1
|
Godarzi B, Chandler F, van der Linden A, Sikkema RS, de Bruin E, Veldhuizen E, van Amerongen A, Gröne A. A species-independent lateral flow microarray immunoassay to detect WNV and USUV NS1-specific antibodies in serum. One Health 2024; 18:100668. [PMID: 38261918 PMCID: PMC10796932 DOI: 10.1016/j.onehlt.2023.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Arboviruses such as West Nile Virus (WNV) and Usutu Virus (USUV) are emerging pathogens that circulate between mosquitoes and birds, occasionally spilling over into humans and horses. Current serological screening methods require access to a well-equipped laboratory and are not currently available for on-site analysis. As a proof of concept, we propose here a species-independent lateral flow microarray immunoassay (LMIA) able to quickly detect and distinguish between WNV Non-Structural 1 (NS1) and USUV NS1-specific antibodies. A double antigen approach was used to test sera collected from humans, horses, European jackdaws (Corvus monedula), and common blackbirds (Turdus merula). Optimization of the concentration of capture antigen spotted on the LMIA membrane and the amount of detection antigen conjugated to detector particles indicated that maximizing both parameters increased assay sensitivity. Upon screening of a larger serum panel, the optimized LMIA showed significantly higher spot intensity for a homologous binding event. Using a Receiver Operating Characteristics (ROC) curve, WNV NS1 LMIA results in humans, horses, and C. monedula showed good correlation when compared to "gold standard" WNV FRNT90. The most optimal derived sensitivity and specificity of the WNV NS1 LMIA relative to corresponding WNV FRNT90-confirmed sera were determined to be 96% and 86%, respectively. While further optimization is required, this study demonstrates the feasibility of developing a species-independent LMIA for on-site analysis of WNV, USUV, and other arboviruses. Such a tool would be useful for the on-site screening and monitoring of relevant species in more remote or low-income regions.
Collapse
Affiliation(s)
- Bijan Godarzi
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
- BioSensing & Diagnostics, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Felicity Chandler
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Anne van der Linden
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Reina S. Sikkema
- Department of Viroscience, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Erwin de Bruin
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Edwin Veldhuizen
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Aart van Amerongen
- BioSensing & Diagnostics, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Andrea Gröne
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| |
Collapse
|
2
|
Tamba M, Bonilauri P, Galletti G, Casadei G, Santi A, Rossi A, Calzolari M. West Nile virus surveillance using sentinel birds: results of eleven years of testing in corvids in a region of northern Italy. Front Vet Sci 2024; 11:1407271. [PMID: 38818494 PMCID: PMC11138491 DOI: 10.3389/fvets.2024.1407271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
The natural transmission cycle of West Nile virus (WNV) involves birds as primary hosts and mosquitoes as vectors, but this virus can spread to mammals, human beings included. Asymptomatic infected donors pose a risk to the safety of blood transfusions and organ transplants, as WNV can be transmitted through these medical procedures. Since 2009, the region of Emilia-Romagna in northern Italy has been implementing an integrated surveillance system in order to detect WNV circulation in the environment at an early stage. Here we report the results of the two components of the surveillance system, the active testing of corvids and humans, and demonstrate that bird surveillance alone improves a surveillance system based solely on human case detection. As WNV risk reduction measures are applied on a provincial basis, we assessed the ability of this surveillance system component to detect virus circulation prior to the notification of the first human case for each province. Overall, 99 epidemic seasons were evaluated as a result of 11 years (2013-2023) of surveillance in the nine provinces of the region. In this period, 22,314 corvids were tested for WNV and 642 (2.9%) were found to be infected. WNV was generally first detected in birds in July, with sample prevalence peaks occurring between August and September. During the same period, 469 autochthonous human cases were notified, about 60% of which were reported in August. WNV was detected 79 times out of the 99 seasons considered. The virus was notified in birds 73 times (92.4%) and 60 times (75.9%) in humans. WNV was first or only notified in birds in 57 seasons (72.1%), while it was first or only notified in humans in 22 seasons (27.8%). Active surveillance in corvids generally allows the detection of WNV before the onset of human cases. Failure of virus detection occurred mainly in seasons where the number of birds tested was low. Our results show that active testing of a minimum of 3.8 corvids per 100 km2 provides a satisfactory timeliness in the virus detection, but for early detection of WNV it is crucial to test birds between mid-June and mid-August.
Collapse
Affiliation(s)
- Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
3
|
Llorente F, Gutiérrez-López R, Pérez-Ramirez E, Sánchez-Seco MP, Herrero L, Jiménez-Clavero MÁ, Vázquez A. Experimental infections in red-legged partridges reveal differences in host competence between West Nile and Usutu virus strains from Southern Spain. Front Cell Infect Microbiol 2023; 13:1163467. [PMID: 37396301 PMCID: PMC10308050 DOI: 10.3389/fcimb.2023.1163467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonotic arboviruses sharing the same life cycle with mosquitoes as vectors and wild birds as reservoir hosts. The main objective of this study was to characterize the pathogenicity and course of infection of two viral strains (WNV/08 and USUV/09) co-circulating in Southern Spain in a natural host, the red-legged partridge (Alectoris rufa), and to compare the results with those obtained with the reference strain WNV/NY99. Methods WNV inoculated birds were monitored for clinical and analytical parameters (viral load, viremia, and antibodies) for 15 days post-inoculation. Results and discussion Partridges inoculated with WNV/NY99 and WNV/08 strains showed clinical signs such as weight loss, ruffled feathers, and lethargy, which were not observed in USUV/09-inoculated individuals. Although statistically significant differences in mortality were not observed, partridges inoculated with WNV strains developed significantly higher viremia and viral loads in blood than those inoculated with USUV. In addition, the viral genome was detected in organs and feathers of WNV-inoculated partridges, while it was almost undetectable in USUV-inoculated ones. These experimental results indicate that red-legged partridges are susceptible to the assayed Spanish WNV with pathogenicity similar to that observed for the prototype WNV/NY99 strain. By contrast, the USUV/09 strain was not pathogenic for this bird species and elicited extremely low viremia levels, demonstrating that red-legged partridges are not a competent host for the transmission of this USUV strain.
Collapse
Affiliation(s)
- Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Rafael Gutiérrez-López
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Elisa Pérez-Ramirez
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - María Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
Fesce E, Marini G, Rosà R, Lelli D, Cerioli MP, Chiari M, Farioli M, Ferrari N. Understanding West Nile virus transmission: Mathematical modelling to quantify the most critical parameters to predict infection dynamics. PLoS Negl Trop Dis 2023; 17:e0010252. [PMID: 37126524 PMCID: PMC10174579 DOI: 10.1371/journal.pntd.0010252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023] Open
Abstract
West Nile disease is a vector-borne disease caused by West Nile virus (WNV), involving mosquitoes as vectors and birds as maintenance hosts. Humans and other mammals can be infected via mosquito bites, developing symptoms ranging from mild fever to severe neurological infection. Due to the worldwide spread of WNV, human infection risk is high in several countries. Nevertheless, there are still several knowledge gaps regarding WNV dynamics. Several aspects of transmission taking place between birds and mosquitoes, such as the length of the infectious period in birds or mosquito biting rates, are still not fully understood, and precise quantitative estimates are still lacking for the European species involved. This lack of knowledge affects the precision of parameter values when modelling the infection, consequently resulting in a potential impairment of the reliability of model simulations and predictions and in a lack of the overall understanding of WNV spread. Further investigations are thus needed to better understand these aspects, but field studies, especially those involving several wild species, such as in the case of WNV, can be challenging. Thus, it becomes crucial to identify which transmission processes most influence the dynamics of WNV. In the present work, we propose a sensitivity analysis to investigate which of the selected epidemiological parameters of WNV have the largest impact on the spread of the infection. Based on a mathematical model simulating WNV spread into the Lombardy region (northern Italy), the basic reproduction number of the infection was estimated and used to quantify infection spread into mosquitoes and birds. Then, we quantified how variations in four epidemiological parameters representing the duration of the infectious period in birds, the mosquito biting rate on birds, and the competence and susceptibility to infection of different bird species might affect WNV transmission. Our study highlights that knowledge gaps in WNV epidemiology affect the precision in several parameters. Although all investigated parameters affected the spread of WNV and the modelling precision, the duration of the infectious period in birds and mosquito biting rate are the most impactful, pointing out the need of focusing future studies on a better estimate of these parameters at first. In addition, our study suggests that a WNV outbreak is very likely to occur in all areas with suitable temperatures, highlighting the wide area where WNV represents a serious risk for public health.
Collapse
Affiliation(s)
- Elisa Fesce
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
| | - Roberto Rosà
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento (TN), Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Monica Pierangela Cerioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Mario Chiari
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Marco Farioli
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Nicola Ferrari
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
- Centro di Ricerca Coordinata Epidemiologia e Sorveglianza Molecolare delle Infezioni, Università degli Studi di Milano, Milano (MI), Italy
| |
Collapse
|
5
|
Reemtsma H, Holicki CM, Fast C, Bergmann F, Eiden M, Groschup MH, Ziegler U. Pathogenesis of West Nile Virus Lineage 2 in Domestic Geese after Experimental Infection. Viruses 2022; 14:v14061319. [PMID: 35746790 PMCID: PMC9230372 DOI: 10.3390/v14061319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV) is an emerging infectious pathogen circulating between mosquitoes and birds but also infecting mammals. WNV has become autochthonous in Germany, causing striking mortality rates in avifauna and occasional diseases in humans and horses. We therefore wanted to assess the possible role of free-ranging poultry in the WNV transmission cycle and infected 15 goslings with WNV lineage 2 (German isolate). The geese were monitored daily and sampled regularly to determine viremia, viral shedding, and antibody development by molecular and serological methods. Geese were euthanized at various time points post-infection (pi). All infected geese developed variable degrees of viremia from day 1 to day 10 (maximum) and actively shed virus from days 2 to 7 post-infection. Depending on the time of death, the WN viral genome was detected in all examined tissue samples in at least one individual by RT-qPCR and viable virus was even re-isolated, except for in the liver. Pathomorphological lesions as well as immunohistochemically detectable viral antigens were found mainly in the brain. Furthermore, all of the geese seroconverted 6 days pi at the latest. In conclusion, geese are presumably not functioning as important amplifying hosts but are suitable sentinel animals for WNV surveillance.
Collapse
|
6
|
West Nile and Usutu Viruses' Surveillance in Birds of the Province of Ferrara, Italy, from 2015 to 2019. Viruses 2021; 13:v13071367. [PMID: 34372573 PMCID: PMC8310148 DOI: 10.3390/v13071367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
West Nile (WNV) and Usutu (USUV) viruses are mosquito-borne flaviviruses. Thanks to their importance as zoonotic diseases, a regional plan for surveillance of Arboviruses was implemented in Emilia-Romagna in 2009. The province of Ferrara belongs to the Emilia-Romagna region, and it is an endemic territory for these viruses, with favorable ecological conditions for abundance of mosquitoes and wild birds. From 2015 to 2019, we collected 1842 dead-found birds at a wildlife rehabilitation center, which were analysed by three different PCRs for the detection of WNV and USUV genomes. August was characterized by the highest infection rate for both viruses. Columbiformes scored the highest USUV prevalence (8%), while Galliformes and Strigiformes reported the highest prevalence for WNV (13%). Among Passeriformes (the most populated Order), Turdus merula was the most abundant species and scored the highest prevalence for both viruses. To optimize passive surveillance plans, monitoring should be focused on the summer and towards the avian species more prone to infection by both viruses.
Collapse
|
7
|
Pathogenesis of Two Western Mediterranean West Nile Virus Lineage 1 Isolates in Experimentally Infected Red-Legged Partridges ( Alectoris rufa). Pathogens 2021; 10:pathogens10060748. [PMID: 34199167 PMCID: PMC8231501 DOI: 10.3390/pathogens10060748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is the most widespread flavivirus in the world with a wide vertebrate host range. Its geographic expansion and activity continue to increase with important human and equine outbreaks and local bird mortality. In a previous experiment, we demonstrated the susceptibility of 7-week-old red-legged partridges (Alectoris rufa) to Mediterranean WNV isolates Morocco/2003 and Spain/2007, which varied in virulence for this gallinaceous species. Here we study the pathogenesis of the infection with these two strains to explain the different course of infection and mortality. Day six post-inoculation was critical in the course of infection, with the highest viral load in tissues, the most widespread virus antigen, and more severe lesions. The most affected organs were the heart, liver, and spleen. Comparing infections with Morocco/2003 and Spain/2007, differences were observed in the viral load, virus antigen distribution, and lesion nature and severity. A more acute and marked inflammatory reaction (characterized by participation of microglia and CD3+ T cells) as well as neuronal necrosis in the brain were observed in partridges infected with Morocco/2003 as compared to those infected with Spain/2007. This suggests a higher neurovirulence of Morocco/2003, probably related to one or more specific molecular determinants of virulence different from Spain/2007.
Collapse
|
8
|
Sikkema RS, Schrama M, van den Berg T, Morren J, Munger E, Krol L, van der Beek JG, Blom R, Chestakova I, van der Linden A, Boter M, van Mastrigt T, Molenkamp R, Koenraadt CJ, van den Brand JM, Oude Munnink BB, Koopmans MP, van der Jeugd H. Detection of West Nile virus in a common whitethroat ( Curruca communis) and Culex mosquitoes in the Netherlands, 2020. ACTA ACUST UNITED AC 2021; 25. [PMID: 33034280 PMCID: PMC7545818 DOI: 10.2807/1560-7917.es.2020.25.40.2001704] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
On 22 August, a common whitethroat in the Netherlands tested positive for West Nile virus lineage 2. The same bird had tested negative in spring. Subsequent testing of Culex mosquitoes collected in August and early September in the same location generated two of 44 positive mosquito pools, providing first evidence for enzootic transmission in the Netherlands. Sequences generated from the positive mosquito pools clustered with sequences that originate from Germany, Austria and the Czech Republic.
Collapse
Affiliation(s)
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Tijs van den Berg
- Vogeltrekstation -Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
| | - Jolien Morren
- Vogeltrekstation -Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
| | | | - Louie Krol
- Naturalis Biodiversity Center, Leiden, the Netherlands.,Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | | | - Rody Blom
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | | | | | - Marjan Boter
- Viroscience, ErasmusMC, Rotterdam, the Netherlands
| | - Tjomme van Mastrigt
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands.,Wildlife Ecology and Conservation group, Wageningen University and Research, Wageningen, the Netherlands.,Vogeltrekstation -Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
| | | | | | - Judith Ma van den Brand
- Division of Pathology, Utrecht University, Utrecht, the Netherlands.,Dutch Wildlife Health Centre (DWHC), Utrecht, the Netherlands
| | | | | | - Henk van der Jeugd
- Vogeltrekstation -Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
| |
Collapse
|
9
|
Human West Nile Meningo-Encephalitis in a Highly Endemic Country: A Complex Epidemiological Analysis on Biotic and Abiotic Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218250. [PMID: 33171693 PMCID: PMC7664930 DOI: 10.3390/ijerph17218250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022]
Abstract
West Nile virus (WNV) is one of the most prevalent mosquito-borne viruses. Although the infection in humans is mostly asymptomatic, 15–20% of cases show flu-like symptoms with fever. In 1% of infections, humans develop severe nervous symptoms and even die, a condition known as West Nile neuroinvasive disease (WNND). The aim of our study was to analyze the influence of abiotic and biotic factors with the human WNND cases during the period 2015–2019. A database containing all the localities in Romania was developed. Abiotic and biotic predictors were included for each locality: geographic variables, climatic data, and biotic factors. Spatial distribution of the WNND infections was analyzed using directional distribution (DD). The Spearman’s rank correlation coefficient was employed to assess the strength of association between the WNND infections and predictors. A model was generated using the random forest ensemble learning method. A total number of 535 human WNND cases were confirmed in 308 localities. The DD showed a south-eastern geographical distribution. Weak correlation was observed between the number of human WNND cases for each year and the predictors. The highest predicted probability was around urbanized patches in the south and southeast. Increased surveillance and control measures of vectors in risk areas should be implemented and educational campaigns should be made available for the general public in order to raise awareness of the disease and inform the population about prophylactic measures.
Collapse
|
10
|
Esser HJ, Liefting Y, Ibáñez-Justicia A, van der Jeugd H, van Turnhout CAM, Stroo A, Reusken CBEM, Koopmans MPG, de Boer WF. Spatial risk analysis for the introduction and circulation of six arboviruses in the Netherlands. Parasit Vectors 2020; 13:464. [PMID: 32912330 PMCID: PMC7488554 DOI: 10.1186/s13071-020-04339-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Background Arboviruses are a growing public health concern in Europe, with both endemic and exotic arboviruses expected to spread further into novel areas in the next decades. Predicting where future outbreaks will occur is a major challenge, particularly for regions where these arboviruses are not endemic. Spatial modelling of ecological risk factors for arbovirus circulation can help identify areas of potential emergence. Moreover, combining hazard maps of different arboviruses may facilitate a cost-efficient, targeted multiplex-surveillance strategy in areas where virus transmission is most likely. Here, we developed predictive hazard maps for the introduction and/or establishment of six arboviruses that were previously prioritized for the Netherlands: West Nile virus, Japanese encephalitis virus, Rift Valley fever virus, tick-borne encephalitis virus, louping-ill virus and Crimean-Congo haemorrhagic fever virus. Methods Our spatial model included ecological risk factors that were identified as relevant for these arboviruses by an earlier systematic review, including abiotic conditions, vector abundance, and host availability. We used geographic information system (GIS)-based tools and geostatistical analyses to model spatially continuous datasets on these risk factors to identify regions in the Netherlands with suitable ecological conditions for arbovirus introduction and establishment. Results The resulting hazard maps show that there is spatial clustering of areas with either a relatively low or relatively high environmental suitability for arbovirus circulation. Moreover, there was some overlap in high-hazard areas for virus introduction and/or establishment, particularly in the southern part of the country. Conclusions The similarities in environmental suitability for some of the arboviruses provide opportunities for targeted sampling of vectors and/or sentinel hosts in these potential hotspots of emergence, thereby increasing the efficient use of limited resources for surveillance.![]()
Collapse
Affiliation(s)
- Helen Joan Esser
- Wildlife Ecology & Conservation Group, Wageningen University & Research, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands. .,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Yorick Liefting
- Wildlife Ecology & Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Adolfo Ibáñez-Justicia
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Agriculture, Nature and Food Quality, Wageningen, The Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, The Netherlands
| | - Chris A M van Turnhout
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands.,Department of Animal Ecology & Ecophysiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Agriculture, Nature and Food Quality, Wageningen, The Netherlands
| | - Chantal B E M Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Department of Viroscience, WHO CC for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, WHO CC for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem Fred de Boer
- Wildlife Ecology & Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
11
|
Pathogenicity of West Nile Virus Lineage 1 to German Poultry. Vaccines (Basel) 2020; 8:vaccines8030507. [PMID: 32899581 PMCID: PMC7563189 DOI: 10.3390/vaccines8030507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that originates from Africa and at present causes neurological disease in birds, horses, and humans all around the globe. As West Nile fever is an important zoonosis, the role of free-ranging domestic poultry as a source of infection for humans should be evaluated. This study examined the pathogenicity of an Italian WNV lineage 1 strain for domestic poultry (chickens, ducks, and geese) held in Germany. All three species were subcutaneously injected with WNV, and the most susceptible species was also inoculated via mosquito bite. All species developed various degrees of viremia, viral shedding (oropharyngeal and cloacal), virus accumulation, and pathomorphological lesions. Geese were most susceptible, displaying the highest viremia levels. The tested waterfowl, geese, and especially ducks proved to be ideal sentinel species for WNV due to their high antibody levels and relatively low blood viral loads. None of the three poultry species can function as a reservoir/amplifying host for WNV, as their viremia levels most likely do not suffice to infect feeding mosquitoes. Due to the recent appearance of WNV in Germany, future pathogenicity studies should also include local virus strains.
Collapse
|
12
|
Marini G, Calzolari M, Angelini P, Bellini R, Bellini S, Bolzoni L, Torri D, Defilippo F, Dorigatti I, Nikolay B, Pugliese A, Rosà R, Tamba M. A quantitative comparison of West Nile virus incidence from 2013 to 2018 in Emilia-Romagna, Italy. PLoS Negl Trop Dis 2020; 14:e0007953. [PMID: 31895933 PMCID: PMC6939904 DOI: 10.1371/journal.pntd.0007953] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/20/2019] [Indexed: 12/01/2022] Open
Abstract
Background West Nile virus (WNV) transmission was much greater in 2018 than in previous seasons in Europe. Focusing on Emilia-Romagna region (northern Italy), we analyzed detailed entomological and epidemiological data collected in 2013–2018 to quantitatively assess environmental drivers of transmission and explore hypotheses to better understand why the 2018 epidemiological season was substantially different than the previous seasons. In particular, in 2018 WNV was detected at least two weeks before the observed circulation in 2013–2017 and in a larger number of mosquito pools. Transmission resulted in 100 neuroinvasive human cases in the region, more than the total number of cases recorded between 2013 and 2017. Methodology We used temperature-driven mathematical models calibrated through a Bayesian approach to simulate mosquito population dynamics and WNV infection rates in the avian population. We then estimated the human transmission risk as the probability, for a person living in the study area, of being bitten by an infectious mosquito in a given week. Finally, we translated such risk into reported WNV human infections. Principal findings The estimated prevalence of WNV in the mosquito and avian populations were significantly higher in 2018 with respect to 2013–2017 seasons, especially in the eastern part of the region. Furthermore, peak avian prevalence was estimated to have occurred earlier, corresponding to a steeper decline towards the end of summer. The high mosquito prevalence resulted in a much greater predicted risk for human transmission in 2018, which was estimated to be up to eight times higher than previous seasons. We hypothesized, on the basis of our modelling results, that such greater WNV circulation might be partially explained by exceptionally high spring temperatures, which have likely helped to amplify WNV transmission at the beginning of the 2018 season. West Nile virus (WNV) is one of the most recent emerging mosquito-borne diseases in Europe and North America. While most human infections are asymptomatic, about 1% of them can result in severe neurological diseases which might be fatal. WNV transmission was unusually greater in 2018 than in previous years in many European countries, resulting in a large number of human infections. Focusing on Emilia-Romagna region (Italy), we developed an epidemiological model informed by entomological data; through that we found that exceptionally high spring temperatures might have contributed at amplifying WNV transmission at the beginning of the season, causing greater WNV prevalence in mosquito and avian populations during the summer, which resulted in a higher estimated risk for human transmission. Thus, weather anomalies at the beginning of the mosquito breeding season, which are likely to become more common under the projected scenarios of climate change, might act as an early warning signal for public health authorities, enabling them to design efficient surveillance and prevention strategies.
Collapse
Affiliation(s)
- Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
- Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy
- * E-mail:
| | - Mattia Calzolari
- Laboratory of Entomology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini”, Reggio Emilia, Italy
| | - Paola Angelini
- Public Health Service, Emilia-Romagna Region, Bologna, Italy
| | - Romeo Bellini
- Dept. Medical & Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Crevalcore, Italy
| | - Silvia Bellini
- Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini”, Bologna, Italy
| | - Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini”, Parma, Italy
| | - Deborah Torri
- Laboratory of Entomology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini”, Reggio Emilia, Italy
| | - Francesco Defilippo
- Laboratory of Entomology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini”, Reggio Emilia, Italy
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Birgit Nikolay
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France
- CNRS UMR2000: Génomique évolutive, modélisation et santé, Institut Pasteur, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Andrea Pugliese
- Department of Mathematics, University of Trento, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
- Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige (TN), Italy
| | - Marco Tamba
- Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini”, Bologna, Italy
| |
Collapse
|
13
|
Kain MP, Bolker BM. Predicting West Nile virus transmission in North American bird communities using phylogenetic mixed effects models and eBird citizen science data. Parasit Vectors 2019; 12:395. [PMID: 31395085 PMCID: PMC6686473 DOI: 10.1186/s13071-019-3656-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/03/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND West Nile virus (WNV) is a mosquito-transmitted disease of birds that has caused bird population declines and can spill over into human populations. Previous research has identified bird species that infect a large fraction of the total pool of infected mosquitoes and correlate with human infection risk; however, these analyses cover small spatial regions and cannot be used to predict transmission in bird communities in which these species are rare or absent. Here we present a mechanistic model for WNV transmission that predicts WNV spread (R0) in any bird community in North America by scaling up from the physiological responses of individual birds to transmission at the level of the community. We predict unmeasured bird species' responses to infection using phylogenetic imputation, based on these species' phylogenetic relationships with bird species with measured responses. RESULTS We focused our analysis on Texas, USA, because it is among the states with the highest total incidence of WNV in humans and is well sampled by birders in the eBird database. Spatio-temporal patterns: WNV transmission is primarily driven by temperature variation across time and space, and secondarily by bird community composition. In Texas, we predicted WNV R0 to be highest in the spring and fall when temperatures maximize the product of mosquito transmission and survival probabilities. In the most favorable months for WNV transmission (April, May, September and October), we predicted R0 to be highest in the "Piney Woods" and "Oak Woods & Prairies" ecoregions of Texas, and lowest in the "High Plains" and "South Texas Brush County" ecoregions. Dilution effect: More abundant bird species are more competent hosts for WNV, and predicted WNV R0 decreases with increasing species richness. Keystone species: We predicted that northern cardinals (Cardinalis cardinalis) are the most important hosts for amplifying WNV and that mourning doves (Zenaida macroura) are the most important sinks of infection across Texas. CONCLUSIONS Despite some data limitations, we demonstrate the power of phylogenetic imputation in predicting disease transmission in heterogeneous host communities. Our mechanistic modeling framework shows promise both for assisting future analyses on transmission and spillover in heterogeneous multispecies pathogen systems and for improving model transparency by clarifying assumptions, choices and shortcomings in complex ecological analyses.
Collapse
Affiliation(s)
- Morgan P. Kain
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| | - Benjamin M. Bolker
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
- Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| |
Collapse
|
14
|
West Nile virus transmission and human infection risk in Veneto (Italy): a modelling analysis. Sci Rep 2018; 8:14005. [PMID: 30228340 PMCID: PMC6143586 DOI: 10.1038/s41598-018-32401-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
An intensified and continuous West Nile virus (WNV) spread across northern Italy has been observed since 2008, which caused more than one hundred reported human infections until 2016. Veneto is one of the Italian regions where WNV is considered endemic, and the greatest intensity of circulation was observed during 2013 and 2016. By using entomological data collected across the region in those years, we calibrated a temperature-driven mathematical model through a Bayesian approach that simulates the WNV infection in an avian population with seasonal demography. We considered two alternative routes of life cycle re-activation of the virus at the beginning of each vector breeding season: in the first one the virus is maintained by infected birds, in the other by diapausing mosquitoes previously infected. Afterwards, we computed seasonal risk curves for human infection and quantified how they translate into reported symptomatic cases. According to our results, WNV is more likely to be re-activated each year via previously infected mosquitoes. The highest probability of human infection is expected to occur in August, consistently with observations. Our epidemiological estimates can be of particular interest for public health authorities, to support decisions in term of designing efficient surveillance plans and preventive measures.
Collapse
|
15
|
Pérez-Ramírez E, Llorente F, Del Amo J, Nowotny N, Jiménez-Clavero MÁ. Susceptibility and role as competent host of the red-legged partridge after infection with lineage 1 and 2 West Nile virus isolates of Mediterranean and Central European origin. Vet Microbiol 2018; 222:39-45. [PMID: 30080671 DOI: 10.1016/j.vetmic.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/08/2018] [Accepted: 06/16/2018] [Indexed: 11/15/2022]
Abstract
West Nile virus (WNV; genus Flavivirus; family Flaviviridae) is the aetiological agent of an emerging, mosquito-borne disease with great impact on human and animal health. Over the past 15 years, WNV has been responsible for large epidemics mainly in North America but also in Europe, where lineage 1 and more recently lineage 2 strains have caused an upsurge in the number of outbreaks with increased human infection and higher virulence for certain wild bird species. This study aimed to compare the course of infection of the lineage 1 WNV strains Israel/98 and Italy/08 and the lineage 2 strain Austria/08 in the red-legged partridge (Alectoris rufa), a gallinaceous bird indigenous to the Iberian Peninsula and widely distributed in Southern and Western Europe. After experimental inoculation, clinical and analytic parameters (viraemia, viral load, antibodies) were examined over a period of 15 days. All inoculated birds became viremic and showed clinical disease, with a morbidity rate of 100% and mortality rates between 22.2 and 55.5% depending on the virus strain. The red-legged partridge demonstrated to be a competent host for transmission of the three investigated WNV isolates with the highest competence index observed for the Italian strain. Likewise, this strain was the most pathogenic causing the highest viral loads in blood, organs, feathers and oral and cloacal secretions. These experimental results indicate that the red-legged partridge is highly susceptible to the infection with lineage 1 and 2 WNV strains and that this species may act as an amplifying host for both WNV lineages.
Collapse
Affiliation(s)
- Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El Casar s/n, 28130, Valdeolmos, Madrid, Spain.
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El Casar s/n, 28130, Valdeolmos, Madrid, Spain
| | - Javier Del Amo
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El Casar s/n, 28130, Valdeolmos, Madrid, Spain
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria; Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, P.O. Box 505055, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El Casar s/n, 28130, Valdeolmos, Madrid, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
16
|
Vogels CBF, Göertz GP, Pijlman GP, Koenraadt CJM. Vector competence of northern and southern European Culex pipiens pipiens mosquitoes for West Nile virus across a gradient of temperatures. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:358-364. [PMID: 28752627 DOI: 10.1111/mve.12251] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/05/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
In Europe, West Nile virus (WNV) outbreaks have been limited to southern and central European countries. However, competent mosquito vectors and susceptible bird hosts are present in northern Europe. Differences in temperature and vector competence of mosquito populations may explain the absence of WNV outbreaks in northern Europe. The aim of the present study was to directly compare vector competence of northern and southern European Culex pipiens (Cx. p.) pipiens mosquitoes for WNV across a gradient of temperatures. WNV infection and transmission rates were determined for two Cx. p. pipiens populations originating from The Netherlands and Italy, respectively. Mosquitoes were orally exposed by providing an infectious bloodmeal, or by injecting WNV (lineage 2) in the thorax, followed by 14-day incubation at 18, 23, or 28 °C. No differences in infection or transmission rates were found between the Cx. p. pipiens populations with both infection methods, but WNV transmission rates were significantly higher at temperatures above 18 °C. The absence of WNV outbreaks in northern Europe cannot be explained by differences in vector competence between Cx. p. pipiens populations originating from northern and southern Europe. This study suggests that low temperature is a key limiting factor for WNV transmission.
Collapse
Affiliation(s)
- C B F Vogels
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - G P Göertz
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - G P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - C J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
17
|
Vogels CB, Göertz GP, Pijlman GP, Koenraadt CJ. Vector competence of European mosquitoes for West Nile virus. Emerg Microbes Infect 2017; 6:e96. [PMID: 29116220 PMCID: PMC5717085 DOI: 10.1038/emi.2017.82] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/23/2017] [Accepted: 08/27/2017] [Indexed: 01/02/2023]
Abstract
West Nile virus (WNV) is an arthropod-borne flavivirus of high medical and veterinary importance. The main vectors for WNV are mosquito species of the Culex genus that transmit WNV among birds, and occasionally to humans and horses, which are ‘dead-end’ hosts. Recently, several studies have been published that aimed to identify the mosquito species that serve as vectors for WNV in Europe. These studies provide insight in factors that can influence vector competence of European mosquito species for WNV. Here, we review the current knowledge on vector competence of European mosquitoes for WNV, and the molecular knowledge on physical barriers, anti-viral pathways and microbes that influence vector competence based on studies with other flaviviruses. By comparing the 12 available WNV vector competence studies with European mosquitoes we evaluate the effect of factors such as temperature, mosquito origin and mosquito biotype on vector competence. In addition, we propose a standardised methodology to allow for comparative studies across Europe. Finally, we identify knowledge gaps regarding vector competence that, once addressed, will provide important insights into WNV transmission and ultimately contribute to effective strategies to control WNV.
Collapse
Affiliation(s)
- Chantal Bf Vogels
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Giel P Göertz
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Constantianus Jm Koenraadt
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
18
|
Durand B, Tran A, Balança G, Chevalier V. Geographic variations of the bird-borne structural risk of West Nile virus circulation in Europe. PLoS One 2017; 12:e0185962. [PMID: 29023472 PMCID: PMC5638290 DOI: 10.1371/journal.pone.0185962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022] Open
Abstract
The structural risk of West Nile Disease results from the usual functioning of the socio-ecological system, which may favour the introduction of the pathogen, its circulation and the occurrence of disease cases. Its geographic variations result from the local interactions between three components: (i) reservoir hosts, (ii) vectors, both characterized by their diversity, abundance and competence, (iii) and the socio-economic context that impacts the exposure of human to infectious bites. We developed a model of bird-borne structural risk of West Nile Virus (WNV) circulation in Europe, and analysed the association between the geographic variations of this risk and the occurrence of WND human cases between 2002 and 2014. A meta-analysis of WNV serosurveys conducted in wild bird populations was performed to elaborate a model of WNV seropositivity in European bird species, considered a proxy for bird exposure to WNV. Several eco-ethological traits of bird species were linked to seropositivity and the statistical model adequately fitted species-specific seropositivity data (area under the ROC curve: 0.85). Combined with species distribution maps, this model allowed deriving geographic variations of the bird-borne structural risk of WNV circulation. The association between this risk, and the occurrence of WND human cases across the European Union was assessed. Geographic risk variations of bird-borne structural risk allowed predicting WND case occurrence in administrative districts of the EU with a sensitivity of 86% (95% CI: 0.79-0.92), and a specificity of 68% (95% CI: 0.66-0.71). Disentangling structural and conjectural health risks is important for public health managers as risk mitigation procedures differ according to risk type. The results obtained show promise for the prevention of WND in Europe. Combined with analyses of vector-borne structural risk, they should allow designing efficient and targeted prevention measures.
Collapse
Affiliation(s)
- Benoit Durand
- University Paris Est, Anses, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Annelise Tran
- Cirad, UMR TETIS, Montpellier, France
- Cirad, UMR ASTRE, Montpellier, France
| | | | - Véronique Chevalier
- Cirad, UMR ASTRE, Montpellier, France
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
| |
Collapse
|
19
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): West Nile fever. EFSA J 2017; 15:e04955. [PMID: 32625621 PMCID: PMC7009844 DOI: 10.2903/j.efsa.2017.4955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
West Nile fever (WNF) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of WNF to be listed, Article 9 for the categorisation of WNF according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to WNF. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, WNF can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 2 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (b) and (e) of Article 9(1). The animal species to be listed for WNF according to Article 8(3) criteria are several orders of birds and mammals as susceptible species and several families of birds as reservoir. Different mosquito species can serve as vectors.
Collapse
|
20
|
Modelling West Nile virus transmission risk in Europe: effect of temperature and mosquito biotypes on the basic reproduction number. Sci Rep 2017; 7:5022. [PMID: 28694450 PMCID: PMC5504010 DOI: 10.1038/s41598-017-05185-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/25/2017] [Indexed: 12/31/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus which has caused repeated outbreaks in humans in southern and central Europe, but thus far not in northern Europe. The main mosquito vector for WNV, Culex pipiens, consists of two behaviourally distinct biotypes, pipiens and molestus, which can form hybrids. Differences between biotypes, such as vector competence and host preference, could be important in determining the risk of WNV outbreaks. Risks for WNV establishment can be modelled with basic reproduction number (R0) models. However, existing R0 models have not differentiated between biotypes. The aim of this study was, therefore, to explore the role of temperature-dependent and biotype-specific effects on the risk of WNV establishment in Europe. We developed an R0 model with temperature-dependent and biotype-specific parameters, and calculated R0 values using the next-generation matrix for several scenarios relevant for Europe. In addition, elasticity analysis was done to investigate the contribution of each biotype to R0. Global warming and increased mosquito-to-host ratios can possibly result in more intense WNV circulation in birds and spill-over to humans in northern Europe. Different contributions of the Cx. pipiens biotypes to R0 shows the importance of including biotype-specific parameters in models for reliable WNV risk assessments.
Collapse
|
21
|
Lim SM, Geervliet M, Verhagen JH, Müskens GJDM, Majoor FA, Osterhaus ADME, Martina BEE. Serologic evidence of West Nile virus and Usutu virus infections in Eurasian coots in the Netherlands. Zoonoses Public Health 2017; 65:96-102. [PMID: 28688117 DOI: 10.1111/zph.12375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 11/29/2022]
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are arboviruses that are maintained in enzootic transmission cycles between mosquitoes and birds and are occasionally transmitted to mammals. As arboviruses are currently expanding their geographic range and emerging in often unpredictable locations, surveillance is considered an important element of preparedness. To determine whether sera collected from resident and migratory birds in the Netherlands as part of avian influenza surveillance would also represent an effective source for proactive arbovirus surveillance, a random selection of such sera was screened for WNV antibodies using a commercial ELISA. In addition, sera of jackdaws and carrion crows captured for previous experimental infection studies were added to the selection. Of the 265 screened serum samples, 27 were found to be WNV-antibody-positive, and subsequent cross-neutralization experiments using WNV and USUV confirmed that five serum samples were positive for only WNV-neutralizing antibodies and seven for only USUV. The positive birds consisted of four Eurasian coots (Fulica atra) and one carrion crow (Corvus corone) for WNV, of which the latter may suggest local presence of the virus, and only Eurasian coots for USUV. As a result, the screening of a small selection of serum samples originally collected for avian influenza surveillance demonstrated a seroprevalence of 1.6% for WNV and 2.8% for USUV, suggesting that this sustained infrastructure could serve as a useful source for future surveillance of arboviruses such as WNV and USUV in the Netherlands.
Collapse
Affiliation(s)
- S M Lim
- Artemis One Health Research Foundation, Delft, the Netherlands
| | - M Geervliet
- Artemis One Health Research Foundation, Delft, the Netherlands.,Animal Sciences, Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - J H Verhagen
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Centre for Ecology and Evolution for Microbial Model Systems Zoonotic Ecology and Epidemiology, Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - G J D M Müskens
- Wageningen Environmental Research (Alterra), Wageningen, The Netherlands
| | - F A Majoor
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
| | - A D M E Osterhaus
- Artemis One Health Research Foundation, Delft, the Netherlands.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - B E E Martina
- Artemis One Health Research Foundation, Delft, the Netherlands.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Zhang HL, Ye HQ, Deng CL, Liu SQ, Shi PY, Qin CF, Yuan ZM, Zhang B. Generation and characterization of West Nile pseudo-infectious reporter virus for antiviral screening. Antiviral Res 2017; 141:38-47. [DOI: 10.1016/j.antiviral.2017.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/27/2023]
|
23
|
Vogels CBF, Fros JJ, Göertz GP, Pijlman GP, Koenraadt CJM. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasit Vectors 2016; 9:393. [PMID: 27388451 PMCID: PMC4937539 DOI: 10.1186/s13071-016-1677-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Outbreaks of West Nile virus (WNV) have not occurred in northern Europe despite nearby circulation of WNV in the southern part of the continent. The main vector for WNV, the mosquito Culex (Cx.) pipiens, consists of two behaviorally distinct biotypes, pipiens and molestus, which can form hybrids. Although temperature has been shown to influence vector competence of Cx. pipiens for WNV and biotypes are differentially susceptible towards infection, the interaction between the two has not been elucidated. METHODS We determined vector competence of the Cx. pipiens biotypes and hybrids, after 14 days of incubation at 18, 23 and 28 °C. Mosquitoes were orally infected by providing an infectious blood meal or by injecting WNV directly in the thorax. Infection and transmission rates were determined by testing the bodies and saliva for WNV presence. In addition, titers of mosquitoes with WNV-positive bodies and saliva samples were determined. RESULTS Orally infected biotype pipiens and hybrids showed significantly increased transmission rates with higher temperatures, up to 32 and 14 %, respectively. In contrast, the molestus biotype had an overall transmission rate of 10 %, which did not increase with temperature. All mosquitoes that were infected via WNV injections had (close to) 100 % infection and transmission rates, suggesting an important role of the mosquito midgut barrier. We found no effect of increasing temperature on viral titers. CONCLUSIONS Temperature differentially affected vector competence of the Cx. pipiens biotypes. This shows the importance of accounting for biotype-by-temperature interactions, which influence the outcomes of vector competence studies. Vector competence studies with Cx. pipiens mosquitoes differentiated to the biotype level are essential for proper WNV risk assessments.
Collapse
Affiliation(s)
- Chantal B F Vogels
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, England, UK
| | - Giel P Göertz
- Laboratory of Virology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | | |
Collapse
|
24
|
Lim SM, Brault AC, van Amerongen G, Bosco-Lauth AM, Romo H, Sewbalaksing VD, Bowen RA, Osterhaus AD, Koraka P, Martina BE. Susceptibility of Carrion Crows to Experimental Infection with Lineage 1 and 2 West Nile Viruses. Emerg Infect Dis 2016. [PMID: 26197093 PMCID: PMC4517732 DOI: 10.3201/eid2108.140714] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
These birds are highly susceptible to strains circulating in Europe and, thus, may serve as surveillance sentinels. West Nile virus (WNV) outbreaks in North America have been characterized by substantial die-offs of American crows (Corvus brachyrhynchos). In contrast, a low incidence of bird deaths has been observed during WNV epidemic activity in Europe. To examine the susceptibility of the western European counterpart of American crows, we inoculated carrion crows (Corvus corone) with WNV strains isolated in Greece (Gr-10), Italy (FIN and Ita09), and Hungary (578/10) and with the highly virulent North American genotype strain (NY99). We also inoculated American crows with a selection of these strains to examine the strains’ virulence in a highly susceptible bird species. Infection with all strains, except WNV FIN, resulted in high rates of death and high-level viremia in both bird species and virus dissemination to several organs. These results suggest that carrion crows are highly susceptible to WNV and may potentially be useful as part of dead bird surveillance for early warning of WNV activity in Europe.
Collapse
|
25
|
Lim SM, Brault AC, van Amerongen G, Bosco-Lauth AM, Romo H, Sewbalaksing VD, Bowen RA, Osterhaus ADME, Koraka P, Martina BEE. Susceptibility of Carrion Crows to Experimental Infection with Lineage 1 and 2 West Nile Viruses. Emerg Infect Dis 2016. [PMID: 26197093 DOI: 10.3201/2108.140714] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
West Nile virus (WNV) outbreaks in North America have been characterized by substantial die-offs of American crows (Corvus brachyrhynchos). In contrast, a low incidence of bird deaths has been observed during WNV epidemic activity in Europe. To examine the susceptibility of the western European counterpart of American crows, we inoculated carrion crows (Corvus corone) with WNV strains isolated in Greece (Gr-10), Italy (FIN and Ita09), and Hungary (578/10) and with the highly virulent North American genotype strain (NY99). We also inoculated American crows with a selection of these strains to examine the strains' virulence in a highly susceptible bird species. Infection with all strains, except WNV FIN, resulted in high rates of death and high-level viremia in both bird species and virus dissemination to several organs. These results suggest that carrion crows are highly susceptible to WNV and may potentially be useful as part of dead bird surveillance for early warning of WNV activity in Europe.
Collapse
|
26
|
Dridi M, Van Den Berg T, Lecollinet S, Lambrecht B. Evaluation of the pathogenicity of West Nile virus (WNV) lineage 2 strains in a SPF chicken model of infection: NS3-249Pro mutation is neither sufficient nor necessary for conferring virulence. Vet Res 2015; 46:130. [PMID: 26518144 PMCID: PMC4628354 DOI: 10.1186/s13567-015-0257-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/21/2015] [Indexed: 01/28/2023] Open
Abstract
Lineage 2 West Nile virus (WNV) strains were reported for the first time in Europe in 2004. Despite an almost silent circulation around their entry point in Hungary, an upsurge of pathogenicity occurred in 2010 as 262 people suffered from neuroinvasive disease in Greece. This increase in virulence was imputed to the emergence of a His249Pro mutation in the viral NS3 helicase, as previously evidenced in American crows experimentally infected with the prototype lineage 1 North-American WNV strain. However, since 2003, WNV strains bearing the NS3Pro genotype are regularly isolated in Western-Mediterranean countries without being correlated to any virulent outbreak in vertebrates. We thus sought to evaluate the weight of the NS3249Pro genotype as a virulence marker of WNV in an in vivo avian model of WNV infection. We therefore characterized three genetically-related Eastern-Europe lineage 2 WNV strains in day-old specific pathogen-free (SPF) chickens: Hun2004 and Aus2008 which are both characterized by a NS3249His genotype, and Gr2011 which is characterized by a NS3249Pro genotype. Unlike Hun2004 and Aus2008, Gr2011 was weakly virulent in SPF chicks as Gr2011-induced viremia was lower and waned quicklier than in the Hun2004 and Aus2008 groups. Overall, this study showed that the presence of a proline residue at position 249 of the viral NS3 helicase is neither sufficient nor necessary to confer pathogenicity to any given lineage 2 WNV strain in birds.
Collapse
Affiliation(s)
- Maha Dridi
- Operational Direction of Viral Diseases, CODA-CERVA-Veterinary and Agrochemical Research Centre, 99 Groeselenberg, 1180, Brussels, Belgium.
| | - Thierry Van Den Berg
- Operational Direction of Viral Diseases, CODA-CERVA-Veterinary and Agrochemical Research Centre, 99 Groeselenberg, 1180, Brussels, Belgium.
| | - Sylvie Lecollinet
- UPE, UMR1161 Virologie, Institut National de la Recherche Agronomique (INRA), Agence Nationale de Sécurité Sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Ecole Nationale Vétérinaire d'Alfort (ENVA), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France.
| | - Benedicte Lambrecht
- Operational Direction of Viral Diseases, CODA-CERVA-Veterinary and Agrochemical Research Centre, 99 Groeselenberg, 1180, Brussels, Belgium.
| |
Collapse
|
27
|
Gamino V, Escribano-Romero E, Blázquez AB, Gutiérrez-Guzmán AV, Martín-Acebes MÁ, Saiz JC, Höfle U. Experimental North American West Nile Virus Infection in the Red-legged Partridge (Alectoris rufa). Vet Pathol 2015; 53:585-93. [PMID: 26508695 DOI: 10.1177/0300985815612554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
After the introduction of West Nile virus (WNV) into North America, bird mortalities associated with West Nile disease have dramatically increased in this continent and, to a lesser extent, in Europe. The different West Nile disease incidence in birds in these 2 continents demands an explanation, and experimental studies can provide important information. The authors inoculated thirteen 9-week-old red-legged partridges (Alectoris rufa) with 10(7)plaque-forming units of a WNV strain isolated in New York in 1999. The objective was to study the pathogenesis of the infection in a native Euro-Mediterranean bird species with a WNV strain known to be highly pathogenic for numerous native American bird species. Additionally, the authors evaluated the dynamics of inflammatory cell activation and recruitment into the brain. WNV was detected in tissues 3 days postinoculation (dpi), and the birds developed macroscopic and microscopic lesions. Two partridges succumbed to the disease. The most affected tissues were the heart, brain, and spinal cord. The main microscopic findings were the presence of mononuclear infiltrates in the heart and brain, gliosis, and degeneration and necrosis of cardiomyocytes and neurons. These lesions were aggravated in the birds that died or were euthanized 7 dpi or later. In the brain, there was an upregulation of microglial cells and astrocytes and an increase in the number of T cells, especially after 7 dpi. These results show that this WNV strain is of moderate virulence for the red-legged partridge and that WNV-infected red-legged partridges develop an immune cell response in the brain similar to that of mammals.
Collapse
Affiliation(s)
- V Gamino
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - E Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigaciones Agrarias, Madrid, Spain
| | - A-B Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigaciones Agrarias, Madrid, Spain
| | - A-V Gutiérrez-Guzmán
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - M-Á Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigaciones Agrarias, Madrid, Spain
| | - J-C Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigaciones Agrarias, Madrid, Spain
| | - U Höfle
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| |
Collapse
|
28
|
Vogels CB, van de Peppel LJ, van Vliet AJ, Westenberg M, Ibañez-Justicia A, Stroo A, Buijs JA, Visser TM, Koenraadt CJ. Winter Activity and Aboveground Hybridization Between the Two Biotypes of the West Nile Virus VectorCulex pipiens. Vector Borne Zoonotic Dis 2015; 15:619-26. [DOI: 10.1089/vbz.2015.1820] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Chantal B.F. Vogels
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | - Arnold J.H. van Vliet
- Environmental Systems Analysis Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Marcel Westenberg
- Dutch National Plant Protection Organization, Wageningen, The Netherlands
| | - Adolfo Ibañez-Justicia
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Economic Affairs, Wageningen, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Economic Affairs, Wageningen, The Netherlands
| | - Jan A. Buijs
- Public Health Service Amsterdam, Amsterdam, The Netherlands
| | - Tessa M. Visser
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | |
Collapse
|
29
|
Barzon L, Pacenti M, Sinigaglia A, Berto A, Trevisan M, Palù G. West Nile virus infection in children. Expert Rev Anti Infect Ther 2015; 13:1373-86. [PMID: 26325613 DOI: 10.1586/14787210.2015.1083859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
West Nile virus (WNV) is an emerging flavivirus responsible for an increasing number of outbreaks of neuroinvasive disease in North America, Europe, and neighboring countries. Almost all WNV infections in humans are transmitted through the bite of infected mosquitoes. Transmission during pregnancy and through breastfeeding has been reported, but the risk seems to be very low. West Nile disease in children is less common (1-5% of all WNV cases) and associated with milder symptoms and better outcome than in elderly individuals, even though severe neuroinvasive disease and death have been reported also among children. However, the incidence of WNV infection and disease in children is probably underestimated and the disease spectrum is not fully understood because of lack of reporting and underdiagnosis in children. Infection is diagnosed by detection of WNV-specific antibodies in serum and WNV RNA in plasma and urine. Since no effective WNV-specific drugs are available, therapy is mainly supportive.
Collapse
Affiliation(s)
- Luisa Barzon
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Monia Pacenti
- b 2 Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, 35128 Padova, Italy
| | | | - Alessandro Berto
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Marta Trevisan
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Giorgio Palù
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| |
Collapse
|
30
|
Barzon L, Papa A, Lavezzo E, Franchin E, Pacenti M, Sinigaglia A, Masi G, Trevisan M, Squarzon L, Toppo S, Papadopoulou E, Nowotny N, Ulbert S, Piralla A, Rovida F, Baldanti F, Percivalle E, Palù G. Phylogenetic characterization of Central/Southern European lineage 2 West Nile virus: analysis of human outbreaks in Italy and Greece, 2013-2014. Clin Microbiol Infect 2015; 21:1122.e1-10. [PMID: 26235197 DOI: 10.1016/j.cmi.2015.07.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/29/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
Abstract
In recent years, West Nile virus (WNV) lineage 2 has been spreading and causing disease outbreaks in humans and animals in Europe. In order to characterize viral diversity, we performed full-length genome sequencing of WNV lineage 2 from human samples collected during outbreaks in Italy and Greece in 2013 and 2014. Phylogenetic analysis showed that these WNV lineage 2 genomes belonged to a monophyletic clade derived from a single introduction into Europe of the prototype Hungarian strain. Correlation of phylogenetic data with geospatial information showed geographical clustering of WNV genome sequences both in Italy and in Greece, indicating that the virus had evolved and diverged during its dispersal in Europe, leading to the emergence of novel genotypes, as it adapted to local ecological niches. These genotypes carried divergent conserved amino acid substitutions, which might have been relevant for viral adaptation, as suggested by selection pressure analysis and in silico and experimental modelling of sequence changes. In conclusion, the results of this study provide further information on WNV lineage 2 transmission dynamics in Europe, and emphasize the need for WNV surveillance activities to monitor viral evolution and diversity.
Collapse
Affiliation(s)
- L Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy.
| | - A Papa
- National Reference Centre for Arboviruses, Department of Microbiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - E Franchin
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - M Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - A Sinigaglia
- IRCCS-IOV Istituto Oncologico Veneto, Padova, Italy
| | - G Masi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - M Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - L Squarzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - S Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - E Papadopoulou
- National Reference Centre for Arboviruses, Department of Microbiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - N Nowotny
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - S Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - A Piralla
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - F Rovida
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - F Baldanti
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Sciences, Surgery, Diagnostics and Paediatrics, University of Pavia, Pavia, Italy
| | - E Percivalle
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - G Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| |
Collapse
|
31
|
West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance. PLoS Negl Trop Dis 2015. [PMID: 26225555 PMCID: PMC4520649 DOI: 10.1371/journal.pntd.0003956] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background West Nile virus (WNV) is a highly pathogenic flavivirus transmitted by Culex spp. mosquitoes. In North America (NA), lineage 1 WNV caused the largest outbreak of neuroinvasive disease to date, while a novel pathogenic lineage 2 strain circulates in southern Europe. To estimate WNV lineage 2 epidemic potential it is paramount to know if mosquitoes from currently WNV-free areas can support further spread of this epidemic. Methodology/Principal Findings We assessed WNV vector competence of Culex pipiens mosquitoes originating from north-western Europe (NWE) in direct comparison with those from NA. We exposed mosquitoes to infectious blood meals of lineage 1 or 2 WNV and determined the infection and transmission rates. We explored reasons for vector competence differences by comparing intrathoracic injection versus blood meal infection, and we investigated the influence of temperature. We found that NWE mosquitoes are highly competent for both WNV lineages, with transmission rates up to 25%. Compared to NA mosquitoes, transmission rates for lineage 2 WNV were significantly elevated in NWE mosquitoes due to better virus dissemination from the midgut and a shorter extrinsic incubation time. WNV infection rates further increased with temperature increase. Conclusions/Significance Our study provides experimental evidence to indicate markedly different risk levels between both continents for lineage 2 WNV transmission and suggests a degree of genotype-genotype specificity in the interaction between virus and vector. Our experiments with varying temperatures explain the current localized WNV activity in southern Europe, yet imply further epidemic spread throughout NWE during periods with favourable climatic conditions. This emphasizes the need for intensified surveillance of virus activity in current WNV disease-free regions and warrants increased awareness in clinics throughout Europe. West Nile virus (WNV) is on the rise in Europe, with increasing numbers of human cases of neurological disease and death since 2010. However, it is currently unknown whether or not WNV will continue to spread to north-western Europe (NWE), in a fashion similar to the WNV epidemic sweep in the United States (1999–2004). The presence of competent mosquitoes is a strict requirement for WNV transmission, but no laboratory studies have been conducted with the new European lineage 2 WNV outbreak strain. Our study is the first to investigate transmissibility in NWE Culex pipiens for lineage 2 WNV in a systematic, direct comparison with North American Culex pipiens and with the lineage 1 WNV strain. We demonstrate that European mosquitoes are highly competent for both WNV lineages, which underscores the epidemic potential of WNV in Europe. However, the transmission rate for lineage 2 WNV was significantly lower in North American mosquitoes, which indicates different risk levels between both continents for lineage 2 but not lineage 1 WNV. Based on our result, we propose that WNV surveillance in mosquitoes and birds must be intensified in Europe to allow early detection, timely intervention strategies and prevent outbreaks of WNV neurological disease.
Collapse
|
32
|
Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. ACTA ACUST UNITED AC 2015; 20. [PMID: 26027485 DOI: 10.2807/1560-7917.es2015.20.20.21135] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries.
Collapse
Affiliation(s)
- A Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, San Michele all Adige (TN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Del Amo J, Llorente F, Pérez-Ramirez E, Soriguer RC, Figuerola J, Nowotny N, Jiménez-Clavero MA. Experimental infection of house sparrows (Passer domesticus) with West Nile virus strains of lineages 1 and 2. Vet Microbiol 2014; 172:542-7. [DOI: 10.1016/j.vetmic.2014.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 11/16/2022]
|