCID: PMC9696931 DOI: 10.3390/ijms232213688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Bacterial pathogens employ a general strategy to overcome host defenses by coordinating the virulence gene expression using dedicated regulatory systems that could raise intricate networks. During the last twenty years, many studies of Helicobacter pylori, a human pathogen responsible for various stomach diseases, have mainly focused on elucidating the mechanisms and functions of virulence factors. In parallel, numerous studies have focused on the molecular mechanisms that regulate gene transcription to attempt to understand the physiological changes of the bacterium during infection and adaptation to the environmental conditions it encounters. The number of regulatory proteins deduced from the genome sequence analyses responsible for the correct orchestration of gene transcription appears limited to 14 regulators and three sigma factors. Furthermore, evidence is accumulating for new and complex circuits regulating gene transcription and H. pylori virulence. Here, we focus on the molecular mechanisms used by H. pylori to control gene transcription as a function of the principal environmental changes.
Collapse
|
5
|
Exploiting Violet-Blue Light to Kill Campylobacter jejuni: Analysis of Global Responses, Modeling of Transcription Factor Activities, and Identification of Protein Targets. mSystems 2022; 7:e0045422. [PMID: 35924857 PMCID: PMC9426514 DOI: 10.1128/msystems.00454-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Campylobacter jejuni is a microaerophilic foodborne zoonotic pathogen of worldwide concern as the leading cause of bacterial gastroenteritis. Many strains are increasingly antibiotic resistant and new methods of control are required to reduce food-chain contamination. One possibility is photodynamic inactivation (PDI) using violet-blue (VB) light, to which C. jejuni is highly susceptible. Here, we show that flavin and protoporphyrin IX are major endogenous photosensitizers and that exposure of cells to VB light increases intracellular reactive oxygen species (ROS) to high levels, as indicated by a dichlorodihydrofluorescein reporter. Unusually for an oxygen-respiring bacterium, C. jejuni employs several ROS-sensitive iron-sulfur cluster enzymes in central metabolic pathways; we show that VB light causes rapid inactivation of both pyruvate and 2-oxoglutarate oxidoreductases, thus interrupting the citric acid cycle. Cells exposed to VB light also lose heme from c-type cytochromes, restricting electron transport, likely due to irreversible oxidation of heme-ligating cysteine residues. Evaluation of global gene expression changes by RNAseq and probabilistic modeling showed a two-stage protein damage/oxidative stress response to VB light, driven by specific regulators, including HspR, PerR, Fur, and RacR. Deletion mutant analysis showed that superoxide dismutase and the cytochrome CccA were particularly important for VB light survival and that abolishing repression of chaperones and oxidative stress resistance genes by HcrA, HspR, or PerR increased tolerance to VB light. Our results explain the high innate sensitivity of C. jejuni to VB light and provide new insights that may be helpful in exploiting PDI for novel food-chain interventions to control this pathogen. IMPORTANCE Campylobacteriosis caused by C. jejuni is one of the most widespread zoonotic enteric diseases worldwide and represents an enormous human health and economic burden, compounded by the emergence of antibiotic-resistant strains. New interventions are urgently needed to reduce food-chain contamination. Although UV light is well known to be bactericidal, it is highly mutagenic and problematic for continuous exposure in food production facilities; in contrast, narrow spectrum violet-blue (VB) light is much safer. We confirmed that C. jejuni is highly susceptible to VB light and then identified some of the global regulatory networks involved in responding to photo-oxidative damage. The identification of damaged cellular components underpins efforts to develop commercial applications of VB light-based technologies.
Collapse
|
6
|
Versace G, Palombo M, Menon A, Scarlato V, Roncarati D. Feeling the Heat: The Campylobacter jejuni HrcA Transcriptional Repressor Is an Intrinsic Protein Thermosensor. Biomolecules 2021; 11:biom11101413. [PMID: 34680046 PMCID: PMC8533110 DOI: 10.3390/biom11101413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
The heat-shock response, a universal protective mechanism consisting of a transcriptional reprogramming of the cellular transcriptome, results in the accumulation of proteins which counteract the deleterious effects of heat-stress on cellular polypeptides. To quickly respond to thermal stress and trigger the heat-shock response, bacteria rely on different mechanisms to detect temperature variations, which can involve nearly all classes of biological molecules. In Campylobacter jejuni the response to heat-shock is transcriptionally controlled by a regulatory circuit involving two repressors, HspR and HrcA. In the present work we show that the heat-shock repressor HrcA acts as an intrinsic protein thermometer. We report that a temperature upshift up to 42 °C negatively affects HrcA DNA-binding activity to a target promoter, a condition required for de-repression of regulated genes. Furthermore, we show that this impairment of HrcA binding at 42 °C is irreversible in vitro, as DNA-binding was still not restored by reversing the incubation temperature to 37 °C. On the other hand, we demonstrate that the DNA-binding activity of HspR, which controls, in combination with HrcA, the transcription of chaperones' genes, is unaffected by heat-stress up to 45 °C, portraying this master repressor as a rather stable protein. Additionally, we show that HrcA binding activity is enhanced by the chaperonin GroE, upon direct protein-protein interaction. In conclusion, the results presented in this work establish HrcA as a novel example of intrinsic heat-sensing transcriptional regulator, whose DNA-binding activity is positively modulated by the GroE chaperonin.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Scarlato
- Correspondence: (V.S.); (D.R.); Tel.: +39-051-209-4204 (V.S.); +39-051-209-9320 (D.R.)
| | - Davide Roncarati
- Correspondence: (V.S.); (D.R.); Tel.: +39-051-209-4204 (V.S.); +39-051-209-9320 (D.R.)
| |
Collapse
|
7
|
Duqué B, Rezé S, Rossero A, Membré JM, Guillou S, Haddad N. Quantification of Campylobacter jejuni gene expression after successive stresses mimicking poultry slaughtering steps. Food Microbiol 2021; 98:103795. [PMID: 33875223 DOI: 10.1016/j.fm.2021.103795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Broiler meat is considered as the most important source of the foodborne pathogen Campylobacter jejuni. Exposure to stress conditions encountered during the slaughtering process may induce bacterial adaptation mechanisms, and enhance or decrease pathogen resistance to subsequent stress. This adaptation may result from changes in bacterial gene expression. This study aims to accurately quantify the expression of selected C. jejuni genes after stresses inspired from the poultry slaughtering process. RT-qPCR was used to quantify gene expression of 44 genes in three strains after successive heat and cold stresses. Main results indicated that 26 genes out of 44 were differentially expressed following the successive thermal stresses. Three clusters of genes were differentially expressed according to the strain and the stress condition. Up-regulated genes mainly included genes involved in the heat shock response, whereas down-regulated genes belonged to metabolic pathways (such as lipid, amino-acid metabolisms). However, four genes were similarly overexpressed in the three strains; they might represent indicators of the thermal stress response at the species scale. Advances in the molecular understanding of the stress response of pathogenic bacteria, such as Campylobacter, in real-life processing conditions will make it possible to identify technological levers and better mitigate the microbial risk.
Collapse
Affiliation(s)
- Benjamin Duqué
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Sandrine Rezé
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Albert Rossero
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | | | - Sandrine Guillou
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Nabila Haddad
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| |
Collapse
|
8
|
Cooperative Regulation of Campylobacter jejuni Heat-Shock Genes by HspR and HrcA. Microorganisms 2020; 8:microorganisms8081161. [PMID: 32751623 PMCID: PMC7464140 DOI: 10.3390/microorganisms8081161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023] Open
Abstract
The heat-shock response is defined by the transient gene-expression program that leads to the rapid accumulation of heat-shock proteins. This evolutionary conserved response aims at the preservation of the intracellular environment and represents a crucial pathway during the establishment of host–pathogen interaction. In the food-borne pathogen Campylobacter jejuni two transcriptional repressors, named HspR and HrcA, are involved in the regulation of the major heat-shock genes. However, the molecular mechanism underpinning HspR and HrcA regulatory function has not been defined yet. In the present work, we assayed and mapped the HspR and HrcA interactions on heat-shock promoters by high-resolution DNase I footprintings, defining their regulatory circuit, which governs C. jejuni heat-shock response. We found that, while DNA-binding of HrcA covers a compact region enclosing a single inverted repeat similar to the so-called Controlling Inverted Repeat of Chaperone Expression (CIRCE) sequence, HspR interacts with multiple high- and low-affinity binding sites, which contain HspR Associated Inverted Repeat (HAIR)-like sequences. We also explored the DNA-binding properties of the two repressors competitively on their common targets and observed, for the first time, that HrcA and HspR can directly interact and their binding on co-regulated promoters occurs in a cooperative manner. This mutual cooperative mechanism of DNA binding could explain the synergic repressive effect of HspR and HrcA observed in vivo on co-regulated promoters. Peculiarities of the molecular mechanisms exerted by HspR and HrcA in C. jejuni are compared to the closely related bacterium H. pylori that uses homologues of the two regulators.
Collapse
|
9
|
Mechanism of HrcA function in heat shock regulation in Mycobacterium tuberculosis. Biochimie 2019; 168:285-296. [PMID: 31765672 DOI: 10.1016/j.biochi.2019.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 01/16/2023]
Abstract
Molecular chaperones are a conserved family of proteins that are over-expressed in response to heat and other stresses. The regulation of expression of chaperone proteins plays a vital role in pathogenesis of various bacterial pathogens. In M. tuberculosis, HrcA and HspR negatively regulate heat shock protein operons by binding to their cognate DNA elements, CIRCE and HAIR respectively. In this study, we show that M. tuberculosis HrcA is able to bind to its cognate CIRCE DNA element present in the upstream regions of groES and groEL2 operons only with the help of other protein(s). It is also demonstrated that M. tuberculosis HrcA binds to a CIRCE like DNA element present in the upstream region of hrcA gene suggesting its auto-regulatory nature. In addition, we report the presence of a putative HAIR element in the upstream region of groES operon and demonstrate the binding of HspR to it. In vitro, HrcA inhibited the DNA binding activity of HspR in a dose-dependent manner. The current study demonstrates that M. tuberculosis HrcA requires other protein(s) to function, and the heat shock protein expression in M. tuberculosis is negatively regulated jointly by HrcA and HspR.
Collapse
|
10
|
Helicobacter pylori Stress-Response: Definition of the HrcA Regulon. Microorganisms 2019; 7:microorganisms7100436. [PMID: 31614448 PMCID: PMC6843607 DOI: 10.3390/microorganisms7100436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria respond to different environmental stresses by reprogramming the transcription of specific genes whose proper expression is critical for their survival. In this regard, the heat-shock response, a widespread protective mechanism, triggers a sudden increase in the cellular concentration of different proteins, including molecular chaperones and proteases, to preserve protein folding and maintain cellular homeostasis. In the medically important gastric pathogen Helicobacter pylori the regulation of the principal heat-shock genes is under the transcriptional control of two repressor proteins named HspR and HrcA. To define the HrcA regulon, we carried out whole transcriptome analysis through RNA-sequencing, comparing the transcriptome of the H. pylori G27 wild type strain to that of the isogenic hrcA-knockout strain. Overall, differential gene expression analysis outlined 49 genes to be deregulated upon hrcA gene inactivation. Interestingly, besides controlling the transcription of genes coding for molecular chaperones and stress-related mediators, HrcA is involved in regulating the expression of proteins whose function is linked to several cellular processes crucial for bacterial survival and virulence. These include cell motility, membrane transporters, Lipopolysaccharide modifiers and adhesins. The role of HrcA as a central regulator of H. pylori transcriptome, as well as its interconnections with the HspR regulon are here analyzed and discussed. As the HrcA protein acts as a pleiotropic regulator, influencing the expression of several stress-unrelated genes, it may be considered a promising target for the design of new antimicrobial strategies.
Collapse
|
11
|
Abouelhadid S, North SJ, Hitchen P, Vohra P, Chintoan-Uta C, Stevens M, Dell A, Cuccui J, Wren BW. Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric Bacterial Pathogen. mBio 2019; 10:e00297-19. [PMID: 31015322 PMCID: PMC6478998 DOI: 10.1128/mbio.00297-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/14/2019] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, glycosylation plays a role in proteome stability, protein quality control, and modulating protein function; however, similar studies in bacteria are lacking. Here, we investigate the roles of general protein glycosylation systems in bacteria using the enteropathogen Campylobacter jejuni as a well-defined example. By using a quantitative proteomic strategy, we were able to monitor changes in the C. jejuni proteome when glycosylation is disrupted. We demonstrate that in C. jejuni, N-glycosylation is essential to maintain proteome stability and protein quality control. These findings guided us to investigate the role of N-glycosylation in modulating bacterial cellular activities. In glycosylation-deficient C. jejuni, the multidrug efflux pump and electron transport pathways were significantly impaired. We demonstrate that in vivo, fully glycosylation-deficient C. jejuni bacteria were unable to colonize its natural avian host. These results provide the first evidence of a link between proteome stability and complex functions via a bacterial general glycosylation system.IMPORTANCE Advances in genomics and mass spectrometry have revealed several types of glycosylation systems in bacteria. However, why bacterial proteins are modified remains poorly defined. Here, we investigated the role of general N-linked glycosylation in a major food poisoning bacterium, Campylobacter jejuni The aim of this study is to delineate the direct and indirect effects caused by disrupting this posttranslational modification. To achieve this, we employed a quantitative proteomic strategy to monitor alterations in the C. jejuni proteome. Our quantitative proteomic results linked general protein N-glycosylation to maintaining proteome stability. Functional analyses revealed novel roles for bacterial N-glycosylation in modulating multidrug efflux pump, enhancing nitrate reduction activity, and promoting host-microbe interaction. This work provides insights on the importance of general glycosylation in proteins in maintaining bacterial physiology, thus expanding our knowledge of the emergence of posttranslational modification in bacteria.
Collapse
Affiliation(s)
- Sherif Abouelhadid
- Department of Pathogen Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Simon J North
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paul Hitchen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jon Cuccui
- Department of Pathogen Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan W Wren
- Department of Pathogen Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
12
|
Pepe S, Pinatel E, Fiore E, Puccio S, Peano C, Brignoli T, Vannini A, Danielli A, Scarlato V, Roncarati D. The Helicobacter pylori Heat-Shock Repressor HspR: Definition of Its Direct Regulon and Characterization of the Cooperative DNA-Binding Mechanism on Its Own Promoter. Front Microbiol 2018; 9:1887. [PMID: 30154784 PMCID: PMC6102357 DOI: 10.3389/fmicb.2018.01887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The ability of pathogens to perceive environmental conditions and modulate gene expression accordingly is a crucial feature for bacterial survival. In this respect, the heat-shock response, a universal cellular response, allows cells to adapt to hostile environmental conditions and to survive during stress. In the major human pathogen Helicobacter pylori the expression of chaperone-encoding operons is under control of two auto-regulated transcriptional repressors, HrcA and HspR, with the latter acting as the master regulator of the regulatory circuit. To further characterize the HspR regulon in H. pylori, we used global transcriptome analysis (RNA-sequencing) in combination with Chromatin Immunoprecipitation coupled with deep sequencing (ChIP-sequencing) of HspR genomic binding sites. Intriguingly, these analyses showed that HspR is involved in the regulation of different crucial cellular functions through a limited number of genomic binding sites. Moreover, we further characterized HspR-DNA interactions through hydroxyl-radical footprinting assays. This analysis in combination with a nucleotide sequence alignment of HspR binding sites, revealed a peculiar pattern of DNA protection and highlighted sequence conservation with the HAIR motif (an HspR-associated inverted repeat of Streptomyces spp.). Site-directed mutagenesis demonstrated that the HAIR motif is fundamental for HspR binding and that additional nucleotide determinants flanking the HAIR motif are required for complete binding of HspR to its operator sequence spanning over 70 bp of DNA. This finding is compatible with a model in which possibly a dimer of HspR recognizes the HAIR motif overlapping its promoter for binding and in turn cooperatively recruits two additional dimers on both sides of the HAIR motif.
Collapse
Affiliation(s)
- Simona Pepe
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Eva Pinatel
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Elisabetta Fiore
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Simone Puccio
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy.,Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
| | - Tarcisio Brignoli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Roncarati D, Scarlato V. The Interplay between Two Transcriptional Repressors and Chaperones Orchestrates Helicobacter pylori Heat-Shock Response. Int J Mol Sci 2018; 19:E1702. [PMID: 29880759 PMCID: PMC6032397 DOI: 10.3390/ijms19061702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022] Open
Abstract
The ability to gauge the surroundings and modulate gene expression accordingly is a crucial feature for the survival bacterial pathogens. In this respect, the heat-shock response, a universally conserved mechanism of protection, allows bacterial cells to adapt rapidly to hostile conditions and to survive during environmental stresses. The important and widespread human pathogen Helicobacter pylori enrolls a collection of highly conserved heat-shock proteins to preserve cellular proteins and to maintain their homeostasis, allowing the pathogen to adapt and survive in the hostile niche of the human stomach. Moreover, various evidences suggest that some chaperones of H. pylori may play also non-canonical roles as, for example, in the interaction with the extracellular environment. In H. pylori, two dedicated transcriptional repressors, named HspR and HrcA, homologues to well-characterized regulators found in many other bacterial species, orchestrate the regulation of heat-shock proteins expression. Following twenty years of intense research, characterized by molecular, as well as genome-wide, approaches, it is nowadays possible to appreciate the complex picture representing the heat-shock regulation in H. pylori. Specifically, the HspR and HrcA repressors combine to control the transcription of target genes in a way that the HrcA regulon results embedded within the HspR regulon. Moreover, an additional level of control of heat-shock genes' expression is exerted by a posttranscriptional feedback regulatory circuit in which chaperones interact and modulate HspR and HrcA DNA-binding activity. This review recapitulates our understanding of the roles and regulation of the most important heat-shock proteins of H. pylori, which represent a crucial virulence factor for bacterial infection and persistence in the human host.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy.
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
14
|
Roncarati D, Scarlato V. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev 2017; 41:549-574. [PMID: 28402413 DOI: 10.1093/femsre/fux015] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
The heat-shock response is a mechanism of cellular protection against sudden adverse environmental growth conditions and results in the prompt production of various heat-shock proteins. In bacteria, specific sensory biomolecules sense temperature fluctuations and transduce intercellular signals that coordinate gene expression outputs. Sensory biomolecules, also known as thermosensors, include nucleic acids (DNA or RNA) and proteins. Once a stress signal is perceived, it is transduced to invoke specific molecular mechanisms controlling transcription of genes coding for heat-shock proteins. Transcriptional regulation of heat-shock genes can be under either positive or negative control mediated by dedicated regulatory proteins. Positive regulation exploits specific alternative sigma factors to redirect the RNA polymerase enzyme to a subset of selected promoters, while negative regulation is mediated by transcriptional repressors. Interestingly, while various bacteria adopt either exclusively positive or negative mechanisms, in some microorganisms these two opposite strategies coexist, establishing complex networks regulating heat-shock genes. Here, we comprehensively summarize molecular mechanisms that microorganisms have adopted to finely control transcription of heat-shock genes.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
15
|
Nitrosative stress defences of the enterohepatic pathogenic bacterium Helicobacter pullorum. Sci Rep 2017; 7:9909. [PMID: 28855660 PMCID: PMC5577044 DOI: 10.1038/s41598-017-10375-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/07/2017] [Indexed: 01/28/2023] Open
Abstract
Helicobacter pullorum is an avian bacterium that causes gastroenteritis, intestinal bowel and hepatobiliary diseases in humans. Although H. pullorum has been shown to activate the mammalian innate immunity with release of nitric oxide (NO), the proteins that afford protection against NO and reactive nitrogen species (RNS) remain unknown. Here several protein candidates of H. pullorum, namely a truncated (TrHb) and a single domain haemoglobin (SdHb), and three peroxiredoxin-like proteins (Prx1, Prx2 and Prx3) were investigated. We report that the two haemoglobin genes are induced by RNS, and that SdHb confers resistance to nitrosative stress both in vitro and in macrophages. For peroxiredoxins, the prx2 and prx3 expression is enhanced by peroxynitrite and hydrogen peroxide, respectively. Mutation of prx1 does not alter the resistance to these stresses, while the single ∆prx2 and double ∆prx1∆prx2 mutants have decreased viability. To corroborate the physiological data, the biochemical analysis of the five recombinant enzymes was done, namely by stopped-flow spectrophotometry. It is shown that H. pullorum SdHb reacts with NO much more quickly than TrHb, and that the three Prxs react promptly with peroxynitrite, Prx3 displaying the highest reactivity. Altogether, the results unveil SdHb and Prx3 as major protective systems of H. pullorum against nitrosative stress.
Collapse
|
16
|
Brathwaite KJ, Siringan P, Connerton PL, Connerton IF. Host adaption to the bacteriophage carrier state of Campylobacter jejuni. Res Microbiol 2015; 166:504-15. [PMID: 26004283 PMCID: PMC4534711 DOI: 10.1016/j.resmic.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023]
Abstract
The carrier state of the foodborne pathogen Campylobacter jejuni represents an alternative life cycle whereby virulent bacteriophages can persist in association with host bacteria without commitment to lysogeny. Host bacteria exhibit significant phenotypic changes that improve their ability to survive extra-intestinal environments, but exhibit growth-phase-dependent impairment in motility. We demonstrate that early exponential phase cultures become synchronised with respect to the non-motile phenotype, which corresponds with a reduction in their ability to adhere to and invade intestinal epithelial cells. Comparative transcriptome analyses (RNA-seq) identify changes in gene expression that account for the observed phenotypes: downregulation of stress response genes hrcA, hspR and per and downregulation of the major flagellin flaA with the chemotactic response signalling genes cheV, cheA and cheW. These changes present mechanisms by which the host and bacteriophage can remain associated without lysis, and the cultures survive extra-intestinal transit. These data provide a basis for understanding a critical link in the ecology of the Campylobacter bacteriophage.
Collapse
Affiliation(s)
- Kelly J Brathwaite
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Patcharin Siringan
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Phillippa L Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Ian F Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| |
Collapse
|
17
|
Bronowski C, James CE, Winstanley C. Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol Lett 2014; 356:8-19. [PMID: 24888326 DOI: 10.1111/1574-6968.12488] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 11/29/2022] Open
Abstract
Campylobacter species are the most common cause of bacterial gastroenteritis, with C. jejuni responsible for the majority of these cases. Although it is clear that livestock, and particularly poultry, are the most common source, it is likely that the natural environment (soil and water) plays a key role in transmission, either directly to humans or indirectly via farm animals. It has been shown using multilocus sequence typing that some clonal complexes (such as ST-45) are more frequently isolated from environmental sources such as water, suggesting that strains vary in their ability to survive in the environment. Although C. jejuni are fastidious microaerophiles generally unable to grow in atmospheric levels of oxygen, C. jejuni can adapt to survival in the environment, exhibiting aerotolerance and starvation survival. Biofilm formation, the viable but nonculturable state, and interactions with other microorganisms can all contribute to survival outside the host. By exploiting high-throughput technologies such as genome sequencing and RNA Seq, we are well placed to decipher the mechanisms underlying the variations in survival between strains in environments such as soil and water and to better understand the role of environmental persistence in the transmission of C. jejuni directly or indirectly to humans.
Collapse
Affiliation(s)
- Christina Bronowski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
18
|
Clark CG, Chong PM, McCorrister SJ, Simon P, Walker M, Lee DM, Nguy K, Cheng K, Gilmour MW, Westmacott GR. The CJIE1 prophage of Campylobacter jejuni affects protein expression in growth media with and without bile salts. BMC Microbiol 2014; 14:70. [PMID: 24641125 PMCID: PMC4004267 DOI: 10.1186/1471-2180-14-70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of Campylobacter jejuni temperate bacteriophages has increasingly been associated with specific biological effects. It has recently been demonstrated that the presence of the prophage CJIE1 is associated with increased adherence and invasion of C. jejuni isolates in cell culture assays. RESULTS Quantitative comparative proteomics experiments were undertaken using three closely related isolates with CJIE1 and one isolate without CJIE1 to determine whether there was a corresponding difference in protein expression levels. Initial experiments indicated that about 2% of the total proteins characterized were expressed at different levels in isolates with or without the prophage. Some of these proteins regulated by the presence of CJIE1 were associated with virulence or regulatory functions. Additional experiments were conducted using C. jejuni isolates with and without CJIE1 grown on four different media: Mueller Hinton (MH) media containing blood; MH media containing 0.1% sodium deoxycholate, which is thought to result in increased expression of virulence proteins; MH media containing 2.5% Oxgall; and MHwithout additives. These experiments provided further evidence that CJIE1 affected protein expression, including virulence-associated proteins. They also demonstrated a general bile response involving a majority of the proteome and clearly showed the induction of almost all proteins known to be involved with iron acquisition. The data have been deposited to the ProteomeXchange with identifiers PXD000798, PXD000799, PXD000800, and PXD000801. CONCLUSION The presence of the CJIE1 prophage was associated with differences in protein expression levels under different conditions. Further work is required to determine what genes are involved in causing this phenomenon.
Collapse
Affiliation(s)
- Clifford G Clark
- Enterics Research Section, Bacteriology and Enterics Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington St, Winnipeg, Manitoba R3E 3R2, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bell JA, Jerome J, Plovanich-Jones AE, Smith EJ, Gettings JR, Kim HY, Landgraf JR, Lefébure T, Kopper JJ, Rathinam VA, St. Charles JL, Buffa BA, Brooks AP, Poe SA, Eaton KA, Stanhope MJ, Mansfield LS. Outcome of infection of C57BL/6 IL-10(-/-) mice with Campylobacter jejuni strains is correlated with genome content of open reading frames up- and down-regulated in vivo. Microb Pathog 2013; 54:1-19. [PMID: 22960579 PMCID: PMC4118490 DOI: 10.1016/j.micpath.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
Human Campylobacter jejuni infection can result in an asymptomatic carrier state, watery or bloody diarrhea, bacteremia, meningitis, or autoimmune neurological sequelae. Infection outcomes of C57BL/6 IL-10(-/-) mice orally infected with twenty-two phylogenetically diverse C. jejuni strains were evaluated to correlate colonization and disease phenotypes with genetic composition of the strains. Variation between strains was observed in colonization, timing of development of clinical signs, and occurrence of enteric lesions. Five pathotypes of C. jejuni in C57BL/6 IL-10(-/-) mice were delineated: little or no colonization, colonization without disease, colonization with enteritis, colonization with hemorrhagic enteritis, and colonization with neurological signs with or without enteritis. Virulence gene content of ten sequenced strains was compared in silico; virulence gene content of twelve additional strains was compared using a C. jejuni pan-genome microarray. Neither total nor virulence gene content predicted pathotype; nor was pathotype correlated with multilocus sequence type. Each strain was unique with regard to absences of known virulence-related loci and/or possession of point mutations and indels, including phase variation, in virulence-related genes. An experiment in C. jejuni 11168-infected germ-free mice showed that expression levels of ninety open reading frames (ORFs) were significantly up- or down-regulated in the mouse cecum at least two-fold compared to in vitro growth. Genomic content of these ninety C. jejuni 11168 ORFs was significantly correlated with the capacity to colonize and cause enteritis in C57BL/6 IL-10(-/-) mice. Differences in gene expression levels and patterns are thus an important determinant of pathotype in C. jejuni strains in this mouse model.
Collapse
Affiliation(s)
- J. A. Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J.P. Jerome
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - A. E. Plovanich-Jones
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - E. J. Smith
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. R. Gettings
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - H. Y. Kim
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. R. Landgraf
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824
| | - T. Lefébure
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - J. J. Kopper
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Cell and Molecular Biology Program, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - V. A. Rathinam
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. L. St. Charles
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - B. A. Buffa
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - A. P. Brooks
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - S. A. Poe
- Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109; Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109
| | - K. A. Eaton
- Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109; Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - M. J. Stanhope
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - L. S. Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
20
|
Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One 2012; 7:e51017. [PMID: 23226451 PMCID: PMC3511404 DOI: 10.1371/journal.pone.0051017] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
With the increasing frequency of antibiotic resistance and the decreasing frequency of new antibiotics entering the market, interest has returned to developing bacteriophage as a therapeutic agent. Acceptance of phage therapy, however, is limited by the unknown pharmacodynamics of a replicating agent, as well as the potential for the evolution of resistant bacteria. One way to overcome some of these limitations is to incorporate phage and antibiotics into a dual therapy regimen; however, this increases the complexity of the pharmacodynamics. The aim of this study is to develop an experimental system to evaluate the pharmacodynamics of dual phage-drug therapy. A continuous culture system for Staphylococcus aureus is used to simulate the pharmacokinetics of periodic antibiotic dosing alone and in combination with lytic phage. A computer model representation of the system allows further evaluation of the conditions governing the observed pharmacodynamics. The results of this experimental/modeling approach suggest that dual therapy can be more efficacious than single therapies, particularly if there is an overlap in the physiological pathways targeted by the individual agents. In this case, treatment with gentamicin induces a population of cells with a strong aggregation phenotype. These aggregators also have an increased ability to form biofilm, which is a well-known, non-genetic mechanism of drug resistance. However, the aggregators are also more susceptible than the parental strain to the action of the phage. Thus, dual treatment with gentamicin and phage resulted in lower final cell densities than either treatment alone. Unlike in the phage-only treatment, phage-resistant isolates were not detected in the dual treatment.
Collapse
|
21
|
Abstract
The diarrheal pathogen Campylobacter jejuni and other gastrointestinal bacteria encounter changes in osmolarity in the environment, through exposure to food processing, and upon entering host organisms, where osmotic adaptation can be associated with virulence. In this study, growth profiles, transcriptomics, and phenotypic, mutant, and single-cell analyses were used to explore the effects of hyperosmotic stress exposure on C. jejuni. Increased growth inhibition correlated with increased osmotic concentration, with both ionic and nonionic stressors inhibiting growth at 0.620 total osmol liter(-1). C. jejuni adaptation to a range of osmotic stressors and concentrations was accompanied by severe filamentation in subpopulations, with microscopy indicating septum formation and phenotypic diversity between individual cells in a filament. Population heterogeneity was also exemplified by the bifurcation of colony morphology into small and large variants on salt stress plates. Flow cytometry of C. jejuni harboring green fluorescent protein (GFP) fused to the ATP synthase promoter likewise revealed bimodal subpopulations under hyperosmotic stress. We also identified frequent hyperosmotic stress-sensitive variants within the clonal wild-type population propagated on standard laboratory medium. Microarray analysis following hyperosmotic upshift revealed enhanced expression of heat shock genes and genes encoding enzymes for synthesis of potential osmoprotectants and cross-protective induction of oxidative stress genes. The capsule export gene kpsM was also upregulated, and an acapsular mutant was defective for growth under hyperosmotic stress. For C. jejuni, an organism lacking most conventional osmotic response factors, these data suggest an unusual hyperosmotic stress response, including likely "bet-hedging" survival strategies relying on the presence of stress-fit individuals in a heterogeneous population.
Collapse
|
22
|
Haaber J, Cohn MT, Frees D, Andersen TJ, Ingmer H. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS One 2012; 7:e41075. [PMID: 22815921 PMCID: PMC3399816 DOI: 10.1371/journal.pone.0041075] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 06/17/2012] [Indexed: 02/04/2023] Open
Abstract
Bacterial cells are mostly studied during planktonic growth although in their natural habitats they are often found in communities such as biofilms with dramatically different physiological properties. We have examined another type of community namely cellular aggregates observed in strains of the human pathogen Staphylococcus aureus. By laser-diffraction particle–size analysis (LDA) we show, for strains forming visible aggregates, that the aggregation starts already in the early exponential growth phase and proceeds until post-exponential phase where more than 90% of the population is part of the aggregate community. Similar to some types of biofilm, the structural component of S. aureus aggregates is the polysaccharide intercellular adhesin (PIA). Importantly, PIA production correlates with the level of aggregation whether altered through mutations or exposure to sub-inhibitory concentrations of selected antibiotics. While some properties of aggregates resemble those of biofilms including increased mutation frequency and survival during antibiotic treatment, aggregated cells displayed higher metabolic activity than planktonic cells or cells in biofilm. Thus, our data indicate that the properties of cells in aggregates differ in some aspects from those in biofilms. It is generally accepted that the biofilm life style protects pathogens against antibiotics and the hostile environment of the host. We speculate that in aggregate communities S. aureus increases its tolerance to hazardous environments and that the combination of a biofilm-like environment with mobility has substantial practical and clinical importance.
Collapse
Affiliation(s)
- Jakob Haaber
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne Thorup Cohn
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Dorte Frees
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | | | - Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
23
|
FdhTU-modulated formate dehydrogenase expression and electron donor availability enhance recovery of Campylobacter jejuni following host cell infection. J Bacteriol 2012; 194:3803-13. [PMID: 22636777 DOI: 10.1128/jb.06665-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Campylobacter jejuni is a food-borne bacterial pathogen that colonizes the intestinal tract and causes severe gastroenteritis. Interaction with host epithelial cells is thought to enhance severity of disease, and the ability of C. jejuni to modulate its metabolism in different in vivo and environmental niches contributes to its success as a pathogen. A C. jejuni operon comprising two genes that we designated fdhT (CJJ81176_1492) and fdhU (CJJ81176_1493) is conserved in many bacterial species. Deletion of fdhT or fdhU in C. jejuni resulted in apparent defects in adherence and/or invasion of Caco-2 epithelial cells when assessed by CFU enumeration on standard Mueller-Hinton agar. However, fluorescence microscopy indicated that each mutant invaded cells at wild-type levels, instead suggesting roles for FdhTU in either intracellular survival or postinvasion recovery. The loss of fdhU caused reduced mRNA levels of formate dehydrogenase (FDH) genes and a severe defect in FDH activity. Cell infection phenotypes of a mutant deleted for the FdhA subunit of FDH and an ΔfdhU ΔfdhA double mutant were similar to those of a ΔfdhU mutant, which likewise suggested that FdhU and FdhA function in the same pathway. Cell infection assays followed by CFU enumeration on plates supplemented with sodium sulfite abolished the ΔfdhU and ΔfdhA mutant defects and resulted in significantly enhanced recovery of all strains, including wild type, at the invasion and intracellular survival time points. Collectively, our data indicate that FdhTU and FDH are required for optimal recovery following cell infection and suggest that C. jejuni alters its metabolic potential in the intracellular environment.
Collapse
|
24
|
Characterization of Campylobacter jejuni RacRS reveals roles in the heat shock response, motility, and maintenance of cell length homogeneity. J Bacteriol 2012; 194:2342-54. [PMID: 22343300 DOI: 10.1128/jb.06041-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni commensally colonizes the cecum of birds. The RacR (reduced ability to colonize) response regulator was previously shown to be important in avian colonization. To explore the means by which RacR and its cognate sensor kinase RacS may modulate C. jejuni physiology and colonization, ΔracR and ΔracS mutations were constructed in the invasive, virulent strain 81-176, and extensive phenotypic analyses were undertaken. Both the ΔracR and ΔracS mutants exhibited a ~100-fold defect in chick colonization despite no (ΔracS) or minimal (ΔracR) growth defects at 42 °C, the avian body temperature. Each mutant was defective for colony formation at 44°C and in the presence of 0.8% NaCl, both of which are stresses associated with the heat shock response. Promoter-reporter and real-time quantitative PCR (RT-qPCR) analyses revealed that RacR activates racRS and represses dnaJ. Although disregulation of several other heat shock genes was not observed at 38°C, the ΔracR and ΔracS mutants exhibited diminished upregulation of these genes upon a rapid temperature upshift. Furthermore, the ΔracR and ΔracS mutants displayed increased length heterogeneity during exponential growth, with a high proportion of filamented bacteria. Filamented bacteria had reduced swimming speed and were defective for invasion of Caco-2 epithelial cells. Soft-agar studies also revealed that the loss of racR or racS resulted in whole-population motility defects in viscous medium. These findings reveal new roles for RacRS in C. jejuni physiology, each of which is likely important during colonization of the avian host.
Collapse
|
25
|
Gundogdu O, Mills DC, Elmi A, Martin MJ, Wren BW, Dorrell N. The Campylobacter jejuni transcriptional regulator Cj1556 plays a role in the oxidative and aerobic stress response and is important for bacterial survival in vivo. J Bacteriol 2011; 193:4238-49. [PMID: 21642451 PMCID: PMC3147681 DOI: 10.1128/jb.05189-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/25/2011] [Indexed: 01/11/2023] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide. Despite stringent microaerobic growth requirements, C. jejuni is ubiquitous in the aerobic environment and so must possess regulatory systems to sense and adapt to external stimuli, such as oxidative and aerobic (O(2)) stress. Reannotation of the C. jejuni NCTC11168 genome sequence identified Cj1556 (originally annotated as a hypothetical protein) as a MarR family transcriptional regulator, and further analysis indicated a potential role in regulating the oxidative stress response. A C. jejuni 11168H Cj1556 mutant exhibited increased sensitivity to oxidative and aerobic stress, decreased ability for intracellular survival in Caco-2 human intestinal epithelial cells and J774A.1 mouse macrophages, and a reduction in virulence in the Galleria mellonella infection model. Microarray analysis of gene expression changes in the Cj1556 mutant indicated negative autoregulation of Cj1556 expression and downregulation of genes associated with oxidative and aerobic stress responses, such as katA, perR, and hspR. Electrophoretic mobility shift assays confirmed the binding of recombinant Cj1556 to the promoter region upstream of the Cj1556 gene. cprS, which encodes a sensor kinase involved in regulation of biofilm formation, was also upregulated in the Cj1556 mutant, and subsequent studies showed that the mutant had a reduced ability to form biofilms. This study identified a novel C. jejuni transcriptional regulator, Cj1556, that is involved in oxidative and aerobic stress responses and is important for the survival of C. jejuni in the natural environment and in vivo.
Collapse
Affiliation(s)
- Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Dominic C. Mills
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Melissa J. Martin
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| |
Collapse
|
26
|
Haddad N, Marce C, Magras C, Cappelier JM. An overview of methods used to clarify pathogenesis mechanisms of Campylobacter jejuni. J Food Prot 2010; 73:786-802. [PMID: 20377972 DOI: 10.4315/0362-028x-73.4.786] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thermotolerant campylobacters are the most frequent cause of bacterial infection of the lower intestine worldwide. The mechanism of pathogenesis of Campylobacter jejuni comprises four main stages: adhesion to intestinal cells, colonization of the digestive tract, invasion of targeted cells, and toxin production. In response to the high number of cases of human campylobacteriosis, various virulence study models are available according to the virulence stage being analyzed. The aim of this review is to compare the different study models used to look at human disease. Molecular biology tools used to identify genes or proteins involved in virulence mechanisms are also summarized. Despite high cost and limited availability, animal models are frequently used to study digestive disease, in particular to analyze the colonization stage. Eukaryotic cell cultures have been developed because of fewer restrictions on their use and the lower cost of these cultures compared with animal models, and this ex vivo approach makes it possible to mimic the bacterial cell-host interactions observed in natural disease cases. Models are complemented by molecular biology tools, especially mutagenesis and DNA microarray methods to identify putative virulence genes or proteins and permit their characterization. No current model seems to be ideal for studying the complete range of C. jejuni virulence. However, the models available deal with different aspects of the complex pathogenic mechanisms particular to this bacterium.
Collapse
Affiliation(s)
- N Haddad
- Unit INRA 1014 SECALIM, National Veterinary School of Nantes, Route de Gachet, Nantes cedex 3, France
| | | | | | | |
Collapse
|
27
|
HspR mutations are naturally selected in Bifidobacterium longum when successive heat shock treatments are applied. J Bacteriol 2010; 192:256-63. [PMID: 19880603 DOI: 10.1128/jb.01147-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of molecular tools allowed light to be shed on several widespread genetic mechanisms aiming at limiting the effect of molecular damage on bacterial survival. For some bacterial taxa, there are limited tools in the genetic toolbox, which restricts the possibilities to investigate the molecular basis of their stress response. In that case, an alternative strategy is to study genetic variants of a strain under stress conditions. The comparative study of the genetic determinants responsible for their phenotypes, e.g., an improved tolerance to stress, offers precious clues on the molecular mechanisms effective in this bacterial taxon. We applied this approach and isolated two heat shock-tolerant strains derived from Bifidobacterium longum NCC2705. A global analysis of their transcriptomes revealed that the dnaK operon and the clpB gene were overexpressed in both heat shock-tolerant strains. We sequenced the hspR gene coding for the negative regulator of dnaK and clpB and found point mutations affecting protein domains likely responsible for the binding of the regulators to the promoter DNA. Complementation of the mutant strains by the wild-type regulator hspR restored its heat sensitivity and thus demonstrated that these mutations were responsible for the observed heat tolerance phenotype.
Collapse
|
28
|
Holmes CW, Penn CW, Lund PA. The hrcA and hspR regulons of Campylobacter jejuni. MICROBIOLOGY-SGM 2009; 156:158-166. [PMID: 19850618 DOI: 10.1099/mic.0.031708-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The human pathogen Campylobacter jejuni has a classic heat shock response, showing induction of chaperones and proteases plus several unidentified proteins in response to a small increase in growth temperature. The genome contains two homologues to known heat shock response regulators, HrcA and HspR. Previous work has shown that HspR controls several heat-shock genes, but the hrcA regulon has not been defined. We have constructed single and double deletions of C. jejuni hrcA and hspR and analysed gene expression using microarrays. Only a small number of genes are controlled by these two regulators, and the two regulons overlap. Strains mutated in hspR, but not those mutated in hrcA, showed enhanced thermotolerance. Some genes previously identified as being downregulated in a strain lacking hspR showed no change in expression in our experiments.
Collapse
Affiliation(s)
| | - Charles W Penn
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Peter A Lund
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
29
|
An interactive regulatory network controls stress response in Bifidobacterium breve UCC2003. J Bacteriol 2009; 191:7039-49. [PMID: 19734308 DOI: 10.1128/jb.00897-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Bifidobacterium are gram-positive bacteria that commonly are found in the gastrointestinal tract (GIT) of mammals, including humans. Because of their perceived probiotic properties, they frequently are incorporated as functional ingredients in food products. From probiotic production to storage and GIT delivery, bifidobacteria encounter a plethora of stresses. To cope with these environmental challenges, they need to protect themselves through stress-induced adaptive responses. We have determined the response of B. breve UCC2003 to various stresses (heat, osmotic, and solvent) using transcriptome analysis, DNA-protein interactions, and GusA reporter fusions, and we combined these with results from an in silico analysis. The integration of these results allowed the formulation of a model for an interacting regulatory network for stress response in B. breve UCC2003 where HspR controls the SOS response and the ClgR regulon, which in turn regulates and is regulated by HrcA. This model of an interacting regulatory network is believed to represent the paradigm for stress adaptation in bifidobacteria.
Collapse
|
30
|
Atypical roles for Campylobacter jejuni amino acid ATP binding cassette transporter components PaqP and PaqQ in bacterial stress tolerance and pathogen-host cell dynamics. Infect Immun 2009; 77:4912-24. [PMID: 19703978 DOI: 10.1128/iai.00571-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is a human pathogen causing severe diarrheal disease; however, our understanding of the survival of C. jejuni during disease and transmission remains limited. Amino acid ATP binding cassette (AA-ABC) transporters in C. jejuni have been proposed as important pathogenesis factors. We have investigated a novel AA-ABC transporter system, encoded by cj0467 to cj0469, by generating targeted deletions of cj0467 (the membrane transport component) and cj0469 (the ATPase component) in C. jejuni 81-176. The analyses described here have led us to designate these genes paqP and paqQ, respectively (pathogenesis-associated glutamine [q] ABC transporter permease [P] and ATPase [Q]). We found that loss of either component resulted in amino acid uptake defects, most notably diminished glutamine uptake. Altered resistance to a series of environmental and in vivo stresses was also observed: both mutants were hyperresistant to aerobic and organic peroxide stress, and while the DeltapaqP mutant was also hyperresistant to heat and osmotic shock, the DeltapaqQ mutant was more susceptible than the wild type to the latter two stresses. The DeltapaqP and DeltapaqQ mutants also displayed a surprising but statistically significant increase in recovery from macrophages and epithelial cells in short-term intracellular survival assays. Annexin V, 4',6-diamidino-2-phenylindole (DAPI), and Western blot analyses revealed that macrophages infected with the DeltapaqP or DeltapaqQ mutant exhibited transient but significant decreases in cell death and extracellular signal-regulated kinase-mitogen-activated protein kinase activation compared to levels in wild-type-infected cells. The DeltapaqP mutant was not defective in either short-term or longer-term mouse colonization, consistent with its increased stress survival and diminished host cell damage phenotypes. Collectively, these results demonstrate a unique correlation of an AA-ABC transporter with bacterial stress tolerances and host cell responses to pathogen infection.
Collapse
|
31
|
Bucca G, Laing E, Mersinias V, Allenby N, Hurd D, Holdstock J, Brenner V, Harrison M, Smith CP. Development and application of versatile high density microarrays for genome-wide analysis of Streptomyces coelicolor: characterization of the HspR regulon. Genome Biol 2009; 10:R5. [PMID: 19146703 PMCID: PMC2687793 DOI: 10.1186/gb-2009-10-1-r5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 12/08/2008] [Accepted: 01/16/2009] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND DNA microarrays are a key resource for global analysis of genome content, gene expression and the distribution of transcription factor binding sites. We describe the development and application of versatile high density ink-jet in situ-synthesized DNA arrays for the G+C rich bacterium Streptomyces coelicolor. High G+C content DNA probes often perform poorly on arrays, yielding either weak hybridization or non-specific signals. Thus, more than one million 60-mer oligonucleotide probes were experimentally tested for sensitivity and specificity to enable selection of optimal probe sets for the genome microarrays. The heat-shock HspR regulatory system of S. coelicolor, a well-characterized repressor with a small number of known targets, was exploited to test and validate the arrays for use in global chromatin immunoprecipitation-on-chip (ChIP-chip) and gene expression analysis. RESULTS In addition to confirming dnaK, clpB and lon as in vivo targets of HspR, it was revealed, using a novel ChIP-chip data clustering method, that HspR also apparently interacts with ribosomal RNA (rrnD operon) and specific transfer RNA genes (the tRNAGln/tRNAGlu cluster). It is suggested that enhanced synthesis of Glu-tRNAGlu may reflect increased demand for tetrapyrrole biosynthesis following heat-shock. Moreover, it was found that heat-shock-induced genes are significantly enriched for Gln/Glu codons relative to the whole genome, a finding that would be consistent with HspR-mediated control of the tRNA species. CONCLUSIONS This study suggests that HspR fulfils a broader, unprecedented role in adaptation to stresses than previously recognized -- influencing expression of key components of the translational apparatus in addition to molecular chaperone and protease-encoding genes. It is envisaged that these experimentally optimized arrays will provide a key resource for systems level studies of Streptomyces biology.
Collapse
Affiliation(s)
- Giselda Bucca
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Emma Laing
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Vassilis Mersinias
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
- Current address: Institute of Immunology, Biomedical Sciences Research Centre "Alexander Fleming", Athens 16672, Greece
| | - Nicholas Allenby
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Douglas Hurd
- Oxford Gene Technology Ltd, Begbroke Business Park, Sandy Lane, Yarnton, Oxford OX5 1PF, UK
| | - Jolyon Holdstock
- Oxford Gene Technology Ltd, Begbroke Business Park, Sandy Lane, Yarnton, Oxford OX5 1PF, UK
| | - Volker Brenner
- Oxford Gene Technology Ltd, Begbroke Business Park, Sandy Lane, Yarnton, Oxford OX5 1PF, UK
| | - Marcus Harrison
- Oxford Gene Technology Ltd, Begbroke Business Park, Sandy Lane, Yarnton, Oxford OX5 1PF, UK
| | - Colin P Smith
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
32
|
Monk CE, Pearson BM, Mulholland F, Smith HK, Poole RK. Oxygen- and NssR-dependent globin expression and enhanced iron acquisition in the response of campylobacter to nitrosative stress. J Biol Chem 2008; 283:28413-25. [PMID: 18682395 DOI: 10.1074/jbc.m801016200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogenic bacteria experience nitrosative stress from NO generated in the host and from nitrosating species such as S-nitrosoglutathione. The food-borne pathogen Campylobacter jejuni responds by activating gene expression from a small regulon under the control of the NO-sensitive regulator, NssR. Here, we describe the full extent of the S-nitrosoglutathione response using transcriptomic and proteomic analysis of batch- and chemostat-cultured C. jejuni. In addition to the NssR regulon, which includes two hemoglobins (Cgb and Ctb), we identify more than 90 other up-regulated genes, notably those encoding heat shock proteins and proteins involved in oxidative stress tolerance and iron metabolism/transport. Up-regulation of a subset of these genes, including cgb, is also elicited by NO-releasing compounds. Mutation of the iron-responsive regulator Fur results in insensitivity of growth to NO, suggesting that derepression of iron-regulated genes and augmentation of iron acquisition is a physiological response to nitrosative damage. We describe the effect of oxygen availability on nitrosative stress tolerance; cells cultured at higher rates of oxygen diffusion have elevated levels of hemoglobins, are more resistant to inhibition by NO of both growth and respiration, and consume NO more rapidly. The oxygen response is mediated by NssR. Thus, in addition to NO detoxification catalyzed by the hemoglobins Cgb and possibly Ctb, C. jejuni mounts an extensive stress response. We suggest that inhibition of respiration by NO may increase availability of oxygen for Cgb synthesis and function.
Collapse
Affiliation(s)
- Claire E Monk
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Puttamreddy S, Carruthers MD, Madsen ML, Minion FC. Transcriptome Analysis of Organisms with Food Safety Relevance. Foodborne Pathog Dis 2008; 5:517-29. [DOI: 10.1089/fpd.2008.0112] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Supraja Puttamreddy
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Michael D. Carruthers
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Melissa L. Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - F. Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
34
|
Reid AN, Pandey R, Palyada K, Naikare H, Stintzi A. Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Appl Environ Microbiol 2008; 74:1583-97. [PMID: 18192414 PMCID: PMC2258634 DOI: 10.1128/aem.01507-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 12/30/2007] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni causes food- and waterborne gastroenteritis, and as such it must survive passage through the stomach in order to reach the gastrointestinal tract. While little is known about how C. jejuni survives transit through the stomach, its low infectious dose suggests it is well equipped to sense and respond to acid shock. In this study, the transcriptional profile of C. jejuni NCTC 11168 was obtained after the organism was exposed to in vitro and in vivo (piglet stomach) acid shock. The observed down-regulation of genes encoding ribosomal proteins likely reflects the need to reshuffle energy toward the expression of components required for survival. Acid shock also caused C. jejuni to up-regulate genes involved in stress responses. These included heat shock genes as well as genes involved in the response to oxidative and nitrosative stress. A role for the chaperone clpB in acid resistance was confirmed in vitro. Some genes showed expression patterns that were markedly different in vivo and in vitro, which likely reflects the complexity of the in vivo environment. For instance, transit through the stomach was characterized by up-regulation of genes that encode products that are involved in the use of nitrite as a terminal electron acceptor and down-regulation of genes that are involved in capsular polysaccharide expression. In conclusion, this study has enabled us to understand how C. jejuni modulates gene expression in response to acid shock in vitro and to correlate this with gene expression profiles of C. jejuni as it transits through the host stomach.
Collapse
Affiliation(s)
- Anne N Reid
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
35
|
CmeR functions as a pleiotropic regulator and is required for optimal colonization of Campylobacter jejuni in vivo. J Bacteriol 2008; 190:1879-90. [PMID: 18178742 DOI: 10.1128/jb.01796-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CmeR functions as a transcriptional repressor modulating the expression of the multidrug efflux pump CmeABC in Campylobacter jejuni. To determine if CmeR also regulates other genes in C. jejuni, we compared the transcriptome of the cmeR mutant with that of the wild-type strain using a DNA microarray. This comparison identified 28 genes that showed a > or = 2-fold change in expression in the cmeR mutant. Independent real-time quantitative reverse transcription-PCR experiments confirmed 27 of the 28 differentially expressed genes. The CmeR-regulated genes encode membrane transporters, proteins involved in C4-dicarboxylate transport and utilization, enzymes for biosynthesis of capsular polysaccharide, and hypothetical proteins with unknown functions. Among the genes whose expression was upregulated in the cmeR mutant, Cj0561c (encoding a putative periplasmic protein) showed the greatest increase in expression. Subsequent experiments demonstrated that this gene is strongly repressed by CmeR. The presence of the known CmeR-binding site, an inverted repeat of TGTAAT, in the promoter region of Cj0561c suggests that CmeR directly inhibits the transcription of Cj0561c. Similar to expression of cmeABC, transcription of Cj0561c is strongly induced by bile compounds, which are normally present in the intestinal tracts of animals. Inactivation of Cj0561c did not affect the susceptibility of C. jejuni to antimicrobial compounds in vitro but reduced the fitness of C. jejuni in chickens. Loss-of-function mutation of cmeR severely reduced the ability of C. jejuni to colonize chickens. Together, these findings indicate that CmeR governs the expression of multiple genes with diverse functions and is required for Campylobacter adaptation in the chicken host.
Collapse
|
36
|
Seal BS, Hiett KL, Kuntz RL, Woolsey R, Schegg KM, Ard M, Stintzi A. Proteomic analyses of a robust versus a poor chicken gastrointestinal colonizing isolate of Campylobacter jejuni. J Proteome Res 2007; 6:4582-91. [PMID: 17973442 DOI: 10.1021/pr070356a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Campylobacter spp. are a significant contributor to the bacterial etiology of acute gastroenteritis in humans. Epidemiological evidence implicates poultry as a major source of the organism for human illness. However, the factors involved in colonization of poultry with Campylobacter spp. remain unclear. Determining colonization-associated factors at the proteome level should facilitate our understanding of Campylobacter spp. contamination of poultry. Therefore, proteomic analyses were utilized to identify expression differences between two Campylobacter jejuni isolates, a robust colonizer A74/C and a poor colonizing strain of the chicken gastrointestinal system designated NCTC 11168-PMSRU. Proteomic analyses by two-dimensional gel electrophoresis revealed the specific expression of an outer membrane-fibronectin binding protein, serine protease, and a putative aminopeptidase in the soluble portion of the robust colonizer A74C. Several proteins including a cysteine synthase and aconitate hydratase were detected specifically in the poor colonizer C. jejuni NCTC 11168-PMSRU isolate. Variation in the amino acid sequences resulting in different isoelectric points and relative mobility of the flagellin and C. jejuni major outer membrane (MOMP) protein were also detected between the two isolates. Western blotting of the bacterial proteins revealed the presence of two flagellin proteins in the poor colonizer versus one in the robust colonizing isolate, but no differences in MOMP. The results demonstrated that proteomics is useful for characterizing phenotypic variation among Campylobacter spp. isolates. Interestingly, different gene products potentially involved in robust colonization of chickens by Campylobacter spp. appear to conform to recently identified expression patterns in Biofilm or agar-adapted isolates.
Collapse
Affiliation(s)
- Bruce S Seal
- Poultry Microbiological Safety Research Unit, Russell Research Center, ARS, USDA, 950 College Station Road, Athens, Georgia 30605, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Contribution of conserved ATP-dependent proteases of Campylobacter jejuni to stress tolerance and virulence. Appl Environ Microbiol 2007; 73:7803-13. [PMID: 17933920 DOI: 10.1128/aem.00698-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In prokaryotic cells the ATP-dependent proteases Lon and ClpP (Clp proteolytic subunit) are involved in the turnover of misfolded proteins and the degradation of regulatory proteins, and depending on the organism, these proteases contribute variably to stress tolerance. We constructed mutants in the lon and clpP genes of the food-borne human pathogen Campylobacter jejuni and found that the growth of both mutants was impaired at high temperature, a condition known to increase the level of misfolded protein. Moreover, the amounts of misfolded protein aggregates were increased when both proteases were absent, and we propose that both ClpP and Lon are involved in eliminating misfolded proteins in C. jejuni. In order to bind misfolded protein, ClpP has to associate with one of several Clp ATPases. Following inactivation of the ATPase genes clpA and clpX, only the clpX mutant displayed the same heat sensitivity as the clpP mutant, indicating that the ClpXP proteolytic complex is responsible for the degradation of heat-damaged proteins in C. jejuni. Notably, ClpP and ClpX are required for growth at 42 degrees C, which is the temperature of the intestinal tract of poultry, one of the primary carriers of C. jejuni. Thus, ClpP and ClpX may be suitable targets of new intervention strategies aimed at reducing C. jejuni in poultry production. Further characterization of the clpP and lon mutants revealed other altered phenotypes, such as reduced motility, less autoagglutination, and lower levels of invasion of INT407 epithelial cells, suggesting that the proteases may contribute to the virulence of C. jejuni.
Collapse
|
38
|
Roncarati D, Danielli A, Spohn G, Delany I, Scarlato V. Transcriptional regulation of stress response and motility functions in Helicobacter pylori is mediated by HspR and HrcA. J Bacteriol 2007; 189:7234-43. [PMID: 17693507 PMCID: PMC2168435 DOI: 10.1128/jb.00626-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hrcA and hspR genes of Helicobacter pylori encode two transcriptional repressor proteins that negatively regulate expression of the groES-groEL and hrcA-grpE-dnaK operons. While HspR was previously shown to bind far upstream of the promoters transcribing these operons, the binding sites of HrcA were not identified. Here, we demonstrate by footprinting analysis that HrcA binds to operator elements similar to the so-called CIRCE sequences overlapping both promoters. Binding of HspR and HrcA to their respective operators occurs in an independent manner, but the DNA binding activity of HrcA is increased in the presence of GroESL, suggesting that the GroE chaperonin system corepresses transcription together with HrcA. Comparative transcriptome analysis of the wild-type strain and hspR and hrcA singly and doubly deficient strains revealed that a set of 14 genes is negatively regulated by the action of one or both regulators, while a set of 29 genes is positively regulated. While both positive and negative regulation of transcription by HspR and/or HrcA could be confirmed by RNA primer extension analyses for two representative genes, binding of either regulator to the promoters could not be detected, indicating that transcriptional regulation at these promoters involves indirect mechanisms. Strikingly, 14 of the 29 genes which were found to be positively regulated by HspR or HrcA code for proteins involved in flagellar biosynthesis. Accordingly, loss of motility functions was observed for HspR and HrcA single or double mutants. The possible regulatory intersections of the heat shock response and flagellar assembly are discussed.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Biology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | | | | | | | | |
Collapse
|
39
|
Salerno P, Marineo S, Puglia AM. The Streptomyces coelicolor dnaK operon contains a second promoter driving the expression of the negative regulator hspR at physiological temperature. Arch Microbiol 2007; 188:541-6. [PMID: 17611737 DOI: 10.1007/s00203-007-0269-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 04/13/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
HspR (heat shock protein regulator) acts as a negative regulator of different genes in many bacteria. In Streptomyces coelicolor hspR gene is part and the transcriptional repressor of the dnaK operon which encodes the DnaK, GrpE, DnaJ chaperone machines and HspR itself. Our experiments led us to the discovery of a second promoter, internal to dnaK operon, located upstream hspR gene. Transcription from this promoter was detected at 30 degrees C indicating that hspR could play a key physiological role.
Collapse
Affiliation(s)
- Paola Salerno
- Dipartimento di Biologia Cellulare e dello Sviluppo, Viale delle Scienze-Parco d'Orleans II, 90128, Palermo, Italy
| | | | | |
Collapse
|
40
|
Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 2007; 8:162. [PMID: 17565669 PMCID: PMC1899501 DOI: 10.1186/1471-2164-8-162] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 06/12/2007] [Indexed: 12/25/2022] Open
Abstract
Background Campylobacter jejuni is the leading bacterial cause of human gastroenteritis in the developed world. To improve our understanding of this important human pathogen, the C. jejuni NCTC11168 genome was sequenced and published in 2000. The original annotation was a milestone in Campylobacter research, but is outdated. We now describe the complete re-annotation and re-analysis of the C. jejuni NCTC11168 genome using current database information, novel tools and annotation techniques not used during the original annotation. Results Re-annotation was carried out using sequence database searches such as FASTA, along with programs such as TMHMM for additional support. The re-annotation also utilises sequence data from additional Campylobacter strains and species not available during the original annotation. Re-annotation was accompanied by a full literature search that was incorporated into the updated EMBL file [EMBL: AL111168]. The C. jejuni NCTC11168 re-annotation reduced the total number of coding sequences from 1654 to 1643, of which 90.0% have additional information regarding the identification of new motifs and/or relevant literature. Re-annotation has led to 18.2% of coding sequence product functions being revised. Conclusions Major updates were made to genes involved in the biosynthesis of important surface structures such as lipooligosaccharide, capsule and both O- and N-linked glycosylation. This re-annotation will be a key resource for Campylobacter research and will also provide a prototype for the re-annotation and re-interpretation of other bacterial genomes.
Collapse
|
41
|
Ventura M, Canchaya C, Zhang Z, Bernini V, Fitzgerald GF, van Sinderen D. How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators. FEMS Microbiol Rev 2006; 30:734-59. [PMID: 16911042 DOI: 10.1111/j.1574-6976.2006.00031.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Actinobacteridae group of bacteria includes pathogens, plant commensals, endosymbionts as well as inhabitants of the gastrointestinal tract. For various reasons, these microorganisms represent a growing area of interest with respect to genomics, molecular biology and genetics. This review will discuss the current knowledge on the molecular players that allow actinobacteria to contend with heat stress, with an emphasis on bifidobacteria. We describe the principal molecular chaperones involved in heat stress. Temporal expression of heat-shock genes based on functional genomics in members of the Actinobacteridae group is also discussed, as well as the emerging molecular mechanisms controlling the heat-stress response.
Collapse
Affiliation(s)
- Marco Ventura
- Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland.
| | | | | | | | | | | |
Collapse
|
42
|
Crapoulet N, Barbry P, Raoult D, Renesto P. Global transcriptome analysis of Tropheryma whipplei in response to temperature stresses. J Bacteriol 2006; 188:5228-39. [PMID: 16816195 PMCID: PMC1539978 DOI: 10.1128/jb.00507-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tropheryma whipplei, the agent responsible for Whipple disease, is a poorly known pathogen suspected to have an environmental origin. The availability of the sequence of the 0.92-Mb genome of this organism made a global gene expression analysis in response to thermal stresses feasible, which resulted in unique transcription profiles. A few genes were differentially transcribed after 15 min of exposure at 43 degrees C. The effects observed included up-regulation of the dnaK regulon, which is composed of six genes and is likely to be under control of two HspR-associated inverted repeats (HAIR motifs) found in the 5' region. Putative virulence factors, like the RibC and IspDF proteins, were also overexpressed. While it was not affected much by heat shock, the T. whipplei transcriptome was strongly modified following cold shock at 4 degrees C. For the 149 genes that were differentially transcribed, eight regulons were identified, and one of them was composed of five genes exhibiting similarity with genes encoding ABC transporters. Up-regulation of these genes suggested that there was an increase in nutrient uptake when the bacterium was exposed to cold stress. As observed for other bacterial species, the major classes of differentially transcribed genes encode membrane proteins and enzymes involved in fatty acid biosynthesis, indicating that membrane modifications are critical. Paradoxically, the heat shock proteins GroEL2 and ClpP1 were up-regulated. Altogether, the data show that despite the lack of classical regulation pathways, T. whipplei exhibits an adaptive response to thermal stresses which is consistent with its specific environmental origin and could allow survival under cold conditions.
Collapse
Affiliation(s)
- Nicolas Crapoulet
- Unité des Rickettsies, CNRS UMR6020, IFR48, Faculté de Médecine, 27, Boulevard Jean Moulin, 13385 Marseille, France
| | | | | | | |
Collapse
|
43
|
Brøndsted L, Andersen MT, Parker M, Jørgensen K, Ingmer H. The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl Environ Microbiol 2005; 71:3205-12. [PMID: 15933023 PMCID: PMC1151804 DOI: 10.1128/aem.71.6.3205-3212.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is a predominant cause of food-borne bacterial gastroenteritis in the developed world. We have investigated the importance of a homologue of the periplasmic HtrA protease in C. jejuni stress tolerance. A C. jejuni htrA mutant was constructed and compared to the parental strain, and we found that growth of the mutant was severely impaired both at 44 degrees C and in the presence of the tRNA analogue puromycin. Under both conditions, the level of misfolded protein is known to increase, and we propose that the heat-sensitive phenotype of the htrA mutant is caused by an accumulation of misfolded protein in the periplasm. Interestingly, we observed that the level of the molecular chaperones DnaK and ClpB was increased in the htrA mutant, suggesting that accumulation of non-native proteins in the periplasm induces the expression of cytoplasmic chaperones. While lack of HtrA reduces the oxygen tolerance of C. jejuni, the htrA mutant was not sensitive to compounds that increase the formation of oxygen radicals, such as paraquat, cumene hydroperoxide, and H2O2. Using tissue cultures of human epithelial cells (INT407), we found that the htrA mutant adhered to and invaded human epithelial cells with a decreased frequency compared to the wild-type strain. This defect may be a consequence of the observed altered morphology of the htrA mutant. Thus, our results suggest that in C. jejuni, HtrA is important for growth during stressful conditions and has an impact on virulence.
Collapse
Affiliation(s)
- Lone Brøndsted
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
44
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447491 DOI: 10.1002/cfg.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|