1
|
Zhu Y, Chen L, Xu X, Ye W, Ni Z, Huo S, Hua J, Yun T, Yao H, Wang H, Zhang C. Development of a multienzyme isothermal and lateral flow dipstick combination assay for the rapid detection of goose astrovirus II. Front Cell Infect Microbiol 2024; 14:1424212. [PMID: 39165916 PMCID: PMC11333440 DOI: 10.3389/fcimb.2024.1424212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Goose astrovirus (GAstV) is a newly emerging pathogen that is currently widespread among geese, causing visceral gout and leading to substantial gosling mortalities, posing a severe threat to the waterfowl industry. GAstV II is the predominant epidemic strain, characterized by its high morbidity and mortality rate. Consequently, there is an urgent necessity to develop an effective diagnostic approach to control the dissemination of GAstV II, particularly in clinical farms with limited laboratory resources. Methods In this study, a novel multi-enzyme isothermal rapid amplification (MIRA) and lateral flow dipstick (LFD) combined assay was developed. Different primers designed specific targeting a highly conserved region within the viral RdRp gene for the detection of GAstV II. Primers optimized and MIRA-LFD assay analyzed its performance regarding limits of detection, specificity, and efficiency of detection. Results The developed MIRA amplification is conducted at a constant temperature and accomplished within 10 minutes. Subsequent naked-eye observation of the LFD strips merely takes 5 minutes. The established MIRA-LFD method exhibits high specificity, with no cross-reaction with other pathogens and attains a detection sensitivity of 1 copy/μl, which is consistent with the reverse transcription quantitative PCR (RT-qPCR) assay. Further evaluation with clinical samples indicates that the accuracy of this MIRA-LFD method correlates well with RT-qPCR for the detection of GAstV II. Conclusion In summary, the convenience, sensitivity, and rapidity of this newly developed detection method offer a significant advantage for on-site diagnosis of GAstV II.
Collapse
Affiliation(s)
- Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Suxin Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
2
|
Gaudino M, Salem E, Ducatez MF, Meyer G. Identification of Astrovirus in the virome of the upper and lower respiratory tracts of calves with acute signs of bronchopneumonia. Microbiol Spectr 2023; 11:e0302623. [PMID: 37982636 PMCID: PMC10714732 DOI: 10.1128/spectrum.03026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/22/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Astroviruses (AstV) are known suspects of enteric disease in humans and livestock. Recently, AstV have been linked to encephalitis in immunocompromised patients and other animals, such as cattle, minks, and swine. In our study, we also identified AstV in the respiratory samples of calves with signs of bronchopneumonia, suggesting that their tropism could be even broader. We obtained one bovine AstV (BAstV) complete genome sequence by next-generation sequencing and showed that respiratory and enteric AstV from different species formed a divergent genetic cluster with AstV isolated from encephalitis cases, indicating that tropism might be strain-specific. These data provide further insight into understanding the biology of these understudied pathogens and suggest BAstV as a potential new candidate for bovine respiratory disease.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Elias Salem
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
3
|
Zalewski A, Virtanen JME, Zalewska H, Sironen T, Kołodziej-Sobocińska M. Asymptomatic viral infection is associated with lower host reproductive output in wild mink populations. Sci Rep 2023; 13:9390. [PMID: 37296209 PMCID: PMC10251326 DOI: 10.1038/s41598-023-36581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Many endemic viruses circulate in populations without hosts showing visible signs of disease, while still having the potential to alter host survival or reproduction. Aleutian Mink Disease Virus (AMDV) circulates in many American mink (Neogale vison) populations in its native and introduced ranges. In this study, we analysed how AMDV infection in female American mink affects the reproduction of a feral population. Females infected with AMDV delivered significantly smaller litters (5.8 pups) than uninfected females (6.3 pups), meaning their litter size was reduced by 8%. Larger females and yearling females had larger litters than smaller and older females. There were no significant differences in whole litter survival between infected and uninfected females; however, offspring survival until September or October within litters of infected females was 14% lower than that within those of uninfected females. This negative link between infection and reproductive output means that Aleutian disease could seriously affect the wild mink population. This study increases our understanding of the threats posed by the spread of viruses to wildlife from farm animals or humans, highlighting that viruses circulating in wildlife, even in the absence of clinical manifestation, can be important drivers of population dynamics in wildlife.
Collapse
Affiliation(s)
- Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, 17-230, Białowieża, Poland.
| | - Jenni M E Virtanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, 00790, Helsinki, Finland
- Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Hanna Zalewska
- Mammal Research Institute, Polish Academy of Sciences, 17-230, Białowieża, Poland
| | - Tarja Sironen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, 00790, Helsinki, Finland
- Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | | |
Collapse
|
4
|
Zhu Y, Wang H, Hua J, Ye W, Chen L, Ni Z, Yun T, Ma J, Yao H, Bao E, Zhang C. Isolation and Pathogenicity of a Novel Goose Astrovirus from Overfed Adult Landaise Geese in China. Viruses 2022; 14:v14122806. [PMID: 36560810 PMCID: PMC9784181 DOI: 10.3390/v14122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Goose astrovirus (GAstV) is an important pathogen causing visceral gout and high mortality in goslings, which has broken out and spread across China. In 2021, a disease characterized by urate deposition on the visceral surface and 30% mortality occurred in commercial adult Landaise geese in Zhejiang Province, China. A systematic study identified an infecting astrovirus, designated ZJCX, that was efficiently isolated from a diseased goose with a chicken hepatocellular carcinoma cell line (LMH). In contrast to other GAstVs originating from goslings, ZJCX caused cytopathogenic effects in LMH cells, and the crystalline arrangement of viral particles was observed through transmission electron microscopy. Indeed, phylogenetic analysis and nucleotide homology comparison revealed that ZJCX isolate belongs to the genotype II cluster of GAstVs and displays 97.8-98.4% identity with other GAstV II strains. However, several specific mutations occurred in the polyprotein and capsid protein regions. Moreover, a pathogenicity assessment of ZJCX with a gosling model was conducted, and typical visceral gout was reproduced and led to 18% mortality. The viral loads of ZJCX in the blood, kidney, and liver were detected with specific primers after inoculation, which demonstrated that the kidney and liver presented viral loads peaking at seven days post-inoculation (dpi). Biochemical parameter examination showed that AST, ALT, γ-GT, UA, and BUN levels were significantly increased by GAstV, whereas body weight was reduced. Overall, this study indicated that the GAstV isolate could infect adult geese, and the results regarding the viral loads and biochemical parameters induced by ZJCX provide insight into GAstV pathogenicity.
Collapse
Affiliation(s)
- Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (E.B.); (C.Z.); Tel./Fax: +86-0571-86404182 (C.Z.)
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (E.B.); (C.Z.); Tel./Fax: +86-0571-86404182 (C.Z.)
| |
Collapse
|
5
|
Wang H, Zhu Y, Ye W, Hua J, Chen L, Ni Z, Yun T, Bao E, Zhang C. Genomic and Epidemiological Characteristics Provide Insights into the Phylogeographic Spread of Goose Astrovirus in China. Transbound Emerg Dis 2022; 69:e1865-e1876. [PMID: 35301812 DOI: 10.1111/tbed.14522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Goose astrovirus (GAstV) is an emerging pathogen with a wide distribution in China that causes visceral gout and leads to significant economic losses in the goose industry. Here, 10 GAstV strains were isolated from different farms in southeast China. We performed an integrated analysis of the full-genome sequences of these new strains alongside comprehensive epidemiological surveillance information from the database. Interestingly, the results showed two distinct genotypes of GAstV, which were evolutionarily distant from each other. Group I GAstVs were closely related to DAstV IV, and group II strains were classified with duck astrovirus (DAstV) II and turkey astrovirus (TAstV) II. Further investigation showed that among the GAstV I strains, ZJC14 and AHDY differed from FLX. Comparative analysis of 58 available genomes clustered the GAstV II strains into two subgroups. We identified two major mutation sites, 456 (E/D) and 540 (L/Q), in the capsid protein, which were related to distinct subgroups according to evolution. GAstV II subgroup 1a strains are the predominant strains in the current prevalent epidemiology. Phylogeographic analysis based on 90 reported cases from 13 provinces revealed the complexity and severity of GAstV epidemics in China, within which Henan, Anhui and Jiangsu provinces have suffered great impacts. According to these phylogeographic investigations, following the initial introduction of GAstV from Hunan Province, the dispersal of GAstV with different subgenotypes on a nationwide scale may be explained by the live gosling trade. Our findings have important implications for the evolution and dispersal of GAstV and will contribute to understanding the potential risk of GAstV. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongyu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinchu Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tao Yun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
6
|
Matias Ferreyra F, Harmon K, Bradner L, Burrough E, Derscheid R, Magstadt DR, Michael A, de Almeida MN, Schumacher L, Siepker C, Sitthicharoenchai P, Stevenson G, Arruda B. Comparative Analysis of Novel Strains of Porcine Astrovirus Type 3 in the USA. Viruses 2021; 13:1859. [PMID: 34578440 PMCID: PMC8472076 DOI: 10.3390/v13091859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022] Open
Abstract
Porcine astrovirus type 3 (PoAstV3) has been previously identified as a cause of polioencephalomyelitis in swine and continues to cause disease in the US swine industry. Herein, we describe the characterization of both untranslated regions, frameshifting signal, putative genome-linked virus protein (VPg) and conserved antigenic epitopes of several novel PoAstV3 genomes. Twenty complete coding sequences (CDS) were obtained from 32 diagnostic cases originating from 11 individual farms/systems sharing a nucleotide (amino acid) percent identity of 89.74-100% (94.79-100%), 91.9-100% (96.3-100%) and 90.71-100% (93.51-100%) for ORF1a, ORF1ab and ORF2, respectively. Our results indicate that the 5'UTR of PoAstV3 is highly conserved highlighting the importance of this region in translation initiation while their 3'UTR is moderately conserved among strains, presenting alternative configurations including multiple putative protein binding sites and pseudoknots. Moreover, two predicted conserved antigenic epitopes were identified matching the 3' termini of VP27 of PoAstV3 USA strains. These epitopes may aid in the design and development of vaccine components and diagnostic assays useful to control outbreaks of PoAstV3-associated CNS disease. In conclusion, this is the first analysis predicting the structure of important regulatory motifs of neurotropic mamastroviruses, which differ from those previously described in human astroviruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Bailey Arruda
- Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011-1134, USA; (F.M.F.); (K.H.); (L.B.); (E.B.); (R.D.); (D.R.M.); (A.M.); (M.N.d.A.); (L.S.); (C.S.); (P.S.); (G.S.)
| |
Collapse
|
7
|
Barsøe S, Ullman K, Leijon M, Hedlund KO, Klingström J, Krarup LI, Andresen L, Quaade ML, Hammer AS. RT-qPCR assay for detection of mink astrovirus in outbreaks of diarrhea on Danish mink farms. PLoS One 2021; 16:e0252022. [PMID: 34038467 PMCID: PMC8153481 DOI: 10.1371/journal.pone.0252022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/07/2021] [Indexed: 11/19/2022] Open
Abstract
Diarrhea in mink kits is a major cause of disease and mortality in the mink production. The etiology remains unknown in most outbreaks due to a lack of diagnostic assays. In the current study we present an RT-qPCR method to detect mink astrovirus in fecal samples from mink kits with diarrhea. All sampled animals were classified based on age and patoanatomical evaluation as having pre-weaning diarrhea, diarrhea in the growth period or as having no macroscopic signs of diarrhea. Fecal samples were analyzed for MiAstV with RT-qPCR, next generation sequencing and electron microscopy in parallel. Mink astrovirus was detected with RT-qPCR in 92 out of 203 samples. This detection was confirmed by next generation sequencing in a high proportion of samples (22/27), and by visualization of astrovirus particles with EM in some of the samples. Mink astrovirus was highly prevalent (68%) among kits in the outbreaks of pre-weaning diarrhea, in particular outbreaks from May, while less prevalent in outbreaks in June. Mink astrovirus was detected in outbreaks of diarrhea in the growth period, though in a much lesser extent than in the pre-weaning period. The role of mink astrovirus in the diarrhea disease complex of mink remain to be investigated, and for that purpose this sensitive and robust RT-qPCR can be a valuable tool in the future.
Collapse
Affiliation(s)
- Sofie Barsøe
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Mikael Leijon
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | | | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Louise Iuel Krarup
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lars Andresen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Michelle Lauge Quaade
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anne Sofie Hammer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
8
|
The microbiota of farmed mink (Neovison vison) follows a successional development and is affected by early life antibiotic exposure. Sci Rep 2020; 10:20434. [PMID: 33235332 PMCID: PMC7686315 DOI: 10.1038/s41598-020-77417-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023] Open
Abstract
On many mink farms, antibiotics are used extensively during the lactation period to reduce the prevalence and severity of pre-weaning diarrhoea (PWD) in mink kits (also referred to as greasy kit syndrome). Concerns have been raised, that routine treatment of PWD with antibiotics could affect the natural successional development of the gut microbiota, which may have long lasting consequences. Here we investigated the effects of early life antibiotic treatment administered for 1 week (postnatal days 13–20). Two routes of antibiotic administration were compared to a non-treated control group (CTR, n = 24). Routes of administration included indirect treatment, through the milk from dams receiving antibiotics by intramuscular administration (ABX_D, n = 24) and direct treatment by intramuscular administration to the kits (ABX_K, n = 24). A tendency for slightly increased weight at termination (Day 205) was observed in the ABX_K group. The gut microbiota composition was profiled by 16S rRNA gene sequencing at eight time points between Day 7 and Day 205. A clear successional development of the gut microbiota composition was observed and both treatment regimens caused detectable changes in the gut microbiota until at least eight days after treatment ceased. At termination, a significant positive correlation was identified between microbial diversity and animal weight.
Collapse
|
9
|
Immunogenicity and Efficacy Evaluation of Subunit Astrovirus Vaccines. Vaccines (Basel) 2019; 7:vaccines7030079. [PMID: 31382451 PMCID: PMC6789684 DOI: 10.3390/vaccines7030079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
A full understanding of the immune response to astrovirus (AstV) infection is required to treat and control AstV-induced gastroenteritis. Relative contributions of each arm of the immune system in restricting AstV infection remain unknown. In this study, two novel subunit AstV vaccines derived from capsid protein (CP) of mink AstV (MAstV) such as CPΔN (spanning amino acids 161–775) and CPΔC (spanning amino acids 1–621) were evaluated. Their immunogenicity and cytokine production in mice, as well as protective efficacy in mink litters via maternal immunization, were studied. Truncated CPs induced higher levels of serum anti-CP antibodies than CP, with the highest level for CPΔN. No seronegativity was detected after booster immunization with either AstV CP truncates in both mice and mink. All mink moms stayed seropositive during the entire 104-day study. Furthermore, lymphoproliferation responses and Th1/Th2 cytokine induction of mice splenocytes ex vivo re-stimulated by truncated CPs were significantly higher than those by CP, with the highest level for CPΔN. Immunization of mink moms with truncated CPs could suppress virus shedding and clinical signs in their litters during a 51-day study after challenge with a heterogeneous MAstV strain. Collectively, AstV truncated CPs exhibit better parameters for protection than full-length CP.
Collapse
|
10
|
Birch JM, Agger JF, Leijon M, Ullman K, Struve T, Jensen HE. Comparing the treatment effect of narrow spectrum antimicrobial, probiotic and fluid with amoxicillin in mink kits (Neovison vison) with pre-weaning diarrhea. Res Vet Sci 2019; 125:121-129. [PMID: 31207535 DOI: 10.1016/j.rvsc.2019.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
Pre-weaning diarrhea in mink kits (PWD), also known as "sticky kits" is a multifactorial syndrome of considerable concern in the mink production. Evidence based treatment protocols are not available, and treatment is therefore empirical and often based on the use of antimicrobials. The purpose of the study was to test the effect of 3 alternative treatments to a standard antibiotic treatment, to characterize the study groups microbiologically, and finally to compare the intestinal microbiota of the different treatment groups at the age of 42 days. In total, 226 one to three week old mink kits with PWD from 36 litters were treated with either 1) Lactobacillus reuteri, 2) benzylpenicillin, 3) Ringer lactate or 4) amoxicillin (controls). Effects of the treatments were measured as weight gain from day 0 to day 15 and mortality. Multivariable linear mixed model regression showed no significant difference in weight gain between probiotic-, penicillin or fluid-treated mink kits and the amoxicillin treated controls. There was also no significant difference in mortality risk between the treatment groups. Bacterial culture and next generation sequencing of the viral contents showed that the study groups were uniform with a high frequency of Staphylococcus intermedius group (SIG) bacteria, Escherichia coli, Enterococcus hirae, Mamastrovirus and Sapovirus which were representative for mink kits with PWD. 16S sequencing results of the bacterial microbiota, when the kits were 42 days old were dominated by clostridia in all groups and showed no clear differences in the bacterial composition between the different treatment groups.
Collapse
Affiliation(s)
- Julie Melsted Birch
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Jens Frederik Agger
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mikael Leijon
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Tina Struve
- Kopenhagen Fur Diagnostics, Kopenhagen Fur, Glostrup, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
11
|
Yang J, Tian J, Tang Y, Diao Y. Isolation and genomic characterization of gosling gout caused by a novel goose astrovirus. Transbound Emerg Dis 2018; 65:1689-1696. [PMID: 29920970 DOI: 10.1111/tbed.12928] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 11/27/2022]
Abstract
A severe infectious disease characterized with gout, haemorrhage and swellings of kidneys has affected goslings around the major goose-producing regions in China since November 2016. A Novel goose-origin astrovirus (AStV), designated as AStV/SDPY/Goose/1116/17 (AStV-SDPY) strain, was isolated from diseased goslings, and experimental reproduction of gout was successful using the AStV-SDPY strain. Additionally, the AStV-SDPY was conducted for its full genome sequencing characterization using next-generation sequencing (NGS) technique on Illumina HiSeq platform. A complete genome of the AStV-SDPY was 7,252 nt in length and encoded three viral proteins. Phylogenetic analysis revealed that AStV-SDPY strain belongs to an independent branch of avian astroviruses, and the nucleotide homology among AStV-SDPY and other classic avian astrovirus strains was only 48.8%-68.2%. Results of above data indicated the causative agent of the gosling gout occurring in China is a novel divergent goose astrovirus.
Collapse
Affiliation(s)
- Jing Yang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Jiajun Tian
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| |
Collapse
|
12
|
Lüthi R, Boujon CL, Kauer R, Koch MC, Bouzalas IG, Seuberlich T. Accurate and precise real-time RT-PCR assays for the identification of astrovirus associated encephalitis in cattle. Sci Rep 2018; 8:9215. [PMID: 29907784 PMCID: PMC6003944 DOI: 10.1038/s41598-018-27533-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/05/2018] [Indexed: 11/09/2022] Open
Abstract
A novel bovine astrovirus genotype species (BoAstV-CH13/NeuroS1) was recently identified in brain tissues of cattle as a plausible cause of encephalitis. The purpose of the present study was to develop and validate real time RT-PCR assays for the detection of BoAstV-CH13/NeuroS1 in brain tissues of cattle. Three different primer-probe combinations were designed based on BoAstV-CH13/NeuroS1 full-genome sequences of 11 different strains identified in cattle, and established in three distinct one-step real time RT-PCR protocols. These protocols were compared regarding their diagnostic performance using brain tissues of cattle with and without astrovirus associated encephalitis. The limit of detection (LOD) of all three assays was between 1.34 × 101 and 1.34 × 102 RNA copies, leading to an analytical sensitivity two orders of magnitude superior compared to a conventional pan-astrovirus RT-PCR protocol (LOD 1.31 × 104 RNA copies). Amplification efficiency was in the range of 97.3% to 107.5% with linearity (R2) > 0.99. The diagnostic sensitivity and specificity of the assays was determined as 100%, and all three revealed good intra- and inter-test repeatability. In conclusion, the newly developed RT-qPCRs are sensitive, specific, and reliable test formats that will facilitate BoAstV-CH13/NeuroS1 detection in routine diagnostics as well as in research settings.
Collapse
Affiliation(s)
- Ramona Lüthi
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Céline L Boujon
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ronja Kauer
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michel C Koch
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ilias G Bouzalas
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Veterinary Research Institute, Hellenic Agricultural Organization-DEMETER, Campus of Thermi, Thessaloniki, Greece
| | - Torsten Seuberlich
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Genomic characterization of circoviruses associated with acute gastroenteritis in minks in northeastern China. Arch Virol 2018; 163:2727-2735. [PMID: 29948383 PMCID: PMC7087342 DOI: 10.1007/s00705-018-3908-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/26/2018] [Indexed: 11/02/2022]
Abstract
Mink circovirus (MiCV), a virus that was newly discovered in 2013, has been associated with enteric disease. However, its etiological role in acute gastroenteritis is unclear, and its genetic characteristics are poorly described. In this study, the role of circoviruses (CVs) in mink acute gastroenteritis was investigated, and the MiCV genome was molecularly characterized through sequence analysis. Detection results demonstrated that MiCV was the only pathogen found in this infection. MiCVs and previously characterized CVs shared genome organizational features, including the presence of (i) a potential stem-loop/nonanucleotide motif that is considered to be the origin of virus DNA replication; (ii) two major inversely arranged open reading frames encoding putative replication-associated proteins (Rep) and a capsid protein; (iii) direct and inverse repeated sequences within the putative 5' region; and (iv) motifs in Rep. Pairwise comparisons showed that the capsid proteins of MiCV shared the highest amino acid sequence identity with those of porcine CV (PCV) 2 (45.4%) and bat CV (BatCV) 1 (45.4%). The amino acid sequence identity levels of Rep shared by MiCV with BatCV 1 (79.7%) and dog CV (dogCV) (54.5%) were broadly similar to those with starling CV (51.1%) and PCVs (46.5%). Phylogenetic analysis indicated that MiCVs were more closely related to mammalian CVs, such as BatCV, PCV, and dogCV, than to other animal CVs. Among mammalian CVs, MiCV and BatCV 1 were the most closely related. This study could contribute to understanding the potential pathogenicity of MiCV and the evolutionary and pathogenic characteristics of mammalian CVs.
Collapse
|
14
|
Whole genome analysis of a novel neurotropic bovine astrovirus detected in a Japanese black steer with non-suppurative encephalomyelitis in Japan. Arch Virol 2018; 163:2805-2810. [PMID: 29869035 DOI: 10.1007/s00705-018-3898-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/11/2018] [Indexed: 10/14/2022]
Abstract
While neurotropic bovine astroviruses (BoAstVs) have been identified in North America and Europe, their presence has never been reported in Asia. In this study, we detected BoAstV in the brain of a steer showing neurological signs. Phylogenetic analysis revealed that the identified virus belongs to the Virginia/Human-Mink-Ovine clade, which contains most of the neurotropic astroviruses including the neurotropic BoAstVs. Similarity plot analysis showed that the virus was closely related to the American BoAstV NeuroS1 strain with respect to the ORF regions and to the European BoAstV CH13 strain in the 3' untranslated region, suggesting the occurrence of intra-genotypic recombination events.
Collapse
|
15
|
Boujon CL, Koch MC, Seuberlich T. The Expanding Field of Mammalian Astroviruses: Opportunities and Challenges in Clinical Virology. Adv Virus Res 2017; 99:109-137. [PMID: 29029723 DOI: 10.1016/bs.aivir.2017.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Astroviruses are best known as being one of the leading causes of diarrhea in infants and were first described in this context in 1975. In its first years, astrovirus research was mainly restricted to electron microscopy and serology studies. The ability to culture some of these viruses in vitro allowed a first consequent step forward, especially at the molecular level. Since the emergence of more powerful genetic methods, though, the face of this research field has dramatically changed and evolved. From the exponential number of discoveries of new astrovirus strains in the most varied of animal species to their association with atypical diseases, these viruses revealed a lot of surprises, and many more are probably still waiting to be uncovered. This chapter summarizes the most important knowledge about astroviruses and discusses the implication of the latest findings in this area of research.
Collapse
|
16
|
Neuropathological survey reveals underestimation of the prevalence of neuroinfectious diseases in cattle in Switzerland. Vet Microbiol 2017; 208:137-145. [PMID: 28888628 DOI: 10.1016/j.vetmic.2017.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/21/2022]
Abstract
Neuroinfectious diseases in livestock represent a severe threat to animal health, but their prevalence is not well documented and the etiology of disease often remains unidentified. The aims of this study were to generate baseline data on the prevalence of neuroinfectious diseases in cattle in Switzerland by neuropathological survey, and to identify disease-associated pathogens. The survey was performed over a 1-year period using a representative number of brainstem samples (n=1816) from fallen cattle. In total, 4% (n=73) of the animals had significant lesions, the most frequent types of which were indicative of viral (n=27) and bacterial (n=31) etiologies. Follow-up diagnostics by immunohistochemistry, PCR protocols and next-generation sequencing identified infection with Listeria monocytogenes (n=6), ovine herpesvirus 2 (n=7), bovine astrovirus CH13 (n=2), bovine herpesvirus 6 (n=6), bovine retrovirus CH15 (n=2), posavirus 1 (n=2), and porcine astroviruses (n=2). A retrospective questionnaire-based investigation indicated that animals' owners observed clinical signs of neurological disease in about one-third of cases with lesions, which was estimated to correspond to approximately 85 cases per year in the adult fallen cattle population in Switzerland. This estimate stands in sharp contrast to the number of cases reported to the authorities and reveals a gap in disease surveillance. Systematic neuropathological examination and follow-up molecular testing of neurologically diseased cattle could significantly enhance the efficiency of disease detection for the purposes of estimating the prevalence of endemic diseases, identifying new or re-emerging pathogens, and providing "early warnings" of disease outbreaks.
Collapse
|
17
|
Deiss R, Selimovic-Hamza S, Seuberlich T, Meylan M. Neurologic Clinical Signs in Cattle With Astrovirus-Associated Encephalitis. J Vet Intern Med 2017; 31:1209-1214. [PMID: 28544318 PMCID: PMC5508366 DOI: 10.1111/jvim.14728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 11/27/2022] Open
Abstract
Background Evidence of neurotropic astroviruses has been established using novel genetic methods in cattle suffering from viral encephalitis of previously unknown origin. Objectives To describe the clinical signs observed in cattle with astrovirus‐associated encephalitis. Animals Eight cattle (4 cows, 3 heifers, and 1 bull of 4 different breeds) admitted to the Clinic for Ruminants for neurologic disease and 1 cow investigated in the field. Methods Cases were selected based on neuropathologic diagnosis of nonsuppurative encephalitis, positive in situ hybridization result for astrovirus, and availability of the results of physical and neurologic evaluations. Laboratory results were evaluated if available. Results The most frequently observed clinical signs were decreased awareness of surroundings (7), cranial nerve dysfunction (5), and recumbency (5). The cow seen in the field was the only animal that had severe behavioral changes. Cell counts in cerebrospinal fluid (CSF) were increased in 4 animals, and protein concentration was increased in 3 of 5 specimens. In 1 case, the presence of astrovirus could be identified in a CSF sample by reverse transcriptase polymerase chain reaction. Other laboratory abnormalities were nonspecific. Conclusions and Clinical Importance Astrovirus infection may be an important differential diagnosis in cattle with clinical signs of brain disease and should be considered after exclusion of other causes. The clinical and epidemiological relevance of encephalitis associated with astrovirus infection should be further investigated.
Collapse
Affiliation(s)
- R Deiss
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - S Selimovic-Hamza
- Division of Neurological Sciences, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - T Seuberlich
- Division of Neurological Sciences, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - M Meylan
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Exploring the virome of cattle with non-suppurative encephalitis of unknown etiology by metagenomics. Virology 2016; 493:22-30. [PMID: 26994586 DOI: 10.1016/j.virol.2016.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/17/2016] [Accepted: 03/10/2016] [Indexed: 11/20/2022]
Abstract
Non-suppurative encephalitis is one of the most frequent pathological diagnosis in cattle with neurological disease, but there is a gap in the knowledge on disease-associated pathogens. In order to identify viruses that are associated with non-suppurative encephalitis in cattle, we used a viral metagenomics approach on a sample set of 16 neurologically-diseased cows. We detected six virus candidates: parainfluenza virus 5 (PIV-5), bovine astrovirus CH13/NeuroS1 (BoAstV-CH13/NeuroS1), bovine polyomavirus 2 (BPyV-2 SF), ovine herpesvirus 2 (OvHV-2), bovine herpesvirus 6 (BHV-6) and a novel bovine betaretrovirus termed BoRV-CH15. In a case-control study using PCR, BoAstV-CH13 (p=0.046), BoPV-2 SF (p=0.005) and BoHV-6 (p=4.3E-05) were statistically associated with the disease. These data expand our knowledge on encephalitis-associated pathogens in cattle and point to the value of NGS in resolving complex infection scenarios in a clinical disease setting.
Collapse
|
19
|
Woo PCY, Lau SKP, Teng JLL, Tsang AKL, Joseph S, Xie J, Jose S, Fan RYY, Wernery U, Yuen KY. A novel astrovirus from dromedaries in the Middle East. J Gen Virol 2015; 96:2697-2707. [PMID: 26296576 DOI: 10.1099/jgv.0.000233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent emergence of Middle East respiratory syndrome coronavirus from the Middle East and its discovery from dromedary camels has boosted interest in the search for novel viruses in dromedaries. The existence of astroviruses (AstVs) in dromedaries was previously unknown. We describe the discovery of a novel dromedary camel AstV (DcAstV) from dromedaries in Dubai. Among 215 dromedaries, DcAstV was detected in faecal samples of four [three (1.5 %) adult dromedaries and one (8.3 %) dromedary calf] by reverse transcription-PCR. Sequencing of the four DcAstV genomes and phylogenetic analysis showed that the DcAstVs formed a distinct cluster. Although DcAstV was most closely related to a recently characterized porcine AstV 2, their capsid proteins only shared 60-66 % amino acid identity, with a mean amino acid genetic distance of 0.372. Notably, the N-terminal halves of the capsid proteins of DcAstV shared ≤ 85 % amino acid identity, but the C-terminal halves only shared ≤ 49 % amino acid identity compared with the corresponding proteins in other AstVs. A high variation of the genome sequences of DcAstV was also observed, with a mean amino acid genetic distance of 0.214 for ORF2 of the four strains. Recombination analysis revealed a possible recombination event in ORF2 of strain DcAstV-274. The low Ka/Ks ratios (number of non-synonymous substitutions per non-synonymous site to number of synonymous substitutions per synonymous site) of the four ORFs in the DcAstV genomes supported the suggestion that dromedaries are the natural reservoir where AstV is stably evolving. These results suggest that AstV is a novel species of the genus Mamastrovirus in the family Astroviridae. Further studies are important to understand the pathogenic potential of DcAstV.
Collapse
Affiliation(s)
- Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, The University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China
| | - Susanna K P Lau
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Jade L L Teng
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Alan K L Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Sunitha Joseph
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Jun Xie
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Shanty Jose
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Rachel Y Y Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Ulrich Wernery
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Kwok-Yung Yuen
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, The University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
20
|
Bouzalas IG, Wüthrich D, Walland J, Drögemüller C, Zurbriggen A, Vandevelde M, Oevermann A, Bruggmann R, Seuberlich T. Neurotropic astrovirus in cattle with nonsuppurative encephalitis in Europe. J Clin Microbiol 2014; 52:3318-24. [PMID: 24989603 PMCID: PMC4313157 DOI: 10.1128/jcm.01195-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/24/2014] [Indexed: 02/08/2023] Open
Abstract
Encephalitis is a frequently diagnosed condition in cattle with neurological diseases. Many affected animals present with a nonsuppurative inflammatory reaction pattern in the brain. While this pattern supports a viral etiology, the causative pathogen remains unknown in a large proportion of cases. Using viral metagenomics, we identified an astrovirus (bovine astrovirus [BoAstV]-CH13) in the brain of a cow with nonsuppurative encephalitis. Additionally, BoAstV RNA was detected with reverse transcription-PCR and in situ hybridization in about one fourth (5/22 animals) of cattle with nonsuppurative encephalitis of unknown etiology. Viral RNA was found primarily in neurons and at the site of pathology. These findings support the notion that BoAstV infection is a common cause of encephalitis in cattle. Phylogenetically, BoAstV-CH13 was closely related to rare astrovirus isolates from encephalitis cases in animals and a human patient. Future research needs to be directed toward the pathogenic mechanisms, epidemiology, and potential cross-species transmission of these neurotropic astroviruses.
Collapse
Affiliation(s)
- Ilias G Bouzalas
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Daniel Wüthrich
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julia Walland
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andreas Zurbriggen
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marc Vandevelde
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Sun N, Yang Y, Wang GS, Shao XQ, Zhang SQ, Wang FX, Tan B, Tian FL, Cheng SP, Wen YJ. Detection and characterization of avastrovirus associated with diarrhea isolated from minks in China. FOOD AND ENVIRONMENTAL VIROLOGY 2014; 6:169-174. [PMID: 24915926 DOI: 10.1007/s12560-014-9155-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Astroviruses are becoming a growing concern in veterinary and public health. Many astrovirus species are associated with enteric diseases have been described in both mammalian and avian hosts. In the present study, 23 fecal samples from diarrheic minks were collected in Liaoning and Shandong Province, and an investigation of astrovirus was performed using biochemical methods and RT-PCR assay with specific primers. A total of four mink astroviral isolates were detected from sick minks with diarrhea problems. Further sequencing and characterization of the partial ORF1b gene and ORF2 gene segments revealed low sequence identities (20.0-85.3 and 31.8-87.2%) with known astroviral strains, indicating the emergence of a novel clade of astroviruses. Some new features of the astroviral genome have also been discovered. The phylogenetic tree revealed that all samples were distantly related to mink astrovirus and were closely related to chicken astroviruses and turkey astroviruses. MK/DL-1, MK/DL-2, MK/SD-1, and MK/SD-2 formed a new clade and were found to be more closely related to astroviruses from birds than to other mink strains, indicating past cross-species transmission and considerable zoonotic potential.
Collapse
Affiliation(s)
- Na Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants Sciences, Chinese Academy of Agricultural Sciences CAAS, No. 4899, Juye Street, Jingyue Economic Development Zone, Changchun, 130112, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu N, Wang F, Shi J, Zheng L, Wang X, Zhang D. Molecular characterization of a duck hepatitis virus 3-like astrovirus. Vet Microbiol 2014; 170:39-47. [DOI: 10.1016/j.vetmic.2014.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 11/28/2022]
|
23
|
Simultaneous detection of five enteric viruses associated with gastroenteritis by use of a PCR assay: a single real-time multiplex reaction and its clinical application. J Clin Microbiol 2014; 52:1266-8. [PMID: 24478418 DOI: 10.1128/jcm.00245-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We developed a highly sensitive reverse transcription and multiplex real-time PCR (rtPCR) assay that can identify five viruses, including six genogroups, in a single reaction: norovirus genogroups I and II; sapovirus genogroups I, II, IV, and V; human rotavirus A; adenovirus serotypes 40 and 41; and human astrovirus. In comparison to monoplex rtPCR assays, the sensitivities and specificities of the multiplex rtPCR ranged from 75% to 100% and from 99% to 100%, respectively, evaluated on 812 clinical stool specimens.
Collapse
|
24
|
Bidokhti MRM, Ullman K, Jensen TH, Chriél M, Mottahedin A, Munir M, Andersson AM, Detournay O, Hammer AS, Baule C. Establishment of stably transfected cells constitutively expressing the full-length and truncated antigenic proteins of two genetically distinct mink astroviruses. PLoS One 2013; 8:e82978. [PMID: 24376619 PMCID: PMC3871642 DOI: 10.1371/journal.pone.0082978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 11/01/2013] [Indexed: 01/06/2023] Open
Abstract
Astroviruses are becoming a growing concern in veterinary and public health. To date there are no registered vaccines against astrovirus-induced disease, mostly due to the difficulty to cultivate astroviruses to high titer for vaccine development using conventional techniques. As means to circumvent this drawback, we have developed stably transfected mink fetal cells and BHK21 cells constitutively expressing the full-length and truncated capsid proteins of two distinct genotypes of mink astrovirus. Protein expression in these stably transfected cells was demonstrated by strong signals as evaluated by in-situ PLA and IFA, and confirmed by Western blotting. The recombinant full-length and truncated proteins induced a high level of antibodies in mink, evaluated by ELISA, demonstrating their immunogenicity. In a challenge experiment in mink, a reduction in presentation clinical signs and virus shedding was observed in mink kits born from immunized females. The gene integration and protein expression were sustained through cell passage, showing that the used approach is robust and reliable for expression of functional capsid proteins for vaccine and diagnostic applications.
Collapse
Affiliation(s)
- Mehdi R. M. Bidokhti
- Joint R&D Division of Virology, Department of Virology, Immunobiology and Parasitology, The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Karin Ullman
- Joint R&D Division of Virology, Department of Virology, Immunobiology and Parasitology, The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Trine H. Jensen
- Division of Veterinary Diagnostics and Research, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Mariann Chriél
- Division of Veterinary Diagnostics and Research, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Amin Mottahedin
- Joint R&D Division of Virology, Department of Virology, Immunobiology and Parasitology, The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Muhammad Munir
- Department of Biomedical Sciences and Veterinary Public Health, Division of Virology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Maria Andersson
- The National Veterinary Institute, Department of Animal Health and Antimicrobial Resistance, Uppsala, Sweden
| | - Olivier Detournay
- Joint R&D Division of Virology, Department of Virology, Immunobiology and Parasitology, The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Anne Sofie Hammer
- Division of Veterinary Diagnostics and Research, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Claudia Baule
- Joint R&D Division of Virology, Department of Virology, Immunobiology and Parasitology, The National Veterinary Institute (SVA), Uppsala, Sweden
- * E-mail:
| |
Collapse
|
25
|
Bodewes R, van der Giessen J, Haagmans BL, Osterhaus ADME, Smits SL. Identification of multiple novel viruses, including a parvovirus and a hepevirus, in feces of red foxes. J Virol 2013; 87:7758-64. [PMID: 23616657 PMCID: PMC3700315 DOI: 10.1128/jvi.00568-13] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/12/2013] [Indexed: 02/07/2023] Open
Abstract
Red foxes (Vulpes vulpes) are the most widespread members of the order of Carnivora. Since they often live in (peri)urban areas, they are a potential reservoir of viruses that transmit from wildlife to humans or domestic animals. Here we evaluated the fecal viral microbiome of 13 red foxes by random PCR in combination with next-generation sequencing. Various novel viruses, including a parvovirus, bocavirus, adeno-associated virus, hepevirus, astroviruses, and picobirnaviruses, were identified.
Collapse
Affiliation(s)
- Rogier Bodewes
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
Stenglein MD, Velazquez E, Greenacre C, Wilkes RP, Ruby JG, Lankton JS, Ganem D, Kennedy MA, DeRisi JL. Complete genome sequence of an astrovirus identified in a domestic rabbit (Oryctolagus cuniculus) with gastroenteritis. Virol J 2012; 9:216. [PMID: 22998755 PMCID: PMC3502403 DOI: 10.1186/1743-422x-9-216] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 09/14/2012] [Indexed: 11/13/2022] Open
Abstract
A colony of domestic rabbits in Tennessee, USA, experienced a high-mortality (~90%) outbreak of enterocolitis. The clinical characteristics were one to six days of lethargy, bloating, and diarrhea, followed by death. Heavy intestinal coccidial load was a consistent finding as was mucoid enteropathy with cecal impaction. Preliminary analysis by electron microscopy revealed the presence of virus-like particles in the stool of one of the affected rabbits. Analysis using the Virochip, a viral detection microarray, suggested the presence of an astrovirus, and follow-up PCR and sequence determination revealed a previously uncharacterized member of that family. Metagenomic sequencing enabled the recovery of the complete viral genome, which contains the characteristic attributes of astrovirus genomes. Attempts to propagate the virus in tissue culture have yet to succeed. Although astroviruses cause gastroenteric disease in other mammals, the pathogenicity of this virus and the relationship to this outbreak remains to be determined. This study therefore defines a viral species and a potential rabbit pathogen.
Collapse
Affiliation(s)
- Mark D Stenglein
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The first reports of astroviruses in animals date back to the end of the 1970s, when infections in mammals such as lambs and calves suffering from diarrhea were reported for the first time. Since then, several mammalian species have been shown to be susceptible to astroviruses which appear to be genetically diverse and to have acquired host-specificity. To date, astroviruses have been detected in 16 different orders or species of mammals in addition to humans, and signs of infection range from unapparent infection or very mild disease to diarrhea, lethargy, and anorexia, mainly observed in young individuals. This chapter describes those astroviruses detected in nonhuman mammalian species worldwide, as well as their molecular and phenotypic characteristics and their role in diseases. The capacity of these viruses to cross-species barriers and their subsequent adaptation to novel hosts is also highlighted.
Collapse
Affiliation(s)
- Stacey Schultz-Cherry
- , Infectious Diseases, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, 38105 Tennessee USA
| |
Collapse
|
28
|
Screening of feral and wood pigeons for viruses harbouring a conserved mobile viral element: characterization of novel Astroviruses and Picornaviruses. PLoS One 2011; 6:e25964. [PMID: 22043297 PMCID: PMC3197151 DOI: 10.1371/journal.pone.0025964] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/13/2011] [Indexed: 01/23/2023] Open
Abstract
A highly conserved RNA-motif of yet unknown function, called stem-loop-2-like motif (s2m), has been identified in the 3′ end of the genomes of viruses belonging to different RNA virus families which infect a broad range of mammal and bird species, including Astroviridae, Picornaviridae, Coronaviridae and Caliciviridae. Since s2m is such an extremely conserved motif, it is an ideal target for screening for viruses harbouring it. In this study, we have detected and characterized novel viruses harbouring this motif in pigeons by using a s2m-specific amplification. 84% and 67% of the samples from feral pigeons and wood pigeons, respectively, were found to contain a virus harbouring s2m. Four novel viruses were identified and characterized. Two of the new viruses belong to the genus Avastrovirus in the Astroviridae family. We propose two novel species to be included in this genus, Feral pigeon astrovirus and Wood pigeon astrovirus. Two other novel viruses, Pigeon picornavirus A and Pigeon picornavirus B, belong to the Picornaviridae family, presumably to the genus Sapelovirus. Both of the novel picornaviruses harboured two adjacent s2m, called (s2m)2, suggesting a possible increased functional effect of s2m when present in two copies.
Collapse
|
29
|
De Benedictis P, Schultz-Cherry S, Burnham A, Cattoli G. Astrovirus infections in humans and animals - molecular biology, genetic diversity, and interspecies transmissions. INFECTION GENETICS AND EVOLUTION 2011; 11:1529-44. [PMID: 21843659 PMCID: PMC7185765 DOI: 10.1016/j.meegid.2011.07.024] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/28/2011] [Accepted: 07/30/2011] [Indexed: 01/09/2023]
Abstract
Astroviruses are small, non-enveloped, positive sense, single-stranded RNA viruses first identified in 1975 in children suffering from diarrhea and then described in a wide variety of animals. To date, the list of animal species susceptible to astrovirus infection has expanded to 22 animal species or families, including domestic, synantropic and wild animals, avian, and mammalian species in the terrestrial and aquatic environments. Astrovirus infections are considered among the most common cause of gastroenteritis in children, second only to rotavirus infections, but in animals their association with enteric diseases is not well documented, with the exception of turkey and mink astrovirus infection. Genetic variability has been described in almost all astrovirus species sufficiently examined infecting mammals and birds; however, antigenic variability has been demonstrated for human astroviruses but is far less investigated in animal viruses. Interestingly, there is an increasing evidence of recombination events occurring in astroviruses, which contributes to increase the genetic variability of this group of viruses. A wide variety of species infected, the evident virus genetic diversity and the occurrence of recombination events indicate or imply either cross-species transmission and subsequent virus adaptation to new hosts or the co-infection of the same host with different astroviruses. This can also favor the emergence of novel astroviruses infecting animals or with a zoonotic potential. After more than 30 years from their first description in humans, there are many exciting streams of research to be explored and intriguing questions that remain to be answered about the relatively under-studied Astroviridae family. In the present work, we will review the existing knowledge concerning astrovirus infections in humans and animals, with particular focus on the molecular biology, interspecies transmission and zoonotic potential of this group of viruses.
Collapse
Affiliation(s)
- Paola De Benedictis
- OIE Collaborating Centre for Diseases at the Animal-Human Interface, Research & Innovation Department, Division of Biomedical Science, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | | | | |
Collapse
|
30
|
Zhu AL, Zhao W, Yin H, Shan TL, Zhu CX, Yang X, Hua XG, Cui L. Isolation and characterization of canine astrovirus in China. Arch Virol 2011; 156:1671-5. [DOI: 10.1007/s00705-011-1022-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 05/04/2011] [Indexed: 12/01/2022]
|
31
|
Tse H, Chan WM, Tsoi HW, Fan RYY, Lau CCY, Lau SKP, Woo PCY, Yuen KY. Rediscovery and genomic characterization of bovine astroviruses. J Gen Virol 2011; 92:1888-1898. [PMID: 21508185 DOI: 10.1099/vir.0.030817-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The genus Mamastrovirus belongs to the family Astroviridae and consists of at least six members infecting different mammalian hosts, including humans, cattle and pigs. In recent years, novel astroviruses have been identified in other mammalian species like roe deer, bats and sea lions. While the bovine astrovirus was one of the earliest astroviruses to have been studied, no further research has been performed recently and its genome sequence remains uncharacterized. In this report, we describe the detection and genomic characterization of astroviruses in bovine faecal specimens obtained in Hong Kong. Five of 209 specimens were found to be positive for astrovirus by RT-PCR. Two of the positive specimens were found to contain sequences from two different astrovirus strains. Complete genome sequences of approximately 6.3 kb in length were obtained for four strains, which showed similar organization of the genome compared to other astroviruses. Phylogenetic analysis confirmed their identities as members of the genus Mamastrovirus, and showed them to be most closely related to the Capreolus capreolus astrovirus. Based on the pairwise genetic distances among their full-length ORF2 sequences, these bovine astroviruses may be assigned into at least three different genotype species. Sequence analysis revealed evidence of potential recombination in ORF2. In summary, we report the first genome sequences of bovine astroviruses and clearly establish the species status of the virus. Additionally, our study is among the first to report co-infection by different astrovirus genotypes in the same host, which is an essential step for recombination to occur.
Collapse
Affiliation(s)
- Herman Tse
- Research Centre of Infection and Immunity, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong Special Administration Region, Hong Kong SAR
| | - Wan-Mui Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Hoi-Wah Tsoi
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Rachel Y Y Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Candy C Y Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong Special Administration Region, Hong Kong SAR.,Research Centre of Infection and Immunity, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong Special Administration Region, Hong Kong SAR.,Research Centre of Infection and Immunity, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong Special Administration Region, Hong Kong SAR.,Research Centre of Infection and Immunity, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
32
|
Detection of a novel astrovirus in brain tissue of mink suffering from shaking mink syndrome by use of viral metagenomics. J Clin Microbiol 2010; 48:4392-6. [PMID: 20926705 DOI: 10.1128/jcm.01040-10] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2000, farmed mink kits in Denmark were affected by a neurological disorder. The characteristic clinical signs included shaking, staggering gait, and ataxia. The disease, given the name shaking mink syndrome, was reproduced by the inoculation of brain homogenate from affected mink kits into healthy ones. However, the etiology remained unknown despite intensive efforts. In this study, random amplification and large-scale sequencing were used, and an astrovirus was detected in the brain tissue of three experimentally infected mink kits. This virus also was found in the brain of three mink kits naturally displaying the disease but not in the six healthy animals investigated. The complete coding region of the detected astrovirus was sequenced and compared to those of both a mink astrovirus associated with preweaning diarrhea and to a recently discovered human astrovirus associated with a case of encephalitis in a boy with x-linked agammaglobulinemia. The identities were 80.4 and 52.3%, respectively, showing that the virus described in this study was more similar to the preweaning diarrhea mink astrovirus. For the nonstructural coding regions the sequence identity was around 90% compared to that of the astrovirus, which is associated with preweaning diarrhea in mink. The region coding for the structural protein was more diverse, showing only 67% sequence identity. This finding is of interest not only because the detected virus may be the etiological agent of the shaking mink syndrome but also because this is one of the first descriptions of an astrovirus found in the central nervous system of animals.
Collapse
|
33
|
Sledge DG, Danieu PK, Bolin CA, Bolin SR, Lim A, Anderson BC, Kiupel M. Outbreak of Neonatal Diarrhea in Farmed Mink Kits (Mustella vison) Associated With Enterotoxigenic Staphylococcus delphini. Vet Pathol 2010; 47:751-7. [DOI: 10.1177/0300985810364514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An outbreak of diarrhea on a large commercial mink farm affected 5,000 of 36,000 neonatal mink kits, with 2,000 dying within a 2-week period. Affected kits were severely dehydrated, and their furcoats and paws were covered with yellow- to green-tinged mucoid feces. On necropsy, the small intestines of examined animals were markedly distended by serous to mucoid fluid. Microscopically, there was prominent colonization of the intestinal villar epithelium by gram-positive bacterial cocci in the absence of inflammation and morphologic changes in villous enterocytes. The colonizing bacteria were phenotypically identified as belonging to the Staphylococcus intermedius group of bacteria. This was confirmed by nucleic acid sequence analysis of the 16S ribosomal RNA gene. Further nucleic acid sequencing of polymerase chain reaction (PCR) amplicons from the superoxide dismutase gene and the heat shock protein 60 gene differentiated the isolate as Staphylococcus delphini. Production of staphylococcal enterotoxins A and E was demonstrated with a commercial ELISA-based immunoassay. Sequencing of PCR amplicons confirmed the presence of the enterotoxin E gene, but PCR amplification of the enterotoxin A, B, C, or D genes was not successful. Although direct causation was not confirmed in this study, the authors postulate that the observed hypersecretory diarrhea in these mink kits was the result of colonization of the small intestine by S delphini and subsequent production of enterotoxin.
Collapse
Affiliation(s)
- D. G. Sledge
- Diagnostic Center for Population and Animal Health, Michigan State University, Lansing, MI, USA
| | - P. K. Danieu
- Diagnostic Center for Population and Animal Health, Michigan State University, Lansing, MI, USA
| | - C. A. Bolin
- Diagnostic Center for Population and Animal Health, Michigan State University, Lansing, MI, USA
| | - S. R. Bolin
- Diagnostic Center for Population and Animal Health, Michigan State University, Lansing, MI, USA
| | - A. Lim
- Diagnostic Center for Population and Animal Health, Michigan State University, Lansing, MI, USA
| | - B. C. Anderson
- Caine Veterinary Teaching Center, University of Idaho, Caldwell, ID, USA
| | - M. Kiupel
- Diagnostic Center for Population and Animal Health, Michigan State University, Lansing, MI, USA
| |
Collapse
|
34
|
Cai G, Myers K, Hillman BI, Fry WE. A novel virus of the late blight pathogen, Phytophthora infestans, with two RNA segments and a supergroup 1 RNA-dependent RNA polymerase. Virology 2009; 392:52-61. [DOI: 10.1016/j.virol.2009.06.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/10/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
|
35
|
Fu Y, Pan M, Wang X, Xu Y, Xie X, Knowles NJ, Yang H, Zhang D. Complete sequence of a duck astrovirus associated with fatal hepatitis in ducklings. J Gen Virol 2009; 90:1104-1108. [PMID: 19264607 DOI: 10.1099/vir.0.008599-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Duck astroviruses (DAstVs) are known to cause duck viral hepatitis; however, little is known regarding their molecular biology. Here, we report the complete sequence of a DAstV associated with a recent outbreak of fatal hepatitis in ducklings in China. Sequence analyses indicated that the genome of DAstV possessed a typical astrovirus organization and also exhibited two unique features. The polyadenylated genome comprised 7722 nt, which is the largest among astroviruses sequenced to date. The ORF2 of DAstV was not in the same reading frame as either ORF1a or ORF1b, which was distinct from all other astroviruses. Sequence comparisons and phylogenetic analyses revealed that DAstV was more closely related to turkey astrovirus (TAstV) type 2, TAstV-3 and TAstV/MN/01 (a possible new TAstV serotype) than to TAstV-1 or other astroviruses. These findings suggest that astroviruses may transmit across ducks and turkeys.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Meng Pan
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Xiaoyan Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Yongliang Xu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Xiaoyu Xie
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Nick J Knowles
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Hanchun Yang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Dabing Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
36
|
Atkins A, Wellehan JFX, Childress AL, Archer LL, Fraser WA, Citino SB. Characterization of an outbreak of astroviral diarrhea in a group of cheetahs (Acinonyx jubatus). Vet Microbiol 2008; 136:160-5. [PMID: 19171442 PMCID: PMC7117330 DOI: 10.1016/j.vetmic.2008.10.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 10/12/2008] [Accepted: 10/16/2008] [Indexed: 01/08/2023]
Abstract
A Mamastrovirus was identified in an outbreak of diarrhea in cheetahs (Acinonyx jubatus). Five young adult and two adult cheetahs presented with lethargy, anorexia, watery diarrhea and regurgitation over an 11-day period. Fecal samples were submitted for electron microscopy and culture. Electron microscopy results revealed particles morphologically consistent with an astrovirus, and no other viral pathogens or significant bacterial pathogens were identified. The astrovirus was confirmed and sequenced using consensus astroviral PCR, resulting in a 367 base pair partial RNA-dependent-RNA polymerase (RdRp) product and a 628 base pair partial capsid product. Bayesian and maximum likelihood phylogenetic analyses were performed on both the RdRp and the capsid protein segments. All animals were monitored and treated with bismuth subsalicylate tablets (524mg PO BID for 5 days), and recovered without additional intervention. This is the first report we are aware of documenting an astrovirus outbreak in cheetah.
Collapse
Affiliation(s)
- Adrienne Atkins
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Bats are increasingly recognized to harbor a wide range of viruses, and in most instances these viruses appear to establish long-term persistence in these animals. They are the reservoir of a number of human zoonotic diseases including Nipah, Ebola, and severe acute respiratory syndrome. We report the identification of novel groups of astroviruses in apparently healthy insectivorous bats found in Hong Kong, in particular, bats belonging to the genera Miniopterus and Myotis. Astroviruses are important causes of diarrhea in many animal species, including humans. Many of the bat astroviruses form distinct phylogenetic clusters in the genus Mamastrovirus within the family Astroviridae. Virus detection rates of 36% to 100% and 50% to 70% were found in Miniopterus magnater and Miniopterus pusillus bats, respectively, captured within a single bat habitat during four consecutive visits spanning 1 year. There was high genetic diversity of viruses in bats found within this single habitat. Some bat astroviruses may be phylogenetically related to human astroviruses, and further studies with a wider range of bat species in different geographic locations are warranted. These findings are likely to provide new insights into the ecology and evolution of astroviruses and reinforce the role of bats as a reservoir of viruses with potential to pose a zoonotic threat to human health.
Collapse
|
38
|
van Hemert FJ, Lukashov VV, Berkhout B. Different rates of (non-)synonymous mutations in astrovirus genes; correlation with gene function. Virol J 2007; 4:25. [PMID: 17343744 PMCID: PMC1828050 DOI: 10.1186/1743-422x-4-25] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 03/07/2007] [Indexed: 11/30/2022] Open
Abstract
Background Complete genome sequences of the Astroviridae include human, non-human mammalian and avian species. A consensus topology of astroviruses has been derived from nucleotide substitutions in the full-length genomes and from non-synonymous nucleotide substitutions in each of the three ORFs. Analyses of synonymous substitutions displayed a loss of tree structure, suggesting either saturation of the substitution model or a deviant pattern of synonymous substitutions in certain virus species. Results We analyzed the complete Astroviridae family for the inference of adaptive molecular evolution at sites and in branches. High rates of synonymous mutations are observed among the non-human virus species. Deviant patterns of synonymous substitutions are found in the capsid structural genes. Purifying selection is a dominant force among all astrovirus genes and only few codon sites showed values for the dN/dS ratio that may indicate site-specific molecular adaptation during virus evolution. One of these sites is the glycine residue of a RGD motif in ORF2 of human astrovirus serotype 1. RGD or similar integrin recognition motifs are present in nearly all astrovirus species. Conclusion Phylogenetic analysis directed by maximum likelihood approximation allows the inclusion of significantly more evolutionary history and thereby, improves the estimation of dN and dS. Sites with enhanced values for dN/dS are prominent at domains in charge of environmental communication (f.i. VP27 and domain 4 in ORF1a) more than at domains dedicated to intrinsic virus functions (f.i. VP34 and ORF1b (the virus polymerase)). Integrin recognition may play a key role in astrovirus to target cell attachment.
Collapse
Affiliation(s)
- Formijn J van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Vladimir V Lukashov
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
39
|
van Hemert FJ, Berkhout B, Lukashov VV. Host-related nucleotide composition and codon usage as driving forces in the recent evolution of the Astroviridae. Virology 2006; 361:447-54. [PMID: 17188318 PMCID: PMC7127384 DOI: 10.1016/j.virol.2006.11.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 10/23/2006] [Accepted: 11/14/2006] [Indexed: 01/20/2023]
Abstract
The evolutionary history of the Astroviridae comprises the ancient separation between avian and mammalian astrovirus lineages followed by diversification among mammalian astroviruses. The latter process included several cross-species transmissions. We found that the recent, but not the ancient, evolution of astroviruses was associated with a switch in nucleotide composition and codon usage among non-human mammalian versus human/avian astroviruses. Virus and hosts phylogenies based on codon usage agreed with each other and matched the hosts' evolutionary emergence order. This recent switch in driving forces acting at the synonymous level points to the adaptation of codon usage by viruses to that of their hosts after cross-species transmissions. This is the first demonstration of nucleotide composition and codon usage being active driving forces during the recent evolutionary history of a virus group in the host-parasite system.
Collapse
Affiliation(s)
- Formijn J van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
40
|
Abstract
Coat proteins of non-enveloped, icosahedral viruses must perform a variety of functions during their life cycle such as assembly of the coat protein subunits into a closed shell, specific encapsidation of the viral nucleic acid, maturation of the capsid, interaction with host receptors, and disassembly to deliver the genetic information into the newly infected cell. A thorough understanding of the multiple capsid properties at the molecular level is required in order to identify potential targets for antiviral therapy and the prevention of viral disease. The system we have chosen for study is the astrovirus, a family of icosahedral, single-stranded RNA viruses that cause disease in mammals and birds. Very little is known about what regions of the coat protein contribute to the diverse capsid functions. This review will present novel structural predictions for the coat protein sequence of different astrovirus family members. Based on these predictions, we hypothesize that the assembly and RNA packaging functions of the astrovirus coat protein constitutes an individual domain distinct from the determinants required for receptor binding and internalization. Information derived from these structural predictions will serve as an important tool in designing experiments to understand astrovirus biology.
Collapse
Affiliation(s)
- Neel K Krishna
- Department of Pediatrics and the Center for Pediatric Research, Norfolk, VA 23510, USA.
| |
Collapse
|