1
|
Zhu F, Sun MX, Zhao SQ, Qin CF, Wang JH, Deng YQ. Immunogenicity and Protective Efficacy of Aerosolized Live-Attenuated Yellow Fever 17D Vaccine in Mice. Vaccines (Basel) 2024; 12:856. [PMID: 39203982 PMCID: PMC11360090 DOI: 10.3390/vaccines12080856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Yellow fever (YF), caused by the yellow fever virus (YFV), continually spreads and causes epidemics worldwide, posing a great threat to human health. The live-attenuated YF 17D vaccine (YF-17D) has been licensed for preventing YFV infection and administrated via the intramuscular (i.m.) route. In this study, we sought to determine the immunogenicity and protective efficacy of aerosolized YF-17D via the intratracheal (i.t.) route in mice. YF-17D stocks in liquids were successfully aerosolized into particles of 6 μm. Further in vitro phenotype results showed the aerosolization process did not abolish the infectivity of YF-17D. Meanwhile, a single i.t. immunization with aerosolized YF-17D induced robust humoral and cellular immune responses in A129 mice, which is comparable to that received i.p. immunization. Notably, the aerosolized YF-17D also triggered specific secretory IgA (SIgA) production in bronchoalveolar lavage. Additionally, all immunized animals survived a lethal dose of YFV challenge in mice. In conclusion, our results support further development of aerosolized YF-17D in the future.
Collapse
Affiliation(s)
- Feng Zhu
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China;
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Meng-Xu Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Suo-Qun Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Jin-Hua Wang
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China;
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| |
Collapse
|
2
|
Mok DZ, Tng DJ, Yee JX, Chew VS, Tham CY, Ooi JS, Tan HC, Zhang SL, Lin LZ, Ng WC, Jeeva LL, Murugayee R, Goh KKK, Lim TP, Cui L, Cheung YB, Ong EZ, Chan KR, Ooi EE, Low JG. Electron transport chain capacity expands yellow fever vaccine immunogenicity. EMBO Mol Med 2024; 16:1310-1323. [PMID: 38745062 PMCID: PMC11178804 DOI: 10.1038/s44321-024-00065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Vaccination has successfully controlled several infectious diseases although better vaccines remain desirable. Host response to vaccination studies have identified correlates of vaccine immunogenicity that could be useful to guide development and selection of future vaccines. However, it remains unclear whether these findings represent mere statistical correlations or reflect functional associations with vaccine immunogenicity. Functional associations, rather than statistical correlates, would offer mechanistic insights into vaccine-induced adaptive immunity. Through a human experimental study to test the immunomodulatory properties of metformin, an anti-diabetic drug, we chanced upon a functional determinant of neutralizing antibodies. Although vaccine viremia is a known correlate of antibody response, we found that in healthy volunteers with no detectable or low yellow fever 17D viremia, metformin-treated volunteers elicited higher neutralizing antibody titers than placebo-treated volunteers. Transcriptional and metabolomic analyses collectively showed that a brief course of metformin, started 3 days prior to YF17D vaccination and stopped at 3 days after vaccination, expanded oxidative phosphorylation and protein translation capacities. These increased capacities directly correlated with YF17D neutralizing antibody titers, with reduced reactive oxygen species response compared to placebo-treated volunteers. Our findings thus demonstrate a functional association between cellular respiration and vaccine-induced humoral immunity and suggest potential approaches to enhancing vaccine immunogenicity.
Collapse
Affiliation(s)
- Darren Zl Mok
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Danny Jh Tng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Jia Xin Yee
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Valerie Sy Chew
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Christine Yl Tham
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Justin Sg Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Summer L Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lowell Z Lin
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wy Ching Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lavanya Lakshmi Jeeva
- SingHealth Investigational Medicine Unit, Singapore General Hospital, Singapore, Singapore
| | - Ramya Murugayee
- SingHealth Investigational Medicine Unit, Singapore General Hospital, Singapore, Singapore
| | - Kelvin K-K Goh
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Tze-Peng Lim
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Liang Cui
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
| | - Yin Bun Cheung
- Center for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
- Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
| | - Eugenia Z Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.
- Department of Translational Clinical Research, Singapore General Hospital, Singapore, Singapore.
| | - Jenny G Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore.
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
3
|
Sanchez-Felipe L, Alpizar YA, Ma J, Coelmont L, Dallmeier K. YF17D-based vaccines - standing on the shoulders of a giant. Eur J Immunol 2024; 54:e2250133. [PMID: 38571392 DOI: 10.1002/eji.202250133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.
Collapse
Affiliation(s)
- Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| |
Collapse
|
4
|
Franco MB, Jardim LL, de Carvalho BN, Basques F, Ribeiro DD, Pereira LS, Rezende SM. Deficiency of coagulation factors is associated with the bleeding diathesis of severe yellow fever. Ann Hematol 2023; 102:1939-1949. [PMID: 37226021 DOI: 10.1007/s00277-023-05262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
Yellow fever (YF) is an acute tropical infectious disease caused by an arbovirus and can manifest as a classic hemorrhagic fever. The mechanism of the bleeding diathesis in YF is not well understood. We assessed clinical and laboratory data (including a panel of coagulation tests) from 46 patients with moderate (M) and severe (S) YF admitted to a local hospital between January 2018 and April 2018. Among 46 patients, 34 had SYF of whom 12 (35%) patients died. A total of 21 (45%) patients developed some type of bleeding manifestation and 15 (32%) presented severe bleeding. Patients with SYF had more severe thrombocytopenia (p = 0.001); prolonged activated partial thromboplastin time (aPTT) and thrombin time (TT) (p = 0.03 and p = 0.005, respectively); reduced plasma levels of coagulation factor (F) II (p < 0.01), FIX (p = 0.01), and FX (p = 0.04); and D-dimer levels almost 10 times higher (p < 0.01) when compared with patients with MYF. Patients who died had more bleeding (p = 0.03), more major bleeding (p = 0.03), prolonged international normalized ratio (INR) and aPTT (p = 0.003 and p = 0.002, respectively), as well as lower activity of FII (p = 0.02), FV (p = 0.001), FVII (p = 0.005), FIX (p = 0.01), and protein C (p = 0.01) than the ones who survived. FVIII levels were either normal or increased in all patients studied. Our results suggest that the bleeding diathesis of SYF is associated with the deficiency of coagulation factors produced by the liver. Prolonged INR and aPTT and reduced FII, FV, FVII, FIX, and protein C were associated with death.
Collapse
Affiliation(s)
- Mariana Brandão Franco
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenida Alfredo Balena, 190, Room 255, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Leticia Lemos Jardim
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenida Alfredo Balena, 190, Room 255, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | | | - Fernando Basques
- Hemocentro de Belo Horizonte, Fundação HEMOMINAS, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Dias Ribeiro
- Hematology Unit, University Hospital, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Soares Pereira
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Suely Meireles Rezende
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenida Alfredo Balena, 190, Room 255, Belo Horizonte, Minas Gerais, 30130-100, Brazil.
| |
Collapse
|
5
|
Immunogenicity and protective activity of mRNA vaccine candidates against yellow fever virus in animal models. NPJ Vaccines 2023; 8:31. [PMID: 36871059 PMCID: PMC9984760 DOI: 10.1038/s41541-023-00629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Despite the success of the widely used attenuated yellow fever (YF) vaccine, its global supply remains a substantial barrier to implementing vaccination campaigns in endemic regions and combating emerging epidemics. In A129 mice and rhesus macaques, we evaluated the immunogenicity and protective activity of messenger RNA (mRNA) vaccine candidates encapsulated in lipid nanoparticles, expressing the pre-membrane and envelope proteins or the non-structural protein 1 of YF virus. Vaccine constructs induced humoral and cell-mediated immune responses in mice, resulting in protection against lethal YF virus infection after passive administration of serum or splenocytes from vaccinated mice. Vaccination of macaques induced sustained high humoral and cellular immune responses for at least 5 months after the second dose. Our data demonstrate that these mRNA vaccine candidates can be considered an attractive addition to the licensed YF vaccine supply based on the induction of functional antibodies correlating with protection and T-cell responses; they could alleviate the limited supply of current YF vaccines, mitigating future YF epidemics.
Collapse
|
6
|
Shinde DP, Plante JA, Plante KS, Weaver SC. Yellow Fever: Roles of Animal Models and Arthropod Vector Studies in Understanding Epidemic Emergence. Microorganisms 2022; 10:1578. [PMID: 36013996 PMCID: PMC9412558 DOI: 10.3390/microorganisms10081578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/08/2023] Open
Abstract
Yellow fever virus (YFV) is a mosquito-borne flavivirus circulating throughout the tropical and sub-tropical regions of Africa and South America. It is responsible for an estimated 30,000 deaths annually, and while there is a highly successful vaccine, coverage is incomplete, and there is no approved treatment for YFV infection. Despite advancements in the field, animal models for YFV infection remain scarce, and care must be taken to select an appropriate model for a given hypothesis. Small animal models require either adapted YFV strains or immunocompromised hosts. Non-human primates (NHPs) recapitulate human disease, but they require specialized facilities and training, are often in short supply and cost-prohibitive, and can present ethical concerns. The limitations in studying the mosquito vectors for YFV infection include inconsistency in the laboratory environment, the requirement for a high containment insectary, and difficulty in maintaining sylvatic mosquitoes. In this review, we discuss the roles of animal models and arthropod vector studies in understanding epidemic emergence.
Collapse
Affiliation(s)
- Divya P. Shinde
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jessica A. Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kenneth S. Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Oreshkova N, Myeni SK, Mishra N, Albulescu IC, Dalebout TJ, Snijder EJ, Bredenbeek PJ, Dallmeier K, Kikkert M. A Yellow Fever 17D Virus Replicon-Based Vaccine Platform for Emerging Coronaviruses. Vaccines (Basel) 2021; 9:1492. [PMID: 34960238 PMCID: PMC8704410 DOI: 10.3390/vaccines9121492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 01/14/2023] Open
Abstract
The tremendous global impact of the current SARS-CoV-2 pandemic, as well as other current and recent outbreaks of (re)emerging viruses, emphasize the need for fast-track development of effective vaccines. Yellow fever virus 17D (YF17D) is a live-attenuated virus vaccine with an impressive efficacy record in humans, and therefore, it is a very attractive platform for the development of novel chimeric vaccines against various pathogens. In the present study, we generated a YF17D-based replicon vaccine platform by replacing the prM and E surface proteins of YF17D with antigenic subdomains from the spike (S) proteins of three different betacoronaviruses: MERS-CoV, SARS-CoV and MHV. The prM and E proteins were provided in trans for the packaging of these RNA replicons into single-round infectious particles capable of expressing coronavirus antigens in infected cells. YF17D replicon particles expressing the S1 regions of the MERS-CoV and SARS-CoV spike proteins were immunogenic in mice and elicited (neutralizing) antibody responses against both the YF17D vector and the coronavirus inserts. Thus, YF17D replicon-based vaccines, and their potential DNA- or mRNA-based derivatives, may constitute a promising and particularly safe vaccine platform for current and future emerging coronaviruses.
Collapse
Affiliation(s)
- Nadia Oreshkova
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Sebenzile K. Myeni
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Niraj Mishra
- Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1043, 3000 Leuven, Belgium; (N.M.); (K.D.)
| | - Irina C. Albulescu
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Tim J. Dalebout
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Eric J. Snijder
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Peter J. Bredenbeek
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Kai Dallmeier
- Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1043, 3000 Leuven, Belgium; (N.M.); (K.D.)
| | - Marjolein Kikkert
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| |
Collapse
|
8
|
Ma J, Boudewijns R, Sanchez-Felipe L, Mishra N, Vercruysse T, Buh Kum D, Thibaut HJ, Neyts J, Dallmeier K. Comparing immunogenicity and protective efficacy of the yellow fever 17D vaccine in mice. Emerg Microbes Infect 2021; 10:2279-2290. [PMID: 34792431 PMCID: PMC8648041 DOI: 10.1080/22221751.2021.2008772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The live-attenuated yellow fever 17D (YF17D) vaccine is one of the most efficacious human vaccines and also employed as a vector for novel vaccines. However, in the lack of appropriate immunocompetent small animal models, mechanistic insight in YF17D-induced protective immunity remains limited. To better understand YF17D vaccination and to identify a suitable mouse model, we evaluated the immunogenicity and protective efficacy of YF17D in five complementary mouse models, i.e. wild-type (WT) BALB/c, C57BL/6, IFN-α/β receptor (IFNAR-/-) deficient mice, and in WT mice in which type I IFN signalling was temporally ablated by an IFNAR blocking (MAR-1) antibody. Alike in IFNAR-/- mice, YF17D induced in either WT mice strong humoral immune responses dominated by IgG2a/c isotype (Th1 type) antibodies, yet only when IFNAR was blocked. Vigorous cellular immunity characterized by CD4+ T-cells producing IFN-γ and TNF-α were mounted in MAR-1 treated C57BL/6 and in IFNAR-/- mice. Surprisingly, vaccine-induced protection was largely mouse model dependent. Full protection against lethal intracranial challenge and a massive reduction of virus loads was conferred already by a minimal dose of 2 PFU YF17D in BALB/c and IFNAR-/- mice, but not in C57BL/6 mice. Correlation analysis of infection outcome with pre-challenge immunological markers indicates that YFV-specific IgG might suffice for protection, even in the absence of detectable levels of neutralizing antibodies. Finally, we propose that, in addition to IFNAR-/- mice, C57BL/6 mice with temporally blocked IFN-α/β receptors represent a promising immunocompetent mouse model for the study of YF17D-induced immunity and evaluation of YF17D-derived vaccines.
Collapse
Affiliation(s)
- Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Robbert Boudewijns
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Niraj Mishra
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Dieudonné Buh Kum
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,Global Virus Network (GVN), Baltimore, MD, USA
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,Global Virus Network (GVN), Baltimore, MD, USA
| |
Collapse
|
9
|
Dong HL, Wang HJ, Liu ZY, Ye Q, Qin XL, Li D, Deng YQ, Jiang T, Li XF, Qin CF. Visualization of yellow fever virus infection in mice using a bioluminescent reporter virus. Emerg Microbes Infect 2021; 10:1739-1750. [PMID: 34379047 PMCID: PMC8425728 DOI: 10.1080/22221751.2021.1967705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Yellow fever virus (YFV) is a re-emerging flavivirus, which can lead to severe clinical manifestations and high mortality, with no specific antiviral therapies available. The live-attenuated yellow fever vaccine 17D (YF17D) has been widely used for over eighty years. However, the emergence of yellow fever vaccine-associated viscerotropic disease (YFL-AVD) and yellow fever vaccine-associated neurotropic disease (YFL-AND) raised non-negligible concerns. Additionally, the attenuation mechanism of YF17D is still unclear. Thus, the development of convenient models is crucial to understand the mechanisms behind YF17D attenuation and its adverse effects. In this work, we generated a reporter YF17D expressing nano-luciferase (NLuc). In vitro and in vivo characterization demonstrated that the NLuc-YF17D shared similar biological properties with its parental strain and the NLuc activity can reflect viral infectivity reliably. Combined with in vivo bioluminescence imaging, a series of mice models of YF17D infection was established, which will be useful for the evaluation of antiviral medicines and novel vaccine candidates. Especially, we demonstrated that intraperitoneally (i.p.) infection of NLuc-YF17D in type I interferon receptor-deficient mice A129 resulted in outcomes resembling YEL-AVD and YEL-AND, evidenced by viral replication in multiple organs and invasion of the central neuronal system. Finally, in vitro and in vivo assays based on this reporter virus were established to evaluate the antiviral activities of validated antiviral agents. In conclusion, the bioluminescent reporter virus described herein provides a powerful platform to study YF17D attenuation and vaccine-associated diseases as well as to develop novel countermeasures against YFV.
Collapse
Affiliation(s)
- Hao-Long Dong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Hong-Jiang Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,Department of Comprehensive Basic Experiment, The Chinese People's Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Zhong-Yu Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,The Center for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Ling Qin
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Medicine and Health, Guangxi Vocational and Technical Institute of industry, Nanning, People's Republic of China
| | - Dan Li
- The Center for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,Department of Pharmacology, Chinese Academy of Medical Sciences, Beijing, Republic of China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
10
|
Meyts I, Casanova JL. Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. Eur J Immunol 2021; 51:1039-1061. [PMID: 33729549 PMCID: PMC8900014 DOI: 10.1002/eji.202048793] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Type I IFNs are so-named because they interfere with viral infection in vertebrate cells. The study of cellular responses to type I IFNs led to the discovery of the JAK-STAT signaling pathway, which also governs the response to other cytokine families. We review here the outcome of viral infections in mice and humans with engineered and inborn deficiencies, respectively, of (i) IFNAR1 or IFNAR2, selectively disrupting responses to type I IFNs, (ii) STAT1, STAT2, and IRF9, also impairing cellular responses to type II (for STAT1) and/or III (for STAT1, STAT2, IRF9) IFNs, and (iii) JAK1 and TYK2, also impairing cellular responses to cytokines other than IFNs. A picture is emerging of greater redundancy of human type I IFNs for protective immunity to viruses in natural conditions than was initially anticipated. Mouse type I IFNs are essential for protection against a broad range of viruses in experimental conditions. These findings suggest that various type I IFN-independent mechanisms of human cell-intrinsic immunity to viruses have yet to be discovered.
Collapse
Affiliation(s)
- Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium, EU
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium, EU
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France, EU
- University of Paris, Imagine Institute, 75015 Paris, France, EU
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
11
|
Piras-Douce F, Raynal F, Raquin A, Girerd-Chambaz Y, Gautheron S, Sanchez MEN, Vangelisti M, Mantel N. Next generation live-attenuated yellow fever vaccine candidate: Safety and immuno-efficacy in small animal models. Vaccine 2021; 39:1846-1856. [PMID: 33685778 PMCID: PMC8047865 DOI: 10.1016/j.vaccine.2021.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 02/03/2023]
Abstract
vYF-247 was cloned from YF-VAX and adapted for growth in serum-free Vero cells. vYF-247 selected by safety/immunogenicity/efficacy criteria in small animal models. vYF-247 was less neurovirulent than Stamaril and YF-VAX. vYF-247 had similar attenuation profile, viscerotropism, neurotropism and immunogenicity to YF-VAX. vYF-247 protects hamsters from lethal challenge with yellow fever Jimenez P10 virus.
Yellow fever (YF) remains a threat to human health in tropical regions of Africa and South America. Live-attenuated YF-17D vaccines have proven to be safe and effective in protecting travellers and populations in endemic regions against YF, despite very rare severe reactions following vaccination — YF vaccine-associated viscerotropic disease (YEL-AVD) and neurological disease (YEL-AND). We describe the generation and selection of a live-attenuated YF-17D vaccine candidate and present its preclinical profile. Initially, 24 YF-17D vaccine candidate sub-strains from the Stamaril® and YF-VAX® lineage were created through transfection of viral genomic RNA into Vero cells cultured in serum-free media to produce seed lots. The clone with the ‘optimal’ preclinical profile, i.e. the lowest neurovirulence, neurotropism and viscerotropism, and immunogenicity at least comparable with Stamaril and YF-VAX in relevant animal models, was selected as the vaccine candidate and taken forward for assessment at various production stages. The ‘optimal’ vaccine candidate was obtained from the YF-VAX lineage (hence named vYF-247) and had five nucleotide differences relative to its parent, with only two changes that resulted in amino acid changes at position 480 of the envelope protein (E) (valine to leucine), and position 65 of the non-structural protein 2A (NS2A) (methionine to valine). vYF-247 was less neurovirulent in mice than Stamaril and YF-VAX irrespective of production stage. Its attenuation profile in terms of neurotropism and viscerotropism was similar to YF-VAX in A129 mice, a ‘worst case’ animal model lacking type-I IFN receptors required to initiate viral clearance. Thus, vYF-247 would not be expected to have higher rates of YEL-AVD or YEL-AND than Stamaril and YF-VAX. In hamsters, vYF-247 was immunogenic and protected against high viremia and death induced by a lethal challenge with the hamster-adapted Jimenez P10 YF virus strain. Our data suggests that vYF-247 would provide robust protection against YF disease in humans, similar to currently marketed YF vaccines.
Collapse
Affiliation(s)
| | - Franck Raynal
- Research and External Innovation, Sanofi Pasteur, Marcy l'Etoile, France.
| | - Alix Raquin
- Research and External Innovation, Sanofi Pasteur, Marcy l'Etoile, France.
| | | | - Sylviane Gautheron
- Research and External Innovation, Sanofi Pasteur, Marcy l'Etoile, France.
| | | | | | - Nathalie Mantel
- Research and External Innovation, Sanofi Pasteur, Marcy l'Etoile, France.
| |
Collapse
|
12
|
A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature 2021; 590:320-325. [PMID: 33260195 DOI: 10.1038/s41586-020-3035-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023]
Abstract
The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response1. Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters (Mesocricetus auratus), mice (Mus musculus) and cynomolgus macaques (Macaca fascicularis), and-concomitantly-protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate.
Collapse
|
13
|
Duncan CJA, Randall RE, Hambleton S. Genetic Lesions of Type I Interferon Signalling in Human Antiviral Immunity. Trends Genet 2021; 37:46-58. [PMID: 32977999 PMCID: PMC7508017 DOI: 10.1016/j.tig.2020.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
The concept that type I interferons (IFN-I) are essential to antiviral immunity derives from studies on animal models and cell lines. Virtually all pathogenic viruses have evolved countermeasures to IFN-I restriction, and genetic loss of viral IFN-I antagonists leads to virus attenuation. But just how important is IFN-I to antiviral defence in humans? The recent discovery of genetic defects of IFN-I signalling illuminates this and other questions of IFN biology, including the role of the mucosa-restricted type III IFNs (IFN-III), informing our understanding of the place of the IFN system within the concerted antiviral response. Here we review monogenic lesions of IFN-I signalling pathways and summarise the organising principles which emerge.
Collapse
Affiliation(s)
- Christopher J A Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK.
| | - Richard E Randall
- School of Biology, University of St Andrew's, St Andrew's KY16 9ST, UK
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| |
Collapse
|
14
|
Bailey AL, Kang LI, de Assis Barros D'Elia Zanella LGF, Silveira CGT, Ho YL, Foquet L, Bial G, McCune BT, Duarte-Neto AN, Thomas A, Raué HP, Byrnes K, Kallas EG, Slifka MK, Diamond MS. Consumptive coagulopathy of severe yellow fever occurs independently of hepatocellular tropism and massive hepatic injury. Proc Natl Acad Sci U S A 2020; 117:32648-32656. [PMID: 33268494 PMCID: PMC7768776 DOI: 10.1073/pnas.2014096117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Yellow fever (YF) is a mosquito-transmitted viral disease that causes tens of thousands of deaths each year despite the long-standing deployment of an effective vaccine. In its most severe form, YF manifests as a hemorrhagic fever that causes severe damage to visceral organs. Although coagulopathy is a defining feature of severe YF in humans, the mechanism by which it develops remains uncertain. Hepatocytes are a major target of yellow fever virus (YFV) infection, and the coagulopathy in severe YF has long been attributed to massive hepatocyte infection and destruction that results in a defect in clotting factor synthesis. However, when we analyzed blood from Brazilian patients with severe YF, we found high concentrations of plasma D-dimer, a fibrin split product, suggestive of a concurrent consumptive process. To define the relationship between coagulopathy and hepatocellular tropism, we compared infection and disease in Fah-/-, Rag2-/-, and Il2rɣ-/- mice engrafted with human hepatocytes (hFRG mice) and rhesus macaques using a highly pathogenic African YFV strain. YFV infection of macaques and hFRG mice caused substantial hepatocyte infection, liver damage, and coagulopathy as defined by virological, clinical, and pathological criteria. However, only macaques developed a consumptive coagulopathy whereas YFV-infected hFRG mice did not. Thus, infection of cell types other than hepatocytes likely contributes to the consumptive coagulopathy associated with severe YF in primates and humans. These findings expand our understanding of viral hemorrhagic disease and associated coagulopathy and suggest directions for clinical management of severe YF cases.
Collapse
Affiliation(s)
- Adam L Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Cássia G T Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | - Yeh-Li Ho
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | | | - Greg Bial
- Yecuris Corporation, Tualatin, OR 97062
| | - Broc T McCune
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Amaro Nunes Duarte-Neto
- Department of Pathology, Clinical Hospital, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Kathleen Byrnes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Esper G Kallas
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
15
|
A Yellow Fever Virus 17D Infection and Disease Mouse Model Used to Evaluate a Chimeric Binjari-Yellow Fever Virus Vaccine. Vaccines (Basel) 2020; 8:vaccines8030368. [PMID: 32660106 PMCID: PMC7564786 DOI: 10.3390/vaccines8030368] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of an effective, live attenuated yellow fever virus (YFV) vaccine (YFV 17D), this flavivirus still causes up to ≈60,000 deaths annually. A number of new approaches are seeking to address vaccine supply issues and improve safety for the immunocompromised vaccine recipients. Herein we describe an adult female IFNAR-/- mouse model of YFV 17D infection and disease that recapitulates many features of infection and disease in humans. We used this model to evaluate a new YFV vaccine that is based on a recently described chimeric Binjari virus (BinJV) vaccine technology. BinJV is an insect-specific flavivirus and the chimeric YFV vaccine (BinJ/YFV-prME) was generated by replacing the prME genes of BinJV with the prME genes of YFV 17D. Such BinJV chimeras retain their ability to replicate to high titers in C6/36 mosquito cells (allowing vaccine production), but are unable to replicate in vertebrate cells. Vaccination with adjuvanted BinJ/YFV-prME induced neutralizing antibodies and protected mice against infection, weight loss and liver pathology after YFV 17D challenge.
Collapse
|
16
|
A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies. mBio 2020; 11:mBio.02494-19. [PMID: 32265332 PMCID: PMC7157777 DOI: 10.1128/mbio.02494-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Efficient and safe vaccines against yellow fever (e.g., YFV-17D) that provide long-lasting protection by rapidly inducing neutralizing antibody responses exist. However, the vaccine supply cannot cope with an increasing demand posed by urban outbreaks in recent years. Here we report that JE-CVax/Imojev, a YFV-17D-based chimeric Japanese encephalitis vaccine, also efficiently protects against YFV infection in mice. In case of shortage of the YFV vaccine during yellow fever outbreaks, (off-label) use of JE-CVax/Imojev may be considered. Moreover, wider use of JE-CVax/Imojev in Asia may lower the risk of the much-feared YFV spillover to the continent. More generally, chimeric vaccines that combine surface antigens and replication machineries of two distinct flaviviruses may be considered dual vaccines for the latter pathogen without induction of surface-specific antibodies. Following this rationale, novel flavivirus vaccines that do not hold a risk for antibody-dependent enhancement (ADE) of infection (inherent to current dengue vaccines and dengue vaccine candidates) could be designed. Recent outbreaks of yellow fever virus (YFV) in West Africa and Brazil resulted in rapid depletion of global vaccine emergency stockpiles and raised concerns about being unprepared against future YFV epidemics. Here we report that a live attenuated virus similar to the Japanese encephalitis virus (JEV) vaccine JE-CVax/Imojev that consists of YFV-17D vaccine from which the structural (prM/E) genes have been replaced with those of the JEV SA14-14-2 vaccine strain confers full protection in mice against lethal YFV challenge. In contrast to the YFV-17D-mediated protection against YFV, this protection is not mediated by neutralizing antibodies but correlates with YFV-specific nonneutralizing antibodies and T cell responses against cell-associated YFV NS1 and other YFV nonstructural (NS) proteins. Our findings reveal the potential of YFV NS proteins to mediate protection and demonstrate that chimeric flavivirus vaccines, such as Imojev, could confer protection against two flaviviruses. This dual protection may have implications for the possible off-label use of JE-CVax in case of emergency and vaccine shortage during YFV outbreaks. In addition, populations in Asia that have been vaccinated with Imojev may already be protected against YFV should outbreaks ever occur on that continent, as several countries/regions in the Asia-Pacific are vulnerable to international spread of the YFV.
Collapse
|
17
|
Douam F, Ziegler CGK, Hrebikova G, Fant B, Leach R, Parsons L, Wang W, Gaska JM, Winer BY, Heller B, Shalek AK, Ploss A. Selective expansion of myeloid and NK cells in humanized mice yields human-like vaccine responses. Nat Commun 2018; 9:5031. [PMID: 30487575 PMCID: PMC6262001 DOI: 10.1038/s41467-018-07478-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022] Open
Abstract
Mice engrafted with components of a human immune system have become widely-used models for studying aspects of human immunity and disease. However, a defined methodology to objectively measure and compare the quality of the human immune response in different models is lacking. Here, by taking advantage of the highly immunogenic live-attenuated yellow fever virus vaccine YFV-17D, we provide an in-depth comparison of immune responses in human vaccinees, conventional humanized mice, and second generation humanized mice. We demonstrate that selective expansion of human myeloid and natural killer cells promotes transcriptomic responses akin to those of human vaccinees. These enhanced transcriptomic profiles correlate with the development of an antigen-specific cellular and humoral response to YFV-17D. Altogether, our approach provides a robust scoring of the quality of the human immune response in humanized mice and highlights a rational path towards developing better pre-clinical models for studying the human immune response and disease.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Carly G K Ziegler
- Institute for Medical Engineering & Science (IMES), MIT, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02139, USA
- Graduate Program in Biophysics, Harvard Medical School, Boston, MA, 02139, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Bruno Fant
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert Leach
- Lewis Sigler Institute for Integrative Genomics, Genomics Core, Carl Icahn Laboratory, Princeton University, Princeton, NJ, 19104, USA
| | - Lance Parsons
- Lewis Sigler Institute for Integrative Genomics, Genomics Core, Carl Icahn Laboratory, Princeton University, Princeton, NJ, 19104, USA
| | - Wei Wang
- Lewis Sigler Institute for Integrative Genomics, Genomics Core, Carl Icahn Laboratory, Princeton University, Princeton, NJ, 19104, USA
| | - Jenna M Gaska
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Benjamin Y Winer
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Brigitte Heller
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Alex K Shalek
- Institute for Medical Engineering & Science (IMES), MIT, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02139, USA
- Graduate Program in Biophysics, Harvard Medical School, Boston, MA, 02139, USA
| | - Alexander Ploss
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
18
|
Multimodal assessments of Zika virus immune pathophysiological responses in marmosets. Sci Rep 2018; 8:17125. [PMID: 30459473 PMCID: PMC6244230 DOI: 10.1038/s41598-018-35481-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022] Open
Abstract
Animal models that recapitulate the human pathophysiology have been developed as useful research tools. Although laboratory mice are widely used, they are phylogenetically “distant” to humans. New world monkeys, such as the common marmoset (Callithrix jacchus) have steadily gained prominence. In this report, marmosets are explored as an alternate in vivo model to investigate infection and immunity of Zika virus (ZIKV). Multimodal platforms, including ultrasound and magnetic resonance imaging (MRI), flow cytometry, and multiplex microbead immunoassays were established to comprehensively decipher immune responses and pathophysiological outcomes. While ZIKV-infected marmosets had detectable ZIKV RNA load in various body fluids, animals did not develop any observable lesions in their testes and brains as shown by ultrasound and MRI. Immune-phenotyping detected differences in the numbers of B cells, CD8+ T cells and HLADR+ NK cells during the first two weeks of infection. Neutralizing ZIKV-specific antibodies were elicited to high levels and targeted epitopes in the E protein. This study presents a one-stop-shop platform to study infection and pathophysiology in marmosets. While marmoset-specific research tools are being refined, the research values of these animals present them as a good model for immune-based therapies.
Collapse
|
19
|
Manet C, Roth C, Tawfik A, Cantaert T, Sakuntabhai A, Montagutelli X. Host genetic control of mosquito-borne Flavivirus infections. Mamm Genome 2018; 29:384-407. [PMID: 30167843 PMCID: PMC7614898 DOI: 10.1007/s00335-018-9775-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Flaviviruses are arthropod-borne viruses, several of which represent emerging or re-emerging pathogens responsible for widespread infections with consequences ranging from asymptomatic seroconversion to severe clinical diseases and congenital developmental deficits. This variability is due to multiple factors including host genetic determinants, the role of which has been investigated in mouse models and human genetic studies. In this review, we provide an overview of the host genes and variants which modify susceptibility or resistance to major mosquito-borne flaviviruses infections in mice and humans.
Collapse
Affiliation(s)
- Caroline Manet
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Claude Roth
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France
| | - Ahmed Tawfik
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France
| | - Tineke Cantaert
- Immunology Group, Institut Pasteur du Cambodge, International Network of Pasteur Institutes, Phnom Penh, 12201, Cambodia
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France.
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France.
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France.
| |
Collapse
|
20
|
Spengler JR, McElroy AK, Harmon JR, Coleman-McCray JD, Welch SR, Keck JG, Nichol ST, Spiropoulou CF. Human immune cell engraftment does not alter development of severe acute Rift Valley fever in mice. PLoS One 2018; 13:e0201104. [PMID: 30028878 PMCID: PMC6054394 DOI: 10.1371/journal.pone.0201104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022] Open
Abstract
Rift Valley fever (RVF) in humans is usually mild, but, in a subset of cases, can progress to severe hepatic and neurological disease. Rodent models of RVF generally develop acute severe clinical disease. Here, we inoculated humanized NSG-SGM3 mice with Rift Valley fever virus (RVFV) to investigate whether the presence of human immune cells in mice would alter the progression of RVFV infection to more closely model human disease. Despite increased human cytokine expression, including responses mirroring those seen in human disease, and decreased hepatic viral RNA levels at terminal euthanasia, both high- and low-dose RVFV inoculation resulted in lethal disease in all mice with comparable time-to-death as unengrafted mice.
Collapse
Affiliation(s)
- Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| | - Anita K. McElroy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- Division of Pediatric Infectious Diseases, Emory University, Atlanta, GA, United States of America
- Divison of Pediatric Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jessica R. Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - JoAnn D. Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - James G. Keck
- In Vivo Services, The Jackson Laboratory, Sacramento, CA, United States of America
| | - Stuart T. Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
21
|
Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo. mBio 2017; 8:mBio.00819-17. [PMID: 28811340 PMCID: PMC5559630 DOI: 10.1128/mbio.00819-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR-/-) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR-/-) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR-/- λR-/- mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity.IMPORTANCE YFV-17D is a live attenuated flavivirus vaccine strain recognized as one of the most effective vaccines ever developed. However, the host and viral determinants governing YFV-17D attenuation and its potent immunogenicity are still unknown. Here, we analyzed the role of type III interferon (IFN)-mediated signaling, a host immune defense mechanism, in controlling YFV-17D infection and attenuation in different mouse models. We uncovered a critical role of type III IFN-mediated signaling in preserving the integrity of the blood-brain barrier and preventing viral brain invasion. Type III IFN also played a major role in regulating the induction of a potent but balanced immune response that prevented viral evasion of the host immune system. An improved understanding of the complex mechanisms regulating YFV-17D attenuation will provide insights into the key virus-host interactions that regulate host immune responses and infection outcomes as well as open novel avenues for the development of innovative vaccine strategies.
Collapse
|
22
|
Julander JG. Animal models of yellow fever and their application in clinical research. Curr Opin Virol 2016; 18:64-9. [PMID: 27093699 DOI: 10.1016/j.coviro.2016.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 11/18/2022]
Abstract
Yellow fever virus (YFV) is an arbovirus that causes significant human morbidity and mortality. This virus has been studied intensively over the past century, although there are still no treatment options for those who become infected. Periodic and unpredictable yellow fever (YF) outbreaks in Africa and South America continue to occur and underscore the ongoing need to further understand this viral disease and to develop additional countermeasures to prevent or treat cases of illness. The use of animal models of YF is critical to accomplishing this goal. There are several animal models of YF that replicate various aspects of clinical disease and have provided insight into pathogenic mechanisms of the virus. These typically include mice, hamsters and non-human primates (NHP). The utilities and shortcomings of the available animal models of YF are discussed. Information on recent discoveries that have been made in the field of YFV research is also included as well as important future directions in further ameliorating the morbidity and mortality that occur as a result of YFV infection. It is anticipated that these model systems will help facilitate further improvements in the understanding of this virus and in furthering countermeasures to prevent or treat infections.
Collapse
Affiliation(s)
- Justin G Julander
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|