1
|
Korkus J, Sałata P, Thompson SA, Paluch E, Bania J, Wałecka-Zacharska E. The role of cydB gene in the biofilm formation by Campylobacter jejuni. Sci Rep 2024; 14:26574. [PMID: 39496766 PMCID: PMC11535028 DOI: 10.1038/s41598-024-77556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Campylobacter jejuni is a major cause of food- and water-borne bacterial infections in humans. A key factor helping bacteria to survive adverse environmental conditions is biofilm formation ability. Nonetheless, the molecular basis underlying biofilm formation by C. jejuni remains poorly understood. Around thirty genes involved in the regulation and dynamics of C. jejuni biofilm formation have been described so far. We applied random transposon mutagenesis to identify new biofilm-associated genes in C. jejuni strain 81-176. Of 1350 mutants, twenty-four had a decreased ability to produce biofilm compared to the wild-type strain. Some mutants contained insertions in genes previously reported to affect the biofilm formation process. The majority of identified genes encoded hypothetical proteins. In the library of EZ-Tn5 insertion mutants, we found the cydB gene associated with respiration that was not previously linked with biofilm formation in Campylobacter. To study the involvement of the cydB gene in biofilm formation, we constructed a non-marked deletion cydB mutant together with a complemented mutant. We found that the cydB deletion-mutant formed a weaker biofilm of loosely organized structure and lower volume than the parent strain. In the present study, we demonstrated the role of the cydB gene in biofilm formation by C. jejuni.
Collapse
Affiliation(s)
- Jakub Korkus
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Patrycja Sałata
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Stuart A Thompson
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, GA, Augusta, USA
| | - Emil Paluch
- Department of Microbiology Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
2
|
Zhong Y, Wu J, Liu L, Luo J, Xiong X, Wang G, Zhou Y. Characterization of a ST137 multidrug-resistant Campylobacter jejuni strain with a tet(O)-positive genomic island from a bloodstream infection patient. Microb Pathog 2024; 195:106900. [PMID: 39208964 DOI: 10.1016/j.micpath.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and rarely cause bloodstream infection. Herein, we characterized a multidrug-resistant C. jejuni strain LZCJ isolated from a tumor patient with bloodstream infection. LZCJ was resistant to norfloxacin, ampicillin, ceftriaxone, ciprofloxacin and tetracycline. It showed high survival rate in serum and acidic environment. Whole genome sequencing (WGS) analysis revealed that strain LZCJ had a single chromosome of 1,629,078 bp (30.6 % G + C content) and belonged to the ST137 lineage. LZCJ shared the highest identity of 99.66 % with the chicken-derived C. jejuni MTVDSCj20. Four antimicrobial resistance genes (ARGs) were detected, blaOXA-61, tet(O), gyrA (T86I), and cmeR (G144D and S207G). In addition, a 12,746 bp genomic island GI_LZCJ carrying 15 open reading frames (ORFs) including the resistance gene tet(O) was identified. Sequence analysis found that the GI_LZCJ was highly similar to the duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. 137 non-synonymous mutations in motility related genes (flgF, fapR, flgS), capsular polysaccharide (CPS) coding genes (kpsE, kpsF, kpsM, kpsT), metabolism associated genes (nuoF, nuoG, epsJ, holB), and transporter related genes (comEA, gene0911) were confirmed in LZCJ compared with the best closed chicken-derived strain MTVDSCj20. Our study showed that C. jejuni strain LZCJ was highly similar to the chicken-derived strain MTVDSCj20 but with a lot of SNPs involved in motility, CPS and metabolism coding genes. This strain possessed a tet(O)-positive genomic island GI_LZCJ, which was closed to duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. The above data indicated that the LZCJ strain may originate from foodborne bacteria on animals and the importance of continuous surveillance for the spread of foodborne bacteria.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiang Wu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Hejiang People's Hospital, Luzhou, China
| | - Lu Liu
- Department of Clinical Laboratory Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jinjing Luo
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Guangxi Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Sung K, Park M, Chon J, Kweon O, Paredes A, Khan SA. Chicken Juice Enhances C. jejuni NCTC 11168 Biofilm Formation with Distinct Morphological Features and Altered Protein Expression. Foods 2024; 13:1828. [PMID: 38928770 PMCID: PMC11202532 DOI: 10.3390/foods13121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Campylobacter jejuni is the foodborne pathogen causing most gastrointestinal infections. Understanding its ability to form biofilms is crucial for devising effective control strategies in food processing environments. In this study, we investigated the growth dynamics and biofilm formation of C. jejuni NCTC 11168 in various culture media, including chicken juice (CJ), brain heart infusion (BHI), and Mueller Hinton (MH) broth. Our results demonstrated that C. jejuni exhibited a higher growth rate and enhanced biofilm formation in CJ and in 1:1 mixtures of CJ with BHI or MH broth compared to these measures in BHI or MH broth alone. Electron microscopy unveiled distinct morphological attributes of late-stage biofilm cells in CJ, including the presence of elongated spiral-shaped cells, thinner stretched structures compared to regular cells, and extended thread-like structures within the biofilms. Proteomic analysis identified significant alterations in protein expression profiles in C. jejuni biofilms, with a predominance of downregulated proteins associated with vital functions like metabolism, energy production, and amino acid and protein biosynthesis. Additionally, a significant proportion of proteins linked to biofilm formation, virulence, and iron uptake were suppressed. This shift toward a predominantly coccoid morphology echoed the reduced energy demands of these biofilm communities. Our study unlocks valuable insights into C. jejuni's biofilm in CJ, demonstrating its adaptation and survival.
Collapse
Affiliation(s)
- Kidon Sung
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.P.); (O.K.); (S.A.K.)
| | - Miseon Park
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.P.); (O.K.); (S.A.K.)
| | - Jungwhan Chon
- Department of Companion Animal Health, Inje University, Gimhae 50834, Republic of Korea;
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.P.); (O.K.); (S.A.K.)
| | - Angel Paredes
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Saeed A. Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.P.); (O.K.); (S.A.K.)
| |
Collapse
|
4
|
Kanaan MHG. Effect of biofilm formation in a hostile oxidative stress environment on the survival of Campylobacter jejuni recovered from poultry in Iraqi markets. Vet World 2024; 17:136-142. [PMID: 38406363 PMCID: PMC10884572 DOI: 10.14202/vetworld.2024.136-142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/14/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Campylobacter jejuni is a major contributor to bacterial enteritis, a common health problem. The resistance of this microaerophilic bacterium to oxidative stress allows it to thrive under aerobic conditions. This study aimed to investigate whether the capacity of C. jejuni to form biofilms in the presence of oxidative stress contributes to the pathogen's ability to thrive in agricultural settings as well as in chicken slaughter lines. Materials and Methods Twenty identified strains originating from chicken samples (eight from caeca contents and 12 from frozen chicken carcasses) were previously isolated and identified according to standard bacteriological protocols, followed by confirmation at the species level using multiplex polymerase chain reaction assay. Crystal violet staining was used to evaluate biofilm formation by these bacteria. Two exposure periods to gaseous ozone (1 and 2 min) were used to assess resistance to oxidative damage. Results Most of the strong biofilm-forming Campylobacter strains came from imported frozen chicken meat (25%), whereas only 10% came from caeca content. After exposure to gaseous ozone at 600 mg/h for 2 min, strong biofilm-producing strains exhibited a higher survival rate with a limited reduction of up to 3 logs, whereas negative biofilm-producing strains exhibited a limited survival rate with a reduction of 6 logs. Conclusion Based on our findings, we hypothesized that the presence of C. jejuni strains capable of forming biofilms in poultry farms and/or chicken production facilities triggers a public health alarm as this bacterium seems to be able to adapt more easily to live and thrive in hostile environmental conditions.
Collapse
Affiliation(s)
- Manal H. G. Kanaan
- Department of Nursing, Technical Institute of Suwaria, Middle Technical University, Baghdad, Iraq
| |
Collapse
|
5
|
Huq M, Wahid SUH, Istivan T. Biofilm Formation in Campylobacter concisus: The Role of the luxS Gene. Microorganisms 2023; 12:46. [PMID: 38257873 PMCID: PMC10820981 DOI: 10.3390/microorganisms12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Campylobacter concisus is a bacterium that inhabits human oral cavities and is an emerging intestinal tract pathogen known to be a biofilm producer and one of the bacterial species found in dental plaque. In this study, biofilms of oral and intestinal C. concisus isolates were phenotypically characterized. The role of the luxS gene, which is linked to the regulation of biofilm formation in other pathogens, was assessed in relation to the pathogenic potential of this bacterium. Biofilm formation capacity was assessed using phenotypic assays. Oral strains were shown to be the highest producers. A luxS mutant was created by inserting a kanamycin cassette within the luxS gene of the highest biofilm-forming isolate. The loss of the polar flagellum was observed with scanning and transmission electron microscopy (SEM and TEM). Furthermore, the luxS mutant exhibited a significant reduction (p < 0.05) in biofilm formation, motility, and its expression of flaB, in addition to the capability to invade intestinal epithelial cells, compared to the parental strain. The study concluded that C. concisus oral isolates are significantly higher biofilm producers than the intestinal isolates and that LuxS plays a role in biofilm formation, invasion, and motility in this bacterium.
Collapse
Affiliation(s)
- Mohsina Huq
- School of Science, STEM College, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | | | - Taghrid Istivan
- School of Science, STEM College, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| |
Collapse
|
6
|
Sabotič J, Janež N, Volk M, Klančnik A. Molecular structures mediating adhesion of Campylobacter jejuni to abiotic and biotic surfaces. Vet Microbiol 2023; 287:109918. [PMID: 38029692 DOI: 10.1016/j.vetmic.2023.109918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Microaerophilic, Gram-negative Campylobacter jejuni is the causative agent of campylobacteriosis, the most common bacterial gastrointestinal infection worldwide. Adhesion is the crucial first step in both infection or interaction with the host and biofilm formation, and is a critical factor for bacterial persistence. Here we describe the proteins and other surface structures that promote adhesion to various surfaces, including abiotic surfaces, microorganisms, and animal and human hosts. In addition, we provide insight into the distribution of adhesion proteins among strains from different ecological niches and highlight unexplored proteins involved in C. jejuni adhesion. Protein-protein, protein-glycan, and glycan-glycan interactions are involved in C. jejuni adhesion, with different factors contributing to adhesion to varying degrees under different circumstances. As adhesion is essential for survival and persistence, it represents an interesting target for C. jejuni control. Knowledge of the adhesion process is incomplete, as different molecular and functional aspects have been studied for different structures involved in adhesion. Therefore, it is important to strive for an integration of different approaches to obtain a clearer picture of the adhesion process on different surfaces and to consider the involvement of proteins, glycoconjugates, and polysaccharides and their cooperation.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Manca Volk
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia.
| |
Collapse
|
7
|
Laconi A, Tolosi R, Drigo I, Bano L, Piccirillo A. Association between ability to form biofilm and virulence factors of poultry extra-intestinal Campylobacter jejuni and Campylobacter coli. Vet Microbiol 2023; 282:109770. [PMID: 37150060 DOI: 10.1016/j.vetmic.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Campylobacter species are known to be able to produce biofilm, which represents an ideal protective environment for the maintenance of such fragile bacteria. Since the genetic mechanisms promoting biofilm formation are still poorly understood, in this study we assessed the ability of C. jejuni (n = 7) and C. coli (n = 3) strains isolated from diseased poultry, and previously characterized by whole genome sequencing, to form biofilm. The in vitro analyses were carried out by using a microtiter based protocol including biofilm culturing and fixation, staining with crystal violet, and measurement of the optical density (OD570). The ability to form biofilm was categorized into four classes (no, weak, moderate, and strong producers). Potential correlations between OD570 and the presence/absence of virulence determinants were examined. The C. jejuni were classified as no (n = 3), weak (n = 2), and moderate (n = 2) biofilm producers; however, all possessed genes involved in chemotaxis, adhesion, and invasion to the host cells. No genes present exclusively in biofilm producers or in non-biofilm producers were identified. All C. coli were classified as weak producers and showed a similar set of virulence genes between each other. A trend of increased mean OD570 was observed in the presence of flaA and maf7 genes. No association between biofilm production classes and the explanatory variables considered was observed. The results of this study suggest that further investigations are needed to better identify and characterize the genetic determinants involved in extra-intestinal Campylobacter biofilm formation.
Collapse
Affiliation(s)
- Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, PD, 35020, Italy.
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, PD, 35020, Italy
| | - Ilenia Drigo
- Veterinary Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 31020 Villorba, TV, Italy
| | - Luca Bano
- Veterinary Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 31020 Villorba, TV, Italy
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, PD, 35020, Italy
| |
Collapse
|
8
|
Molecular Targets in Campylobacter Infections. Biomolecules 2023; 13:biom13030409. [PMID: 36979344 PMCID: PMC10046527 DOI: 10.3390/biom13030409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Human campylobacteriosis results from foodborne infections with Campylobacter bacteria such as Campylobacter jejuni and Campylobacter coli, and represents a leading cause of bacterial gastroenteritis worldwide. After consumption of contaminated poultry meat, constituting the major source of pathogenic transfer to humans, infected patients develop abdominal pain and diarrhea. Post-infectious disorders following acute enteritis may occur and affect the nervous system, the joints or the intestines. Immunocompromising comorbidities in infected patients favor bacteremia, leading to vascular inflammation and septicemia. Prevention of human infection is achieved by hygiene measures focusing on the reduction of pathogenic food contamination. Molecular targets for the treatment and prevention of campylobacteriosis include bacterial pathogenicity and virulence factors involved in motility, adhesion, invasion, oxygen detoxification, acid resistance and biofilm formation. This repertoire of intervention measures has recently been completed by drugs dampening the pro-inflammatory immune responses induced by the Campylobacter endotoxin lipo-oligosaccharide. Novel pharmaceutical strategies will combine anti-pathogenic and anti-inflammatory effects to reduce the risk of both anti-microbial resistance and post-infectious sequelae of acute enteritis. Novel strategies and actual trends in the combat of Campylobacter infections are presented in this review, alongside molecular targets applied for prevention and treatment strategies.
Collapse
|
9
|
Dzianach PA, Pérez-Reche FJ, Strachan NJC, Forbes KJ, Dykes GA. The Use of Interdisciplinary Approaches to Understand the Biology of Campylobacter jejuni. Microorganisms 2022; 10:2498. [PMID: 36557751 PMCID: PMC9786101 DOI: 10.3390/microorganisms10122498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Campylobacter jejuni is a bacterial pathogen recognised as a major cause of foodborne illness worldwide. While Campylobacter jejuni generally does not grow outside its host, it can survive outside of the host long enough to pose a health concern. This review presents an up-to-date description and evaluation of biological, mathematical, and statistical approaches used to understand the behaviour of this foodborne pathogen and suggests future avenues which can be explored. Specifically, the incorporation of mathematical modelling may aid the understanding of C. jejuni biofilm formation both outside and inside the host. Predictive studies may be improved by the introduction of more standardised protocols for assessments of disinfection methods and by assessment of novel physical disinfection strategies as well as assessment of the efficiency of plant extracts on C. jejuni eradication. A full description of the metabolic pathways of C. jejuni, which is needed for the successful application of metabolic models, is yet to be achieved. Finally, a shift from animal models (except for those that are a source of human campylobacteriosis) to human-specific data may be made possible due to recent technological advancements, and this may lead to more accurate predictions of human infections.
Collapse
Affiliation(s)
- Paulina A. Dzianach
- Geospatial Health and Development, Telethon Kids Institute, Perth 6009, Australia
| | | | - Norval J. C. Strachan
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Ken J. Forbes
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Gary A. Dykes
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
10
|
Dobrović K, Fila B, Janeš A, Civljak R. Campylobacter fetus Bacteremia Related to Vascular Prosthesis and Pseudoaneurysm Infection: A Case Report and Review. Pathogens 2022; 11:pathogens11121536. [PMID: 36558870 PMCID: PMC9781730 DOI: 10.3390/pathogens11121536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Campylobacter fetus rarely causes gastrointestinal diseases but shows an affinity for the endovascular epithelium. METHODS We describe a case of C. fetus bacteremia related to vascular prosthesis and pseudoaneurysm infection, with a review of the literature. RESULTS A 67-year-old male was admitted with a history of fever, weakness and painful swelling of the groin. After unsuccessful treatment with ciprofloxacin, the patient was transferred to our hospital, where he had been previously treated for aortoiliac occlusive disease including a prosthetic aortobifemoral and popliteal bypass with polyester graft placement. An angiography showed a pseudoaneurysm in the groin and, therefore, repair of the pseudoaneurysm, removal of the prosthesis and biologic graft placement were performed. Blood cultures and tissue samples of the vascular prosthesis and pseudoaneurysm yielded C. fetus resistant to ciprofloxacin. The patient was treated with meropenem for four weeks, followed by amoxicillin-clavulanate for another two weeks after discharge. Eight previously published cases of C. fetus bacteremia due to infected cardiovascular prosthetic devices (prosthetic heart valves, implantable cardioverter-defibrillators and a permanent pacemaker) were summarized in the review. CONCLUSIONS To our knowledge, this is the first report of a C. fetus bacteremia related to post-surgical infection of a vascular prosthesis causing a pseudoaneurysm.
Collapse
Affiliation(s)
- Karolina Dobrović
- Department of Clinical Microbiology and Hospital Infections, Dubrava University Hospital, 10000 Zagreb, Croatia
| | - Branko Fila
- Department of Vascular Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia
| | - Andrea Janeš
- Department of Clinical Microbiology and Hospital Infections, University Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Rok Civljak
- Department for Acute Respiratory Tract Infections, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia
- Department of Infectious Diseases, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-91-4012547
| |
Collapse
|
11
|
Extracellular c-di-GMP Plays a Role in Biofilm Formation and Dispersion of Campylobacter jejuni. Microorganisms 2022; 10:microorganisms10102030. [PMID: 36296307 PMCID: PMC9608569 DOI: 10.3390/microorganisms10102030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Cyclic diguanosine monophosphate (c-diGMP) is a ubiquitous second messenger involved in the regulation of many signalling systems in bacteria, including motility and biofilm formation. Recently, it has been reported that c-di-GMP was detected in C. jejuni DRH212; however, the presence and the role of c-di-GMP in other C. jejuni strains are unknown. Here, we investigated extracellular c-di-GMP as an environmental signal that potentially triggers biofilm formation in C. jejuni NCTC 11168 using a crystal violet-based assay, motility-based plate assay, RT-PCR and confocal laser scanning microscopy (CLSM). We found that, in presence of extracellular c-di-GMP, the biofilm formation was significantly reduced (>50%) and biofilm dispersion enhanced (up to 60%) with no effect on growth. In addition, the presence of extracellular c-di-GMP promoted chemotactic motility, inhibited the adherence of C. jejuni NCTC 11168-O to Caco-2 cells and upregulated the expression of Cj1198 (luxS, encoding quarum sensing pathway component, autoinducer-2), as well as chemotaxis genes Cj0284c (cheA) and Cj0448c (tlp6). Unexpectedly, the expression of Cj0643 (cbrR), containing a GGDEF-like domain and recently identified as a potential diguanylate cyclase gene, required for the synthesis of c-di-GMP, was not affected. Our findings suggest that extracellular c-di-GMP could be involved in C. jejuni gene regulation, sensing and biofilm dispersion.
Collapse
|
12
|
Survival of Campylobacter jejuni 11168H in Acanthamoebae castellanii Provides Mechanistic Insight into Host Pathogen Interactions. Microorganisms 2022; 10:microorganisms10101894. [PMID: 36296171 PMCID: PMC9612045 DOI: 10.3390/microorganisms10101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis worldwide but is rarely transferred between human hosts. Although a recognized microaerophile, the majority of C. jejuni are incapable of growing in an aerobic environment. The persistence and transmission of this pathogen outside its warm-blooded avian and mammalian hosts is poorly understood. Acanthamoebae species are predatory protists and form an important ecological niche with several bacterial species. Here, we investigate the interaction of C. jejuni 11168H and Acanthamoebae castellanii at the single-cell level. We observe that a subpopulation of C. jejuni cells can resist killing by A. castellanii, and non-digested bacteria are exocytosed into the environment where they can persist. In addition, we observe that A. castellanii can harbor C. jejuni 11168H even upon encystment. Transcriptome analyses of C. jejuni interactions revealed similar survival mechanisms when infecting both A. castellanii and warm-blooded hosts. In particular, nitrosative stress defense mechanisms and flagellum function are important as confirmed by mutational analyses of C. jejuni 11168H. This study describes a new host–pathogen interaction for C. jejuni and confirms that amoebae are transient hosts for the persistence, adaptability, and potential transmission of C. jejuni.
Collapse
|
13
|
Nennig M, Clément A, Longueval E, Bernardi T, Ragimbeau C, Tresse O. Metaphenotypes associated with recurrent genomic lineages of Campylobacter jejuni responsible for human infections in Luxembourg. Front Microbiol 2022; 13:901192. [PMID: 36160185 PMCID: PMC9490421 DOI: 10.3389/fmicb.2022.901192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. Although considered fragile, this microaerophilic bacterium is able to survive in various challenging environments, which subsequently constitutes multiple sources of transmission for human infection. To test the assumption of acquiring specific features for adaptation and survival, we established a workflow of phenotypic tests related to the survival and the persistence of recurrent and sporadic strains. A representative collection of 83 strains isolated over 13 years from human, mammal, poultry, and environmental sources in Luxembourg, representing different spreading patterns (endemic, epidemic, and sporadic), was screened for survival to oxidative stresses, for acclimating to aerobic conditions (AC), and for persistence on abiotic surfaces. Using the cgMLST Oxford typing scheme for WGS data, the collection was classified into genomic lineages corresponding to host-generalist strains (lineages A and D, CC ST-21), host-specific strains (lineage B, CC ST-257 and lineage C, CC ST-464) and sporadic strains. We established that when a strain survives concentrations beyond 0.25 mM superoxide stress, it is six times more likely to survive hyperoxide stress and that a highly adherent strain is 14 times more likely to develop a biofilm. Surprisingly, more than half of the strains could acclimate to AC but this capacity does not explain the difference between recurrent genomic lineages and sporadic strains and the survival to oxidative stresses, while recurrent strains have a significantly higher adhesion/biofilm formation capacity than sporadic ones. From this work, the genomic lineages with more stable genomes could be characterized by a specific combination of phenotypes, called metaphenotypes. From the functional genomic analyses, the presence of a potentially functional T6SS in the strains of lineage D might explain the propensity of these strains to be strong biofilm producers. Our findings support the hypothesis that phenotypical abilities contribute to the spatio-temporal adaptation and survival of stable genomic lineages. It suggests a selection of better-adapted and persistent strains in challenging stress environments, which could explain the prevalence of these lineages in human infections.
Collapse
Affiliation(s)
- Morgane Nennig
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
- UMR-1280 PhAN, INRAE, Nantes, France
| | - Arnaud Clément
- BioFilm Control, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Emmanuelle Longueval
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Thierry Bernardi
- BioFilm Control, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | | |
Collapse
|
14
|
Erega A, Stefanic P, Danevčič T, Smole Možina S, Mandic Mulec I. Impact of Bacillus subtilis Antibiotic Bacilysin and Campylobacter jejuni Efflux Pumps on Pathogen Survival in Mixed Biofilms. Microbiol Spectr 2022; 10:e0215622. [PMID: 35938811 PMCID: PMC9430781 DOI: 10.1128/spectrum.02156-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Abstract
The foodborne pathogen Campylobacter jejuni is typically found in an agricultural environment; in animals, such as birds, as an intestinal commensal; and also in food products, especially fresh poultry meat. Campylobacter interactions within mixed species biofilms are poorly understood, especially at the microscale. We have recently shown that the beneficial bacterium Bacillus subtilis reduces C. jejuni survival and biofilm formation in coculture by secreting the antibiotic bacillaene. We extend these studies here by providing evidence that besides bacillaene, the antagonistic effect of B. subtilis involves a nonribosomal peptide bacilysin and that the fully functional antagonism depends on the quorum-sensing transcriptional regulator ComA. Using confocal laser scanning microscopy, we also show that secreted antibiotics influence the distribution of C. jejuni and B. subtilis cells in the submerged biofilm and decrease the thickness of the pathogen's biofilm. Furthermore, we demonstrate that genes encoding structural or regulatory proteins of the efflux apparatus system (cmeF and cmeR), respectively, contribute to the survival of C. jejuni during interaction with B. subtilis PS-216. In conclusion, this study demonstrates a strong potential of B. subtilis PS-216 to reduce C. jejuni biofilm growth, which supports the application of the PS-216 strain to pathogen biofilm control. IMPORTANCE Campylobacter jejuni is a prevalent cause of foodborne infections worldwide, while Bacillus subtilis as a potential probiotic represents an alternative strategy to control this alimentary infection. However, only limited literature exists on the specific mechanisms that shape interactions between B. subtilis and C. jejuni in biofilms. This study shows that in the two species biofilms, B. subtilis produces two antibiotics, bacillaene and bacilysin, that inhibit C. jejuni growth. In addition, we provide the first evidence that specific pathogen efflux pumps contribute to the defense against B. subtilis attack. Specifically, the CmeDEF pump acts during the defense against bacilysin, while CmeR-dependent overexpression of CmeABC nullifies the bacillaene attack. The role of specific B. subtilis antibiotics and these polyspecific pumps, known for providing resistance against medically relevant antibiotics, has not been studied during bacterial competition in biofilms before. Hence, this work broadens our understanding of mechanisms that shape antagonisms and defense during probiotic-pathogen interactions.
Collapse
Affiliation(s)
- A. Erega
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - P. Stefanic
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - T. Danevčič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - S. Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - I. Mandic Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Chair of Microprocess Engineering and Technology/COMPETE, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyze the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance wasn't clearly defined. Further, viable but non-culturable (VBNC) form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.,Present Address: Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
16
|
Ma L, Feng J, Zhang J, Lu X. Campylobacter biofilms. Microbiol Res 2022; 264:127149. [DOI: 10.1016/j.micres.2022.127149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
|
17
|
Salazar-Sánchez A, Baztarrika I, Alonso R, Fernández-Astorga A, Martínez-Ballesteros I, Martinez-Malaxetxebarria I. Arcobacter butzleri Biofilms: Insights into the Genes Beneath Their Formation. Microorganisms 2022; 10:1280. [PMID: 35888999 PMCID: PMC9324650 DOI: 10.3390/microorganisms10071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Arcobacter butzleri, the most prevalent species of the genus, has the demonstrated ability to adhere to various surfaces through biofilm production. The biofilm formation capability has been related to the expression of certain genes, which have not been characterized in A. butzleri. In order to increase the knowledge of this foodborne pathogen, the aim of this study was to assess the role of six biofilm-associated genes in campylobacteria (flaA, flaB, fliS, luxS, pta and spoT) in the biofilm formation ability of A. butzleri. Knockout mutants were constructed from different foodborne isolates, and static biofilm assays were conducted on polystyrene (PS), reinforced glass and stainless steel. Additionally, motility and Congo red binding assays were performed. In general, mutants in flaAB, fliS and luxS showed a decrease in the biofilm production irrespective of the surface; mutants in spoT showed an increase on stainless steel, and mutants in pta and spoT showed a decrease on reinforced glass but an increase on PS. Our work sheds light on the biofilm-related pathogenesis of A. butzleri, although future studies are necessary to achieve a satisfactory objective.
Collapse
Affiliation(s)
- Adrián Salazar-Sánchez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Aurora Fernández-Astorga
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
18
|
Al-Mohammadi AR, El-Didamony G, Abd El Moneem MS, Elshorbagy IM, Askora A, Enan G. Isolation and Characterization of Lytic Bacteriophages Specific for Campylobacter jejuni and Campylobacter coli. ZOONOTIC DISEASES 2022; 2:59-72. [DOI: 10.3390/zoonoticdis2020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In this study, two lytic bacteriophages designated as vB_CjP and vB_CcM were isolated and evaluated for their ability to combat multidrug-resistant bacteria Campylobacter jejuni and Campylobacter coli, respectively. A morphological analysis of these phages by transmission electron microscopy revealed that the vB-CjP bacteriophage had a mean head dimension of 66.6 ± 2.1 nm and a short non-contractile tail and belongs to the Podoviridae family, whereas vB_CcM had a mean head dimension of 80 ± 3.2 nm, a contractile tail, and a length calculated to be 60 ± 2.5 nm and belongs to the Myoviridae family. The results of the host range assay showed that vB_CjP could infect 5 of 10 C. jejuni isolates, whereas vB_CcM could infect 4 of 10 C. coli isolates. Both phages were thermostable and did not lose their infectivity and ability to lyse their host following exposure to 60 °C for 10 min; furthermore, phage particles were relatively stable within a pH range of 6–8. A one-step growth curve indicated that the phages produced estimated burst sizes of 110 and 120 PFU per infected cell with latent periods of 10 and 15 min, for vB-CjP and vB-CcM, respectively. The lytic activity of these phages against planktonic Campylobacter showed that these phages were able to control the growth of Campylobacter in vitro. These results suggest that these phages have a high potential for phage applications and can reduce significantly the counts of Campylobacter spp. The lytic activity of vB-CjP and vB-CcM phages at different (MOIs) against multidrug resistance Campylobacter strains was evaluated. The bacterial growth was slightly delayed by both phages, and the highest efficiency of both phages was observed when MOI = 1 was applied.
Collapse
|
19
|
Martinez-Malaxetxebarria I, Girbau C, Salazar-Sánchez A, Baztarrika I, Martínez-Ballesteros I, Laorden L, Alonso R, Fernández-Astorga A. Genetic characterization and biofilm formation of potentially pathogenic foodborne Arcobacter isolates. Int J Food Microbiol 2022; 373:109712. [DOI: 10.1016/j.ijfoodmicro.2022.109712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
|
20
|
Giaouris E. Relevance and Importance of Biofilms in the Resistance and Spreading of Campylobacter spp. Within the Food Chain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022. [DOI: 10.1007/5584_2022_749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Antibiofilm Effects of Heated Scallop Shell Powder on Campylobacter jejuni Biofilms. MEMBRANES 2021; 12:membranes12010043. [PMID: 35054569 PMCID: PMC8779294 DOI: 10.3390/membranes12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
Methods to reuse large numbers of scallop shells from the harvesting regions of Japan are being explored. The major component of scallop shells is calcium carbonate (CaCO3), which forms the powerful bactericidal agent, calcium oxide (CaO), when heated. Heated scallop shell powder (HSSP) exhibits strong and broad-spectrum antimicrobial activity against bacteria, fungi, and viruses. This study investigated the antibiofilm activity of HSSP against the biofilms of Campylobacter jejuni, which is the predominant species in campylobacteriosis. Biofilm samples of C. jejuni were prepared on 0.45 µm filter paper under microaerobic conditions. The HSSP treatment inactivated and eradicated C. jejuni biofilms. The resistance of C. jejuni biofilms to HSSP was significantly higher than that of the floating cells. Moreover, the antibiofilm activity of the HSSP treatment against C. jejuni biofilms was higher than that of NaOH treatment at the same pH. These results indicated that HSSP treatment is an effective method for controlling C. jejuni biofilms.
Collapse
|
22
|
Ohadi E, Bakhshi B, Kalani BS, Talebi M, Irajian G. Transcriptome analysis of biofilm formation under aerobic and microaerobic conditions in clinical isolates of Campylobacter spp. Res Vet Sci 2021; 142:24-30. [PMID: 34847463 DOI: 10.1016/j.rvsc.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
It has been well documented that Campylobacter is the leading cause of foodborne infections and bacterial enteritis in high-income countries. The gastrointestinal tract of most warm-blooded animals, such as mammals and poultry, is prone to this pathogen. Infections caused by this bacterium in humans have usually been associated with the consumption of contaminated poultry meat. The important point about Campylobacter is that this bacterium has adapted to harsh environmental conditions along the food chain (poultry digestive tract to the consumer's plate) and developed an adapted mechanism to those conditions. This study aimed to compare the ability of Campylobacter jejuni and Campylobacter coli strains to form biofilms under aerobic and microaerobic conditions. The presence and expression of flab, FliS, DnaK, luxs, CsrA, Cj0688, and cosR genes involved in biofilm formation were investigated. Finally, the correlation between the biofilm forming ability of Campylobacter isolates and the presence/expression of selected genes has been explored. A significant correlation was observed between the presence and expression of some genes and the degree of biofilm formation in C. jejuni and C. coli isolates. A strong biofilm production was detected in strains harboring all selected genes with greater expression levels. The ability of C. jejuni and C. coli strains in biofilm formation is associated with the coordinated function and convergent expression of the selected genes. Seemingly, stress response- and motility-related genes have the most involvement in biofilm formation of C. jejuni and C. coli strains, while other genes have an accessory role in this phenomenon.
Collapse
Affiliation(s)
- Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Behrooz Sadeghi Kalani
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Elgamoudi BA, Korolik V. Campylobacter Biofilms: Potential of Natural Compounds to Disrupt Campylobacter jejuni Transmission. Int J Mol Sci 2021; 22:12159. [PMID: 34830039 PMCID: PMC8617744 DOI: 10.3390/ijms222212159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms occur naturally in many environmental niches and can be a significant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The greatest challenge in reducing the disease caused by this organism is reducing transmission of C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and antimicrobial resistance of the microorganisms they harbor and are considered to play a crucial role for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-derived factors, d-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and use of such natural compounds could improve preventative and remedial strategies aimed to limit the transmission of campylobacters and other human pathogens via the food chain.
Collapse
Affiliation(s)
- Bassam A. Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
24
|
Biofilm Formation Ability of Arcobacter-like and Campylobacter Strains under Different Conditions and on Food Processing Materials. Microorganisms 2021; 9:microorganisms9102017. [PMID: 34683338 PMCID: PMC8538277 DOI: 10.3390/microorganisms9102017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Campylobacter jejuni is the most frequent cause of bacterial gastrointestinal food-borne infection worldwide. The transmission of Campylobacter and Arcobacter-like species is often made possible by their ability to adhere to various abiotic surfaces. This study is focused on monitoring the biofilm ability of 69 strains of Campylobacter spp. and lesser described species of the Arcobacteraceae family isolated from food, water, and clinical samples within the Czech Republic. Biofilm formation was monitored and evaluated under an aerobic/microaerophilic atmosphere after cultivation for 24 or 72 h depending on the surface material. An overall higher adhesion ability was observed in arcobacters. A chi-squared test showed no association between the origin of the strains and biofilm activity (p > 0.05). Arcobacter-like species are able to form biofilms under microaerophilic and aerobic conditions; however, they prefer microaerophilic environments. Biofilm formation has already been demonstrated at refrigerator temperatures (5 °C). Arcobacters also showed higher biofilm formation ability at the temperature of 30 °C. This is in contrast to Campylobacter jejuni NP 2896, which showed higher biofilm formation ability at temperatures of 5–30 °C. Overall, the results demonstrated the biofilm formation ability of many strains, which poses a considerable risk to the food industry, medical practice, and human health.
Collapse
|
25
|
Tong S, Ma L, Ronholm J, Hsiao W, Lu X. Whole genome sequencing of Campylobacter in agri-food surveillance. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Bacillaene Mediates the Inhibitory Effect of Bacillus subtilis on Campylobacter jejuni Biofilms. Appl Environ Microbiol 2021; 87:e0295520. [PMID: 33837012 DOI: 10.1128/aem.02955-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biofilms are the predominant bacterial lifestyle and can protect microorganisms from environmental stresses. Multispecies biofilms can affect the survival of enteric pathogens that contaminate food products, and thus, investigating the underlying mechanisms of multispecies biofilms is essential for food safety and human health. In this study, we investigated the ability of the natural isolate Bacillus subtilis PS-216 to restrain Campylobacter jejuni biofilm formation and adhesion to abiotic surfaces as well as to disrupt preestablished C. jejuni biofilms. Using confocal laser scanning microscopy and colony counts, we demonstrate that the presence of B. subtilis PS-216 prevents C. jejuni biofilm formation, decreases growth of the pathogen by 4.2 log10, and disperses 26-h-old preestablished C. jejuni biofilms. Furthermore, the coinoculation of B. subtilis and C. jejuni interferes with the adhesion of C. jejuni to abiotic surfaces, reducing it by 2.4 log10. We also show that contact-independent mechanisms contribute to the inhibitory effect of B. subtilis PS-216 on C. jejuni biofilm. Using B. subtilis mutants in genes coding for nonribosomal peptides and polyketides revealed that bacillaene significantly contributes to the inhibitory effect of B. subtilis PS-216. In summary, we show a strong potential for the use of B. subtilis PS-216 against C. jejuni biofilm formation and adhesion to abiotic surfaces. Our research could bring forward novel applications of B. subtilis in animal production and thus contribute to food safety. IMPORTANCE Campylobacter jejuni is an intestinal commensal in animals (including broiler chickens) but also the most frequent cause of bacterial foodborne infection in humans. This pathogen forms biofilms which enhance survival of C. jejuni in food processing and thus threaten human health. Probiotic bacteria represent a potential alternative in the prevention and control of foodborne infections. The beneficial bacterium Bacillus subtilis has an excellent probiotic potential to reduce C. jejuni in the animal gastrointestinal tract. However, data on the effect of B. subtilis on C. jejuni biofilms are scarce. Our study shows that the B. subtilis natural isolate PS-216 prevents adhesion to the abiotic surfaces and the development of submerged C. jejuni biofilm during coculture and destroys the preestablished C. jejuni biofilm. These insights are important for development of novel applications of B. subtilis that will reduce the use of antibiotics in human and animal health and increase productivity in animal breeding.
Collapse
|
27
|
Motta JP, Wallace JL, Buret AG, Deraison C, Vergnolle N. Gastrointestinal biofilms in health and disease. Nat Rev Gastroenterol Hepatol 2021; 18:314-334. [PMID: 33510461 DOI: 10.1038/s41575-020-00397-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
Microorganisms colonize various ecological niches in the human habitat, as they do in nature. Predominant forms of multicellular communities called biofilms colonize human tissue surfaces. The gastrointestinal tract is home to a profusion of microorganisms with intertwined, but not identical, lifestyles: as isolated planktonic cells, as biofilms and in biofilm-dispersed form. It is therefore of major importance in understanding homeostatic and altered host-microorganism interactions to consider not only the planktonic lifestyle, but also biofilms and biofilm-dispersed forms. In this Review, we discuss the natural organization of microorganisms at gastrointestinal surfaces, stratification of microbiota taxonomy, biogeographical localization and trans-kingdom interactions occurring within the biofilm habitat. We also discuss existing models used to study biofilms. We assess the contribution of the host-mucosa biofilm relationship to gut homeostasis and to diseases. In addition, we describe how host factors can shape the organization, structure and composition of mucosal biofilms, and how biofilms themselves are implicated in a variety of homeostatic and pathological processes in the gut. Future studies characterizing biofilm nature, physical properties, composition and intrinsic communication could shed new light on gut physiology and lead to potential novel therapeutic options for gastrointestinal diseases.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France.
| | - John L Wallace
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Antibe Therapeutics Inc., Toronto, ON, Canada
| | - André G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Céline Deraison
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France. .,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Scheik LK, Volcan Maia DS, Würfel SDFR, Ramires T, Kleinubing NR, Haubert L, Lopes GV, da Silva WP. Biofilm-forming ability of poultry Campylobacter jejuni strains in the presence and absence of Pseudomonas aeruginosa. Can J Microbiol 2021; 67:301-309. [PMID: 33703923 DOI: 10.1139/cjm-2020-0256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of this study were to evaluate the ability of Campylobacter jejuni isolated from a poultry slaughterhouse to form biofilm in the presence and absence of Pseudomonas aeruginosa, and the effect of surface (stainless steel, polystyrene), temperature (7, 25, and 42 °C), and oxygen concentration (microaerophilic and aerobic conditions) on the formation of biofilm. The genes ahpC, cadF, clpP, dnaJ, docA, flaA, flaB, katA, kpsM, luxS, racR, and sodB, related to biofilm formation by C. jejuni, were also investigated. All isolates formed biofilm on stainless steel and on polystyrene, in both aerobic and microaerophilic atmospheres, including temperatures not optimal for C. jejuni growth (7 and 25 °C), and biofilm also was formed in the presence of P. aeruginosa. In dual-species biofilm on stainless steel, biofilm formation was 2-6 log CFU·cm-2 higher at 7 °C for all isolates, in comparison with monospecies biofilm. Ten genes (ahpC, cadF, clpP, dnaJ, docA, flaA, flaB, luxS, racR, and sodB) were detected in all isolates, but katA and kpsM were found in four and six isolates, respectively. The results obtained are of concern because the poultry C. jejuni isolates form biofilm in different conditions, which is enhanced in the presence of other biofilm formers, such as P. aeruginosa.
Collapse
Affiliation(s)
- Letícia Klein Scheik
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Darla Silveira Volcan Maia
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Simone de Fátima Rauber Würfel
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Louise Haubert
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil.,Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| |
Collapse
|
29
|
Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing. Curr Top Microbiol Immunol 2021. [PMID: 33620656 DOI: 10.1007/978-3-030-65481-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Even though Campylobacter spp. are known to be fastidious organisms, they can survive within the natural environment. One mechanism to withstand unfavourable conditions is the formation of biofilms, a multicellular structure composed of different bacterial and other microbial species which are embedded in an extracellular matrix. High oxygen levels, low substrate concentrations and the presence of external DNA stimulate the biofilm formation by C. jejuni. These external factors trigger internal adaptation processes, e.g. via regulating the expression of genes encoding proteins required for surface structure formation, as well as motility, stress response and antimicrobial resistance. Known genes impacting biofilm formation will be summarized in this review. The formation of biofilms as well as the expression of virulence genes is often regulated in a cell density depending manner by quorum sensing, which is mediated via small signalling molecules termed autoinducers. Even though quorum sensing mechanisms of other bacteria are well understood, knowledge on the role of these mechanisms in C. jejuni biofilm formation is still scarce. The LuxS enzyme involved in generation of autoinducer-2 is present in C. jejuni, but autoinducer receptors have not been identified so far. Phenotypes of C. jejuni strains lacking a functional luxS like reduced growth, motility, oxygen stress tolerance, biofilm formation, adhesion, invasion and colonization are also summarized within this chapter. However, these phenotypes are highly variable in distinct C. jejuni strains and depend on the culture conditions applied.
Collapse
|
30
|
Whelan MVX, Simpson JC, Ó Cróinín T. A novel high-content screening approach for the elucidation of C. jejuni biofilm composition and integrity. BMC Microbiol 2021; 21:2. [PMID: 33397288 PMCID: PMC7784365 DOI: 10.1186/s12866-020-02062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide and the main source of infection is contaminated chicken meat. Although this important human pathogen is an obligate microaerophile, it must survive atmospheric oxygen conditions to allow transmission from contaminated chicken meat to humans. It is becoming increasingly evident that formation of biofilm plays a key role in the survival of this organism for extended periods on poultry products. We have recently demonstrated a novel inducible model for the study of adherent C. jejuni biofilm formation under aerobic conditions. By taking advantage of supercoiling mediated gene regulation, incubation of C. jejuni with subinhibitory concentrations of the Gyrase B inhibitor novobiocin was shown to promote the consistent formation of metabolically active adherent biofilm. RESULTS In this study, we implement this model in conjunction with the fluorescent markers: TAMRA (live cells) and SytoX (dead cells, eDNA) to develop a novel systematic high-content imaging approach and describe how it can be implemented to gain quantifiable information about the integrity and extracellular polymeric substance (EPS) composition of adherent C. jejuni biofilm in aerobic conditions. We show that this produces a model with a consistent, homogenous biofilm that can be induced and used to screen a range of inhibitors of biofilm adherence and matrix formation. CONCLUSIONS This model allows for the first time a high throughput analysis of C. jejuni biofilms which will be invaluable in enabling researchers to develop mechanisms to disrupt these biofilms and reduce the viability of these bacteria under aerobic conditions.
Collapse
Affiliation(s)
- Matthew V X Whelan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
31
|
Monteiro GP, Rossi DA, Valadares Jr EC, Peres PABM, Braz RF, Notário FO, Gomes MM, Silva RR, Carrijo KF, Fonseca BB. Lactic Bacterium and Bacillus Sp. Biofilms Can Decrease the Viability of Salmonella Gallinarum, Salmonella Heidelberg, Campylobacter Jejuni and Methicillin Resistant Staphylococcus Aureus on Different Substrates. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - DA Rossi
- Universidade Federal de Uberlândia, Brazil
| | | | - PABM Peres
- Universidade Federal de Uberlândia, Brazil
| | - RF Braz
- Universidade Federal de Uberlândia, Brazil
| | - FO Notário
- Universidade Federal de Uberlândia, Brazil
| | - MM Gomes
- Universidade Federal de Uberlândia, Brazil
| | - RR Silva
- Universidade Federal de Uberlândia, Brazil
| | - KF Carrijo
- Universidade Federal de Uberlândia, Brazil
| | - BB Fonseca
- Universidade Federal de Uberlândia, Brazil
| |
Collapse
|
32
|
Mouftah SF, Cobo-Díaz JF, Álvarez-Ordóñez A, Mousa A, Calland JK, Pascoe B, Sheppard SK, Elhadidy M. Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42 °C among hyper-aerotolerant generalist Campylobacter jejuni. Food Microbiol 2020; 95:103706. [PMID: 33397624 DOI: 10.1016/j.fm.2020.103706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
One of the emerging conundrums of Campylobacter food-borne illness is the bacterial ability to survive stressful environmental conditions. We evaluated the heterogeneity among 90 C. jejuni and 21 C. coli isolates from different sources in Egypt with respect to biofilm formation capabilities (under microaerobic and aerobic atmosphere) and resistance to a range of stressors encountered along the food chain (aerobic stress, refrigeration, freeze-thaw, heat, peracetic acid, and osmotic stress). High prevalence (63%) of hyper-aerotolerant (HAT) isolates was observed, exhibiting also a significantly high tolerance to heat, osmotic stress, refrigeration, and freeze-thaw stress, coupled with high biofilm formation ability which was clearly enhanced under aerobic conditions, suggesting a potential link between stress adaptation and biofilm formation. Most HAT multi-stress resistant and strong biofilm producing C. jejuni isolates belonged to host generalist clonal complexes (ST-21, ST-45, ST-48 and ST-206). These findings highlight the potential role of oxidative stress response systems in providing cross-protection (resistance to other multiple stress conditions) and enhancing biofilm formation in Campylobacter and suggest that selective pressures encountered in hostile environments have shaped the epidemiology of C. jejuni in Egypt by selecting the transmission of highly adapted isolates, thus promoting the colonization of multiple host species by important disease-causing lineages.
Collapse
Affiliation(s)
- Shaimaa F Mouftah
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Spain
| | - Ahmed Mousa
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Jessica K Calland
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Ben Pascoe
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK; Chiang Mai University, Chiang Mai, Thailand
| | - Samuel K Sheppard
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK; Chiang Mai University, Chiang Mai, Thailand; Department of Zoology, University of Oxford, Oxford, UK
| | - Mohamed Elhadidy
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
33
|
Elgamoudi BA, Taha T, Korolik V. Inhibition of Campylobacter jejuni Biofilm Formation by D-Amino Acids. Antibiotics (Basel) 2020; 9:E836. [PMID: 33238583 PMCID: PMC7700173 DOI: 10.3390/antibiotics9110836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
The ability of bacterial pathogens to form biofilms is an important virulence mechanism in relation to their pathogenesis and transmission. Biofilms play a crucial role in survival in unfavorable environmental conditions, acting as reservoirs of microbial contamination and antibiotic resistance. For intestinal pathogen Campylobacter jejuni, biofilms are considered to be a contributing factor in transmission through the food chain and currently, there are no known methods for intervention. Here, we present an unconventional approach to reducing biofilm formation by C. jejuni by the application of D-amino acids (DAs), and L-amino acids (LAs). We found that DAs and not LAs, except L-alanine, reduced biofilm formation by up to 70%. The treatment of C. jejuni cells with DAs changed the biofilm architecture and reduced the appearance of amyloid-like fibrils. In addition, a mixture of DAs enhanced antimicrobial efficacy of D-Cycloserine (DCS) up to 32% as compared with DCS treatment alone. Unexpectedly, D-alanine was able to reverse the inhibitory effect of other DAs as well as that of DCS. Furthermore, L-alanine and D-tryptophan decreased transcript levels of peptidoglycan biosynthesis enzymes alanine racemase (alr) and D-alanine-D-alanine ligase (ddlA) while D-serine was only able to decrease the transcript levels of alr. Our findings suggest that a combination of DAs could reduce biofilm formation, viability and persistence of C. jejuni through dysregulation of alr and ddlA.
Collapse
Affiliation(s)
| | | | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast QLD 4222, Australia; (B.A.E.); (T.T.)
| |
Collapse
|
34
|
Shagieva E, Teren M, Michova H, Strakova N, Karpiskova R, Demnerova K. Adhesion, Biofilm Formation, and luxS Sequencing of Campylobacter jejuni Isolated From Water in the Czech Republic. Front Cell Infect Microbiol 2020; 10:596613. [PMID: 33330139 PMCID: PMC7718015 DOI: 10.3389/fcimb.2020.596613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023] Open
Abstract
The microaerophilic pathogen Campylobacter jejuni is a leading bacterial cause of human gastroenteritis in developed countries. Even though it has a reputation as a fastidious organism, C. jejuni is widespread and can be easily isolated from various animals, food, and environmental sources. It is suggested that an ability to form biofilms is probably necessary for the survival of C. jejuni under harsh environmental conditions. The first step required for successful biofilm formation is adhesion to a suitable surface. Therefore, in this work, the degree of adhesion was evaluated, followed by characterization and quantification of biofilms using confocal laser scanning microscopy (CLSM). A total of 15 isolates of C. jejuni were used in the experiments (12 isolates from surface and waste waters, 1 human clinical, 1 food and 1 ACTT BAA-2151 collection strain, all samples originated from the Czech Republic). Regardless of the sample origin, all C. jejuni isolates were able to adhere to the polystyrene surface within 30 min, with the number of attached cells increasing with the time of incubation. The resulting data showed that all isolates were able to form complex voluminous biofilms after 24 h of cultivation. The average amount of biovolume ranged from 3.59 × 106 µm3 to 17.50 × 106 µm3 in isolates obtained from different sources of water, 16.79 × 106 µm3 in the food isolate and 10.92 × 106 µm3 in the collection strain. However, the highest amount of biomass was produced by the human clinical isolate (25.48 × 106 µm3). Similar to the quantity, the architecture of the biofilms also differed, from a rugged flat monolayer of cells to large clustered structures. Further, all isolates were tested for the presence of the luxS gene, as the luxS/AI-2 (autoinducer-2) quorum sensing pathway has been previously connected with enhanced biofilm formation. Two isolates originated from surface waters did not possess the luxS gene. These isolates formed thinner and sparser biofilms lacking the presence of significant clusters. However, the ability to adhere to the surface was preserved. The sequencing of the luxS-containing fragments shown a high similarity of the luxS gene among the isolates.
Collapse
Affiliation(s)
- Ekaterina Shagieva
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Martin Teren
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Hana Michova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Nicol Strakova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia
| | - Renata Karpiskova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia
| | - Katerina Demnerova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
35
|
Šimunović K, Zajkoska S, Bezek K, Klančnik A, Barlič Maganja D, Smole Možina S. Comparison of Campylobacter jejuni Slaughterhouse and Surface-Water Isolates Indicates Better Adaptation of Slaughterhouse Isolates to the Chicken Host Environment. Microorganisms 2020; 8:microorganisms8111693. [PMID: 33143223 PMCID: PMC7693524 DOI: 10.3390/microorganisms8111693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is an emerging food-borne pathogen that poses a high risk to human health. Knowledge of the strain source can contribute significantly to an understanding of this pathogen, and can lead to improved control measures in the food-processing industry. In this study, slaughterhouse and surface-water isolates of C. jejuni were characterized and compared in terms of their antimicrobial resistance profiles and adhesion to stainless steel and chicken skin. Resistance of C. jejuni biofilm cells to benzalkonium chloride and Satureja montana ethanolic extract was also tested. The data show that the slaughterhouse isolates are more resistant to ciprofloxacin, and adhere better to stainless steel at 42 °C, and at 37 °C in 50% chicken juice. Additionally, biofilm cells of the isolate with the greatest adhesion potential (C. jejuni S6) were harvested and tested for resistance to S. montana ethanolic extract, benzalkonium chloride, and erythromycin; and for efflux-pump activity, as compared to their planktonic cells. The biofilm cells showed increased resistance to both S. montana ethanolic extract and erythromycin, and increased efflux-pump activity. These data indicate adaptation of C. jejuni slaughterhouse isolates to the chicken host, as well as increased biofilm cell resistance due to increased efflux-pump activity.
Collapse
Affiliation(s)
- Katarina Šimunović
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
| | - Sandra Zajkoska
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
| | - Katja Bezek
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia; (K.B.); (D.B.M.)
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
| | - Darja Barlič Maganja
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia; (K.B.); (D.B.M.)
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
- Correspondence: ; Tel.: +386-1-3203751; Fax: +386-1-2565782
| |
Collapse
|
36
|
Oberheim J, Höser C, Lüchters G, Kistemann T. Small-scaled association between ambient temperature and campylobacteriosis incidence in Germany. Sci Rep 2020; 10:17191. [PMID: 33057048 PMCID: PMC7560705 DOI: 10.1038/s41598-020-73865-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/17/2020] [Indexed: 02/01/2023] Open
Abstract
Campylobacteriosis is the leading bacterial cause of human diarrheal illness worldwide. Campylobacteriosis incidence exhibits seasonality and has been attributed to ambient temperature. However, the role of ambient temperature on campylobacteriosis remains poorly understood. To examine the impact of ambient temperature on local campylobacteriosis in Germany, weekly incidences on NUTS-3 level were analysed using a novel small-scaled approach, regression and time lags. Campylobacteriosis incidence correlated positively with temperatures between - 5 and 28 °C. The sigmoid regression model estimated an incidence increase of 0.52 per 5 °C temperature rise in the observation period. The weekly average of daily minimum temperature was most significant at a time lag of two weeks and showed the steepest incidence increase of 0.13 per 1 °C temperature increase in a temperature corridor of 5.1 to 12.2 °C. The impact of average minimum temperatures on campylobacteriosis incidence is crucial, likely to be indirect and especially relevant in the recent part of the infection chain. Vectors or human behaviour are presumably more directly linked with temperature than the pathogen's microbiology and should be examined. These variables outweigh the direct temperature-pathogen relationship when the whole chain of infection is considered. In the context of climate change, campylobacteriosis is likely to increase in Germany due to an increased temperature effect.
Collapse
Affiliation(s)
- Julia Oberheim
- Institute for Hygiene and Public Health, University Hospital Bonn, GeoHealth Centre, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Christoph Höser
- Institute for Hygiene and Public Health, University Hospital Bonn, GeoHealth Centre, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Guido Lüchters
- Center for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113, Bonn, Germany
| | - Thomas Kistemann
- Institute for Hygiene and Public Health, University Hospital Bonn, GeoHealth Centre, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
37
|
Masila NM, Ross KE, Gardner MG, Whiley H. Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians). Pathogens 2020; 9:pathogens9100799. [PMID: 32998205 PMCID: PMC7601876 DOI: 10.3390/pathogens9100799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022] Open
Abstract
Campylobacter spp. is one of the most widespread infectious diseases of veterinary and public health significance. Globally, the incidence of campylobacteriosis has increased over the last decade in both developing and developed countries. Squamates (lizards, snakes and amphisbaenians) are a potential reservoir and source of transmission of campylobacteriosis to humans. This systematic review examined studies from the last 20 years that have reported squamate-associated human campylobacteriosis. It was found that C. fetus subsp. testudinum and C. fetus subsp. fetus were the most common species responsible for human campylobacteriosis from a squamate host. The common squamate hosts identified included bearded dragons (Pogona vitticeps), green iguana (Iguana iguana), western beaked gecko (Rhynchoedura ornate) and blotched blue-tongued skink (Tiliqua nigrolutea). People with underlying chronic illnesses, the immunocompromised and the elderly were identified as the most vulnerable population. Exposure to pet squamates, wild animals, consumption of reptilian cuisines and cross contamination with untreated water were risk factors associated with Campylobacter infections. Proper hand hygiene practices, responsible pet ownership, ‘One Health’ education and awareness on zoonotic diseases will help reduce the public health risks arising from Campylobacter exposure through squamates. Continued surveillance using molecular diagnostic methods will also enhance detection and response to squamate-linked campylobacteriosis.
Collapse
Affiliation(s)
- Nicodemus M Masila
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
- Kenya Tsetse and Trypanosomiasis Eradication Council (KENTTEC), P.O. BOX 66290, Westlands, Nairobi 00800, Kenya
| | - Kirstin E Ross
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| | - Harriet Whiley
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
38
|
Thames HT, Theradiyil Sukumaran A. A Review of Salmonella and Campylobacter in Broiler Meat: Emerging Challenges and Food Safety Measures. Foods 2020; 9:E776. [PMID: 32545362 PMCID: PMC7353592 DOI: 10.3390/foods9060776] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Poultry is one of the largest sources of animal-based protein in the United States. Poultry processing has grown from a small local network of plants to nearly 500 plants nationwide. Two of the most persistent bacteria in poultry processing are Salmonella and Campylobacter. It was not until the introduction of Hazard Analysis and Critical Control Point systems in 1996 that major efforts to reduce bacterial contamination were developed. Traditionally, chlorine has been the industry standard for decontaminating chicken meat. However, antimicrobials such as peracetic acid, cetylpyridinium chloride, and acidified sodium chlorite have replaced chlorine as primary antimicrobials. Despite current interventions, the emergence of stress-tolerant and biofilm-forming Salmonella and Campylobacter is of primary concern. In an effort to offset growing tolerance from microbes, novel techniques such as cold plasma treatment, electrostatic spraying, and bacteriophage-based applications have been investigated as alternatives to conventional treatments, while new chemical antimicrobials such as Amplon and sodium ferrate are investigated as well. This review provides an overview of poultry processing in the United States, major microbes in poultry processing, current interventions, emerging issues, and emerging technologies in antimicrobial treatments.
Collapse
|
39
|
Lianou A, Nychas GJE, Koutsoumanis KP. Strain variability in biofilm formation: A food safety and quality perspective. Food Res Int 2020; 137:109424. [PMID: 33233106 DOI: 10.1016/j.foodres.2020.109424] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
The inherent differences in microbial behavior among identically treated strains of the same microbial species, referred to as "strain variability", are regarded as an important source of variability in microbiological studies. Biofilms are defined as the structured multicellular communities with complex architecture that enable microorganisms to grow adhered to abiotic or living surfaces and constitute a fundamental aspect of microbial ecology. The research studies assessing the strain variability in biofilm formation are relatively few compared to the ones evaluating other aspects of microbial behavior such as virulence, growth and stress resistance. Among the available research data on intra-species variability in biofilm formation, compiled and discussed in the present review, most of them refer to foodborne pathogens as compared to spoilage microorganisms. Molecular and physiological aspects of biofilm formation potentially related to strain-specific responses, as well as information on the characterization and quantitative description of this type of biological variability are presented and discussed. Despite the considerable amount of available information on the strain variability in biofilm formation, there are certain data gaps and still-existing challenges that future research should cover and address. Current and future advances in systems biology and omics technologies are expected to aid significantly in the explanation of phenotypic strain variability, including biofilm formation variability, allowing for its integration in microbiological risk assessment.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
40
|
Agricultural intensification and the evolution of host specialism in the enteric pathogen Campylobacter jejuni. Proc Natl Acad Sci U S A 2020; 117:11018-11028. [PMID: 32366649 PMCID: PMC7245135 DOI: 10.1073/pnas.1917168117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Modern agriculture has dramatically changed the distribution of animal species on Earth. Changes to host ecology have a major impact on the microbiota, potentially increasing the risk of zoonotic pathogens being transmitted to humans, but the impact of intensive livestock production on host-associated bacteria has rarely been studied. Here, we use large isolate collections and comparative genomics techniques, linked to phenotype studies, to understand the timescale and genomic adaptations associated with the proliferation of the most common food-born bacterial pathogen (Campylobacter jejuni) in the most prolific agricultural mammal (cattle). Our findings reveal the emergence of cattle specialist C. jejuni lineages from a background of host generalist strains that coincided with the dramatic rise in cattle numbers in the 20th century. Cattle adaptation was associated with horizontal gene transfer and significant gene gain and loss. This may be related to differences in host diet, anatomy, and physiology, leading to the proliferation of globally disseminated cattle specialists of major public health importance. This work highlights how genomic plasticity can allow important zoonotic pathogens to exploit altered niches in the face of anthropogenic change and provides information for mitigating some of the risks posed by modern agricultural systems.
Collapse
|
41
|
Zhong X, Wu Q, Zhang J, Ma Z, Wang J, Nie X, Ding Y, Xue L, Chen M, Wu S, Wei X, Zhang Y. Campylobacter jejuni Biofilm Formation Under Aerobic Conditions and Inhibition by ZnO Nanoparticles. Front Microbiol 2020; 11:207. [PMID: 32210924 PMCID: PMC7076088 DOI: 10.3389/fmicb.2020.00207] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/29/2020] [Indexed: 12/03/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen worldwide. As it forms biofilms, it can become a persistent contaminant in the food and pharmaceutical industries. In this study, it was demonstrated that C. jejuni could make more biofilm in aerobic conditions than in microaerobic conditions, and only 13.9% C. jejuni entered coccus (a VBNC state) under microaerobic conditions; however, the rate increased to 95.5% under aerobic conditions. C. jejuni could form more biofilm in mixed culture with Escherichia coli or Pseudomonas aeruginosa than in pure culture. Scanning electron microscope results showed that C. jejuni retained its normal spiral shape under aerobic conditions for 48 h by forming crosslinks with the aerobic and facultative anaerobic bacteria. Additionally, culture medium containing 0.5 mg/ml ZnO nanoparticles inhibited biofilm formation. Our results provide information on a new approach to controlling contamination via C. jejuni.
Collapse
Affiliation(s)
- Xian Zhong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zonghao Ma
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiang Nie
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
42
|
Efimochkina NR, Stetsenko VV, Sheveleva SA. Peculiarities of Biofilms Formation by Campylobacter Bacteria in Mixed Populations with Other Microbial Contaminants of Food Products. Bull Exp Biol Med 2019; 168:62-65. [PMID: 31748868 DOI: 10.1007/s10517-019-04647-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 10/25/2022]
Abstract
Peculiarities of biofilms formation by Campylobacter bacteria in mixed populations with other microbial contaminants was studied by real-time impedance spectroscopy on an automated xCelligence real time cell analyzer (RTCA). This method is based on measuring the medium resistance in special plates (E-plates) with interdigitated microelectrodes. Coculturing of campylobacter with coliform bacteria is accompanied by film formation; the intensity of this process varies depending on the type of the test cultures and the nature of their interaction in mixed populations. Film formation by C. jejuni during co-culturing with enterobacteria is maximum during the first hours and depends on the presence of stress factors in the environment. The biomatrix film was synthesized by 3 times more intensively in the presence of oxygen than in microaerobic conditions, and also by 1.7-4.3 times more active in the mixed culture with Enterobacter cloacae, E. coli, and K. pneumoniae. During co-culturing of campylobacter with salmonella, no enhanced film formation by the tested strains was observed. Unlike members of the genus Enterobacter intensively producing exopolysaccharides, pathogenic member of Enterobacteriaceae, salmonella, demonstrated weak capacity to form film matrix. The study of film formation by Campylobacter allows more accurate assessment of the effectiveness of sanitary bactericidal treatment of food industry facilities, predict the appearance of biofilms and the intensity of their formation depending son the nature of the antimicrobial effect and the used means.
Collapse
Affiliation(s)
- N R Efimochkina
- Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia.
| | - V V Stetsenko
- Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - S A Sheveleva
- Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| |
Collapse
|
43
|
Campylobacter heat resistance - past, current status and future prospect for New Zealand and beyond. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933915000100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Burnham PM, Hendrixson DR. Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nat Rev Microbiol 2019; 16:551-565. [PMID: 29892020 DOI: 10.1038/s41579-018-0037-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Campylobacter jejuni is the leading cause of bacterial diarrhoeal disease in many areas of the world. The high incidence of sporadic cases of disease in humans is largely due to its prevalence as a zoonotic agent in animals, both in agriculture and in the wild. Compared with many other enteric bacterial pathogens, C. jejuni has strict growth and nutritional requirements and lacks many virulence and colonization determinants that are typically used by bacterial pathogens to infect hosts. Instead, C. jejuni has a different collection of factors and pathways not typically associated together in enteric pathogens to establish commensalism in many animal hosts and to promote diarrhoeal disease in the human population. In this Review, we discuss the cellular architecture and structure of C. jejuni, intraspecies genotypic variation, the multiple roles of the flagellum, specific nutritional and environmental growth requirements and how these factors contribute to in vivo growth in human and avian hosts, persistent colonization and pathogenesis of diarrhoeal disease.
Collapse
Affiliation(s)
- Peter M Burnham
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
45
|
Wagle BR, Upadhyay A, Upadhyaya I, Shrestha S, Arsi K, Liyanage R, Venkitanarayanan K, Donoghue DJ, Donoghue AM. Trans-Cinnamaldehyde, Eugenol and Carvacrol Reduce Campylobacter jejuni Biofilms and Modulate Expression of Select Genes and Proteins. Front Microbiol 2019; 10:1837. [PMID: 31456771 PMCID: PMC6698798 DOI: 10.3389/fmicb.2019.01837] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Campylobacter jejuni is the leading cause of human foodborne illness globally, and is strongly linked with the consumption of contaminated poultry products. Several studies have shown that C. jejuni can form sanitizer tolerant biofilm leading to product contamination, however, limited research has been conducted to develop effective control strategies against C. jejuni biofilms. This study investigated the efficacy of three generally recognized as safe status phytochemicals namely, trans-cinnamaldehyde (TC), eugenol (EG), or carvacrol (CR) in inhibiting C. jejuni biofilm formation and inactivating mature biofilm on common food contact surfaces at 20 and 37°C. In addition, the effect of phytochemicals on biofilm architecture and expression of genes and proteins essential for biofilm formation was evaluated. For the inhibition study, C. jejuni was allowed to form biofilms either in the presence or absence of sub-inhibitory concentrations of TC (0.75 mM), EG (0.61 mM), or CR (0.13 mM) for 48 h and the biofilm formation was quantified at 24-h interval. For the inactivation study, C. jejuni biofilms developed at 20 or 37°C for 48 h were exposed to the phytochemicals for 1, 5, or 10 min and surviving C. jejuni in the biofilm were enumerated. All phytochemicals reduced C. jejuni biofilm formation as well as inactivated mature biofilm on polystyrene and steel surface at both temperatures (P < 0.05). The highest dose of TC (75.64 mM), EG (60.9 mM) and CR (66.56 mM) inactivated (>7 log reduction) biofilm developed on steel (20°C) within 5 min. The genes encoding for motility systems (flaA, flaB, and flgA) were downregulated by all phytochemicals (P < 0.05). The expression of stress response (cosR, ahpC) and cell surface modifying genes (waaF) was reduced by EG. LC-MS/MS based proteomic analysis revealed that TC, EG, and CR significantly downregulated the expression of NapA protein required for oxidative stress response. The expression of chaperone protein DnaK and bacterioferritin required for biofilm formation was reduced by TC and CR. Scanning electron microscopy revealed disruption of biofilm architecture and loss of extracellular polymeric substances after treatment. Results suggest that TC, EG, and CR could be used as a natural disinfectant for controlling C. jejuni biofilms in processing areas.
Collapse
Affiliation(s)
- Basanta R. Wagle
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Indu Upadhyaya
- School of Agriculture, Tennessee Tech University, Cookeville, TN, United States
| | - Sandip Shrestha
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Komala Arsi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | | | - Dan J. Donoghue
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Annie M. Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture – Agriculture Research Station, Fayetteville, AR, United States
| |
Collapse
|
46
|
Lynch C, O'Connor JA, O'Brien D, Vaughan C, Bolton D, Coffey A, Lucey B. First reported detection of biofilm formation by Campylobacter fetus during investigation of a case of prosthetic valve endocarditis. J Clin Pathol 2019; 72:554-557. [PMID: 31055471 DOI: 10.1136/jclinpath-2018-205677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 02/03/2023]
Abstract
AIMS Campylobacter fetus subsp fetus (CFF) can cause intestinal illness, particularly in immunocompromised humans, with the potential to cause severe systemic infections. CFF is a zoonotic pathogen with a broad host range among farm animals and humans, inducing abortion in sheep and cows. The current paper describes a strain of CFF isolated from a patient with prosthetic valve endocarditis in Mercy University Hospital, Cork, Ireland, during 2017. Only five cases of C. fetus as a cause of prosthetic valve endocarditis have been reported in the literature, with no reports of biofilm formation within the species. METHODS The aetiological strain was speciated and subspeciated by the VITEK 2 NH card and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. CFF biofilm formation was analysed using a crystal violet staining method. C. jejuni National Collection of Type Cultures (NCTC) 11168 was used as a positive control organism. Strains were incubated statically in Mueller-Hinton broth and Mueller-Hinton broth supplemented with 0.025% sodium deoxycholate for 3 and 7 days at 37°C, microaerobically. RESULTS The CFF strain formed stronger attached biofilms on polystyrene plates on day 3 (72 hours) than the C. jejuni NCTC 11168 control strain, but were weaker than the control strain on day 7 in Mueller-Hinton broth. Monoculture of this C. fetus isolate was found to exist in three defined forms of biofilms (attached, air-liquid interface and floccules). CONCLUSIONS This clinically significant C. fetus isolate showed considerable biofilm-forming capability, which we suggest conferred a survivalist advantage, contributing to the genesis of infective prosthetic valve endocarditis.
Collapse
Affiliation(s)
- Caoimhe Lynch
- Biological Sciences, Cork Institute of Technology, Cork, Cork, Ireland
| | | | | | - Carl Vaughan
- Cardiology, Mercy University Hospital, Cork, Ireland
| | | | - Aidan Coffey
- Biological Sciences, Cork Institute of Technology, Cork, Cork, Ireland
| | - Brigid Lucey
- Biological Sciences, Cork Institute of Technology, Cork, Cork, Ireland
| |
Collapse
|
47
|
Teh AHT, Lee SM, Dykes GA. Association of some Campylobacter jejuni with Pseudomonas aeruginosa biofilms increases attachment under conditions mimicking those in the environment. PLoS One 2019; 14:e0215275. [PMID: 30970009 PMCID: PMC6457560 DOI: 10.1371/journal.pone.0215275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/31/2019] [Indexed: 12/21/2022] Open
Abstract
Campylobacter jejuni is a microaerophilic bacterial species which is a major food-borne pathogen worldwide. Attachment and biofilm formation have been suggested to contribute to the survival of this fastidious bacteria in the environment. In this study the attachment of three C. jejuni strains (C. jejuni strains 2868 and 2871 isolated from poultry and ATCC 33291) to different abiotic surfaces (stainless steel, glass and polystyrene) alone or with Pseudomonas aeruginosa biofilms on them, in air at 25°C and under static or flow conditions, were investigated using a modified Robbins Device. Bacteria were enumerated and scanning electron microscopy was carried out. The results indicated that both C. jejuni strains isolated from poultry attached better to Pseudomonas aeruginosa biofilms on abiotic surfaces than to the surfaces alone under the different conditions tested. This suggests that biofilms of other bacterial species may passively protect C. jejuni against shear forces and potentially oxygen stress which then contribute to their persistence in environments which are detrimental to them. By contrast the C. jejuni ATCC 33291 strain did not attach differentially to P. aeruginosa biofilms, suggesting that different C. jejuni strains may have alternative strategies for persistence in the environment. This study supports the hypothesis that C. jejuni do not form biofilms per se under conditions they encounter in the environment but simply attach to surfaces or biofilms of other species.
Collapse
Affiliation(s)
- Amy Huei Teen Teh
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sui Mae Lee
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Gary A. Dykes
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
48
|
Čabarkapa I, Čolović R, Đuragić O, Popović S, Kokić B, Milanov D, Pezo L. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. BIOFOULING 2019; 35:361-375. [PMID: 31088182 DOI: 10.1080/08927014.2019.1610169] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present study was to determine the bioactive compounds in four essential oils (EO's) from Origanum heracleoticum, Origanum vulgare, Thymus vulgaris and Thymus serpyllum and to assess their antimicrobial and anti-biofilm activity against Salmonella Enteritidis. Strains were previously characterized depending on the expression of the extracellular matrix components cellulose and curli fimbriae as rdar (red, dry and rough) and bdar morphotype (brown, dry and rough). This study revealed that the EO's and EOC's (carvacrol and thymol) investigated showed inhibition of biofilm formation at sub-minimum inhibitory concentration. Comparing the efficacy of EO's and EOC's in the inhibition of biofilm formation between the strains with different morphotype (rdar and bdar) did not show a statistically significant difference. Results related to the effectiveness of EO's and EOC's (the essential oil components, carvacrol and thymol) on eradication of preformed 48 h old biofilms indicated that biofilm reduction occurred in a dose-dependent manner over time.
Collapse
Affiliation(s)
- Ivana Čabarkapa
- a University of Novi Sad, Institute of Food Technology , Novi Sad , Serbia
| | - Radmilo Čolović
- a University of Novi Sad, Institute of Food Technology , Novi Sad , Serbia
| | - Olivera Đuragić
- a University of Novi Sad, Institute of Food Technology , Novi Sad , Serbia
| | - Sanja Popović
- a University of Novi Sad, Institute of Food Technology , Novi Sad , Serbia
| | - Bojana Kokić
- a University of Novi Sad, Institute of Food Technology , Novi Sad , Serbia
| | - Dubravka Milanov
- b Scientific Veterinary Institute "Novi Sad", Rumenački put bb , Novi Sad , Serbia
| | - Lato Pezo
- c University of Belgrade, Institute of General and Physical Chemistry , Belgrade , Serbia
| |
Collapse
|
49
|
Götz F, Pjevac P, Markert S, McNichol J, Becher D, Schweder T, Mussmann M, Sievert SM. Transcriptomic and proteomic insight into the mechanism of cyclooctasulfur‐ versus thiosulfate‐oxidation by the chemolithoautotroph
Sulfurimonas denitrificans. Environ Microbiol 2018; 21:244-258. [DOI: 10.1111/1462-2920.14452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Florian Götz
- Biology Department Woods Hole Oceanographic Institution Woods Hole MA, 02543 USA
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald D‐17487, Greifswald Germany
| | - Petra Pjevac
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science Research Network ‘Chemistry Meets Microbiology’, University of Vienna Althanstr‐14, 1090, Vienna Austria
| | - Stephanie Markert
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald D‐17487, Greifswald Germany
- Institute of Marine Biotechnology Walther‐Rathenau‐Strasse 49, D‐17489, Greifswald Germany
| | - Jesse McNichol
- Biology Department Woods Hole Oceanographic Institution Woods Hole MA, 02543 USA
| | - Dörte Becher
- Institute of Microbiology University of Greifswald D‐17487, Greifswald Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology Institute of Pharmacy, University of Greifswald D‐17487, Greifswald Germany
- Institute of Marine Biotechnology Walther‐Rathenau‐Strasse 49, D‐17489, Greifswald Germany
| | - Marc Mussmann
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science Research Network ‘Chemistry Meets Microbiology’, University of Vienna Althanstr‐14, 1090, Vienna Austria
- Department of Molecular Ecology Max Planck Institute for Marine Microbiology Celsiusstr. 1, 28359, Bremen Germany
| | - Stefan M. Sievert
- Biology Department Woods Hole Oceanographic Institution Woods Hole MA, 02543 USA
| |
Collapse
|
50
|
Farfán M, Lártiga N, Benavides MB, Alegría-Morán R, Sáenz L, Salcedo C, Lapierre L. Capacity to adhere to and invade human epithelial cells, as related to the presence of virulence genes in, motility of, and biofilm formation of Campylobacter jejuni strains isolated from chicken and cattle. Can J Microbiol 2018; 65:126-134. [PMID: 30339767 DOI: 10.1139/cjm-2018-0503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Campylobacter jejuni is a zoonotic pathogen transmitted through the "farm to fork" route. Outbreaks are generally associated with the consumption of chicken meat; however, dairy cows, birds, wild and domestic food animals, and pets are other important sources. Currently, there are not enough data comparing the virulence of strains isolated from these reservoirs. In this study, we compared C. jejuni strains isolated from broiler chickens and dairy cattle by determining their ability to adhere to and invade in vitro human colonic epithelial cells in the T84 cell line with their motility, formation of biofilms, and presence of eight virulence genes. A Wilcoxon Rank Sum test was performed to establish the relationship between presence of the studied genes and cellular invasion and adhesion, as well as differences between the animal species of origin of the isolate. A Spearman correlation was performed to assess the relationship between invasion and motility, along with invasion and biofilm generation. The virB11 gene was positively associated with the adherence capacity of the strains (mean difference = 0.21, p = 0.006), and strains isolated from chickens showed a significant difference for adherence compared with strains isolated from cattle (p = 0.0001). Our results indicate that strains of C. jejuni have a difference in their adherence capacity depending on the animal reservoir from which they came, with chicken isolates displaying higher virulence than dairy cattle isolates.
Collapse
Affiliation(s)
- Mauricio Farfán
- a Faculty of Medicine, University of Chile, Antonio Varas 360, Providencia, Santiago, Chile
| | - Natalia Lártiga
- a Faculty of Medicine, University of Chile, Antonio Varas 360, Providencia, Santiago, Chile.,b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - María Belén Benavides
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Raúl Alegría-Morán
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Leonardo Sáenz
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Cristal Salcedo
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Lisette Lapierre
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| |
Collapse
|