1
|
Beukema M, Gong S, Al-Jaawni K, de Vries-Idema JJ, Krammer F, Zhou F, Cox RJ, Huckriede A. Prolonging the delivery of influenza virus vaccine improves the quantity and quality of the induced immune responses in mice. Front Immunol 2023; 14:1249902. [PMID: 37869002 PMCID: PMC10585035 DOI: 10.3389/fimmu.2023.1249902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Influenza vaccines play a vital role in protecting individuals from influenza virus infection and severe illness. However, current influenza vaccines have suboptimal efficacy, which is further reduced in cases where the vaccine strains do not match the circulating strains. One strategy to enhance the efficacy of influenza vaccines is by extended antigen delivery, thereby mimicking the antigen kinetics of a natural infection. Prolonging antigen availability was shown to quantitatively enhance influenza virus-specific immune responses but how it affects the quality of the induced immune response is unknown. Therefore, the current study aimed to investigate whether prolongation of the delivery of influenza vaccine improves the quality of the induced immune responses over that induced by prime-boost immunization. Methods Mice were given daily doses of whole inactivated influenza virus vaccine for periods of 14, 21, or 28 days; the control group received prime-boost immunization with a 28 days interval. Results Our data show that the highest levels of cellular and humoral immune responses were induced by 28 days of extended antigen delivery, followed by 21, and 14 days of delivery, and prime-boost immunization. Moreover, prolonging vaccine delivery also improved the quality of the induced antibody response, as indicated by higher level of high avidity antibodies, a balanced IgG subclass profile, and a higher level of cross-reactive antibodies. Conclusions Our findings contribute to a better understanding of the immune response to influenza vaccination and have important implications for the design and development of future slow-release influenza vaccines.
Collapse
Affiliation(s)
- Martin Beukema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Shuran Gong
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kasem Al-Jaawni
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jacqueline J. de Vries-Idema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Anke Huckriede
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Akin I, Akdas S, Ceylan MN, Altiner S, Aribal Ayral P, Yazihan N. Evaluation of the safety and efficacy of Advax TM as an adjuvant: A systematic review and meta-analysis. Adv Med Sci 2022; 67:10-17. [PMID: 34562856 DOI: 10.1016/j.advms.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/06/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Developing a vaccine with improved immunogenicity is still a growing priority for many diseases. Different types of adjuvants may be beneficial to initiate and maintain the long-lasting immunogenicity of vaccines. Evidence has shown that polysaccharide adjuvants are efficient in improving immunological mechanisms with their biocompatibility and biodegradability characteristics. In this study, we aimed to investigate the safety and efficacy of AdvaxTM an adjuvant derived from delta inulin. METHODS A systematic research was performed in Pubmed, Web of Science, and Scopus databases for the following keywords; "AdvaxTM" OR "delta inulin" until December 14th, 2020. RevMan 5.4.1 software was used for cumulative meta-analysis and bias analysis. We also used GraphPad Prism 6 software for the figures. RESULTS In the cumulative meta-analysis, it was found that seroconversion and geometric mean titers (GMT) levels significantly increased in AdvaxTM-adjuvanted group (mean difference: 12.31, 95% Cl [4.14, 20.47], p = 0.003; 17.10, 95% Cl [4.35, 29.85], p = 0.009, respectively). We also observed that AdvaxTM could be effective in improving immunogenicity by inducing T-cell responses and plasmablast generation in viral vaccines. CONCLUSIONS In this study, it was shown that AdvaxTM is a safe and well-tolerated adjuvant. AdvaxTM could be a potent adjuvant in increasing the protection and immunogenicity of different vaccines without safety issues. However, further studies are needed to verify these effects of AdvaxTM adjuvant.
Collapse
Affiliation(s)
- Irem Akin
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sevginur Akdas
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Merve Nur Ceylan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Seda Altiner
- Allergy and Clinical Immunology Clinic, Necip Fazil City Hospital, Kahramanmaras, Ankara, Turkey
| | - Pelin Aribal Ayral
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey; Department of Pathophysiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Nuray Yazihan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey; Department of Pathophysiology, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
3
|
Intradermal administration of influenza vaccine with trehalose and pullulan-based dissolving microneedle arrays. J Pharm Sci 2022; 111:1070-1080. [PMID: 35122832 DOI: 10.1016/j.xphs.2022.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022]
Abstract
Most influenza vaccines are administered via intramuscular injection which has several disadvantages that might jeopardize the compliance of vaccinees. Intradermal administration of dissolving-microneedle-arrays (dMNAs) could serve as minimal invasive alternative to needle injections. However, during the production process of dMNAs antigens are subjected to several stresses, which may reduce their potency. Moreover, the needles need to have sufficient mechanical strength to penetrate the skin and subsequently dissolve effectively to release the incorporated antigen. Here, we investigated whether blends of trehalose and pullulan are suitable for the production of stable dMNA fulfilling these criteria. Our results demonstrate that production of trehalose/pullulan-based dMNAs rendered microneedles that were sharp and stiff enough to pierce into ex vivo human skin and subsequently dissolve within 15 min. The mechanical properties of the dMNAs were maintained well even after four weeks of storage at temperatures up to 37°C. In addition, immunization of mice with influenza antigens via both freshly prepared dMNAs and dMNAs after storage (four weeks at 4°C or 37°C) resulted in antibody titers of similar magnitude as found in intramuscularly injected mice and partially protected mice from influenza virus infection. Altogether, our results demonstrate the potential of trehalose/pullulan-based dMNAs as alternative dosage form for influenza vaccination.
Collapse
|
4
|
Ali Dahhas M, Alsenaidy MA. Role of site-directed mutagenesis and adjuvants in the stability and potency of anthrax protective antigen. Saudi Pharm J 2022; 30:595-604. [PMID: 35693445 PMCID: PMC9177452 DOI: 10.1016/j.jsps.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 11/03/2022] Open
Abstract
Anthrax is a zoonotic infection caused by the gram-positive, aerobic, spore-forming bacterium Bacillus anthracis. Depending on the origin of the infection, serious health problems or mortality is possible. The virulence of B. anthracis is reliant on three pathogenic factors, which are secreted upon infection: protective antigen (PA), lethal factor (LF), and edema factor (EF). Systemic illness results from LF and EF entering cells through the formation of a complex with the heptameric form of PA, bound to the membrane of infected cells through its receptor. The currently available anthrax vaccines have multiple drawbacks, and recombinant PA is considered a promising second-generation vaccine candidate. However, the inherent chemical instability of PA through Asn deamidation at multiple sites prevents its use after long-term storage owing to loss of potency. Moreover, there is a distinct possibility of B. anthracis being used as a bioweapon; thus, the developed vaccine should remain efficacious and stable over the long-term. Second-generation anthrax vaccines with appropriate adjuvant formulations for enhanced immunogenicity and safety are desired. In this article, using protein engineering approaches, we have reviewed the stabilization of anthrax vaccine candidates that are currently licensed or under preclinical and clinical trials. We have also proposed a formulation to enhance recombinant PA vaccine potency via adjuvant formulation.
Collapse
|
5
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
6
|
Li H, Monslow MA, Freed DC, Chang D, Li F, Gindy M, Wang D, Vora K, Espeseth AS, Petrovsky N, Fu TM. Novel adjuvants enhance immune responses elicited by a replication-defective human cytomegalovirus vaccine in nonhuman primates. Vaccine 2021; 39:7446-7456. [PMID: 34852943 DOI: 10.1016/j.vaccine.2021.10.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Adjuvants have long been explored to enhance vaccine efficacy. Current adjuvants approved for human vaccines are mostly studied for their ability to improve antibody responses. There remains a need for development of novel adjuvants, especially those able to enhance cell-mediated immunity (CMI). In this preclinical study we assessed the effect of two novel adjuvants, a delta inulin microparticle Advax formulated with or without a toll-like receptor 9 (TLR9) agonist CpG oligonucleotide, and a Merck & Co., Inc., Kenilworth, NJ, USA proprietary lipid nanoparticle (LNP), on immune responses elicited by V160, an experimental replication-defective human cytomegalovirus vaccine. Adult rhesus macaques were immunized with a low dose of V160 (10 units) either alone or in combination with the adjuvants as compared to those immunized with a high dose of V160 alone (100 units). While neither adjuvant conferred a significant benefit to vaccine-elicited humoral immune responses at the dose tested, both enhanced cellular immune responses to V160, where Advax promoted both CD4+ and CD8+ T cells and LNP predominantly impacted the CD4+ T cell response. Transcriptome analyses of peripheral blood samples demonstrated different modes of action for these adjuvants. One day post vaccination, LNP induced upregulation of a large number of genes involved in the innate immune response similar to those triggered by viral infection. In contrast, Advax did not activate any known inflammatory pathways and did not significantly impact gene expression pattern until day 7 post administration, suggesting a unique, non-inflammatory mechanism. These data warrant further exploration of Advax and LNP as adjuvants in clinical trials for vaccines desiring to elicit both humoral and T cell responses.
Collapse
Affiliation(s)
- Hualin Li
- Merck & Co., Inc., Kenilworth, NJ, USA.
| | | | | | - Dan Chang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders University, Bedford Park SA 5042, Australia
| | | |
Collapse
|
7
|
Behzadi M, Vakili B, Ebrahiminezhad A, Nezafat N. Iron nanoparticles as novel vaccine adjuvants. Eur J Pharm Sci 2021; 159:105718. [PMID: 33465476 DOI: 10.1016/j.ejps.2021.105718] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
The poor immunogenicity of peptide vaccines compared to conventional ones re usually improved by applying different adjuvants. As chemical or biological substances, adjuvants are added to vaccines to enhance and prolong the immune response. According to considerable investigations over the recent years in the context of finding new adjuvants, a handful of vaccine adjuvants have been licensed for human use. Recently, engineered nanoparticles (NPs) have been introduced as novel alternatives to traditional vaccine adjuvant. Metallic nanoparticles (MeNPs) are among the most promising NPs used for vaccine adjuvant as well as the delivery system that can improve immune responses against pathogens. Iron NPs, as an important class of MeNPs, have gained increasing attention as novel vaccine adjuvants. These particles have shown acceptable results in preclinical studies. Hence, understanding the physicochemical properties of iron NPs, including size, surface properties, charge and route of administration, is of substantial importance. The aim of this review is to provide an overview of the immunomodulatory effects of iron NPs as novel adjuvants. Furthermore, physicochemical properties of these NPs were also discussed.
Collapse
Affiliation(s)
- Maryam Behzadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ebrahiminezhad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Wan X, Guo H, Liang Y, Zhou C, Liu Z, Li K, Niu F, Zhai X, Wang L. The physiological functions and pharmaceutical applications of inulin: A review. Carbohydr Polym 2020; 246:116589. [PMID: 32747248 DOI: 10.1016/j.carbpol.2020.116589] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Inulin (IN), a fructan-type plant polysaccharide, is widely found in nature. The major plant sources of IN include chicory, Jerusalem artichoke, dahlia etc. Studies have found that IN possessed a wide array of biological activities, e.g. as a prebiotic to improve the intestinal microbe environment, regulating blood sugar, regulating blood lipids, antioxidant, anticancer, immune regulation and so on. Currently, IN is widely used in the food and pharmaceutical industries. IN can be used as thickener, fat replacer, sweetener and water retaining agent in the food industry. IN also can be applied in the pharmaceutics as stabilizer, drug carrier, and auxiliary therapeutic agent for certain diseases such as constipation and diabetes. This paper reviews the physiological functions of IN and its applications in the field of pharmaceutics, analyzes its present research status and future research direction. This review will serve as a one-in-all resource for the researchers who are interested to work on IN.
Collapse
Affiliation(s)
- Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiyu Liang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zihao Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunwei Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengju Niu
- Shandong Institute of Traditional Chinese Medicine, Ji'nan, China
| | - Xin Zhai
- Department of Ecology and Evolution, University of Chicago, Chicago, USA
| | - Lizhu Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
9
|
Da'Dara AA, Li C, Yu X, Zheng M, Zhou J, Shollenberger LM, Li YS, Harn DA. Prime-Boost Vaccine Regimen for SjTPI and SjC23 Schistosome Vaccines, Increases Efficacy in Water Buffalo in a Field Trial in China. Front Immunol 2019; 10:284. [PMID: 30842779 PMCID: PMC6391362 DOI: 10.3389/fimmu.2019.00284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 01/14/2023] Open
Abstract
Schistosomiasis remains a serious zoonotic disease in China and the Philippines. Water buffalo and cattle account for the majority of transmission. Vaccination of water buffalo is considered a key strategy to reduce disease prevalence. Previously, we showed that vaccination of water buffalo with SjC23 or SjCTPI plasmid DNA vaccines, induced 50% efficacy to challenge infection. Here, we evaluated several parameters to determine if we can develop a two dose vaccine that maintains the efficacy of the three dose vaccine. We performed four trials evaluating: (1) lab produced vs. GLP grade vaccines, (2) varying the time between prime and boost, (3) the influence of an IL-12 adjuvant, and (4) a two dose heterologous (DNA-protein) prime-boost. We found the source of the DNA vaccines did not matter, nor did increasing the interval between prime and boost. Elimination of the IL-12 plasmid lowered homologous DNA-DNA vaccine efficacy. A major finding was that the heterologous prime boost improved vaccine efficacy, with the prime-boost regimen incorporating both antigens providing a 55% reduction in adult worms and 53% reduction in liver eggs. Vaccinated buffalo produced vaccine-specific antibody responses. These trials suggest that highly effective vaccination against schistosomes can be achieved using a two dose regimen. No adjuvants were used with the protein boost, and the potential that addition of adjuvant to the protein boost to further increase efficacy should be evaluated. These results suggest that use of these two schistosome vaccines can be part of an integrated control strategy to reduce transmission of schistosomiasis in Asia.
Collapse
Affiliation(s)
- Akram A. Da'Dara
- Department of Infectious Diseases and Global Health, Tufts Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | - Changlin Li
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Xinling Yu
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, China
| | - Mao Zheng
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, China
| | - Jie Zhou
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, China
| | - Lisa M. Shollenberger
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Yue-sheng Li
- Hunan Institute of Parasitic Diseases, World Health Organisation Collaborating Centre for Research and Control of Schistosomiasis in Lake Region, Yueyang, China
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald A. Harn
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Yu L, Sun Q, Hui Y, Seth A, Petrovsky N, Zhao CX. Microfluidic formation of core-shell alginate microparticles for protein encapsulation and controlled release. J Colloid Interface Sci 2018; 539:497-503. [PMID: 30611045 DOI: 10.1016/j.jcis.2018.12.075] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022]
Abstract
Alginate hydrogel particles are promising delivery systems for protein encapsulation and controlled release because of their excellent biocompatibility, biodegradability, and mild gelation process. In this study, a facile microfluidic approach is developed for making uniform core-shell hydrogel microparticles. To address the challenge of protein retention within the alginate gel matrix, poly(ethyleneimine) (PEI)- and chitosan-coated alginate microparticles were fabricated demonstrating improved protein retention as well as controlled release. Furthermore, a model protein ovalbumin was loaded along with delta inulin microparticulate adjuvant into the water-core of the alginate microparticles. Compared to those microparticles with only antigen loaded, the antigen + adjuvant loaded microparticles showed a delayed and sustained release of antigen. This microfluidic approach provides a convenient method for making well-controlled alginate microgel particles with uniform size and controlled properties, and demonstrates the ability to tune the release profiles of proteins by engineering microparticle structure and properties.
Collapse
Affiliation(s)
- Lei Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Qi Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Arjun Seth
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, SA 5042, Australia; Department of Endocrinology, Flinders University, Bedford Park, SA 5042, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Thakur A, Rodríguez-Rodríguez C, Saatchi K, Rose F, Esposito T, Nosrati Z, Andersen P, Christensen D, Häfeli UO, Foged C. Dual-Isotope SPECT/CT Imaging of the Tuberculosis Subunit Vaccine H56/CAF01: Induction of Strong Systemic and Mucosal IgA and T-Cell Responses in Mice Upon Subcutaneous Prime and Intrapulmonary Boost Immunization. Front Immunol 2018; 9:2825. [PMID: 30555488 PMCID: PMC6284049 DOI: 10.3389/fimmu.2018.02825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Pulmonary tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), remains a global pandemic, despite the widespread use of the parenteral live attenuated Bacillus Calmette–Guérin (BCG) vaccine during the past decades. Mucosal administration of next generation TB vaccines has great potential, but developing a safe and efficacious mucosal vaccine is challenging. Hence, understanding the in vivo biodistribution and pharmacokinetics of mucosal vaccines is essential for shaping the desired immune response and for optimal spatiotemporal targeting of the appropriate effector cells in the lungs. A subunit vaccine consisting of the fusion antigen H56 (Ag85B-ESAT-6-Rv2660) and the liposome-based cationic adjuvant formulation (CAF01) confers efficient protection in preclinical animal models. In this study, we devise a novel immunization strategy for the H56/CAF01 vaccine, which comply with the intrapulmonary (i.pulmon.) route of immunization. We also describe a novel dual-isotope (111In/67Ga) radiolabeling approach, which enables simultaneous non-invasive and longitudinal SPECT/CT imaging and quantification of H56 and CAF01 upon parenteral prime and/or i.pulmon. boost immunization. Our results demonstrate that the vaccine is distributed evenly in the lungs, and there are pronounced differences in the pharmacokinetics of H56 and CAF01. We provide convincing evidence that the H56/CAF01 vaccine is not only well-tolerated when administered to the respiratory tract, but it also induces strong lung mucosal and systemic IgA and polyfunctional Th1 and Th17 responses after parenteral prime and i.pulmon. boost immunization. The study furthermore evaluate the application of SPECT/CT imaging for the investigation of vaccine biodistribution after parenteral and i.pulmon. immunization of mice.
Collapse
Affiliation(s)
- Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.,Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Fabrice Rose
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tullio Esposito
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Zeynab Nosrati
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Weir C, Oksa A, Millar J, Alexander M, Kynoch N, Walton-Weitz Z, Mackenzie-Wood P, Tam F, Richards H, Naylor R, Cheng K, Bennett P, Petrovsky N, Allavena R. The Safety of an Adjuvanted Autologous Cancer Vaccine Platform in Canine Cancer Patients. Vet Sci 2018; 5:vetsci5040087. [PMID: 30322015 PMCID: PMC6313922 DOI: 10.3390/vetsci5040087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 12/01/2022] Open
Abstract
Canine cancer rates are similar to humans, though the therapeutic options might be limited. Inducing a patient’s own immune system to have an anti-tumor response is an attractive approach to cancer therapy. In this safety study, autologous tumor vaccines produced specifically for each canine patient were combined with Advax™, a novel non-inflammatory immunomodulator and vaccine adjuvant and were tested for safety in a diverse range of patient presentations alone or in combination with other treatments. Canine patients had their tumor biopsied, debulked or resected and the tumor antigens were processed into an autologous vaccine formulated with Advax™ adjuvant with or without rhizavidin as an additional immune stimulant. Patients treated early in the trial received two intramuscular (IM) doses, 2 weeks apart. As the study progressed and no issues of safety were observed, the protocol was changed to weekly vaccinations for 4 weeks followed by monthly booster shots. Over the 150 I.M injections delivered to date, the vaccine was found to be very safe and no significant adverse reactions were observed. These results justify ongoing development and future controlled studies of this autologous vaccine approach.
Collapse
Affiliation(s)
- Chris Weir
- Northern Blood Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital and the Sydney Medical School, University of Sydney, Sydney NSW 2065, Australia.
| | - Annika Oksa
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343 Australia.
| | | | | | - Nicola Kynoch
- Willougby Veterinary Hospital, Sydney, NSW 2068, Australia.
| | | | | | - Felicia Tam
- Castle Hill Veterinary Hospital, Sydney, NSW 2154, Australia.
| | - Hope Richards
- Willougby Veterinary Hospital, Sydney, NSW 2068, Australia.
| | - Richard Naylor
- Castle Hill Veterinary Hospital, Sydney, NSW 2154, Australia.
| | - Katrina Cheng
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia.
| | - Peter Bennett
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia.
| | - Nikolai Petrovsky
- Flinders University Bedford Park, Adelaide, SA 5042, Australia.
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia.
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343 Australia.
| |
Collapse
|
13
|
Kuznetsova TA, Persiyanova EV, Ermakova SP, Khotimchenko MY, Besednova NN. The Sulfated Polysaccharides of Brown Algae and Products of Their Enzymatic Transformation as Potential Vaccine Adjuvants. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The review is devoted to critical analysis of literature data, deal with effects and mechanisms of action of sulfated polysaccharides (PSs) – fucoidans from brown algae and products of their enzymatic transformation as potential adjuvants for enhancement of anti-infective and antitumor immune response. Numerous experimental data indicate that sulfated PSs demonstrate properties of vaccine adjuvants. Application perspectiveness of fucoidans as vaccine adjuvants is defined by their high biocompatibility, low-toxicity, safety and good tolerance by macroorganism, and also mechanisms of their immunomodulatory action. In particular, fucoidans are agonists of receptors of innate immunity and strong inducers of cellular and humoral immune response. At presenting the data of structural - functional interrelations, attention focused to the defining role of degree of sulfation, uronic acids and polyphenols contents, and also molecular mass in actions of fucoidans to innate and adaptive immunity cells. Insufficiency of literary data on studying of correlation of structure – physicochemical characteristics with adjuvanticities of the sulfated PSs, and also the problem of standardization of their active fractions are noted. Special attention is paid to the analysis of immunomodulatory and adjuvant activity of fucoidan oligosaccharides. Presented here results of experimental trial indicate that, despite the difficulties due to preparation of highly purified structurally characterized fractions and complex structure of fucoidans, these substances can be used as safe and effective adjuvants in vaccines against various pathogens including viruses, and also in antitumor vaccines.
Collapse
Affiliation(s)
- Tatyana A. Kuznetsova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., 690922 Vladivostok, Russian Federation
| | - Elena V. Persiyanova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Maxim Yu. Khotimchenko
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., 690922 Vladivostok, Russian Federation
| | - Natalya N. Besednova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
| |
Collapse
|
14
|
Akapirat S, Karnasuta C, Vasan S, Rerks-Ngarm S, Pitisuttithum P, Madnote S, Savadsuk H, Rittiroongrad S, Puangkaew J, Phogat S, Tartaglia J, Sinangil F, de Souza MS, Excler JL, Kim JH, Robb ML, Michael NL, Ngauy V, O'Connell RJ, Karasavvas N. Characterization of HIV-1 gp120 antibody specificities induced in anogenital secretions of RV144 vaccine recipients after late boost immunizations. PLoS One 2018; 13:e0196397. [PMID: 29702672 PMCID: PMC5922559 DOI: 10.1371/journal.pone.0196397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022] Open
Abstract
Sexual transmission is the principal driver of the human immunodeficiency virus (HIV) pandemic. Understanding HIV vaccine-induced immune responses at mucosal surfaces can generate hypotheses regarding mechanisms of protection, and may influence vaccine development. The RV144 (ClinicalTrials.gov NCT00223080) efficacy trial showed protection against HIV infections but mucosal samples were not collected, therefore, the contribution of mucosal antibodies to preventing HIV-1 acquisition is unknown. Here, we report the generation, magnitude and persistence of antibody responses to recombinant gp120 envelope and antigens including variable one and two loop scaffold antigens (gp70V1V2) previously shown to correlate with risk in RV144. We evaluated antibody responses to gp120 A244gD and gp70V1V2 92TH023 (both CRF01_AE) and Case A2 (subtype B) in cervico-vaginal mucus (CVM), seminal plasma (SP) and rectal secretions (RS) from HIV-uninfected RV144 vaccine recipients, who were randomized to receive two late boosts of ALVAC-HIV/AIDSVAX®B/E, AIDSVAX®B/E, or ALVAC-HIV alone at 0 and 6 months. Late vaccine boosting increased IgG geometric mean titers (GMT) to gp120 A244gD in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (28 and 17 fold, respectively), followed by SP and RS. IgG to gp70V1V2 92TH023 increased in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (11–17 fold) and SP (2 fold) two weeks post first boost. IgG to Case A2 was only detected in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM. Mucosal IgG to gp120 A244gD (CVM, SP, RS), gp70V1V2 92TH023 (CVM, SP), and Case A2 (CVM) correlated with plasma IgG levels (p<0.001). Although the magnitude of IgG responses declined after boosting, anti-gp120 A244gD IgG responses in CVM persisted for 12 months post final vaccination. Further studies in localization, persistence and magnitude of envelope specific antibodies (IgG and dimeric IgA) in anogenital secretions will help determine their role in preventing mucosal HIV acquisition.
Collapse
Affiliation(s)
- Siriwat Akapirat
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chitraporn Karnasuta
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sandhya Vasan
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | | | | | - Sirinan Madnote
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Hathairat Savadsuk
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Surawach Rittiroongrad
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jiraporn Puangkaew
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sanjay Phogat
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | - James Tartaglia
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | - Faruk Sinangil
- Global Solutions for Infectious Diseases (GSID), South San Francisco, California, United States of America
| | - Mark S. de Souza
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Jean-Louis Excler
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Viseth Ngauy
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Robert J. O'Connell
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nicos Karasavvas
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- * E-mail:
| | | |
Collapse
|
15
|
Counoupas C, Pinto R, Nagalingam G, Britton WJ, Petrovsky N, Triccas JA. Delta inulin-based adjuvants promote the generation of polyfunctional CD4 + T cell responses and protection against Mycobacterium tuberculosis infection. Sci Rep 2017; 7:8582. [PMID: 28819247 PMCID: PMC5561132 DOI: 10.1038/s41598-017-09119-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/19/2017] [Indexed: 01/16/2023] Open
Abstract
There is an urgent need for the rational design of safe and effective vaccines to protect against chronic bacterial pathogens such as Mycobacterium tuberculosis. Advax™ is a novel adjuvant based on delta inulin microparticles that enhances immunity with a minimal inflammatory profile and has entered human trials to protect against viral pathogens. In this report we determined if Advax displays broad applicability against important human pathogens by assessing protective immunity against infection with M. tuberculosis. The fusion protein CysVac2, comprising the M. tuberculosis antigens Ag85B (Rv1886c) and CysD (Rv1285) formulated with Advax provided significant protection in the lungs of M. tuberculosis-infected mice. Protection was associated with the generation of CysVac2-specific multifunctional CD4+ T cells (IFN-γ+TNF+IL-2+). Addition to Advax of the TLR9 agonist, CpG oligonucleotide (AdvaxCpG), improved both the immunogenicity and protective efficacy of CysVac2. Immunisation with CysVac2/AdvaxCpG resulted in heightened release of the chemoattractants, CXCL1, CCL3, and TNF, and rapid influx of monocytes and neutrophils to the site of vaccination, with pronounced early priming of CysVac2-specific CD4+ T cells. As delta inulin adjuvants have shown an excellent safety and tolerability profile in humans, CysVac2/AdvaxCpG is a strong candidate for further preclinical evaluation for progression to human trials.
Collapse
Affiliation(s)
- Claudio Counoupas
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Rachel Pinto
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Gayathri Nagalingam
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Warwick J Britton
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Nikolai Petrovsky
- Department of Endocrinology, Flinders University, Adelaide, Australia
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, Australia
| | - James A Triccas
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia.
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia.
| |
Collapse
|
16
|
Menon V, Ayala VI, Rangaswamy SP, Kalisz I, Whitney S, Galmin L, Ashraf A, LaBranche C, Montefiori D, Petrovsky N, Kalyanaraman VS, Pal R. DNA prime/protein boost vaccination elicits robust humoral response in rhesus macaques using oligomeric simian immunodeficiency virus envelope and Advax delta inulin adjuvant. J Gen Virol 2017; 98:2143-2155. [PMID: 28758637 DOI: 10.1099/jgv.0.000863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The partial success of the RV144 trial underscores the importance of envelope-specific antibody responses for an effective HIV-1 vaccine. Oligomeric HIV-1 envelope proteins delivered with a potent adjuvant are expected to elicit strong antibody responses with broad neutralization specificity. To test this hypothesis, two SIV envelope proteins were formulated with delta inulin-based adjuvant (Advax) and used to immunize nonhuman primates. Oligomeric gp140-gp145 from SIVmac251 and SIVsmE660 was purified to homogeneity. Oligomers showed high-affinity interaction with CD4 and were highly immunogenic in rabbits, inducing Tier 2 SIV-neutralizing antibodies. The immunogenicity of an oligomeric Env DNA prime and protein boost together with Advax was evaluated in Chinese rhesus macaques. DNA administration elicited antibodies to both envelopes, and titres were markedly enhanced following homologous protein boosts via intranasal and intramuscular routes. Strong antibody responses were detected against the V1 and V2 domains of gp120. During peak immune responses, a low to moderate level of neutralizing activity was detected against Tier 1A/1B SIV isolates, with a moderate level noted against a Tier 2 isolate. Increased serum antibody affinity to SIVmac251 gp140 and generation of Env-specific memory B cells were observed in the immunized macaques. Animals were subjected to low-dose intravaginal challenge with SIVmac251 one week after the last protein boost. One out of three immunized animals was protected from infection. Although performed with a small number of macaques, this study demonstrates the utility of oligomeric envelopes formulated with Advax in eliciting broad antibody responses with the potential to provide protection against SIV transmission.
Collapse
Affiliation(s)
- Veena Menon
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | - Victor I Ayala
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | | | - Irene Kalisz
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | | | - Lindsey Galmin
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | - Asma Ashraf
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | | | | | - Nikolai Petrovsky
- Vaxine Pty Ltd and Flinders University, Bedford Park, SA 5042, Australia
| | | | - Ranajit Pal
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| |
Collapse
|
17
|
Investigation of the biodistribution, breakdown and excretion of delta inulin adjuvant. Vaccine 2017; 35:4382-4388. [PMID: 28676380 DOI: 10.1016/j.vaccine.2017.06.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/08/2023]
Abstract
Insoluble, nanostructured delta inulin particles enhance the immunogenicity of co-administered protein antigens and consequently are used as a vaccine adjuvant (Advax™). To better understand their immunomodulatory properties, the in vitro hydrolysis and in vivo distribution of delta inulin particles were investigated. Delta inulin particle hydrolysis under bio-relevant acidic conditions resulted in no observable change to the bulk morphology using SEM, and HPLC results showed that only 6.1% of the inulin was hydrolysed over 21days. However, 65% of the terminal glucose groups were released, showing that acid hydrolysis relatively rapidly releases surface bound chemistries. This was used to explain in vivo biodistribution results in which delta inulin particles surface-labelled with fluorescein-5-thiosemicabizide were administered to mice using intramuscular (I.M.) or subcutaneous (S.C.) routes. Comparison analysis of the fluorescence of soluble inulin in the supernatants of homogenised tissues maintained at room temperature or heated to 100°C to solubilise particulate inulin was used to distinguish between fluorescent probe on soluble inulin and probe bound to inulin within particles. Following both I.M. and S.C. injection delta inulin exhibited a depot behaviour with local injection site residence for several weeks. Over this time, as injection site inulin reduced, there was measurable transport of intact delta inulin particles by macrophages to secondary lymphoid organs and the liver. Ultimately, the injected delta inulin became solubilised resulting in its detection in the plasma and in the urine. Thus injected delta inulin particles are initially taken up by macrophages at the site of injection, trafficked to secondary lymphoid tissue and the liver, and hydrolysed resulting in their becoming soluble and diffusing into the blood stream, from whence they are glomerularly filtered and excreted into the urine. These results provide important insights into the biodistribution of I.M. or S.C. injected delta inulin particles when used as vaccine adjuvants and their method of excretion.
Collapse
|
18
|
Honda-Okubo Y, Rajapaksha H, Sajkov D, Gordon D, Cox MMJ, Petrovsky N. Panblok-H1+advax H1N1/2009pdm vaccine: Insights into rapid development of a delta inulin adjuvanted recombinant pandemic influenza vaccine. Hum Vaccin Immunother 2017; 13:1-11. [PMID: 28301280 PMCID: PMC5489286 DOI: 10.1080/21645515.2017.1279765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Timely vaccine supply is critical during influenza pandemics but is impeded by current virus-based manufacturing methods. The 2009 H1N1/2009pdm 'swine flu' pandemic reinforced the need for innovation in pandemic vaccine design. We report on insights gained during rapid development of a pandemic vaccine based on recombinant haemagglutinin (rHA) formulated with Advax™ delta inulin adjuvant (Panblok-H1/Advax). Panblok-H1/Advax was designed and manufactured within 1 month of the pandemic declaration by WHO and successfully entered human clinical testing in under 3 months from first isolation and sequencing of the novel pandemic virus, requiring several major challenges to be overcome. Panblok-H1/Advax successfully induced neutralising antibodies against the pandemic strain, but also induced cross-neutralising antibodies in a subset of subjects against an H1N1 strain (A/Puerto Rico/8/34) derived from the 1918 Spanish flu, highlighting the possibility to use Advax to induce more broadly cross-protective antibody responses. Interestingly, the rHA from H1N1/2009pdm exhibited variants in the receptor binding domain that had a major impact on receptor binding and hemagglutination ability. We used an in silico structural modeling approach to better understand the unusual behavior of the novel hemagglutinin, thereby demonstrating the power of computational modeling approaches for rapid characterization of new pandemic viruses. While challenges remain in ensuring ultrafast vaccine access for the entire population in response to future pandemics, the adjuvanted recombinant Panblok-H1/Advax vaccine proved its utility during a real-life pandemic situation.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| | - Harinda Rajapaksha
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| | - Dimitar Sajkov
- c Australian Respiratory and Sleep Medicine Institute , Adelaide , Australia
| | - David Gordon
- d Microbiology and Infectious Diseases Department , Flinders Medical Centre , Adelaide , Australia
| | | | - Nikolai Petrovsky
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| |
Collapse
|
19
|
|
20
|
Vaccine Adjuvant Nanotechnologies. MICRO AND NANOTECHNOLOGY IN VACCINE DEVELOPMENT 2017. [PMCID: PMC7151801 DOI: 10.1016/b978-0-323-39981-4.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The increasing sophistication of vaccine adjuvant design has been driven by improved understanding of the importance of nanoscale features of adjuvants to their immunological function. Newly available advanced nanomanufacturing techniques now allow very precise control of adjuvant particle size, shape, texture, and surface chemistry. Novel adjuvant concepts include self-assembling particles and targeted immune delivery. These individual concepts can be combined to create a single integrated vaccine nanoparticle-combining antigen, adjuvants, and DC-targeting elements. In the process, the concept of an adjuvant has broadened to include not only immune-stimulatory substances but also any design features that enhance the immune response against the relevant vaccine antigen. The modern definition of an adjuvant includes not only classical immune stimulators but also any aspects of particle size, shape, and surface chemistry that enhance vaccine immunogenicity. It even includes purely physical processes such as texturing of particle surfaces to maximize immunogenicity. Looking forward, adjuvants will increasingly be seen not as separate add-on items but as wholly integrated elements of a complete vaccine delivery package. Hence, vaccine systems will increasingly approach the complexity and sophistication of pathogens themselves, incorporating highly specific particle properties, contents, and behaviors, all designed to maximize immune system recognition and drive the immune response in the specific direction that affords maximal protection.
Collapse
|
21
|
Wong TM, Petrovsky N, Bissel SJ, Wiley CA, Ross TM. Delta inulin-derived adjuvants that elicit Th1 phenotype following vaccination reduces respiratory syncytial virus lung titers without a reduction in lung immunopathology. Hum Vaccin Immunother 2016; 12:2096-2105. [PMID: 27215855 PMCID: PMC4994749 DOI: 10.1080/21645515.2016.1162931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 10/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infections resulting in bronchiolitis and even mortality in the elderly and young children/infants. Despite the impact of this virus on human health, no licensed vaccine exists. Unlike many other viral infections, RSV infection or vaccination does not induce durable protective antibodies in humans. In order to elicit high titer, neutralizing antibodies against RSV, we investigated the use of the adjuvant Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles, to enhance antibody titers following vaccination. BALB/c mice were vaccinated intramuscularly with live RSV as a vaccine antigen in combination with one of two formulations of Advax™. Advax-1 was comprised of the standard delta inulin adjuvant and Advax-2 was formulated delta inulin plus CpG oligodendronucleotides (ODNs). An additional group of mice were either mock vaccinated, immunized with vaccine only, or administered vaccine plus Imject Alum. Following 3 vaccinations, mice had neutralizing antibody titers that correlated with reduction in viral titers in the lungs. Advax-1 significantly enhanced serum RSV-specific IgG1 levels at week 6 indicative of a Th2 response, similar to titers in mice administered vaccine plus Imject Alum. In contrast, mice vaccinated with vaccine plus Advax-2 had predominately IgG2a titers indicative of a Th1 response that was maintained during the entire study. Interestingly, regardless of which AdvaxTM adjuvant was used, the neutralizing titers were similar between groups, but the viral lung titers were significantly lower (∼10E+3pfu/g) in mice administered vaccine with either AdvaxTM adjuvant compared to mice administered adjuvants only. The lung pathology in vaccinated mice with AdvaxTM was similar to Imject Alum. Overall, RSV vaccine formulated with AdvaxTM had high neutralizing antibody titers with low lung viral titers, but exacerbated lung pathology compared to unvaccinated mice.
Collapse
Affiliation(s)
- Terianne M. Wong
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA USA
| | | | | | - Clayton A. Wiley
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA USA
| |
Collapse
|
22
|
Gordon DL, Sajkov D, Honda-Okubo Y, Wilks SH, Aban M, Barr IG, Petrovsky N. Human Phase 1 trial of low-dose inactivated seasonal influenza vaccine formulated with Advax™ delta inulin adjuvant. Vaccine 2016; 34:3780-6. [PMID: 27342914 PMCID: PMC4949042 DOI: 10.1016/j.vaccine.2016.05.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/14/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022]
Abstract
Influenza vaccines are usually non-adjuvanted but addition of adjuvant may improve immunogenicity and permit dose-sparing, critical for vaccine supply in the event of an influenza pandemic. The aim of this first-in-man study was to determine the effect of delta inulin adjuvant on the safety and immunogenicity of a reduced dose seasonal influenza vaccine. Healthy male and female adults aged 18-65years were recruited to participate in a randomized controlled study to compare the safety, tolerability and immunogenicity of a reduced-dose 2007 Southern Hemisphere trivalent inactivated influenza vaccine formulated with Advax™ delta inulin adjuvant (LTIV+Adj) when compared to a full-dose of the standard TIV vaccine which does not contain an adjuvant. LTIV+Adj provided equivalent immunogenicity to standard TIV vaccine as assessed by hemagglutination inhibition (HI) assays against each vaccine strain as well as against a number of heterosubtypic strains. HI responses were sustained at 3months post-immunisation in both groups. Antibody landscapes against a large panel of H3N2 influenza viruses showed distinct age effects whereby subjects over 40years old had a bimodal baseline HI distribution pattern, with the highest HI titers against the very oldest H3N2 isolates and with a second HI peak against influenza isolates from the last 5-10years. By contrast, subjects >40years had a unimodal baseline HI distribution with peak recognition of H3N2 isolates from approximately 20years ago. The reduced dose TIV vaccine containing Advax adjuvant was well tolerated and no safety issues were identified. Hence, delta inulin may be a useful adjuvant for use in seasonal or pandemic influenza vaccines. Australia New Zealand Clinical Trial Registry: ACTRN12607000599471.
Collapse
Affiliation(s)
- David L Gordon
- Department of Microbiology and Infectious Diseases, SA Pathology, Flinders Medical Centre, and Flinders University, South Australia 5042, Australia
| | - Dimitar Sajkov
- Australian Respiratory and Sleep Medicine Institute, Adelaide, South Australia 5042, Australia
| | - Yoshikazu Honda-Okubo
- Department of Endocrinology, Flinders University, 5042, Australia; Vaxine Pty Ltd, Flinders Medical Centre, Adelaide 5042, Australia
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; World Health Organization (WHO) Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK
| | - Malet Aban
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Peter Doherty Institute for Infection & Immunity, 792 Elizabeth Street, Melbourne 3000, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Peter Doherty Institute for Infection & Immunity, 792 Elizabeth Street, Melbourne 3000, Australia; Department of Microbiology & Immunology, University of Melbourne, Victoria 3000, Australia
| | - Nikolai Petrovsky
- Australian Respiratory and Sleep Medicine Institute, Adelaide, South Australia 5042, Australia; Department of Endocrinology, Flinders University, 5042, Australia; Vaxine Pty Ltd, Flinders Medical Centre, Adelaide 5042, Australia.
| |
Collapse
|
23
|
Calderon-Gonzalez R, Marradi M, Garcia I, Petrovsky N, Alvarez-Dominguez C. Novel nanoparticle vaccines for Listeriosis. Hum Vaccin Immunother 2016; 11:2501-3. [PMID: 26252360 PMCID: PMC4635887 DOI: 10.1080/21645515.2015.1063756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In recent years, nanomedicine has transformed many areas of traditional medicine, and enabled fresh insights into the prevention of previously difficult to treat diseases. An example of the transformative power of nanomedicine is a recent nano-vaccine against listeriosis, a serious bacterial infection affecting not only pregnant women and their neonates, but also immune-compromised patients with neoplastic or chronic autoimmune diseases. There is a major unmet need for an effective and safe vaccine against listeriosis, with the challenge that an effective vaccine needs to generate protective T cell immunity, a hitherto difficult to achieve objective. Now utilizing a gold nanoparticle antigen delivery approach together with a novel polysaccharide nanoparticulate adjuvant, an effective T-cell vaccine has been developed that provides robust protection in animal models of listeriosis, raising the hope that one day this nanovaccine technology may protect immune-compromised humans against this serious opportunistic infection.
Collapse
Affiliation(s)
- Ricardo Calderon-Gonzalez
- a Grupo de Genómica; Proteómica y Vacunas; Instituto de Investigación Marqués de Valdecilla ; Santander , Spain
| | - Marco Marradi
- b Fundacion Cidetc; Parque Tecnológico ; San Sebastian , Spain
| | - Isabel Garcia
- c CIC-biomaGUNE; Parque Tecnologico ; San Sebastian , Spain
| | - Nikolai Petrovsky
- d Flinders University ; Adelaide , Australia.,e Vaxine Ltd.; Flinders Medical Center ; Adelaide , Australia
| | - Carmen Alvarez-Dominguez
- a Grupo de Genómica; Proteómica y Vacunas; Instituto de Investigación Marqués de Valdecilla ; Santander , Spain
| |
Collapse
|
24
|
Abstract
In the two decades since their initial discovery, DNA vaccines technologies have come a long way. Unfortunately, when applied to human subjects inadequate immunogenicity is still the biggest challenge for practical DNA vaccine use. Many different strategies have been tested in preclinical models to address this problem, including novel plasmid vectors and codon optimization to enhance antigen expression, new gene transfection systems or electroporation to increase delivery efficiency, protein or live virus vector boosting regimens to maximise immune stimulation, and formulation of DNA vaccines with traditional or molecular adjuvants. Better understanding of the mechanisms of action of DNA vaccines has also enabled better use of the intrinsic host response to DNA to improve vaccine immunogenicity. This review summarizes recent advances in DNA vaccine technologies and related intracellular events and how these might impact on future directions of DNA vaccine development.
Collapse
Affiliation(s)
- Lei Li
- a Vaxine Pty Ltd, Bedford Park , Adelaide , Australia.,b Department of Diabetes and Endocrinology , Flinders University, Flinders Medical Centre , Adelaide , SA , Australia
| | - Nikolai Petrovsky
- a Vaxine Pty Ltd, Bedford Park , Adelaide , Australia.,b Department of Diabetes and Endocrinology , Flinders University, Flinders Medical Centre , Adelaide , SA , Australia
| |
Collapse
|
25
|
Abstract
Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.
Collapse
|
26
|
Petrovsky N, Cooper PD. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine 2015; 33:5920-6. [PMID: 26407920 PMCID: PMC4639457 DOI: 10.1016/j.vaccine.2015.09.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022]
Abstract
There is an ongoing need for new adjuvants to facilitate development of vaccines against HIV, tuberculosis, malaria and cancer, amongst many others. Unfortunately, the most potent adjuvants are often associated with toxicity and safety issues. Inulin, a plant-derived polysaccharide, has no immunological activity in its native soluble form but when crystallized into a stable microcrystalline particulate from (delta inulin) acquires potent adjuvant activity. Delta inulin has been shown to enhance humoral and cellular immune responses against a broad range of co-administered viral, bacterial, parasitic and toxin antigens. Inulin normally crystallizes as large heterogeneous particles with a broad size distribution and variable solubility temperatures. To ensure reproducible delta inulin particles with a consistent size distribution and temperature of solubility, a current Good Manufacturing Practice (cGMP) process was designed to produce Advax™ adjuvant. In its cCMP form, Advax™ adjuvant has proved successful in human trials of vaccines against seasonal and pandemic influenza, hepatitis B and insect sting anaphylaxis, enhancing antibody and T-cell responses while being safe and well tolerated. Advax™ adjuvant represents a novel human adjuvant that enhances both humoral and cellular immunity. This review describes the discovery and development of Advax™ adjuvant and research into its unique mechanism of action.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, SA 5042, Australia; Department of Endocrinology, Flinders Medical Centre and Flinders University, Adelaide 5042, Australia.
| | - Peter D Cooper
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, SA 5042, Australia; John Curtin School of Medical Research, Australian National University, Canberra 2061, Australia
| |
Collapse
|
27
|
Hu J, Qiu L, Wang X, Zou X, Lu M, Yin J. Carbohydrate-based vaccine adjuvants - discovery and development. Expert Opin Drug Discov 2015; 10:1133-44. [PMID: 26372693 DOI: 10.1517/17460441.2015.1067198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. AREAS COVERED The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. EXPERT OPINION Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.
Collapse
Affiliation(s)
- Jing Hu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Liying Qiu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Xiaoli Wang
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Xiaopeng Zou
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Mengji Lu
- c 3 University Hospital Essen, Institute of Virology , Hufelandstr, 55, 45122 Essen, Germany +49 2 017 233 530 ; +49 2 017 235 929 ;
| | - Jian Yin
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| |
Collapse
|
28
|
Ramirez LA, Arango T, Boyer J. Therapeutic and prophylactic DNA vaccines for HIV-1. Expert Opin Biol Ther 2015; 13:563-73. [PMID: 23477730 DOI: 10.1517/14712598.2013.758709] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION DNA vaccines have moved into clinical trials in several fields and their success will be important for licensure of this vaccine modality. An effective vaccine for HIV-1 remains elusive and the development of one is troubled by safety and efficacy issues. Additionally, the ability for an HIV-1 vaccine to induce both the cellular and humoral arms of the immune system is needed. DNA vaccines not only offer a safe approach for the development of an HIV-1 vaccine but they have also been shown to elicit both arms of the immune system. AREAS COVERED This review explores how DNA vaccine design including the regimen, genetic adjuvants used, targeting, and mode of delivery continues to undergo improvements, thereby providing a potential option for an immunogenic vaccine for HIV-1. EXPERT OPINION Continued improvements in delivery technology, in particular electroporation, and the use of prime-boost vaccine strategies will aid in boosting the immunogenicity of DNA vaccines. Basic immunology research will also help discover new potential adjuvant targets that can be combined with DNA vaccination, such as inhibitors of inhibitory receptors.
Collapse
Affiliation(s)
- Lorenzo Antonio Ramirez
- University of Pennsylvania, Pathology, Stellar Chance Labs, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
29
|
Honda-Okubo Y, Ong CH, Petrovsky N. Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single-dose influenza vaccine protection. Vaccine 2015; 33:4892-900. [PMID: 26232344 PMCID: PMC4562881 DOI: 10.1016/j.vaccine.2015.07.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/10/2015] [Accepted: 07/17/2015] [Indexed: 01/16/2023]
Abstract
A single dose of Advax-adjuvanted influenza vaccine in 7-day-old pups protected against lethal influenza infection. Advax adjuvant enhanced both B-cell and T-cell memory in neonates. Influenza protection in Advax-immunized neonates was dependent on memory B-cells. Advax adjuvant confirmed to be safe and well tolerated in neonates.
Neonates are at high risk for influenza morbidity and mortality due to immune immaturity and lack of priming by prior influenza virus exposure. Inactivated influenza vaccines are ineffective in infants under six months and to provide protection in older children generally require two doses given a month apart. This leaves few options for rapid protection of infants, e.g. during an influenza pandemic. We investigated whether Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles could help overcome neonatal immune hypo-responsiveness. We first tested whether it was possible to use Advax to obtain single-dose vaccine protection of neonatal pups against lethal influenza infection. Inactivated influenza A/H1N1 vaccine (iH1N1) combined with Advax™ adjuvant administered as a single subcutaneous immunization to 7-day-old mouse pups significantly enhanced serum influenza-specific IgM, IgG1, IgG2a and IgG2b levels and was associated with a 3–4 fold increase in the frequency of splenic influenza-specific IgM and IgG antibody secreting cells. Pups immunized with Advax had significantly higher splenocyte influenza-stimulated IFN-γ, IL-2, IL-4, and IL-10 production by CBA and a 3–10 fold higher frequency of IFN-γ, IL-2, IL-4 or IL-17 secreting T cells by ELISPOT. Immunization with iH1N1 + Advax induced robust protection of pups against virus challenge 3 weeks later, whereas pups immunized with iH1N1 antigen alone had no protection. Protection by Advax-adjuvanted iH1N1 was dependent on memory B cells rather than memory T cells, with no protection in neonatal μMT mice that are B-cell deficient. Hence, Advax adjuvant overcame neonatal immune hypo-responsiveness and enabled single-dose protection of pups against otherwise lethal influenza infection, thereby supporting ongoing development of Advax™ as a neonatal vaccine adjuvant.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia
| | - Chun Hao Ong
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia; Department of Endocrinology, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
30
|
Calderon-Gonzalez R, Tobes R, Pareja E, Frande-Cabanes E, Petrovsky N, Alvarez-Dominguez C. Identification and characterisation of T-cell epitopes for incorporation into dendritic cell-delivered Listeria vaccines. J Immunol Methods 2015; 424:111-9. [PMID: 26031451 PMCID: PMC7127673 DOI: 10.1016/j.jim.2015.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/05/2023]
Abstract
Dendritic cells loaded with antigenic peptides, because of their safety and robust immune stimulation, would be ideal for induction of immunity to protect against listeriosis. However, there is no currently accepted method to predict which peptides derived from the Listeria proteome might confer protection. While elution of peptides from MHC molecules after Listeria infection yields high-affinity immune-dominant epitopes, these individual epitopes did not reliably confer Listeria protection. Instead we applied bioinformatic predictions of MHC class I and II epitopes to generate antigenic peptides that were then formulated with Advax™, a novel polysaccharide particulate adjuvant able to enhance cross-presentation prior to being screened for their ability to induce protective T-cell responses. A combination of at least four intermediate strength MHC-I binding epitopes and one weak MHC-II binding epitope when expressed in a single peptide sequence and formulated with Advax adjuvant induced a potent T-cell response and high TNF-α and IL-12 production by dendritic cells resulting in robust listeriosis protection in susceptible mice. This T-cell vaccine approach might be useful for the design of vaccines to protect against listeriosis or other intracellular infections.
Collapse
Affiliation(s)
- Ricardo Calderon-Gonzalez
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Raquel Tobes
- Information Technologies Research Group, Era7 Bioinformatics, Granada, Spain
| | - Eduardo Pareja
- Information Technologies Research Group, Era7 Bioinformatics, Granada, Spain
| | - Elisabet Frande-Cabanes
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Nikolai Petrovsky
- Department of Diabetes and Endocrinology, Flinders University, Adelaide, Australia; Vaxine Pty Ltd, Flinders Medical Center, Adelaide, Australia
| | - Carmen Alvarez-Dominguez
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.
| |
Collapse
|
31
|
Musich T, Demberg T, Morgan IL, Estes JD, Franchini G, Robert-Guroff M. Purification and functional characterization of mucosal IgA from vaccinated and SIV-infected rhesus macaques. Clin Immunol 2015; 158:127-39. [PMID: 25840105 DOI: 10.1016/j.clim.2015.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/04/2015] [Accepted: 03/24/2015] [Indexed: 12/30/2022]
Abstract
Vaccine-induced mucosal antibodies are often evaluated using small volumes of secretory fluids. However, fecal matter containing mucosal IgA is abundant. We purified fecal IgA from five SIV-vaccinated and five SIV-infected rhesus macaques by sequential affinity chromatography. The purified IgA was dimeric by native PAGE, contained secretory component, and was analogous to IgA in colostrum and vaginal fluid by western blot. IgA from one infected and four vaccinated animals neutralized H9-derived SIV(mac)251 with IC(50)s as low as 1 μg/mL. Purified IgAs inhibited transcytosis and exhibited phagocytic activity, the latter significantly correlated with SIV(mac)251 Env-specific IgA in the purified samples. Among different affinity resins, peptide M was optimal compared to jacalin, anti-monkey IgA and SSL7 for IgA purification, as confirmed using tandem peptide M/anti-monkey IgA columns. Fecal IgA provided material sufficient for several assays relevant to protective efficacy, and was shown to be multifunctional. Our approach is potentially applicable to human clinical studies.
Collapse
Affiliation(s)
| | | | | | - Jacob D Estes
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | |
Collapse
|
32
|
Rodriguez-Del Rio E, Marradi M, Calderon-Gonzalez R, Frande-Cabanes E, Penadés S, Petrovsky N, Alvarez-Dominguez C. A gold glyco-nanoparticle carrying a Listeriolysin O peptide and formulated with Advax™ delta inulin adjuvant induces robust T-cell protection against listeria infection. Vaccine 2015; 33:1465-73. [PMID: 25659269 DOI: 10.1016/j.vaccine.2015.01.062] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/12/2015] [Accepted: 01/25/2015] [Indexed: 01/17/2023]
Abstract
In the search for an effective vaccine against the human pathogen, Listeria monocytogenes (Listeria), gold glyconanoparticles (GNP) loaded with a listeriolysin O peptide LLO91-99 (GNP-LLO) were used to immunise mice, initially using a dendritic cell (DC) vaccine approach, but subsequently using a standard parenteral immunisation approach. To enhance vaccine immunogenicity a novel polysaccharide adjuvant based on delta inulin (Advax™) was also co-formulated with the GNP vaccine. Confirming previous results, DC loaded in vitro with GNP-LLO provided better protection against listeriosis than DC loaded in vitro using free LLO peptide. The immunogenicity of GNP-LLO loaded DC vaccines was further increased by addition of Advax™ adjuvant. However, as DC vaccines are expensive and impracticable for prophylactic use, we next asked whether the same GNP-LLO antigen could be used to directly target DC in vivo. Immunisation of mice with GNP-LLO plus Advax™ adjuvant induced LLO-specific T-cell immunity and protection against Listeria challenge. Protection correlated with an increased frequency of splenic CD4(+) and CD8(+) T cells, NK cells and CD8α(+) DC, and Th1 cytokine production (IL-12, IFN-γ, TNF-α, and MCP-1), post-challenge. Enhanced T-cell epitope recruitment post-challenge was seen in the groups that received Advax™ adjuvant. Immunisation with GNP-LLO91-99 plus Advax™ adjuvant provided equally robust Listeria protection as the best DC vaccine strategy but without the complexity and cost, making this a highly promising strategy for development of a prophylactic vaccine against listeriosis.
Collapse
Affiliation(s)
- Estela Rodriguez-Del Rio
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Marco Marradi
- CIC biomaGUNE, P° de Miramón 182, San Sebastian, Gipúzcoa, Spain; CIBER-BBN, P° de Miramón 182, San Sebastian, Gipúzcoa, Spain
| | - Ricardo Calderon-Gonzalez
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Elisabet Frande-Cabanes
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Soledad Penadés
- CIC biomaGUNE, P° de Miramón 182, San Sebastian, Gipúzcoa, Spain; CIBER-BBN, P° de Miramón 182, San Sebastian, Gipúzcoa, Spain
| | - Nikolai Petrovsky
- Department of Diabetes and Endocrinology, Flinders University, Adelaide 5042, SA, Australia; Vaxine Pty Ltd, Flinders Medical Centre, Adelaide 5042, SA, Australia
| | - Carmen Alvarez-Dominguez
- Grupo de Genómica, Proteómica y Vacunas, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.
| |
Collapse
|
33
|
Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol 2014; 89:2995-3007. [PMID: 25520500 DOI: 10.1128/jvi.02980-14] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Although the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) epidemic was controlled by nonvaccine measures, coronaviruses remain a major threat to human health. The design of optimal coronavirus vaccines therefore remains a priority. Such vaccines present major challenges: coronavirus immunity often wanes rapidly, individuals needing to be protected include the elderly, and vaccines may exacerbate rather than prevent coronavirus lung immunopathology. To address these issues, we compared in a murine model a range of recombinant spike protein or inactivated whole-virus vaccine candidates alone or adjuvanted with either alum, CpG, or Advax, a new delta inulin-based polysaccharide adjuvant. While all vaccines protected against lethal infection, addition of adjuvant significantly increased serum neutralizing-antibody titers and reduced lung virus titers on day 3 postchallenge. Whereas unadjuvanted or alum-formulated vaccines were associated with significantly increased lung eosinophilic immunopathology on day 6 postchallenge, this was not seen in mice immunized with vaccines formulated with delta inulin adjuvant. Protection against eosinophilic immunopathology by vaccines containing delta inulin adjuvants correlated better with enhanced T-cell gamma interferon (IFN-γ) recall responses rather than reduced interleukin-4 (IL-4) responses, suggesting that immunopathology predominantly reflects an inadequate vaccine-induced Th1 response. This study highlights the critical importance for development of effective and safe coronavirus vaccines of selection of adjuvants based on the ability to induce durable IFN-γ responses. IMPORTANCE Coronaviruses such as SARS-CoV and Middle East respiratory syndrome-associated coronavirus (MERS-CoV) cause high case fatality rates and remain major human public health threats, creating a need for effective vaccines. While coronavirus antigens that induce protective neutralizing antibodies have been identified, coronavirus vaccines present a unique problem in that immunized individuals when infected by virus can develop lung eosinophilic pathology, a problem that is further exacerbated by the formulation of SARS-CoV vaccines with alum adjuvants. This study shows that formulation of SARS-CoV spike protein or inactivated whole-virus vaccines with novel delta inulin-based polysaccharide adjuvants enhances neutralizing-antibody titers and protection against clinical disease but at the same time also protects against development of lung eosinophilic immunopathology. It also shows that immunity achieved with delta inulin adjuvants is long-lived, thereby overcoming the natural tendency for rapidly waning coronavirus immunity. Thus, delta inulin adjuvants may offer a unique ability to develop safer and more effective coronavirus vaccines.
Collapse
|
34
|
Gordon D, Kelley P, Heinzel S, Cooper P, Petrovsky N. Immunogenicity and safety of Advax™, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: a randomized controlled Phase 1 study. Vaccine 2014; 32:6469-77. [PMID: 25267153 PMCID: PMC4253909 DOI: 10.1016/j.vaccine.2014.09.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/19/2022]
Abstract
There is a need for additional safe and effective human vaccine adjuvants. Advax™ is a novel adjuvant produced from semi-crystalline particles of delta inulin. In animal studies Advax enhanced humoral and cellular immunity to hepatitis B surface antigen (HBsAg) without inducing local or systemic reactogenicity. This first-in-man Phase 1 clinical trial tested the safety and tolerability of three intramuscular doses of HBsAg formulated with Advax in a group of healthy adult subjects. Advax was well tolerated with injection site pain scores not significantly different to subjects receiving HBsAg alone and no adverse events were reported in subjects that received Advax. Seroprotection and HBsAb geometric mean titers (GMT) after three immunizations were higher in the Advax 5mg (seroprotection 5/6, 83.3%, GMT 40.7, 95% CI 11.9-139.1) and 10mg (seroprotection 4/5, 80%, GMT 51.6, 95% CI 10.0-266.2) groups versus HBsAg alone (seroprotection 1/5, 20%, GMT 4.1, 95% CI 1.3-12.8). Similarly the proportion of subjects with positive CD4 T-cell responses to HBsAg was higher in the Advax 5mg (4/6, 67%) and Advax 10mg (4/5, 80%) groups versus HBsAg alone (1/5, 20%). These results confirm the safety, tolerability and immunogenicity of Advax adjuvant observed in preclinical studies. Advax may represent a suitable replacement for alum adjuvants in prophylactic human vaccines subject to confirmation of current results in larger studies. Australia and New Zealand Clinical Trial Registry: ACTRN12607000598482.
Collapse
Affiliation(s)
- David Gordon
- Department of Microbiology and Infectious Diseases, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| | - Peter Kelley
- Department of Microbiology and Infectious Diseases, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| | | | - Peter Cooper
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia; Cancer Research Laboratory, Australian National University Medical School at The Canberra Hospital, Garran, ACT 2605, Australia; John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia; Department of Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
35
|
Poles J, Alvarez Y, Hioe CE. Induction of intestinal immunity by mucosal vaccines as a means of controlling HIV infection. AIDS Res Hum Retroviruses 2014; 30:1027-40. [PMID: 25354023 DOI: 10.1089/aid.2014.0233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD4(+) T cells in the mucosa of the gastrointestinal (GI) tract are preferentially targeted and depleted by HIV. As such, the induction of an effective anti-HIV immune response in the mucosa of the GI tract-through vaccination-could protect this vulnerable population of cells. Mucosal vaccination provides a promising means of inducing robust humoral and cellular responses in the GI tract. Here we review data from the literature about the effectiveness of various mucosal vaccination routes--oral (intraintestinal/tonsilar/sublingual), intranasal, and intrarectal--with regard to the induction of immune responses mediated by cytotoxic T cells and antibodies in the GI mucosa, as well as protective efficacy in challenge models. We present data from the literature indicating that mucosal routes have the potential to effectively elicit GI mucosal immunity and protect against challenge. Given their capacity for the induction of anti-HIV immune responses in the GI mucosa, we propose that mucosal routes, including the nonconventional sublingual, tonsilar, and intrarectal routes, be considered for the delivery of the next generation HIV vaccines. However, further studies are necessary to determine the ideal vectors and vaccination regimens for these routes of immunization and to validate their efficacy in controlling HIV infection.
Collapse
Affiliation(s)
- Jordan Poles
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - Yelina Alvarez
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| | - Catarina E. Hioe
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| |
Collapse
|
36
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
37
|
Honda-Okubo Y, Kolpe A, Li L, Petrovsky N. A single immunization with inactivated H1N1 influenza vaccine formulated with delta inulin adjuvant (Advax™) overcomes pregnancy-associated immune suppression and enhances passive neonatal protection. Vaccine 2014; 32:4651-9. [PMID: 24958701 DOI: 10.1016/j.vaccine.2014.06.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/21/2014] [Accepted: 06/11/2014] [Indexed: 01/14/2023]
Abstract
Pregnant women and neonates represent high-risk groups for influenza infection, and in general have suppressed responses to standard influenza vaccines due to pregnancy-associated immune suppression and immune system immaturity, respectively. We therefore wished to test whether addition of Advax™, a polysaccharide adjuvant based on delta inulin, to an inactivated influenza vaccine (A/H1N1/PR8) administered during pregnancy would safely enhance vaccine immunogenicity and thereby provide improved protection of pregnant mothers and their newborns. Pregnant mice received a single intramuscular injection of β-propiolactone-inactivated H1N1 antigen alone or with Advax adjuvant. Pregnant dams receiving Advax-adjuvanted vaccine exhibited significantly increased serum and breast milk anti-influenza IgG titers. This translated into higher serum anti-influenza IgG titers in the pups of these dams. Complete protection was seen in pups of dams that received Advax-adjuvanted vaccine whereas no survival was seen in pups of control mothers or mothers immunized with unadjuvanted influenza vaccine. Cross-fostering studies confirmed that enhanced protection of pups of dams that received Advax-adjuvanted vaccine was mediated by enhanced transfer of maternal IgG to the pups via breast-feeding. The delta inulin adjuvant was not associated with any reproductive or developmental adverse effects. This study shows that Advax adjuvant was safe when administered with influenza vaccine during pregnancy and provided protection of pups via enhanced breast milk transfer of anti-influenza antibodies, not seen with administration of unadjuvanted vaccine.
Collapse
Affiliation(s)
| | | | - Lei Li
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, SA, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, SA, Australia; Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, SA, Australia.
| |
Collapse
|
38
|
Advax-adjuvanted recombinant protective antigen provides protection against inhalational anthrax that is further enhanced by addition of murabutide adjuvant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:580-6. [PMID: 24554695 DOI: 10.1128/cvi.00019-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy.
Collapse
|
39
|
|
40
|
Cooper PD, Barclay TG, Ginic-Markovic M, Petrovsky N. Gamma ray sterilization of delta inulin adjuvant particles (Advax™) makes minor, partly reversible structural changes without affecting adjuvant activity. Vaccine 2014; 32:552-7. [PMID: 24342245 PMCID: PMC4047428 DOI: 10.1016/j.vaccine.2013.11.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/18/2013] [Accepted: 11/27/2013] [Indexed: 12/30/2022]
Abstract
We earlier identified a developmental series of seven isoforms/polymorphs of microparticulate inulin by comparing non-covalent bonding strengths. Their pharmaceutical utility lies in the modulation of cellular immunity, exploited as vaccine adjuvants (Advax™) especially for delta inulin (DI). As such particles cannot be sterilized by filtration we explore the effect of (60)Co gamma radiation (GR) on inulin isoforms, particularly DI. Its adjuvant activity and overt physical properties were unaffected by normal GR sterilizing doses (up to 25kGy). Heating irradiated isoform suspensions near their critical dissolution temperature revealed increased solubility deduced to reflect a single lethal event in one component of a multi-component structure. Local oxidative effects of GR on DI were not found. The observed DI loss was almost halved by re-annealing at the critical temperature: surviving inulin chains apparently reassemble into smaller amounts of the original type of structure. Colorimetric tetrazolium assay revealed increases in reducing activity after GR of raw inulin powder, which yielded DI with normal physical properties but only 25% normal recovery yet 4× normal reducing ability, implying final retention of some GR-changed inulin chains. These findings suggest minimal inulin chain cleavage and confirm that GR may be a viable strategy for terminal sterilization of microparticulate inulin adjuvants.
Collapse
Affiliation(s)
- P D Cooper
- Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia; Cancer Research Laboratory, Australian National University Medical School, The Canberra Hospital, Canberra 2605, Australia; John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia.
| | - T G Barclay
- The Mawson Institute, University of South Australia, Adelaide 5095, Australia
| | - M Ginic-Markovic
- The Mawson Institute, University of South Australia, Adelaide 5095, Australia
| | - N Petrovsky
- Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia; Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
41
|
Cooper PD, Barclay TG, Ginic-Markovic M, Petrovsky N. The polysaccharide inulin is characterized by an extensive series of periodic isoforms with varying biological actions. Glycobiology 2013; 23:1164-74. [PMID: 23853206 PMCID: PMC3766280 DOI: 10.1093/glycob/cwt053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 12/28/2022] Open
Abstract
In studying the molecular basis for the potent immune activity of previously described gamma and delta inulin particles and to assist in production of inulin adjuvants under Good Manufacturing Practice, we identified five new inulin isoforms, bringing the total to seven plus the amorphous form. These isoforms comprise the step-wise inulin developmental series amorphous → alpha-1 (AI-1) → alpha-2 (AI-2) → gamma (GI) → delta (DI) → zeta (ZI) → epsilon (EI) → omega (OI) in which each higher isoform can be made either by precipitating dissolved inulin or by direct conversion from its precursor, both cases using regularly increasing temperatures. At higher temperatures, the shorter inulin polymer chains are released from the particle and so the key difference between isoforms is that each higher isoform comprises longer polymer chains than its precursor. An increasing trend of degree of polymerization is confirmed by end-group analysis using (1)H nuclear magnetic resonance spectroscopy. Inulin isoforms were characterized by the critical temperatures of abrupt phase-shifts (solubilizations or precipitations) in water suspensions. Such (aqueous) "melting" or "freezing" points are diagnostic and occur in strikingly periodic steps reflecting quantal increases in noncovalent bonding strength and increments in average polymer lengths. The (dry) melting points as measured by modulated differential scanning calorimetry similarly increase in regular steps. We conclude that the isoforms differ in repeated increments of a precisely repeating structural element. Each isoform has a different spectrum of biological activities and we show the higher inulin isoforms to be more potent alternative complement pathway activators.
Collapse
Affiliation(s)
- Peter D Cooper
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, SA 5042, Australia
- Cancer Research Laboratory, Australian National University Medical School, The Canberra Hospital, Garran, ACT 2605, Australia
- The John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia
| | - Thomas G Barclay
- The Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Milena Ginic-Markovic
- The Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, SA 5042, Australia
- Department of Endocrinology, Flinders Medical Centre/Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
42
|
Liu H, Patil HP, de Vries-Idema J, Wilschut J, Huckriede A. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies. PLoS One 2013; 8:e69649. [PMID: 23936066 PMCID: PMC3729563 DOI: 10.1371/journal.pone.0069649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/13/2013] [Indexed: 12/27/2022] Open
Abstract
Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Viral/immunology
- Cell Line
- Drug Administration Routes
- Drug Evaluation, Preclinical
- Enzyme-Linked Immunosorbent Assay
- Female
- Immunity/immunology
- Immunity, Mucosal/immunology
- Immunization/methods
- Immunization, Secondary/methods
- Immunoglobulin A/immunology
- Immunoglobulin A/metabolism
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Mice
- Mice, Inbred BALB C
- Saponins/administration & dosage
- Saponins/immunology
- T-Lymphocytes/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Heng Liu
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harshad P. Patil
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Wilschut
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anke Huckriede
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
43
|
An inactivated cell culture Japanese encephalitis vaccine (JE-ADVAX) formulated with delta inulin adjuvant provides robust heterologous protection against West Nile encephalitis via cross-protective memory B cells and neutralizing antibody. J Virol 2013; 87:10324-33. [PMID: 23864620 DOI: 10.1128/jvi.00480-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV), currently the cause of a serious U.S. epidemic, is a mosquito-borne flavivirus and member of the Japanese encephalitis (JE) serocomplex. There is currently no approved human WNV vaccine, and treatment options remain limited, resulting in significant mortality and morbidity from human infection. Given the availability of approved human JE vaccines, this study asked whether the JE-ADVAX vaccine, which contains an inactivated cell culture JE virus antigen formulated with Advax delta inulin adjuvant, could provide heterologous protection against WNV infection in wild-type and β2-microglobulin-deficient (β2m(-/-)) murine models. Mice immunized twice or even once with JE-ADVAX were protected against lethal WNV challenge even when mice had low or absent serum cross-neutralizing WNV titers prior to challenge. Similarly, β2m(-/-) mice immunized with JE-ADVAX were protected against lethal WNV challenge in the absence of CD8(+) T cells and prechallenge WNV antibody titers. Protection against WNV could be adoptively transferred to naive mice by memory B cells from JE-ADVAX-immunized animals. Hence, in addition to increasing serum cross-neutralizing antibody titers, JE-ADVAX induced a memory B-cell population able to provide heterologous protection against WNV challenge. Heterologous protection was reduced when JE vaccine antigen was administered alone without Advax, confirming the importance of the adjuvant to induction of cross-protective immunity. In the absence of an approved human WNV vaccine, JE-ADVAX could provide an alternative approach for control of a major human WNV epidemic.
Collapse
|
44
|
Kwak K, Jiang R, Jagu S, Wang JW, Wang C, Christensen ND, Roden RBS. Multivalent human papillomavirus l1 DNA vaccination utilizing electroporation. PLoS One 2013; 8:e60507. [PMID: 23536912 PMCID: PMC3607584 DOI: 10.1371/journal.pone.0060507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/27/2013] [Indexed: 11/19/2022] Open
Abstract
Objectives Naked DNA vaccines can be manufactured simply and are stable at ambient temperature, but require improved delivery technologies to boost immunogenicity. Here we explore in vivo electroporation for multivalent codon-optimized human papillomavirus (HPV) L1 and L2 DNA vaccination. Methods Balb/c mice were vaccinated three times at two week intervals with a fusion protein comprising L2 residues ∼11−88 of 8 different HPV types (11−88×8) or its DNA expression vector, DNA constructs expressing L1 only or L1+L2 of a single HPV type, or as a mixture of several high-risk HPV types and administered utilizing electroporation, i.m. injection or gene gun. Serum was collected two weeks and 3 months after the last vaccination. Sera from immunized mice were tested for in-vitro neutralization titer, and protective efficacy upon passive transfer to naive mice and vaginal HPV challenge. Heterotypic interactions between L1 proteins of HPV6, HPV16 and HPV18 in 293TT cells were tested by co-precipitation using type-specific monoclonal antibodies. Results Electroporation with L2 multimer DNA did not elicit detectable antibody titer, whereas DNA expressing L1 or L1+L2 induced L1-specific, type-restricted neutralizing antibodies, with titers approaching those induced by Gardasil. Co-expression of L2 neither augmented L1-specific responses nor induced L2-specific antibodies. Delivery of HPV L1 DNA via in vivo electroporation produces a stronger antibody response compared to i.m. injection or i.d. ballistic delivery via gene gun. Reduced neutralizing antibody titers were observed for certain types when vaccinating with a mixture of L1 (or L1+L2) vectors of multiple HPV types, likely resulting from heterotypic L1 interactions observed in co-immunoprecipitation studies. High titers were restored by vaccinating with individual constructs at different sites, or partially recovered by co-expression of L2, such that durable protective antibody titers were achieved for each type. Discussion Multivalent vaccination via in vivo electroporation requires spatial separation of individual type L1 DNA vaccines.
Collapse
MESH Headings
- Alphapapillomavirus/classification
- Alphapapillomavirus/genetics
- Alphapapillomavirus/immunology
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody Specificity
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Cell Line
- Electroporation
- Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18
- Humans
- Mice
- Papillomavirus Infections/prevention & control
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/immunology
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Kihyuck Kwak
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Rosie Jiang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Subhashini Jagu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joshua W. Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chenguang Wang
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Neil D. Christensen
- Departments of Pathology, Microbiology and Immunology, Penn State University, Hershey, Pennsylvania, United States of America
| | - Richard B. S. Roden
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Shakya AK, Nandakumar KS. Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases. J R Soc Interface 2013; 10:20120536. [PMID: 23173193 PMCID: PMC3565688 DOI: 10.1098/rsif.2012.0536] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/01/2012] [Indexed: 12/18/2022] Open
Abstract
Polymers as an adjuvant are capable of enhancing the vaccine potential against various infectious diseases and also are being used to study the actual autoimmune responses using self-antigen(s) without involving any major immune deviation. Several natural polysaccharides and their derivatives originating from microbes and plants have been tested for their adjuvant potential. Similarly, numerous synthetic polymers including polyelectrolytes, polyesters, polyanhydrides, non-ionic block copolymers and external stimuli responsive polymers have demonstrated adjuvant capacity using different antigens. Adjuvant potential of these polymers mainly depends on their solubility, molecular weight, degree of branching and the conformation of polymeric backbone. These polymers have the ability not only to activate humoral but also cellular immune responses in the host. The depot effect, which involves slow release of antigen over a long duration of time, using different forms (particulate, solution and gel) of polymers, and enhances the co-stimulatory signals for optimal immune activation, is the underlying principle of their adjuvant properties. Possibly, polymers may also interact and activate various toll-like receptors and inflammasomes, thus involving several innate immune system players in the ensuing immune response. Biocompatibility, biodegradability, easy production and purification, and non-toxic properties of most of the polymers make them attractive candidates for substituting conventional adjuvants that have undesirable effects in the host.
Collapse
Affiliation(s)
| | - Kutty Selva Nandakumar
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
46
|
Orsi A, Ansaldi F, de Florentiis D, Ceravolo A, Parodi V, Canepa P, Coppelli M, Icardi G, Durando P. Cross-protection against drifted influenza viruses: options offered by adjuvanted and intradermal vaccines. Hum Vaccin Immunother 2013; 9:582-90. [PMID: 23295230 DOI: 10.4161/hv.23239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Antigenic drift, the evolutionary mechanism of influenza viruses, results in an increased susceptibility of vaccinated subjects against circulating viruses. New vaccines able to grant a broader and cross-reactive immune response against drifted influenza variants are needed. Several strategies were explored to enhance the immunogenicity of plain vaccines: adjuvants, carriers and intradermal administration of influenza vaccine emerge as a promising options. To evaluate the ability of a MF59-adjuvanted and intradermal influenza vaccine to elicit an effective antibody response against circulating viruses presenting antigenic patterns different from those of the vaccine strains, we compared antibody responses elicited by "implemented" vaccines and conventional intramuscular trivalent inactivated vaccine against heterologous circulating influenza A viruses. Different studies, simulating different epidemiological pictures produced by the natural antigenic drift of seasonal influenza viruses, highlighted the superior cross-reactivity of the antibodies elicited by MF59 and intradermal vaccines, compared with subunit or split vaccine against heterologous viruses.
Collapse
Affiliation(s)
- Andrea Orsi
- Department of Health Sciences; University of Genoa; Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Saade F, Honda-Okubo Y, Trec S, Petrovsky N. A novel hepatitis B vaccine containing Advax™, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing. Vaccine 2013; 31:1999-2007. [PMID: 23306367 DOI: 10.1016/j.vaccine.2012.12.077] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/24/2012] [Accepted: 12/28/2012] [Indexed: 12/12/2022]
Abstract
Although current HBV vaccines have an outstanding record of safety and efficacy, reduced immunogenicity is a problem in those of older age, or having renal impairment or diabetes mellitus. In this study, we tested the ability of Advax™ adjuvant, a novel polysaccharide adjuvant based on delta inulin, to enhance the immunogenicity of hepatitis B surface antigen (HBs) in mice and guinea pigs by comparison to the traditional alum adjuvant. Advax™ provided antigen-sparing, significantly enhanced both anti-HBs antibody titers, and anti-HBs CD4 and CD8 T-cells, with increases in Th1, Th2 and Th17 cytokine responses. Unlike alum, the adjuvant effect of Advax™ was seen even when injected 24h before the HBs antigen. Advax™ adjuvant similarly enhanced humoral and cellular immune responses in guinea pigs to a third generation preS-HBs antigen. Advax™ adjuvant when combined with HBs antigen could provide enhanced protection over current generation HBV vaccines for immunization of low responder populations.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, Australia
| | | | | | | |
Collapse
|
48
|
Li L, Saade F, Petrovsky N. The future of human DNA vaccines. J Biotechnol 2012; 162:171-82. [PMID: 22981627 DOI: 10.1016/j.jbiotec.2012.08.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 01/03/2023]
Abstract
DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans.
Collapse
Affiliation(s)
- Lei Li
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | | | | |
Collapse
|
49
|
Spero D, Petrovsky N, De Groot AS. Report from the field: Fifth Vaccine Renaissance in Providence RI. Hum Vaccin Immunother 2012; 8:1006-9. [PMID: 22777100 DOI: 10.4161/hv.19779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When the next pandemic emerges, will we be ready? Experts say that the number of animal to human "species jumps" is bound to increase as populations increase and the speed of travel between continents accelerates. Typical pandemic timelines no longer apply.(1) Pandemic H1N1 traveled the world in just weeks, as did SARS, despite major efforts to contain both outbreaks. The danger of emerging infectious disease to global health is compounded by the potential threat for malevolent bioengineering of existing pathogens and their deliberate dissemination.(2)
Collapse
Affiliation(s)
- Denice Spero
- Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA.
| | | | | |
Collapse
|
50
|
Honda-Okubo Y, Saade F, Petrovsky N. Advax™, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses. Vaccine 2012; 30:5373-81. [PMID: 22728225 DOI: 10.1016/j.vaccine.2012.06.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/24/2012] [Accepted: 06/07/2012] [Indexed: 11/19/2022]
Abstract
Advax™ adjuvant is derived from inulin, a natural plant-derived polysaccharide that when crystallized in the delta polymorphic form, becomes immunologically active. This study was performed to assess the ability of Advax™ adjuvant to enhance influenza vaccine immunogenicity and protection. Mice were immunized with influenza vaccine alone or combined with Advax™ adjuvant. Immuno-phenotyping of the anti-influenza response was performed including antibody isotypes, B-cell ELISPOT, CD4 and CD8 T-cell proliferation, influenza-stimulated cytokine secretion, DTH skin tests and challenge with live influenza virus. Advax™ adjuvant increased neutralizing antibody and memory B-cell responses to influenza. It similarly enhanced CD4 and CD8 T-cell proliferation and increased influenza-stimulated IL-2, IFN-γ, IL-5, IL-6, and GM-CSF responses. This translated into enhanced protection against mortality and morbidity in mice. Advax™ adjuvant provided significant antigen dose-sparing compared to influenza antigen alone. Protection could be transferred from mice that had received Advax™-adjuvanted vaccine to naïve mice by immune serum. Enhanced humoral and T-cell responses induced by Advax™-formulated vaccine were sustained 12months post-immunization. Advax™ adjuvant had low reactogenicity and no adverse events were identified. This suggests Advax™ adjuvant could be a useful influenza vaccine adjuvant.
Collapse
|