1
|
Perez-Boerema A, Engel BD, Wietrzynski W. Evolution of Thylakoid Structural Diversity. Annu Rev Cell Dev Biol 2024; 40:169-193. [PMID: 38950450 DOI: 10.1146/annurev-cellbio-120823-022747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.
Collapse
|
2
|
Grettenberger CL, Abou‐Shanab R, Hamilton TL. Limiting factors in the operation of photosystems I and II in cyanobacteria. Microb Biotechnol 2024; 17:e14519. [PMID: 39101352 PMCID: PMC11298993 DOI: 10.1111/1751-7915.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/16/2024] [Indexed: 08/06/2024] Open
Abstract
Cyanobacteria are important targets for biotechnological applications due to their ability to grow in a wide variety of environments, rapid growth rates, and tractable genetic systems. They and their bioproducts can be used as bioplastics, biofertilizers, and in carbon capture and produce important secondary metabolites that can be used as pharmaceuticals. However, the photosynthetic process in cyanobacteria can be limited by a wide variety of environmental factors such as light intensity and wavelength, exposure to UV light, nutrient limitation, temperature, and salinity. Carefully considering these limitations, modifying the environment, and/or selecting cyanobacterial species will allow cyanobacteria to be used in biotechnological applications.
Collapse
Affiliation(s)
- Christen L. Grettenberger
- Department of Earth and Planetary SciencesUniversity of California DavisDavisCaliforniaUSA
- Department of Environmental ToxicologyUniversity of California DavisDavisCaliforniaUSA
| | - Reda Abou‐Shanab
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Trinity L. Hamilton
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
- The Biotechnology Institute, University of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
3
|
Sato N, Endo M, Nishi H, Fujiwara S, Tsuzuki M. Polyphosphate-kinase-1 dependent polyphosphate hyperaccumulation for acclimation to nutrient loss in the cyanobacterium, Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2024; 15:1441626. [PMID: 39145186 PMCID: PMC11322815 DOI: 10.3389/fpls.2024.1441626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Polyphosphate is prevalent in living organisms. To obtain insights into polyphosphate synthesis and its physiological significance in cyanobacteria, we characterize sll0290, a homolog of the polyphosphate-kinase-1 gene, in the freshwater cyanobacterium Synechocystis sp. PCC 6803. The Sll0290 protein structure reveals characteristics of Ppk1. A Synechocystis sll0290 disruptant and sll0290-overexpressing Escherichia coli transformant demonstrated loss and gain of polyphosphate synthesis ability, respectively. Accordingly, sll0290 is identified as ppk1. The disruptant (Δppk1) grows normally with aeration of ordinary air (0.04% CO2), consistent with its photosynthesis comparable to the wild type level, which contrasts with a previously reported high-CO2 (5%) requirement for Δppk1 in an alkaline hot spring cyanobacterium, Synechococcus OS-B'. Synechocystis Δppk1 is defective in polyphosphate hyperaccumulation and survival competence at the stationary phase, and also under sulfur-starvation conditions, implying that sulfur limitation is one of the triggers to induce polyphosphate hyperaccumulation in stationary cells. Furthermore, Δppk1 is defective in the enhancement of total phosphorus contents under sulfur-starvation conditions, a phenomenon that is only partially explained by polyphosphate hyperaccumulation. This study therefore demonstrates that in Synechocystis, ppk1 is not essential for low-CO2 acclimation but plays a crucial role in dynamic P-metabolic regulation, including polyP hyperaccumulation, to maintain physiological fitness under sulfur-starvation conditions.
Collapse
Affiliation(s)
- Norihiro Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | | | | | | |
Collapse
|
4
|
Santin A, Collura F, Singh G, Morlino MS, Bizzotto E, Bellan A, Gupte AP, Favaro L, Campanaro S, Treu L, Morosinotto T. Deciphering the genetic landscape of enhanced poly-3-hydroxybutyrate production in Synechocystis sp. B12. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:101. [PMID: 39014484 PMCID: PMC11253406 DOI: 10.1186/s13068-024-02548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respectively. The cyanobacterium Synechocystis sp. B12 is an attractive candidate for its superior ability to accumulate high amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms behind PHB accumulation. RESULTS Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the possible candidates providing Synechocystis sp. B12 an advantage in growth under high-light conditions. Gene expression differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsible for the increased Synechocystis sp. B12 PHB production during nitrogen starvation. In both response to strong illumination and PHB accumulation, Synechocystis sp. B12 showed a metabolic modulation similar but more pronounced than the reference strain, yielding in better performances. CONCLUSIONS Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights for optimising the use of Synechocystis in economically viable and sustainable PHB production. In addition, this work supplies crucial knowledge about the metabolic processes involved in production and accumulation of these molecules, which can be seminal for the application to other microorganisms as well.
Collapse
Grants
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- Ministero dell’Istruzione, dell’Università e della Ricerca
- Università degli Studi di Padova
Collapse
Affiliation(s)
- Anna Santin
- Department of Biology, University of Padova, 35131, Padua, Italy.
| | - Flavio Collura
- Department of Biology, University of Padova, 35131, Padua, Italy
| | - Garima Singh
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Edoardo Bizzotto
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Ameya Pankaj Gupte
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
| | - Lorenzo Favaro
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Laura Treu
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | |
Collapse
|
5
|
Le VV, Tran QG, Ko SR, Oh HM, Ahn CY. Insights into cyanobacterial blooms through the lens of omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173028. [PMID: 38723963 DOI: 10.1016/j.scitotenv.2024.173028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Cyanobacteria are oxygen-producing photosynthetic bacteria that convert carbon dioxide into biomass upon exposure to sunlight. However, favorable conditions cause harmful cyanobacterial blooms (HCBs), which are the dense accumulation of biomass at the water surface or subsurface, posing threats to freshwater ecosystems and human health. Understanding the mechanisms underlying cyanobacterial bloom formation is crucial for effective management. In this regard, recent advancements in omics technologies have provided valuable insights into HCBs, which have raised expectations to develop more effective control methods in the near future. This literature review aims to present the genomic architecture, adaptive mechanisms, microbial interactions, and ecological impacts of HCBs through the lens of omics. Genomic analysis indicates that the genome plasticity of cyanobacteria has enabled their resilience and effective adaptation to environmental changes. Transcriptomic investigations have revealed that cyanobacteria use various strategies for adapting to environmental stress. Additionally, metagenomic and metatranscriptomic analyses have emphasized the significant role of the microbial community in regulating HCBs. Finally, we offer perspectives on potential opportunities for further research in this field.
Collapse
Affiliation(s)
- Ve Van Le
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | - So-Ra Ko
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
6
|
Kraus A, Spät P, Timm S, Wilson A, Schumann R, Hagemann M, Maček B, Hess WR. Protein NirP1 regulates nitrite reductase and nitrite excretion in cyanobacteria. Nat Commun 2024; 15:1911. [PMID: 38429292 PMCID: PMC10907346 DOI: 10.1038/s41467-024-46253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
When the supply of inorganic carbon is limiting, photosynthetic cyanobacteria excrete nitrite, a toxic intermediate in the ammonia assimilation pathway from nitrate. It has been hypothesized that the excreted nitrite represents excess nitrogen that cannot be further assimilated due to the missing carbon, but the underlying molecular mechanisms are unclear. Here, we identified a protein that interacts with nitrite reductase, regulates nitrogen metabolism and promotes nitrite excretion. The protein, which we named NirP1, is encoded by an unannotated gene that is upregulated under low carbon conditions and controlled by transcription factor NtcA, a central regulator of nitrogen homeostasis. Ectopic overexpression of nirP1 in Synechocystis sp. PCC 6803 resulted in a chlorotic phenotype, delayed growth, severe changes in amino acid pools, and nitrite excretion. Coimmunoprecipitation experiments indicated that NirP1 interacts with nitrite reductase, a central enzyme in the assimilation of ammonia from nitrate/nitrite. Our results reveal that NirP1 is widely conserved in cyanobacteria and plays a crucial role in the coordination of C/N primary metabolism by targeting nitrite reductase.
Collapse
Affiliation(s)
- Alexander Kraus
- Genetics and Experimental Bioinformatics, Faculty of Biology, Freiburg University, D-79104, Freiburg, Germany
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, D-72076, Tübingen, Germany
| | - Stefan Timm
- Plant Physiology Department, Institute of Biosciences, University of Rostock, D-18059, Rostock, Germany
| | - Amy Wilson
- Genetics and Experimental Bioinformatics, Faculty of Biology, Freiburg University, D-79104, Freiburg, Germany
| | - Rhena Schumann
- Biological Station Zingst, University of Rostock, D-18374, Zingst, Germany
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biosciences, University of Rostock, D-18059, Rostock, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, D-72076, Tübingen, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, Freiburg University, D-79104, Freiburg, Germany.
| |
Collapse
|
7
|
Liao J, Sun B, Wang C, Cao Z, Wu Z, An X, Liang Z, Huang X, Lu Y. Uptake and cellular responses of Microcystis aeruginosa to PFOS in various environmental conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116041. [PMID: 38350213 DOI: 10.1016/j.ecoenv.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/15/2024]
Abstract
Although PFOS has been banned as a persistent organic pollutant, it still exists in large quantities within the environment, thus impacting the health of aquatic ecosystems. Previous studies focused solely on high PFOS concentrations, disregarding the connection with environmental factors. To gain a more comprehensive understanding of the PFOS effects on aquatic ecosystems amidst changing environmental conditions, this study investigated the cellular responses of Microcystis aeruginosa to varying PFOS concentrations under heatwave and nutrient stress conditions. The results showed that PFOS concentrations exceeding 5.0 µg/L had obvious effects on multiple physiological responses of M. aeruginosa, resulting in the suppression of algal cell growth and the induction of oxidative damage. However, PFOS concentration at levels below 20.0 µg/L has been found to enhance the growth of algal cells and trigger significant oxidative damage under heatwave conditions. Heatwave conditions could enhance the uptake of PFOS in algal cells, potentially leading to heightened algal growth when PFOS concentration was equal to or less than 5.0 µg/L. Conversely, deficiency or limitation of nitrogen and phosphorus significantly decreased algal abundance and chlorophyll content, inducing severe oxidative stress that could be mitigated by exposure to PFOS. This study holds significance in managing the impact of PFOS on algal growth across diverse environmental conditions.
Collapse
Affiliation(s)
- Jieming Liao
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academic of Sciences, Beijing 100049, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academic of Sciences, Beijing 100049, China
| | - Zhiwei Cao
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zhaoyang Wu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xupeng An
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zi'an Liang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xinyi Huang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academic of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Guo Z, Li J, Luo D, Zhang M. Novel ecological implications of non-toxic Microcystis towards toxic ecotype in population-promoting toxic ecotype dominance at various N levels and cooperative defense against luteolin-stress. FEMS Microbiol Ecol 2023; 99:fiad138. [PMID: 37884453 DOI: 10.1093/femsec/fiad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Microcystin (MC)-producing (MC+) and MC-free (MC-) Microcystis always co-exist and interact during Microcystis-dominated cyanobacterial blooms (MCBs), where MC+Microcystis abundance and extracellular MC-content (EMC) determine the hazard extent of MCBs. The current study elucidated intraspecific interaction between MC+ and MC-Microcystis at various nitrogen (N) levels (0.5-50 mg/L) and how such N-mediated interaction impacted algicidal and EMC-inhibiting effect of luteolin, a natural bioalgicide. Conclusively, MC+ and MC-Microcystis were inhibited mutually at N-limitation (0.5 mg/L), which enhanced the algicidal and EMC-inhibiting effects of luteolin. However, at N-sufficiency (5-50 mg/L), MC-Microcystis promoted MC+ ecotype growth and dominance, and such intraspecific interaction induced the cooperative defense of two ecotypes, weakening luteolin's algicidal and EMC-inhibiting effects. Mechanism analyses further revealed that MC+Microcystis in luteolin-stress co-culture secreted exopolymeric substances (EPSs) for self-protection against luteolin-stress and also released more EMC to induce EPS-production by MC-Microcystis as protectants, thus enhancing their luteolin-resistance and promoting their growth. This study provided novel ecological implications of MC-Microcystis toward MC+ ecotype in terms of assisting the dominant establishment of MC+Microcystis and cooperative defense with MC+ ecotype against luteolin, which guided the application of bioalgicide (i.e. luteolin) for MCBs and MCs pollution mitigation in different eutrophication-degree waters.
Collapse
Affiliation(s)
- Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Di Luo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Mingxia Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Virkkala T, Kosourov S, Rissanen V, Siitonen V, Arola S, Allahverdiyeva Y, Tammelin T. Bioinspired mechanically stable all-polysaccharide based scaffold for photosynthetic production. J Mater Chem B 2023; 11:8788-8803. [PMID: 37668222 DOI: 10.1039/d3tb00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We demonstrate the construction of water-stable, biocompatible and self-standing hydrogels as scaffolds for the photosynthetic production of ethylene using a bioinspired all-polysaccharidic design combining TEMPO-oxidised cellulose nanofibers (TCNF) and a cereal plant hemicellulose called mixed-linkage glucan (MLG). We compared three different molecular weight MLGs from barley to increase the wet strength of TCNF hydrogels, and to reveal the mechanisms defining the favourable interactions between the scaffold components. The interactions between MLGs and TCNF were revealed via adsorption studies and interfacial rheology investigations using quartz crystal microbalance with dissipation monitoring (QCM-D). Our results show that both the MLG solution stability and adsorption behaviour did not exactly follow the well-known polymer adsorption and solubility theories especially in the presence of co-solute ions, in this case nitrates. We prepared hydrogel scaffolds for microalgal immobilisation, and high wet strength hydrogels were achieved with very low dosages of MLG (0.05 wt%) to the TCNF matrix. The all-polysaccharic biocatalytic architectures remained stable and produced ethylene for 120 h with yields comparable to the state-of-the-art scaffolds. Due to its natural origin and biodegradability, MLG offers a clear advantage in comparison to synthetic scaffold components, allowing the mechanical properties and water interactions to be tailored.
Collapse
Affiliation(s)
- Tuuli Virkkala
- VTT Technical Research Centre of Finland Ltd, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| | - Sergey Kosourov
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| | - Ville Rissanen
- VTT Technical Research Centre of Finland Ltd, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| | - Vilja Siitonen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| | - Suvi Arola
- VTT Technical Research Centre of Finland Ltd, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| |
Collapse
|
10
|
Huang C, Duan X, Ge H, Xiao Z, Zheng L, Wang G, Dong J, Wang Y, Zhang Y, Huang X, An H, Xu W, Wang Y. Parallel Proteomic Comparison of Mutants With Altered Carbon Metabolism Reveals Hik8 Regulation of P II Phosphorylation and Glycogen Accumulation in a Cyanobacterium. Mol Cell Proteomics 2023; 22:100582. [PMID: 37225018 PMCID: PMC10315926 DOI: 10.1016/j.mcpro.2023.100582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
Carbon metabolism is central to photosynthetic organisms and involves the coordinated operation and regulation of numerous proteins. In cyanobacteria, proteins involved in carbon metabolism are regulated by multiple regulators including the RNA polymerase sigma factor SigE, the histidine kinases Hik8, Hik31 and its plasmid-borne paralog Slr6041, and the response regulator Rre37. To understand the specificity and the cross-talk of such regulations, we simultaneously and quantitatively compared the proteomes of the gene knockout mutants for the regulators. A number of proteins showing differential expression in one or more mutants were identified, including four proteins that are unanimously upregulated or downregulated in all five mutants. These represent the important nodes of the intricate and elegant regulatory network for carbon metabolism. Moreover, serine phosphorylation of PII, a key signaling protein sensing and regulating in vivo carbon/nitrogen (C/N) homeostasis through reversible phosphorylation, is massively increased with a concomitant significant decrease in glycogen content only in the hik8-knockout mutant, which also displays impaired dark viability. An unphosphorylatable PII S49A substitution restored the glycogen content and rescued the dark viability of the mutant. Together, our study not only establishes the quantitative relationship between the targets and the corresponding regulators and elucidated their specificity and cross-talk but also unveils that Hik8 regulates glycogen accumulation through negative regulation of PII phosphorylation, providing the first line of evidence that links the two-component system with PII-mediated signal transduction and implicates them in the regulation of carbon metabolism.
Collapse
Affiliation(s)
- Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu An
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Burkhardt M, Rapp J, Menzel C, Link H, Forchhammer K. The Global Influence of Sodium on Cyanobacteria in Resuscitation from Nitrogen Starvation. BIOLOGY 2023; 12:biology12020159. [PMID: 36829438 PMCID: PMC9952445 DOI: 10.3390/biology12020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Dormancy and resuscitation are key to bacterial survival under fluctuating environmental conditions. In the absence of combined nitrogen sources, the non-diazotrophic model cyanobacterium Synechocystis sp. PCC 6803 enters into a metabolically quiescent state during a process termed chlorosis. This state enables the cells to survive until nitrogen sources reappear, whereupon the cells resuscitate in a process that follows a highly orchestrated program. This coincides with a metabolic switch into a heterotrophic-like mode where glycogen catabolism provides the cells with reductant and carbon skeletons for the anabolic reactions that serve to re-establish a photosynthetically active cell. Here we show that the entire resuscitation process requires the presence of sodium, a ubiquitous cation that has a broad impact on bacterial physiology. The requirement for sodium in resuscitating cells persists even at elevated CO2 levels, a condition that, by contrast, relieves the requirement for sodium ions in vegetative cells. Using a multi-pronged approach, including the first metabolome analysis of Synechocystis cells resuscitating from chlorosis, we reveal the involvement of sodium at multiple levels. Not only does sodium play a role in the bioenergetics of chlorotic cells, as previously shown, but it is also involved in nitrogen compound assimilation, pH regulation, and synthesis of key metabolites.
Collapse
Affiliation(s)
- Markus Burkhardt
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Johanna Rapp
- CMFI, Bacterial Metabolomics, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Claudia Menzel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Hannes Link
- CMFI, Bacterial Metabolomics, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
12
|
Díez J, López-Lozano A, Domínguez-Martín MA, Gómez-Baena G, Muñoz-Marín MC, Melero-Rubio Y, García-Fernández JM. Regulatory and metabolic adaptations in the nitrogen assimilation of marine picocyanobacteria. FEMS Microbiol Rev 2023; 47:6794272. [PMID: 36323406 DOI: 10.1093/femsre/fuac043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Prochlorococcus and Synechococcus are the two most abundant photosynthetic organisms on Earth, with a strong influence on the biogeochemical carbon and nitrogen cycles. Early reports demonstrated the streamlining of regulatory mechanisms in nitrogen metabolism and the removal of genes not strictly essential. The availability of a large series of genomes, and the utilization of latest generation molecular techniques have allowed elucidating the main mechanisms developed by marine picocyanobacteria to adapt to the environments where they thrive, with a particular interest in the strains inhabiting oligotrophic oceans. Given that nitrogen is often limited in those environments, a series of studies have explored the strategies utilized by Prochlorococcus and Synechococcus to exploit the low concentrations of nitrogen-containing molecules available in large areas of the oceans. These strategies include the reduction in the GC and the cellular protein contents; the utilization of truncated proteins; a reduced average amount of N in the proteome; the development of metabolic mechanisms to perceive and utilize nanomolar nitrate concentrations; and the reduced responsiveness of key molecular regulatory systems such as NtcA to 2-oxoglutarate. These findings are in sharp contrast with the large body of knowledge obtained in freshwater cyanobacteria. We will outline the main discoveries, stressing their relevance to the ecological success of these important microorganisms.
Collapse
Affiliation(s)
- J Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - A López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M A Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - G Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M C Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - Y Melero-Rubio
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - J M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| |
Collapse
|
13
|
Mechanisms of Stress Tolerance in Cyanobacteria under Extreme Conditions. STRESSES 2022. [DOI: 10.3390/stresses2040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanobacteria are oxygen-evolving photoautotrophs with worldwide distribution in every possible habitat, and they account for half of the global primary productivity. Because of their ability to thrive in a hostile environment, cyanobacteria are categorized as “extremophiles”. They have evolved a fascinating repository of distinct secondary metabolites and biomolecules to promote their development and survival in various habitats, including severe conditions. However, developing new proteins/enzymes and metabolites is mostly directed by an appropriate gene regulation system that results in stress adaptations. However, only few proteins have been characterized to date that have the potential to improve resistance against abiotic stresses. As a result, studying environmental stress responses to post-genomic analysis, such as proteome changes using latest structural proteomics and synthetic biology techniques, is critical. In this regard, scientists working on these topics will benefit greatly from the stress of proteomics research. Progress in these disciplines will aid in understanding cyanobacteria’s physiology, biochemical, and metabolic systems. This review summarizes the most recent key findings of cyanobacterial proteome study under various abiotic stresses and the application of secondary metabolites formed during different abiotic conditions.
Collapse
|
14
|
Xiao M, Burford MA, Wood SA, Aubriot L, Ibelings BW, Prentice MJ, Galvanese EF, Harris TD, Hamilton DP. Schindler's legacy: from eutrophic lakes to the phosphorus utilization strategies of cyanobacteria. FEMS Microbiol Rev 2022; 46:fuac029. [PMID: 35749580 PMCID: PMC9629505 DOI: 10.1093/femsre/fuac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms.
Collapse
Affiliation(s)
- Man Xiao
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, 210008, China
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, 7010, New Zealand
| | - Luis Aubriot
- Phytoplankton Physiology and Ecology Group, Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias; Universidad de la República, Montevideo, 11400, Uruguay
| | - Bas W Ibelings
- Department F.-A. Forel for Aquatic and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Geneva, 1290, Switzerland
| | - Matthew J Prentice
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Elena F Galvanese
- Laboratório de Análise e Síntese em Biodiversidade, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 81531-998, Brazil
- Programa de Pós-graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 80060-140, Brazil
| | - Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, Lawrence, KS, 66047, United States
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
15
|
Eungrasamee K, Lindblad P, Jantaro S. Enhanced productivity of extracellular free fatty acids by gene disruptions of acyl-ACP synthetase and S-layer protein in Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:99. [PMID: 36153604 PMCID: PMC9509626 DOI: 10.1186/s13068-022-02197-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Background Based on known metabolic response to excess free fatty acid (FFA) products, cyanobacterium Synechocystis sp. PCC 6803 preferentially both recycles via FFA recycling process and secrets them into medium. Engineered cyanobacteria with well growth and highly secreted FFA capability are considered best resources for biofuel production and sustainable biotechnology. In this study, to achieve the higher FFA secretion goal, we successfully constructs Synechocystis sp. PCC 6803 mutants disrupting genes related to FFA recycling reaction (aas gene encoding acyl–acyl carrier protein synthetase), and surface layer protein (encoded by sll1951). Results Three Synechocystis sp. PCC 6803 engineered strains, including two single mutants lacking aas (KA) and sll1951 (KS), and one double mutant lacking both aas and sll1951 (KAS), significantly secreted FFAs higher than that of wild type (WT). Certain increase of secreted FFAs was noted when cells were exposed to nitrogen-deficient conditions, BG11-half N and BG11-N conditions, with the exception of strain KS. Under BG11-N condition at day 10, strain KAS strikingly secreted FFAs products up to 40%w/DCW or 238.1 mg/L, with trace amounts of PHB. Unexpectedly, strain KS, with S-layer disruption, appeared to have endured longer in BG11-N growth medium. This strain KS significantly acclimated to the BG11-N environment by accumulating a greater glycogen pool with lower FFA production, whereas strain KA favored higher PHB and intracellular lipid accumulations with moderate FFA secretion. Conclusions Mutations of both aas and sll1951 genes in Synechocystis sp. PCC 6803 significantly improved the productivity of secreted FFAs, especially under nitrogen deprivation.
Collapse
|
16
|
Yilimulati M, Zhou L, Shevela D, Zhang S. Acetylacetone Interferes with Carbon and Nitrogen Metabolism of Microcystis aeruginosa by Cutting Off the Electron Flow to Ferredoxin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9683-9692. [PMID: 35696645 DOI: 10.1021/acs.est.2c00776] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of photosynthetic machinery with a nonoxidative approach is a powerful but challenging strategy for the selective inhibition of bloom-forming cyanobacteria. Acetylacetone (AA) was recently found to be a target-selective cyanocide for Microcystis aeruginosa, but the cause and effect in the studied system are still unclear. By recording of the chemical fingerprints of the cells at two treatment intervals (12 and 72 h with 0.1 mM AA) with omics assays, the molecular mechanism of AA in inactivating Microcystis aeruginosa was elucidated. The results clearly reveal the effect of AA on ferredoxin and the consequent effects on the physiological and biochemical processes of Microcystis aeruginosa. In addition to its role as an electron acceptor of photosystem I, ferredoxin plays pivotal roles in the assimilation of nitrogen in cyanobacterial cells. The effect of AA on ferredoxin and on nonheme iron of photosystem II first cut off the photosynthetic electron transfer flow and then interrupted the synthesis of adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), which ultimately might affect carbon fixation and nitrogen assimilation metabolisms. The results here provide missing pieces in the current knowledge on the selective inhibition of cyanobacteria, which should shed light on the better control of harmful blooms.
Collapse
Affiliation(s)
- Mihebai Yilimulati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187 Umeå, Sweden
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
17
|
Wang J, Wagner ND, Fulton JM, Scott JT. Dynamic Phycobilin Pigment Variations in Diazotrophic and Non-diazotrophic Cyanobacteria Batch Cultures Under Different Initial Nitrogen Concentrations. Front Microbiol 2022; 13:850997. [PMID: 35722313 PMCID: PMC9201475 DOI: 10.3389/fmicb.2022.850997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/26/2022] [Indexed: 11/15/2022] Open
Abstract
Increased anthropogenic nutrient loading has led to eutrophication of aquatic ecosystems, which is the major cause of harmful cyanobacteria blooms. Element stoichiometry of cyanobacteria bloom is subject to nutrient availabilities and may significantly contribute to primary production and biogeochemical cycling. Phycobilisome is the antenna of the photosynthetic pigment apparatus in cyanobacteria, which contains phycobilin pigments (PBPs) and linker proteins. This nitrogen (N)-rich protein complex has the potential to support growth as a N-storage site and may play a major role in the variability of cyanobacteria N stoichiometry. However, the regulation of PBPs during bloom formation remains unclear. We investigated the temporal variation of N allocation into PBPs and element stoichiometry for two ubiquitous cyanobacteria species, Microcystis aeruginosa and Dolichospermum flos-aquae, in a batch culture experiment with different initial N availabilities. Our results indicated that the N allocation into PBPs is species-dependent and tightly regulated by the availability of nutrients fueling population expansion. During the batch culture experiment, different nutrient uptake rates led to distinct stoichiometric imbalances of N and phosphorus (P), which substantially altered cyanobacteria C: N and C: P stoichiometry. Microcystis invested cellular N into PBPs and exhibited greater flexibility in C: N and C: P stoichiometry than D. flos-aquae. The dynamics of such N-rich macromolecules may help explain the N stoichiometry variation during a bloom and the interspecific difference between M. aeruginosa and D. flos-aquae. Our study provides a quantitative understanding of the elemental stoichiometry and the regulation of PBPs for non-diazotrophic and diazotrophic cyanobacteria blooms.
Collapse
Affiliation(s)
- Jingyu Wang
- The Institute of Ecological, Earth & Environmental Sciences, Baylor University, Waco, TX, United States
- *Correspondence: Jingyu Wang,
| | - Nicole D. Wagner
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - James M. Fulton
- Department of Geosciences, Baylor University, Waco, TX, United States
| | - J. Thad Scott
- The Institute of Ecological, Earth & Environmental Sciences, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
- Department of Biology, Baylor University, Waco, TX, United States
| |
Collapse
|
18
|
Bandyopadhyay A, Ye Z, Benedikty Z, Trtilek M, Pakrasi HB. Antenna Modification Leads to Enhanced Nitrogenase Activity in a High Light-Tolerant Cyanobacterium. mBio 2021; 12:e0340821. [PMID: 34933453 PMCID: PMC8689445 DOI: 10.1128/mbio.03408-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/11/2023] Open
Abstract
Biological nitrogen fixation is an energy-intensive process that contributes significantly toward supporting life on this planet. Among nitrogen-fixing organisms, cyanobacteria remain unrivaled in their ability to fuel the energetically expensive nitrogenase reaction with photosynthetically harnessed solar energy. In heterocystous cyanobacteria, light-driven, photosystem I (PSI)-mediated ATP synthesis plays a key role in propelling the nitrogenase reaction. Efficient light transfer to the photosystems relies on phycobilisomes (PBS), the major antenna protein complexes. PBS undergo degradation as a natural response to nitrogen starvation. Upon nitrogen availability, these proteins are resynthesized back to normal levels in vegetative cells, but their occurrence and function in heterocysts remain inconclusive. Anabaena 33047 is a heterocystous cyanobacterium that thrives under high light, harbors larger amounts of PBS in its heterocysts, and fixes nitrogen at higher rates compared to other heterocystous cyanobacteria. To assess the relationship between PBS in heterocysts and nitrogenase function, we engineered a strain that retains large amounts of the antenna proteins in its heterocysts. Intriguingly, under high light intensities, the engineered strain exhibited unusually high rates of nitrogenase activity compared to the wild type. Spectroscopic analysis revealed altered PSI kinetics in the mutant with increased cyclic electron flow around PSI, a route that contributes to ATP generation and nitrogenase activity in heterocysts. Retaining higher levels of PBS in heterocysts appears to be an effective strategy to enhance nitrogenase function in cyanobacteria that are equipped with the machinery to operate under high light intensities. IMPORTANCE The function of phycobilisomes, the large antenna protein complexes in heterocysts has long been debated. This study provides direct evidence of the involvement of these proteins in supporting nitrogenase activity in Anabaena 33047, a heterocystous cyanobacterium that has an affinity for high light intensities. This strain was previously known to be recalcitrant to genetic manipulation and, hence, despite its many appealing traits, remained largely unexplored. We developed a genetic modification system for this strain and generated a ΔnblA mutant that exhibited resistance to phycobilisome degradation upon nitrogen starvation. Physiological characterization of the strain indicated that PBS degradation is not essential for acclimation to nitrogen deficiency and retention of PBS is advantageous for nitrogenase function.
Collapse
Affiliation(s)
| | - Zi Ye
- Department of Biology, Washington University, St. Louis, Missouri, USA
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | |
Collapse
|
19
|
Andrews F, Faulkner M, Toogood HS, Scrutton NS. Combinatorial use of environmental stresses and genetic engineering to increase ethanol titres in cyanobacteria. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:240. [PMID: 34920731 PMCID: PMC8684110 DOI: 10.1186/s13068-021-02091-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/05/2021] [Indexed: 06/07/2023]
Abstract
Current industrial bioethanol production by yeast through fermentation generates carbon dioxide. Carbon neutral bioethanol production by cyanobacteria uses biological fixation (photosynthesis) of carbon dioxide or other waste inorganic carbon sources, whilst being sustainable and renewable. The first ethanologenic cyanobacterial process was developed over two decades ago using Synechococcus elongatus PCC 7942, by incorporating the recombinant pdc and adh genes from Zymomonas mobilis. Further engineering has increased bioethanol titres 24-fold, yet current levels are far below what is required for industrial application. At the heart of the problem is that the rate of carbon fixation cannot be drastically accelerated and carbon partitioning towards bioethanol production impacts on cell fitness. Key progress has been achieved by increasing the precursor pyruvate levels intracellularly, upregulating synthetic genes and knocking out pathways competing for pyruvate. Studies have shown that cyanobacteria accumulate high proportions of carbon reserves that are mobilised under specific environmental stresses or through pathway engineering to increase ethanol production. When used in conjunction with specific genetic knockouts, they supply significantly more carbon for ethanol production. This review will discuss the progress in generating ethanologenic cyanobacteria through chassis engineering, and exploring the impact of environmental stresses on increasing carbon flux towards ethanol production.
Collapse
Affiliation(s)
- Fraser Andrews
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Matthew Faulkner
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Helen S Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
- C3 Biotechnologies Ltd, 20 Mannin Way, Lancaster Business Park, Caton Road, Lancaster, LA1 3SW, Lancashire, UK.
| |
Collapse
|
20
|
Shabestary K, Hernández HP, Miao R, Ljungqvist E, Hallman O, Sporre E, Branco Dos Santos F, Hudson EP. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metab Eng 2021; 68:131-141. [PMID: 34601120 DOI: 10.1016/j.ymben.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 01/23/2023]
Abstract
Decoupling growth from product synthesis is a promising strategy to increase carbon partitioning and maximize productivity in cell factories. However, reduction in both substrate uptake rate and metabolic activity in the production phase are an underlying problem for upscaling. Here, we used CRISPR interference to repress growth in lactate-producing Synechocystis sp. PCC 6803. Carbon partitioning to lactate in the production phase exceeded 90%, but CO2 uptake was severely reduced compared to uptake during the growth phase. We characterized strains during the onset of growth arrest using transcriptomics and proteomics. Multiple genes involved in ATP homeostasis were regulated once growth was inhibited, which suggests an alteration of energy charge that may lead to reduced substrate uptake. In order to overcome the reduced metabolic activity and take advantage of increased carbon partitioning, we tested a novel production strategy that involved alternating growth arrest and recovery by periodic addition of an inducer molecule to activate CRISPRi. Using this strategy, we maintained lactate biosynthesis in Synechocystis for 30 days in a constant light turbidostat cultivation. Cumulative lactate titers were also increased by 100% compared to a constant growth-arrest regime, and reached 1 g/L. Further, the cultivation produced lactate for 30 days, compared to 20 days for the non-growth arrest cultivation. Periodic growth arrest could be applicable for other products, and in cyanobacteria, could be linked to internal circadian rhythms that persist in constant light.
Collapse
Affiliation(s)
- Kiyan Shabestary
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hugo Pineda Hernández
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Rui Miao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Ljungqvist
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Olivia Hallman
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Sporre
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
21
|
Li X, Liang Y, Li K, Jin P, Tang J, Klepacz-Smółka A, Ledakowicz S, Daroch M. Effects of Low Temperature, Nitrogen Starvation and Their Combination on the Photosynthesis and Metabolites of Thermosynechococcus E542: A Comparison Study. PLANTS 2021; 10:plants10102101. [PMID: 34685910 PMCID: PMC8537721 DOI: 10.3390/plants10102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Both low temperature and nitrogen starvation caused chlorosis of cyanobacteria. Here, in this study, for the first time, we compared the effects of low temperature, nitrogen starvation, and their combination on the photosynthesis and metabolites of a thermophilic cyanobacterium strain, Thermosynechococcus E542. Under various culture conditions, the growth rates, pigment contents, and chlorophyll fluorescence were monitored, and the composition of alkanes, lipidomes, and carbohydrates were determined. It was found that low temperature (35 °C) significantly suppressed the growth of Thermosynechococcus E542. Nitrogen starvation at 45 °C and 55 °C did not affect the growth; however, combined treatment of low temperature and nitrogen starvation led to the lowest growth rate and biomass productivity. Both low temperature and nitrogen starvation caused significantly declined contents of pigments, but they resulted in a different effect on the OJIP curves, and their combination led to the lowest pigment contents. The composition of fatty acids and alkanes was altered upon low-temperature cultivation, while nitrogen starvation caused reduced contents of all lipids. The low temperature did not affect carbohydrate contents, while nitrogen starvation greatly enhanced carbohydrate content, and their combination did not enhance carbohydrate content, but led to reduced productivity. These results revealed the influence of low temperature, nitrogen starvation, and their combined treatment for the accumulation of phycobiliproteins, lipids, and carbohydrates of a thermophilic cyanobacterium strain, Thermosynechococcus E542.
Collapse
Affiliation(s)
- Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (X.L.); (Y.L.); (K.L.); (P.J.)
- Department School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (X.L.); (Y.L.); (K.L.); (P.J.)
| | - Kai Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (X.L.); (Y.L.); (K.L.); (P.J.)
| | - Peng Jin
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (X.L.); (Y.L.); (K.L.); (P.J.)
| | - Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China;
| | - Anna Klepacz-Smółka
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland; (A.K.-S.); (S.L.)
| | - Stanislaw Ledakowicz
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland; (A.K.-S.); (S.L.)
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (X.L.); (Y.L.); (K.L.); (P.J.)
- Correspondence: ; Tel.: +86-0755-26032184
| |
Collapse
|
22
|
Kharwar S, Bhattacharjee S, Chakraborty S, Mishra AK. Regulation of sulfur metabolism, homeostasis and adaptive responses to sulfur limitation in cyanobacteria. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00819-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Discovery of a small protein factor involved in the coordinated degradation of phycobilisomes in cyanobacteria. Proc Natl Acad Sci U S A 2021; 118:2012277118. [PMID: 33509926 PMCID: PMC7865187 DOI: 10.1073/pnas.2012277118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During genome analysis, genes encoding small proteins are frequently neglected. Accordingly, small proteins have remained underinvestigated in all domains of life. Based on a previous systematic search for such genes, we present the functional analysis of the 66 amino acids protein NblD in a photosynthetic cyanobacterium. We show that NblD plays a crucial role during the coordinated dismantling of phycobilisome light-harvesting complexes. This disassembly is triggered when the cells become starved for nitrogen, a condition that frequently occurs in nature. Similar to NblA that tags phycobiliproteins for proteolysis, NblD binds to phycocyanin polypeptides but has a different function. The results show that, even in a well-investigated process, crucial new players can be discovered if small proteins are taken into consideration. Phycobilisomes are the major pigment–protein antenna complexes that perform photosynthetic light harvesting in cyanobacteria, rhodophyte, and glaucophyte algae. Up to 50% of the cellular nitrogen can be stored in their giant structures. Accordingly, upon nitrogen depletion, phycobilisomes are rapidly degraded following an intricate genetic program. Here, we describe the role of NblD, a cysteine-rich, small protein in this process in cyanobacteria. Deletion of the nblD gene in the cyanobacterium Synechocystis sp. PCC 6803 prevented the degradation of phycobilisomes, leading to a nonbleaching (nbl) phenotype, which could be complemented by a plasmid-localized gene copy. Competitive growth experiments between the ΔnblD and the wild-type strain provided direct evidence for the physiological importance of NblD under nitrogen-limited conditions. Ectopic expression of NblD under nitrogen-replete conditions showed no effect, in contrast to the unrelated proteolysis adaptors NblA1 and NblA2, which can trigger phycobilisome degradation. Transcriptome analysis indicated increased nblA1/2 transcript levels in the ΔnblD strain during nitrogen starvation, implying that NblD does not act as a transcriptional (co)regulator. However, immunoprecipitation and far-western experiments identified the chromophorylated (holo form) of the phycocyanin β-subunit (CpcB) as its target, while apo-CpcB was not bound. The addition of recombinant NblD to isolated phycobilisomes caused a reduction in phycocyanin absorbance and a broadening and shifting of the peak to lower wavelengths, indicating the occurrence of structural changes. These data demonstrate that NblD plays a crucial role in the coordinated dismantling of phycobilisomes and add it as a factor to the genetically programmed response to nitrogen starvation.
Collapse
|
24
|
Neumann N, Doello S, Forchhammer K. Recovery of Unicellular Cyanobacteria from Nitrogen Chlorosis: A Model for Resuscitation of Dormant Bacteria. Microb Physiol 2021; 31:78-87. [PMID: 33878759 DOI: 10.1159/000515742] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/06/2021] [Indexed: 11/19/2022]
Abstract
Nitrogen starvation induces developmental transitions in cyanobacteria. Whereas complex multicellular cyanobacteria of the order Nostocales can differentiate specialized cells that perform nitrogen fixation in the presence of oxygenic photosynthesis, non-diazotrophic unicellular strains, such as Synechococcus elongatus or Synechocystis PCC 6803, undergo a transition into a dormant non-growing state. Due to loss of pigments during this acclimation, the process is termed chlorosis. Cells maintain viability in this state for prolonged periods of time, until they encounter a useable nitrogen source, which triggers a highly coordinated awakening process, termed resuscitation. The minimal set of cellular activity that maintains the viability of cells during chlorosis and ensures efficient resuscitation represents the organism's equivalent of the BIOS, the basic input/output system of a computer, that helps "booting" the operation system after switching on. This review summarizes the recent research in the resuscitation of cyanobacteria, representing a powerful model for the awakening of dormant bacteria.
Collapse
Affiliation(s)
- Niels Neumann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sofia Doello
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Chakraborty S, Mishra AK. Effects of zinc toxicity on the nitrogen-fixing cyanobacterium Anabaena sphaerica-ultastructural, physiological and biochemical analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12882-1. [PMID: 33638788 DOI: 10.1007/s11356-021-12882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The current study describes the mechanisms of zinc toxicity in the cyanobacterium Anabaena sphaerica after eight days treatment with 10 mg L-1 ZnCl2. The application of zinc not only showed elevated accumulation of the metal inside the cells but also exhibited devastating impacts on the cell numbers, morphology, and ultrastructure of A. sphaerica. The effects of zinc on the pigments contents, oxygen evolution rate, Fv/Fm, electron transport rate, and carbohydrate content were also evaluated in A. sphaerica. Moreover, zinc adversely affected nutrient uptake and the cellular energy budget in the test cyanobacterium which in turn hampered heterocyst development and nitrogen fixation. Alongside, the cyanobacterium experienced zinc-mediated non-competitive inhibition of glutamine synthetase activity, curtailed synthesis of amino acids and proteins. Furthermore, drastically reduced total lipid and increased unsaturated lipid contents were also the prominent characteristics of zinc stressed A. sphaerica. Most importantly, zinc stress caused severe damages to the protein, lipid, and DNA by triggering hydrogen peroxide generation and accumulation of oxidized glutathione. Therefore, excess zinc is highly toxic to the cyanobacterium A. sphaerica, and the mechanisms of its toxicity followed a cascade of events including oxidative stress mediated geopardisation of growth and ultrastructure, metabolic derangements, and macromolecular damages.
Collapse
Affiliation(s)
| | - Arun Kumar Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
26
|
Wang Y, Liao S, Gai Y, Liu G, Jin T, Liu H, Gram L, Strube ML, Fan G, Sahu SK, Liu S, Gan S, Xie Z, Kong L, Zhang P, Liu X, Wang DZ. Metagenomic Analysis Reveals Microbial Community Structure and Metabolic Potential for Nitrogen Acquisition in the Oligotrophic Surface Water of the Indian Ocean. Front Microbiol 2021; 12:518865. [PMID: 33679623 PMCID: PMC7935530 DOI: 10.3389/fmicb.2021.518865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
Despite being the world’s third largest ocean, the Indian Ocean is one of the least studied and understood with respect to microbial diversity as well as biogeochemical and ecological functions. In this study, we investigated the microbial community and its metabolic potential for nitrogen (N) acquisition in the oligotrophic surface waters of the Indian Ocean using a metagenomic approach. Proteobacteria and Cyanobacteria dominated the microbial community with an average 37.85 and 23.56% of relative abundance, respectively, followed by Bacteroidetes (3.73%), Actinobacteria (1.69%), Firmicutes (0.76%), Verrucomicrobia (0.36%), and Planctomycetes (0.31%). Overall, only 24.3% of functional genes were common among all sampling stations indicating a high level of gene diversity. However, the presence of 82.6% common KEGG Orthology (KOs) in all samples showed high functional redundancy across the Indian Ocean. Temperature, phosphate, silicate and pH were important environmental factors regulating the microbial distribution in the Indian Ocean. The cyanobacterial genus Prochlorococcus was abundant with an average 17.4% of relative abundance in the surface waters, and while 54 Prochlorococcus genomes were detected, 53 were grouped mainly within HLII clade. In total, 179 of 234 Prochlorococcus sequences extracted from the global ocean dataset were clustered into HL clades and exhibited less divergence, but 55 sequences of LL clades presented more divergence exhibiting different branch length. The genes encoding enzymes related to ammonia metabolism, such as urease, glutamate dehydrogenase, ammonia transporter, and nitrilase presented higher abundances than the genes involved in inorganic N assimilation in both microbial community and metagenomic Prochlorococcus population. Furthermore, genes associated with dissimilatory nitrate reduction, denitrification, nitrogen fixation, nitrification and anammox were absent in metagenome Prochlorococcus population, i.e., nitrogenase and nitrate reductase. Notably, the de novo biosynthesis pathways of six different amino acids were incomplete in the metagenomic Prochlorococcus population and Prochlorococcus genomes, suggesting compensatory uptake of these amino acids from the environment. These results reveal the features of the taxonomic and functional structure of the Indian Ocean microbiome and their adaptive strategies to ambient N deficiency in the oligotrophic ocean.
Collapse
Affiliation(s)
- Yayu Wang
- BGI-Shenzhen, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuilin Liao
- BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Yingbao Gai
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Guilin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Jin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | | | | | - Zhangxian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lingfen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
27
|
Madsen MA, Hamilton G, Herzyk P, Amtmann A. Environmental Regulation of PndbA600, an Auto-Inducible Promoter for Two-Stage Industrial Biotechnology in Cyanobacteria. Front Bioeng Biotechnol 2021; 8:619055. [PMID: 33542914 PMCID: PMC7853294 DOI: 10.3389/fbioe.2020.619055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes being developed as sustainable platforms that use renewable resources (light, water, and air) for diverse applications in energy, food, environment, and medicine. Despite the attractive promise that cyanobacteria offer to industrial biotechnology, slow growth rates pose a major challenge in processes which typically require large amounts of biomass and are often toxic to the cells. Two-stage cultivation strategies are an attractive solution to prevent any undesired growth inhibition by de-coupling biomass accumulation (stage I) and the industrial process (stage II). In cyanobacteria, two-stage strategies involve costly transfer methods between stages I and II, and little work has been focussed on using the distinct growth and stationary phases of batch cultures to autoregulate stage transition. In the present study, we identified and characterised a growth phase-specific promoter, which can serve as an auto-inducible switch to regulate two-stage bioprocesses in cyanobacteria. First, growth phase-specific genes were identified from a new RNAseq dataset comparing two growth phases and six nutrient conditions in Synechocystis sp. PCC 6803, including two new transcriptomes for low Mg and low K. A type II NADH dehydrogenase (ndbA) showed robust induction when the cultures transitioned from exponential to stationary phase growth. Behaviour of a 600-bp promoter sequence (PndbA600) was then characterised in detail following the expression of PndbA600:GFP in Synechococcus sp. PCC 7002. Culture density and growth media analyses showed that PndbA600 activation was not dependent on increases in culture density per se but on N availability and on another activating factor present in the spent media of stationary phase cultures (Factor X). PndbA600 deactivation was dependent on the changes in culture density and in either N availability or Factor X. Electron transport inhibition studies revealed a photosynthesis-specific enhancement of active PndbA600 levels. Our findings are summarised in a model describing the environmental regulation of PndbA600, which can now inform the rational design of two-stage industrial processes in cyanobacteria.
Collapse
Affiliation(s)
- Mary Ann Madsen
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Graham Hamilton
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Pawel Herzyk
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom.,Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Amtmann
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
28
|
D'Agostino PM, Yeung ACY, Poljak A, David Waite T, Neilan BA. Comparative proteomics of the toxigenic diazotroph Raphidiopsis raciborskii (cyanobacteria) in response to iron. Environ Microbiol 2020; 23:405-414. [PMID: 33200490 DOI: 10.1111/1462-2920.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
Raphidiopsis raciborskii is an invasive bloom-forming cyanobacteria with the flexibility to utilize atmospheric and fixed nitrogen. Since nitrogen-fixation has a high requirement for iron as an ezyme cofactor, we hypothesize that iron availability would determine the success of the species under nitrogen-fixing conditions. This study compares the proteomic response of cylindrospermopsin-producing and non-toxic strains of R. racibroskii to reduced iron concentrations, under nitrogen-fixing conditions, to examine any strain-specific adaptations that might increase fitness under these conditions. We also compared their proteomic responses at exponential and stationary growth phases to capture the changes throughout the growth cycle. Overall, the toxic strain was more competitive under Fe-starved conditions during exponential phase, with upregulated growth and transport-related proteins. The non-toxic strain showed reduced protein expression across multiple primary metabolism pathways. We propose that the increased expression of porin proteins during the exponential growth phase enables toxic strains to persist under Fe-starved conditions with this ability providing a potential explanation for the increased fitness of cylindrospermoipsin-producing strains during unfavourable environmental conditions.
Collapse
Affiliation(s)
- Paul M D'Agostino
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.,Chair of Technical Biochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Anna C Y Yeung
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.,School of Civil and Environmental Engineering, UNSW, Sydney, NSW, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, UNSW, Sydney, NSW, Australia
| | - Trevor David Waite
- School of Civil and Environmental Engineering, UNSW, Sydney, NSW, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.,School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
29
|
Rachedi R, Foglino M, Latifi A. Stress Signaling in Cyanobacteria: A Mechanistic Overview. Life (Basel) 2020; 10:life10120312. [PMID: 33256109 PMCID: PMC7760821 DOI: 10.3390/life10120312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are highly diverse, widely distributed photosynthetic bacteria inhabiting various environments ranging from deserts to the cryosphere. Throughout this range of niches, they have to cope with various stresses and kinds of deprivation which threaten their growth and viability. In order to adapt to these stresses and survive, they have developed several global adaptive responses which modulate the patterns of gene expression and the cellular functions at work. Sigma factors, two-component systems, transcriptional regulators and small regulatory RNAs acting either separately or collectively, for example, induce appropriate cyanobacterial stress responses. The aim of this review is to summarize our current knowledge about the diversity of the sensors and regulators involved in the perception and transduction of light, oxidative and thermal stresses, and nutrient starvation responses. The studies discussed here point to the fact that various stresses affecting the photosynthetic capacity are transduced by common mechanisms.
Collapse
|
30
|
Sandrini G, Piel T, Xu T, White E, Qin H, Slot PC, Huisman J, Visser PM. Sensitivity to hydrogen peroxide of the bloom-forming cyanobacterium Microcystis PCC 7806 depends on nutrient availability. HARMFUL ALGAE 2020; 99:101916. [PMID: 33218441 DOI: 10.1016/j.hal.2020.101916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Application of low concentrations of hydrogen peroxide (H2O2) is a relatively new and promising method to selectively suppress harmful cyanobacterial blooms, while minimizing effects on eukaryotic organisms. However, it is still unknown how nutrient limitation affects the sensitivity of cyanobacteria to H2O2. In this study, we compare effects of H2O2 on the microcystin-producing cyanobacterium Microcystis PCC 7806 under light-limited but nutrient-replete conditions, nitrogen (N) limitation and phosphorus (P) limitation. Microcystis was first grown in chemostats to acclimate to these different experimental conditions, and subsequently transferred to batch cultures where they were treated with a range of H2O2 concentrations (0-10 mg L-1) while exposed to high light (100 µmol photons m-2 s-1) or low light (15 µmol photons m-2 s-1). Our results show that, at low light, N- and P-limited Microcystis were less sensitive to H2O2 than light-limited but nutrient-replete Microcystis. A significantly higher expression of the genes encoding for anti-oxidative stress enzymes (2-cys-peroxiredoxin, thioredoxin A and type II peroxiredoxin) was observed prior to and after the H2O2 treatment for both N- and P-limited Microcystis, which may explain their increased resistance against H2O2. At high light, Microcystis was more sensitive to H2O2 than at low light, and differences in the decline of the photosynthetic yield between nutrient-replete and nutrient-limited Microcystis exposed to H2O2 were less pronounced. Leakage of microcystin was stronger and faster from nutrient-replete than from N- and P-limited Microcystis. Overall, this study provides insight in the sensitivity of harmful cyanobacteria to H2O2 under various environmental conditions.
Collapse
Affiliation(s)
- Giovanni Sandrini
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Tianshuo Xu
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Emily White
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Hongjie Qin
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pieter C Slot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Forchhammer K, Selim KA. Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol Rev 2020; 44:33-53. [PMID: 31617886 PMCID: PMC8042125 DOI: 10.1093/femsre/fuz025] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Carbon/nitrogen (C/N) balance sensing is a key requirement for the maintenance of cellular homeostasis. Therefore, cyanobacteria have evolved a sophisticated signal transduction network targeting the metabolite 2-oxoglutarate (2-OG), the carbon skeleton for nitrogen assimilation. It serves as a status reporter for the cellular C/N balance that is sensed by transcription factors NtcA and NdhR and the versatile PII-signaling protein. The PII protein acts as a multitasking signal-integrating regulator, combining the 2-OG signal with the energy state of the cell through adenyl-nucleotide binding. Depending on these integrated signals, PII orchestrates metabolic activities in response to environmental changes through binding to various targets. In addition to 2-OG, other status reporter metabolites have recently been discovered, mainly indicating the carbon status of the cells. One of them is cAMP, which is sensed by the PII-like protein SbtB. The present review focuses, with a main emphasis on unicellular model strains Synechoccus elongatus and Synechocystis sp. PCC 6803, on the physiological framework of these complex regulatory loops, the tight linkage to metabolism and the molecular mechanisms governing the signaling processes.
Collapse
Affiliation(s)
- Karl Forchhammer
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Khaled A Selim
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
32
|
Chakraborty S, Mishra AK. Mitigation of zinc toxicity through differential strategies in two species of the cyanobacterium Anabaena isolated from zinc polluted paddy field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114375. [PMID: 32220689 DOI: 10.1016/j.envpol.2020.114375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
The present study describes the physiological and biochemical mechanisms of zinc tolerance in two heterocytous cyanobacteria i.e. Anabaena doliolum and Anabaena oryzae, treated with their respective LC50 concentrations of zinc (3 and 4.5 mg L-1) for eight days. The feedbacks were examined in terms of growth, metabolism, zinc exclusion, zinc accumulation, oxidative stress, antioxidants and metallothionein contents. Although the growth and metabolic activities were reduced in both the cyanobacterium, maximum adversity was noticed in A. doliolum. The higher order of abnormalities in A. doliolum was attributed to excessive accumulation of zinc and enhanced reactive oxygen species (ROS) production. However, the comparatively higher growth and metabolic activities of A. oryzae were ascribed to the lower accumulation of zinc as a result of released polysaccharides mediated zinc exclusion, synthesis of zinc chelating metallothioneins and subsequent less production of ROS. The oxidative stress and macromolecular damages were prominent in both the cyanobacterium but the condition was much harsher in A. doliolum which may be explained by its comparatively low antioxidative enzyme activities (SOD, APX and GR) and smaller amount of ascorbate-glutathione-tocopherol contents than that of A. oryzae. However, sustenance of 50% growth by A. doliolum under zinc stress despite severe cellular damages was attributed to the enhanced synthesis of phenolics, flavonoids, and proline. Thus, differential zinc tolerance in A. doliolum and A. oryzae is possibly the outcome of their distinct mitigation strategies. Although the two test organisms followed pseudo second order kinetics model during zinc biosorption yet they exhibited differential zinc biosorption capacity. The cyanobacterium A. oryzae was found to be more efficient in removing zinc as compared to A. doliolum and this efficiency makes A. oryzae a promising candidate for the phycoremediation of zinc polluted environments.
Collapse
Affiliation(s)
| | - Arun K Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
33
|
β-Ν-Methylamino-L-alanine interferes with nitrogen assimilation in the cyanobacterium, non-BMAA producer, Synechococcus sp. TAU-MAC 0499. Toxicon 2020; 185:147-155. [PMID: 32687889 DOI: 10.1016/j.toxicon.2020.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
The production of β-Ν-methylamino-L-alanine (BMAA) in cyanobacteria is triggered by nitrogen-starvation conditions and its biological role, albeit unknown, is associated with nitrogen assimilation. In the present study, the effect of BMAA (773 μg L-1) on nitrogen metabolism and physiology of the non-diazotrophic cyanobacterium and non-BMAA producer, Synechococcus sp. TAU-MAC 0499, was investigated. In order to study the combined effect of nitrogen availability and BMAA, nitrogen-starvation conditions were induced by transferring cells in nitrogen-free medium and subsequently exposing the cultures to BMAA. After short-term treatment (180 min) and in the presence of nitrogen, BMAA inhibited glutamine synthetase, which resulted in low concentration of glutamine. In the absence of nitrogen, although there was no effect on glutamine synthetase, a possible perturbation in nitrogen assimilation is reflected on the significant decrease in glutamate levels. During the long-term exposure (24-96 h), growth, photosynthetic pigments and total protein were not affected by BMAA exposure, except for an increase in protein and phycocyanin levels at 48 h in nitrogen replete conditions. Results suggest that BMAA interferes with nitrogen assimilation, in a different way, depending on the presence or absence of combined nitrogen, providing novel data on the potential biological role of BMAA.
Collapse
|
34
|
Transcriptome Analysis Reveals IsiA-Regulatory Mechanisms Underlying Iron Depletion and Oxidative-Stress Acclimation in Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2020; 86:AEM.00517-20. [PMID: 32332138 DOI: 10.1128/aem.00517-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Microorganisms in nature are commonly exposed to various stresses in parallel. The isiA gene encodes an iron stress-induced chlorophyll-binding protein which is significantly induced under iron starvation and oxidative stress. Acclimation of oxidative stress and iron deficiency was investigated using a regulatory mutant of the Synechocystis sp. strain PCC 6803. In this study, the ΔisiA mutant grew more slowly in oxidative-stress and iron depletion conditions compared to the wild-type (WT) counterpart under the same conditions. Thus, we performed transcriptome sequencing (RNA-seq) analysis of the WT strain and the ΔisiA mutant under double-stress conditions to obtain a comprehensive view of isiA-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed significant differences between the WT strain and ΔisiA mutant, mainly related to photosynthesis and the iron-sulfur cluster. The deletion of isiA affects the expression of various genes that are involved in cellular processes and structures, such as photosynthesis, phycobilisome, and the proton-transporting ATPase complex. Weighted gene coexpression network analysis (WGCNA) demonstrated three functional modules in which the turquoise module was negatively correlated with superoxide dismutase (SOD) activity. Coexpression network analysis identified several hub genes of each module. Cotranscriptional PCR and reads coverage using the Integrative Genomics Viewer demonstrated that isiA, isiB, isiC, ssl0461, and dfp belonged to the isi operon. Three sRNAs related to oxidative stress were identified. This study enriches our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.IMPORTANCE This study analyzed the impact of isiA deletion on the transcriptomic profile of Synechocystis The isiA gene encodes an iron stress-induced chlorophyll-binding protein, which is significantly induced under iron starvation. The deletion of isiA affects the expression of various genes that are involved in photosynthesis and ABC transporters. WGCNA revealed three functional modules in which the blue module was correlated with oxidative stress. We further demonstrated that the isi operon contained the following five genes: isiA, isiB, isiC, ssl0461, and dfp by cotranscriptional PCR. Three sRNAs were identified that were related to oxidative stress. This study enhances our knowledge of IsiA-regulatory mechanisms under iron deficiency and oxidative stress.
Collapse
|
35
|
Hu PP, Hou JY, Xu YL, Niu NN, Zhao C, Lu L, Zhou M, Scheer H, Zhao KH. The role of lyases, NblA and NblB proteins and bilin chromophore transfer in restructuring the cyanobacterial light-harvesting complex ‡. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:529-540. [PMID: 31820831 DOI: 10.1111/tpj.14647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Phycobilisomes are large light-harvesting complexes attached to the stromal side of thylakoids in cyanobacteria and red algae. They can be remodeled or degraded in response to changing light and nutritional status. Both the core and the peripheral rods of phycobilisomes contain biliproteins. During biliprotein biosynthesis, open-chain tetrapyrrole chromophores are attached covalently to the apoproteins by dedicated lyases. Another set of non-bleaching (Nb) proteins has been implicated in phycobilisome degradation, among them NblA and NblB. We report in vitro experiments with lyases, biliproteins and NblA/B which imply that the situation is more complex than currently discussed: lyases can also detach the chromophores and NblA and NblB can modulate lyase-catalyzed binding and detachment of chromophores in a complex fashion. We show: (i) NblA and NblB can interfere with chromophorylation as well as chromophore detachment of phycobiliprotein, they are generally inhibitors but in some cases enhance the reaction; (ii) NblA and NblB promote dissociation of whole phycobilisomes, cores and, in particular, allophycocyanin trimers; (iii) while NblA and NblB do not interact with each other, both interact with lyases, apo- and holo-biliproteins; (iv) they promote synergistically the lyase-catalyzed chromophorylation of the β-subunit of the major rod component, CPC; and (v) they modulate lyase-catalyzed and lyase-independent chromophore transfers among biliproteins, with the core protein, ApcF, the rod protein, CpcA, and sensory biliproteins (phytochromes, cyanobacteriochromes) acting as potential traps. The results indicate that NblA/B can cooperate with lyases in remodeling the phycobilisomes to balance the metabolic requirements of acclimating their light-harvesting capacity without straining the overall metabolic economy of the cell.
Collapse
Affiliation(s)
- Ping-Ping Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jian-Yun Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ya-Li Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Nan-Nan Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cheng Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lu Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| |
Collapse
|
36
|
Koch M, Orthwein T, Alford JT, Forchhammer K. The Slr0058 Protein From Synechocystis sp. PCC 6803 Is a Novel Regulatory Protein Involved in PHB Granule Formation. Front Microbiol 2020; 11:809. [PMID: 32425918 PMCID: PMC7203880 DOI: 10.3389/fmicb.2020.00809] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
During phases of nitrogen starvation, the photosynthetic cyanobacterium Synechocystis sp. PCC 6803 produces polyhydroxybutyrate (PHB). This polymer is of high biotechnological relevance because of its potential as biodegradable plastic. Analysis of the Synechocystis genome revealed an operon (slr0058-slr0061) containing several genes, which are putatively related to the PHB metabolism. While Slr0058 show similarities with the regulatory phasin PhaF, the protein Slr0060 could serve as an intracellular PHB depolymerase. Investigation of respective knock-out mutants showed no distinct phenotype for the strain lacking Slr0060, whereas the Δslr0058 mutant displayed a growth impairment as well as a change in pigmentation. During nitrogen starvation, the Δslr0058 mutant produced in average more than twice the amount of PHB granules per cell, while the overall amount of PHB remained the same. This indicates that Slr0058 plays a role in PHB granule formation and controls it surface-to-volume ratio. GFP-tagged Slr0058 did not co-localize with PHB granules during nitrogen starvation but aggregated in distinct foci during vegetative growth. This work helps to better understand the PHB metabolism of Synechocystis sp. PCC 6803, coming closer to a sustainable, industrial production of PHB.
Collapse
Affiliation(s)
- Moritz Koch
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Tim Orthwein
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Janette T Alford
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Valev D, Kurkela J, Tyystjärvi E, Tyystjärvi T. Testing the Potential of Regulatory Sigma Factor Mutants for Wastewater Purification or Bioreactor Run in High Light. Curr Microbiol 2020; 77:1590-1599. [PMID: 32266454 PMCID: PMC7334282 DOI: 10.1007/s00284-020-01973-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 03/27/2020] [Indexed: 11/25/2022]
Abstract
It is shown that a freshly inoculated culture of the model cyanobacterium Synechocystis sp. PCC 6803 consumed almost all phosphate and 50% of nitrate within 6 days from the nutrient-rich BG-11 growth medium, indicating potential of cyanobacteria to purify wastewaters. Synechocystis sp. PCC 6803 control strain also collected nutrients efficiently from a landfill leachate wastewater KA2 (5.9-6.9 mM ammonium and 0.073-0.077 mM phosphate). Wastewaters might induce oxidative stress to microalgae, which prompted us to test growth of sigma factor inactivation strains, as ΔsigBCE and ΔsigCDE strains show superior growth in chemically induced oxidative stress. All cyanobacterial strains, including a stress-sensitive strain ΔsigBCDE, grew well in KA2 for four days, indicating that KA2 did not cause immediate oxidative stress. Completely arrested growth and bleaching of ΔsigBCDE cells after one week in KA2 wastewater point to the importance of group 2 sigma factor-mediated changes in gene expression during wastewater treatment. The growth of ΔsigBCD was arrested early in un-buffered and Hepes buffered (pH 7.5) KA2. In ΔsigBCD, all phosphate transporter genes are upregulated in standard conditions, and ΔsigBCD cells showed growth defects in low-phosphate BG-11 medium. ΔsigBCD cells removed phosphate slower from KA2 than the control strain, but phosphate supplementation of KA2 did not improve growth of ΔsigBCD. The ΔsigBCE strain showed superior growth in a laboratory-scale bioreactor in bright light and removed phosphate even slightly more efficiently than the control strain if KA2 was Hepes buffered although ΔsigBCE grew slowly in un-buffered KA2 and in low-phosphate BG-11 medium. The results indicate that engineering expression of regulatory group 2 sigma factor(s) might be useful for practical applications.
Collapse
Affiliation(s)
- Dimitar Valev
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Juha Kurkela
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Taina Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
38
|
Tanniche I, Collakova E, Denbow C, Senger RS. Characterizing metabolic stress-induced phenotypes of Synechocystis PCC6803 with Raman spectroscopy. PeerJ 2020; 8:e8535. [PMID: 32266110 PMCID: PMC7115747 DOI: 10.7717/peerj.8535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During their long evolution, Synechocystis sp. PCC6803 developed a remarkable capacity to acclimate to diverse environmental conditions. In this study, Raman spectroscopy and Raman chemometrics tools (RametrixTM) were employed to investigate the phenotypic changes in response to external stressors and correlate specific Raman bands with their corresponding biomolecules determined with widely used analytical methods. METHODS Synechocystis cells were grown in the presence of (i) acetate (7.5-30 mM), (ii) NaCl (50-150 mM) and (iii) limiting levels of MgSO4 (0-62.5 mM) in BG-11 media. Principal component analysis (PCA) and discriminant analysis of PCs (DAPC) were performed with the RametrixTM LITE Toolbox for MATLABⓇ. Next, validation of these models was realized via RametrixTM PRO Toolbox where prediction of accuracy, sensitivity, and specificity for an unknown Raman spectrum was calculated. These analyses were coupled with statistical tests (ANOVA and pairwise comparison) to determine statistically significant changes in the phenotypic responses. Finally, amino acid and fatty acid levels were measured with well-established analytical methods. The obtained data were correlated with previously established Raman bands assigned to these biomolecules. RESULTS Distinguishable clusters representative of phenotypic responses were observed based on the external stimuli (i.e., acetate, NaCl, MgSO4, and controls grown on BG-11 medium) or its concentration when analyzing separately. For all these cases, RametrixTM PRO was able to predict efficiently the corresponding concentration in the culture media for an unknown Raman spectra with accuracy, sensitivity and specificity exceeding random chance. Finally, correlations (R > 0.7) were observed for all amino acids and fatty acids between well-established analytical methods and Raman bands.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Eva Collakova
- School of Plant & Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Cynthia Denbow
- School of Plant & Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Ryan S. Senger
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
39
|
Díaz-Troya S, Roldán M, Mallén-Ponce MJ, Ortega-Martínez P, Florencio FJ. Lethality caused by ADP-glucose accumulation is suppressed by salt-induced carbon flux redirection in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2005-2017. [PMID: 31858138 PMCID: PMC7242066 DOI: 10.1093/jxb/erz559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacteria are widely distributed photosynthetic organisms. During the day they store carbon, mainly as glycogen, to provide the energy and carbon source they require for maintenance during the night. Here, we generate a mutant strain of the freshwater cyanobacterium Synechocystis sp. PCC 6803 lacking both glycogen synthases. This mutant has a lethal phenotype due to massive accumulation of ADP-glucose, the substrate of glycogen synthases. This accumulation leads to alterations in its photosynthetic capacity and a dramatic decrease in the adenylate energy charge of the cell to values as low as 0.1. Lack of ADP-glucose pyrophosphorylase, the enzyme responsible for ADP-glucose synthesis, or reintroduction of any of the glycogen synthases abolishes the lethal phenotype. Viability of the glycogen synthase mutant is also fully recovered in NaCl-supplemented medium, which redirects the surplus of ADP-glucose to synthesize the osmolite glucosylglycerol. This alternative metabolic sink also suppresses phenotypes associated with the defective response to nitrogen deprivation characteristic of glycogen-less mutants, restoring the capacity to degrade phycobiliproteins. Thus, our system is an excellent example of how inadequate management of the adenine nucleotide pools results in a lethal phenotype, and the influence of metabolic carbon flux in cell viability and fitness.
Collapse
Affiliation(s)
- Sandra Díaz-Troya
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Miguel Roldán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Pablo Ortega-Martínez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| |
Collapse
|
40
|
Shi M, Chen L, Zhang W. Regulatory Diversity and Functional Analysis of Two-Component Systems in Cyanobacterium Synechocystis sp. PCC 6803 by GC-MS Based Metabolomics. Front Microbiol 2020; 11:403. [PMID: 32256471 PMCID: PMC7090099 DOI: 10.3389/fmicb.2020.00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/26/2020] [Indexed: 12/02/2022] Open
Abstract
Two-component signal transduction systems are still poorly functionally characterized in the model cyanobacterium Synechocystis sp. PCC 6803. To address the issue, a GC-MS based comparative metabolomic analysis was conducted on a library of 44 knockout mutants for the response regulators (RRs) in Synechocystis. The metabolomic profiling analysis showed that 7 RRs mutants, namely Δslr1909, Δsll1291, Δslr6040, Δsll1330, Δslr2024, Δslr1584, and Δslr1693, were significantly different at metabolomic level, although their growth patterns are similar to the wild type under the normal autotrophic growth condition, suggesting regulatory diversity of RRs at metabolite level in Synechocystis. Additionally, a detailed metabolomic analysis coupled with RT-PCR verification led to useful clues for possible function of these 7 RRs, which were found involved in regulation of multiple aspects of cellular metabolisms in Synechocystis. Moreover, an integrative metabolomic and evolutionary analysis of all RR showed that four groups of RR genes clustered together in both metabolomic and evolutionary trees, suggesting of possible functional conservation of these RRs during the evolutionary process. Meanwhile, six groups of RRs with close evolutionary origin were found with different metabolomic profiles, suggesting possible functional changes during evolution. In contrast, more than 10 groups of RR genes with different clustering patterns in the evolutionary tree were found clustered together in metabolomics-based tree, suggesting possible functional convergences during the evolution. This study provided a metabolomic view of RR function, and the most needed functional clues for further characterization of these regulatory proteins in Synechocystis.
Collapse
Affiliation(s)
- Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
41
|
Hirai K, Nojo M, Sato Y, Tsuzuki M, Sato N. Contribution of protein synthesis depression to poly-β-hydroxybutyrate accumulation in Synechocystis sp. PCC 6803 under nutrient-starved conditions. Sci Rep 2019; 9:19944. [PMID: 31882765 PMCID: PMC6934822 DOI: 10.1038/s41598-019-56520-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
Poly-β-hydroxybutyrate (PHB) in cyanobacteria, which accumulates as energy and carbon sources through the action of photosynthesis, is expected to substitute for petroleum-based plastics. This study first demonstrated that PHB accumulation was induced, with the appearance of lipid droplets, in sulfur (S)-starved cells of a cyanobacterium, Synechocystis sp. PCC 6803, however, to a lower level than in nitrogen (N)- or phosphorus (P)-starved cells. Concomitantly found was repression of the accumulation of total cellular proteins in the S-starved cells to a similar level to that in N-starved cells, and a severer level than in P-starved cells. Intriguingly, PHB accumulation was induced in Synechocystis even under nutrient-replete conditions, upon repression of the accumulation of total cellular proteins through treatment of the wild type cells with a protein synthesis inhibitor, chloramphenicol, or through disruption of the argD gene for Arg synthesis. Meanwhile, the expression of the genes for PHB synthesis was hardly induced in S-starved cells, in contrast to their definite up-regulation in N- or P-starved cells. It therefore seemed that PHB accumulation in S-starved cells is achieved through severe repression of protein synthesis, but is smaller than in N- or P-starved cells, owing to little induction of the expression of PHB synthesis genes.
Collapse
Affiliation(s)
- Kazuho Hirai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Miki Nojo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yosuke Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Mikio Tsuzuki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Norihiro Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
42
|
Muro-Pastor AM, Hess WR. Regulatory RNA at the crossroads of carbon and nitrogen metabolism in photosynthetic cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194477. [PMID: 31884117 DOI: 10.1016/j.bbagrm.2019.194477] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are photosynthetic bacteria that populate widely different habitats. Accordingly, cyanobacteria exhibit a wide spectrum of lifestyles, physiologies, and morphologies and possess genome sizes and gene numbers which may vary by up to a factor of ten within the phylum. Consequently, large differences exist between individual species in the size and complexity of their regulatory networks. Several non-coding RNAs have been identified that play crucial roles in the acclimation responses of cyanobacteria to changes in the environment. Some of these regulatory RNAs are conserved throughout the cyanobacterial phylum, while others exist only in a few taxa. Here we give an overview on characterized regulatory RNAs in cyanobacteria, with a focus on regulators of photosynthesis, carbon and nitrogen metabolism. However, chances are high that these regulators represent just the tip of the iceberg.
Collapse
Affiliation(s)
- Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany; University of Freiburg, Freiburg Institute for Advanced Studies, Albertstr. 19, D-79104 Freiburg, Germany.
| |
Collapse
|
43
|
Aubriot L. Nitrogen availability facilitates phosphorus acquisition by bloom-forming cyanobacteria. FEMS Microbiol Ecol 2019; 95:5195515. [PMID: 30476121 DOI: 10.1093/femsec/fiy229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
Cyanobacterial blooms are threatening freshwater ecosystems. The physiological basis involved in the onset of cyanobacterial bloom is fundamental to advance in bloom predictions. Generally, cyanobacteria grow until the availability of nitrogen (N), phosphorus (P) or both nutrients becomes limited. Population survival may depend on physiological adjustments to nutrient deficiency as well as on the efficient use of episodic N and P inputs. This study investigated the effect of N inputs on phosphate uptake affinity and activity of N-deficient bloom-forming cyanobacteria. Lake samples dominated by filamentous cyanobacteria were preincubated with and without nitrate addition, and the uptake of [32P] phosphate pulses was measured in the following days. Phosphate uptake kinetics were analyzed with a flow-force model that provides the threshold concentration, reflecting phosphate uptake affinity, and the membrane conductivity coefficient that corresponds to the activity of uptake systems. After 24 h of nitrate preincubation, phosphate uptake kinetics showed a progressive increase in affinity (nanomolar [Pe]A) and activity (25-fold) concomitant with cyanobacterial growth. It was demonstrated that the alleviation of N-deficiency by N inputs boosts the activation of phosphate uptake systems of non-N2-fixing cyanobacteria to sustain growth. Therefore, reduction of dissolved inorganic N levels in lakes is also mandatory to limit cyanobacterial phosphate uptake affinity and activity capabilities.
Collapse
Affiliation(s)
- Luis Aubriot
- Grupo de Ecología y Fisiología de Fitoplancton, Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, UdelaR
| |
Collapse
|
44
|
Babele PK, Young JD. Applications of stable isotope-based metabolomics and fluxomics toward synthetic biology of cyanobacteria. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1472. [PMID: 31816180 DOI: 10.1002/wsbm.1472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/24/2019] [Accepted: 11/16/2019] [Indexed: 12/17/2022]
Abstract
Unique features of cyanobacteria (e.g., photosynthesis and nitrogen fixation) make them potential candidates for production of biofuels and other value-added biochemicals. As prokaryotes, they can be readily engineered using synthetic and systems biology tools. Metabolic engineering of cyanobacteria for the synthesis of desired compounds requires in-depth knowledge of central carbon and nitrogen metabolism, pathway fluxes, and their regulation. Metabolomics and fluxomics offer the comprehensive analysis of metabolism by directly characterizing the biochemical activities of cells. This information is acquired by measuring the abundance of key metabolites and their rates of interconversion, which can be achieved by labeling cells with stable isotopes, quantifying metabolite pool sizes and isotope incorporation by gas chromatography/liquid chromatography-mass spectrometry GC/LC-MS or nuclear magnetic resonance (NMR), and mathematical modeling to estimate in vivo metabolic fluxes. Herein, we review progress that has been made to adapt metabolomics and fluxomics tools to examine model cyanobacterial species. We summarize the application of metabolic flux analysis (MFA) strategies to identify metabolic bottlenecks that can be targeted to boost cell growth, improve stress tolerance, or enhance biochemical production in cyanobacteria. Despite the advances in metabolomics, fluxomics, and other synthetic and systems biology tools during the past years, further efforts are required to increase our understanding of cyanobacterial metabolism in order to create efficient photosynthetic hosts for the production of value-added compounds. This article is categorized under: Laboratory Methods and Technologies > Metabolomics Biological Mechanisms > Metabolism Analytical and Computational Methods > Analytical Methods.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Jamey D Young
- Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee.,Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
45
|
Mavroudakis L, Valsami EA, Grafanaki S, Andreadaki TP, Ghanotakis DF, Pergantis SA. The effect of nitrogen starvation on membrane lipids of Synechocystis sp. PCC 6803 investigated by using easy ambient sonic-spray ionization mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183027. [DOI: 10.1016/j.bbamem.2019.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 01/30/2023]
|
46
|
Yu King Hing N, Liang F, Lindblad P, Morgan JA. Combining isotopically non-stationary metabolic flux analysis with proteomics to unravel the regulation of the Calvin-Benson-Bassham cycle in Synechocystis sp. PCC 6803. Metab Eng 2019; 56:77-84. [PMID: 31470115 DOI: 10.1016/j.ymben.2019.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Photosynthetic microorganisms are increasingly being investigated as a sustainable alternative to existing bio-industrial processes, converting CO2 into desirable end products without the use of carbohydrate feedstock. The Calvin-Benson-Bassham (CBB) cycle is the main pathway of carbon fixation metabolism in photosynthetic organisms. In this study, we analyzed the metabolic fluxes in two strains of the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) that overexpressed fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) and transketolase (TK), respectively. These two potential carbon flux control enzymes in the CBB cycle had previously been shown to improve biomass accumulation when overexpressed under air and low light (15 μmol m-2 s-1) conditions (Liang and Lindblad, 2016). We measured the growth rates of Synechocystis under atmospheric and high (3% v/v) CO2 conditions at 80 μmol m-2 s-1. Surprisingly, the cells overexpressing transketolase (tktA) demonstrated no significant increase in growth rates when CO2 was increased, suggesting an altered carbon flux distribution and a potential metabolic bottleneck in carbon fixation. Moreover, the tktA strain had an increased susceptibility to oxidative stress under high light as revealed by its chlorotic phenotype under high light conditions. In contrast, the fructose-1,6/sedoheptulose-1,7-bisphosphatase (70glpX) and wild-type cells demonstrated increases in growth rates as expected. To investigate the disparate phenotypical responses of these different Synechocystis strains, isotopically non-stationary metabolic flux analysis (INST-MFA) was used to estimate the carbon flux distribution of tktA, 70glpX, and a kanamycin-resistant control (Km), under atmospheric conditions. In addition, untargeted label-free proteomics, which can detect changes in relative enzymatic abundance, was employed to study the possible effects caused by overexpressing each enzyme. Fluxomic and proteomic results indicated a decrease in oxidative pentose phosphate pathway activity when either FBP/SBPase or TK were overexpressed, resulting in increased carbon fixation efficiency. These results are an example of the integration of multiple omic-level experimental techniques and can be used to guide future metabolic engineering efforts to improve performances and efficiencies.
Collapse
Affiliation(s)
- Nathaphon Yu King Hing
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Feiyan Liang
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, 751 20, Uppsala, Sweden; Section of Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, 751 20, Uppsala, Sweden
| | - John A Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
47
|
Fernández-Juárez V, Bennasar-Figueras A, Tovar-Sanchez A, Agawin NSR. The Role of Iron in the P-Acquisition Mechanisms of the Unicellular N 2-Fixing Cyanobacteria Halothece sp., Found in Association With the Mediterranean Seagrass Posidonia oceanica. Front Microbiol 2019; 10:1903. [PMID: 31507547 PMCID: PMC6713934 DOI: 10.3389/fmicb.2019.01903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Posidonia oceanica, an endemic seagrass of the Mediterranean Sea harbors a high diversity of N2-fixing prokaryotes. One of these is Halothece sp., a unicellular N2-fixing cyanobacteria detected through nifH analysis from the epiphytes of P. oceanica. The most related strain in culture is Halothece sp. PCC 7418 and this was used as the test organism in this study. In the Mediterranean Sea, phosphorus (P) and iron (Fe) can be the major limiting nutrients for N2 fixation. However, information about the mechanisms of P-acquisition and the role of metals (i.e., Fe) in these processes for N2-fixing bacteria is scarce. From our genomic analyses of the test organism and other phylogenetically related N2-fixing strains, Halothece sp. PCC 7418 is one of the strains with the greatest number of gene copies (eight copies) of alkaline phosphatases (APases). Our structural analysis of PhoD (alkaline phosphatase type D) and PhoU (phosphate acquisition regulator) of Halothece sp. PCC 7418 showed the connection among metals (Ca2+ and Fe3+), and the P-acquisition mechanisms. Here, we measured the rates of alkaline phosphatase activity (APA) through MUF-P hydrolysis under different combinations of concentrations of inorganic P (PO43−) and Fe in experiments under N2-fixing (low NO3− availability) and non-N2 fixing (high NO3− availability) conditions. Our results showed that APA rates were enhanced by the increase in Fe availability under low levels of PO43−, especially under N2-fixing conditions. Moreover, the increased PO43−-uptake was reflected in the increased of the P-cellular content of the cells under N2 fixation conditions. We also found a positive significant relationship between cellular P and cellular Fe content of the cells (r2 = 0.71, p < 0.05). Our results also indicated that Fe-uptake in Halothece sp. PCC 7418 was P and Fe-dependent. This study gives first insights of P-acquisition mechanisms in the N2-fixing cyanobacteria (Halothece sp.) found in P. oceanica and highlights the role of Fe in these processes.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Ecology and Systematics (MarEs), Department of Biology, Universitat de les Illes Balears (UIB), Palma, Spain
| | - Antoni Bennasar-Figueras
- Grup de Recerca en Microbiologia, Departament de Biologia, Universitat de les Illes Balears (UIB), Palma, Spain
| | - Antonio Tovar-Sanchez
- Department of Ecology and Coastal Management, Andalusian Institute for Marine Sciences, ICMAN (CSIC), Cádiz, Spain
| | - Nona Sheila R Agawin
- Marine Ecology and Systematics (MarEs), Department of Biology, Universitat de les Illes Balears (UIB), Palma, Spain
| |
Collapse
|
48
|
Nagarajan A, Zhou M, Nguyen AY, Liberton M, Kedia K, Shi T, Piehowski P, Shukla A, Fillmore TL, Nicora C, Smith RD, Koppenaal DW, Jacobs JM, Pakrasi HB. Proteomic Insights into Phycobilisome Degradation, A Selective and Tightly Controlled Process in The Fast-Growing Cyanobacterium Synechococcus elongatus UTEX 2973. Biomolecules 2019; 9:biom9080374. [PMID: 31426316 PMCID: PMC6722726 DOI: 10.3390/biom9080374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022] Open
Abstract
Phycobilisomes (PBSs) are large (3-5 megadalton) pigment-protein complexes in cyanobacteria that associate with thylakoid membranes and harvest light primarily for photosystem II. PBSs consist of highly ordered assemblies of pigmented phycobiliproteins (PBPs) and linker proteins that can account for up to half of the soluble protein in cells. Cyanobacteria adjust to changing environmental conditions by modulating PBS size and number. In response to nutrient depletion such as nitrogen (N) deprivation, PBSs are degraded in an extensive, tightly controlled, and reversible process. In Synechococcus elongatus UTEX 2973, a fast-growing cyanobacterium with a doubling time of two hours, the process of PBS degradation is very rapid, with 80% of PBSs per cell degraded in six hours under optimal light and CO2 conditions. Proteomic analysis during PBS degradation and re-synthesis revealed multiple proteoforms of PBPs with partially degraded phycocyanobilin (PCB) pigments. NblA, a small proteolysis adaptor essential for PBS degradation, was characterized and validated with targeted mass spectrometry. NblA levels rose from essentially 0 to 25,000 copies per cell within 30 min of N depletion, and correlated with the rate of decrease in phycocyanin (PC). Implications of this correlation on the overall mechanism of PBS degradation during N deprivation are discussed.
Collapse
Affiliation(s)
- Aparna Nagarajan
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Mowei Zhou
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Amelia Y Nguyen
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Komal Kedia
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Paul Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Anil Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Carrie Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David W Koppenaal
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jon M Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
49
|
Jacinavicius FR, Pacheco ABF, Chow F, Verissimo da Costa GC, Kalume DE, Rigonato J, Schmidt EC, Sant'Anna CL. Different ecophysiological and structural strategies of toxic and non-toxic Microcystis aeruginosa (cyanobacteria) strains assessed under culture conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Qian ZY, Chen X, Zhu HT, Shi JZ, Gong TT, Xian QM. Study on the cyanobacterial toxin metabolism of Microcystis aeruginosa in nitrogen-starved conditions by a stable isotope labelling method. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:558-564. [PMID: 30952000 DOI: 10.1016/j.jhazmat.2019.03.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/16/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
In this study, the biosynthesis of microcystins (MCs) was investigated after long-term nitrogen-starved conditions in cyanobacterium Microcystis aeruginosa. The results demonstrated that the algal cells were able to survive in a non-growing state with nitrogen starvation for more than one month. The physiological properties of the algal cells were studied to elucidate the mechanisms of viability under nitrogen-deprivation conditions. After the state of nitrogen chlorosis, new toxins could be resynthesized and tracked using 15N-stable isotope-labelled nitrogen. Nitrogen starvation of nutritionally replete cells resulted in a significant increase of microcystin-LY (MC-LY), thereby suggesting that MC-LY may undergo catabolism to provide nitrogen or that MC-LY may be produced to play an important role in the cell in response to nitrogen deprivation. The rank order of different types of nitrogen in algal cells assimilation was N-ammonium > N-urea > N-nitrate > N-alanine. The relationship between the production of toxin variants and various environmental conditions is an interesting issue for future research and may help improve the understanding of the ecological role of cyanobacterial toxins.
Collapse
Affiliation(s)
- Zong-Yao Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - He-Te Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun-Zhe Shi
- Wuxi Environmental Monitoring Central Station, Wuxi, 214121, China
| | - Ting-Ting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qi-Ming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|