1
|
Srinivasan R, Ramadoss R, Kandasamy V, Ranganadin P, Green SR, Kasirajan A, Pillai AB. Exploring the regulatory role of small RNAs in modulating host-pathogen interactions: implications for bacterial and viral infections. Mol Biol Rep 2025; 52:115. [PMID: 39799541 DOI: 10.1007/s11033-024-10214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections. In the context of viral infections, miRNAs are involved in regulating viral replication, pathogenesis, and immune evasion. Similarly, tiRNAs have recently emerged as novel players in bacterial and viral infections such as modulating bacterial growth, adaptation to stress conditions, host antiviral responses, and impacting viral replication and pathogenesis. This review provides a comprehensive analysis of the potential of miRNA expression profiles as diagnostic biomarkers to differentiate between bacterial and viral infections. Further discusses the key pathways through which small RNAs regulate bacterial and viral infection-related diseases.
Collapse
Affiliation(s)
- Rajesh Srinivasan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Ramya Ramadoss
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Vanathy Kandasamy
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Pajanivel Ranganadin
- Department of Pulmonary Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Siva Ranganathan Green
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Anand Kasirajan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
- Institute of Advanced Virology, Trivandrum, Kerala, 695 317, India.
| |
Collapse
|
2
|
Martínez-Espinoza I, Babawale PI, Miletello H, Cheemarla NR, Guerrero-Plata A. Interferon Epsilon-Mediated Antiviral Activity Against Human Metapneumovirus and Respiratory Syncytial Virus. Vaccines (Basel) 2024; 12:1198. [PMID: 39460364 PMCID: PMC11511582 DOI: 10.3390/vaccines12101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Interferon epsilon (IFN-ε) is a type I IFN that plays a critical role in the host immune response against pathogens. Despite having demonstrated antiviral activity in macrophages and mucosal tissues such as the female reproductive tract and the constitutive expression in mucosal tissues such as the lung, the relevance of IFN-ε against respiratory viral infections remains elusive. RESULTS We present, for the first time, the expression of IFN-ε in alveolar epithelial cells and primary human bronchial epithelial cells grown in an air-liquid interface (ALI) in response to human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) infection. The molecular characterization of the IFN-ε induction by the viruses indicates that the expression of RIG-I is necessary for an optimal IFN-ε expression. Furthermore, treatment of the airway epithelial cells with rhIFN-ε induced the expression of IFN-stimulated genes (ISGs) and significantly restricted the viral replication of HMPV and RSV. CONCLUSIONS These findings underscore the relevance of IFN-ε against viral infections in the respiratory tract.
Collapse
Affiliation(s)
| | | | | | | | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
Bitko V, Barik S. Role of metapneumoviral glycoproteins in the evasion of the host cell innate immune response. INFECTION GENETICS AND EVOLUTION 2021; 96:105096. [PMID: 34601094 DOI: 10.1016/j.meegid.2021.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
Human metapneumovirus (HMPV), an unsegmented negative-strand RNA virus, is the second most detected respiratory pathogen and one of the leading causes of respiratory illness in infants and immunodeficient individuals. HMPV infection of permissive cells in culture triggers a transient IFN response, which is efficiently suppressed later in infection. We report that two structural glycoproteins of the virus - namely G (Glycoprotein) and SH (Small Hydrophobic) - suppress the type I interferon (IFN) response in cell culture. This is manifested by inhibition of diverse steps of IFN induction and response, such as phosphorylation and nuclear translocation of IFN regulatory factor-3 and -7 (IRF3, IRF7), major transcription factors of the IFN gene. Furthermore, HMPV suppresses the cellular response to IFN by inhibiting the phosphorylation of STAT1 (Signal Transducer and Activator of Transcription 1), required for the induction of IFN-stimulated genes that act as antivirals. Site-directed mutagenesis revealed an important role of critical cysteine (Cys) residues in the Cys-rich carboxy terminal region of the SH protein in IFN suppression, whereas for G, the ectodomain plays a role. These results shed light on the mechanism of IFN suppression by HMPV, and may also offer avenues for new antiviral approaches in the future.
Collapse
Affiliation(s)
- Vira Bitko
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Boulevard, Mobile, AL 36688-0002, United States of America
| | - Sailen Barik
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Boulevard, Mobile, AL 36688-0002, United States of America.
| |
Collapse
|
4
|
Broad Impact of Exchange Protein Directly Activated by cAMP 2 (EPAC2) on Respiratory Viral Infections. Viruses 2021; 13:v13061179. [PMID: 34205489 PMCID: PMC8233786 DOI: 10.3390/v13061179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The recently discovered exchange protein directly activated by cAMP (EPAC), compared with protein kinase A (PKA), is a fairly new family of cAMP effectors. Soon after the discovery, EPAC has shown its significance in many diseases including its emerging role in infectious diseases. In a recent study, we demonstrated that EPAC, but not PKA, is a promising therapeutic target to regulate respiratory syncytial virus (RSV) replication and its associated inflammation. In mammals, there are two isoforms of EPAC-EPAC1 and EPAC2. Unlike other viruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) and Ebola virus, which use EPAC1 to regulate viral replication, RSV uses EPAC2 to control its replication and associated cytokine/chemokine responses. To determine whether EPAC2 protein has a broad impact on other respiratory viral infections, we used an EPAC2-specific inhibitor, MAY0132, to examine the functions of EPAC2 in human metapneumovirus (HMPV) and adenovirus (AdV) infections. HMPV is a negative-sense single-stranded RNA virus belonging to the family Pneumoviridae, which also includes RSV, while AdV is a double-stranded DNA virus. Treatment with an EPAC1-specific inhibitor was also included to investigate the impact of EPAC1 on these two viruses. We found that the replication of HMPV, AdV, and RSV and the viral-induced immune mediators are significantly impaired by MAY0132, while an EPAC1-specific inhibitor, CE3F4, does not impact or slightly impacts, demonstrating that EPAC2 could serve as a novel common therapeutic target to control these viruses, all of which do not have effective treatment and prevention strategies.
Collapse
|
5
|
Host Components That Modulate the Disease Caused by hMPV. Viruses 2021; 13:v13030519. [PMID: 33809875 PMCID: PMC8004172 DOI: 10.3390/v13030519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Human metapneumovirus (hMPV) is one of the main pathogens responsible for acute respiratory infections in children up to 5 years of age, contributing substantially to health burden. The worldwide economic and social impact of this virus is significant and must be addressed. The structural components of hMPV (either proteins or genetic material) can be detected by several receptors expressed by host cells through the engagement of pattern recognition receptors. The recognition of the structural components of hMPV can promote the signaling of the immune response to clear the infection, leading to the activation of several pathways, such as those related to the interferon response. Even so, several intrinsic factors are capable of modulating the immune response or directly inhibiting the replication of hMPV. This article will discuss the current knowledge regarding the innate and adaptive immune response during hMPV infections. Accordingly, the host intrinsic components capable of modulating the immune response and the elements capable of restricting viral replication during hMPV infections will be examined.
Collapse
|
6
|
Martinez-Espinoza I, Banos-Lara MDR, Guerrero-Plata A. The Importance of miRNA Identification During Respiratory Viral Infections. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:207-214. [PMID: 34541575 PMCID: PMC8445226 DOI: 10.33696/immunology.3.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of small non-coding RNA MicroRNAs (miRNAs) during respiratory viral infections is of critical importance as they are implicated in the viral replication, immune responses and severity of disease pathogenesis. Respiratory viral infections have an extensive impact on human health across the globe. For that is essential to understand the factors that regulate the host response against infections. The differential miRNA pattern induced by respiratory viruses has been reported, including include influenza A virus (IAV), human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), adenovirus (AdV), and more recently, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. In this commentary, we highlight the importance of miRNAs identification and the contribution of these molecules in the modulation of the immune response through the upregulation and downregulation of miRNAs expression in different immune and non-immune cells.
Collapse
Affiliation(s)
- Ivan Martinez-Espinoza
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | | |
Collapse
|
7
|
Choi EJ, Wu W, Chen Y, Yan W, Li L, Choudhury A, Bao X. The role of M2-2 PDZ-binding motifs in pulmonary innate immune responses to human metapneumovirus. J Med Virol 2020; 92:2946-2954. [PMID: 32073159 PMCID: PMC8357536 DOI: 10.1002/jmv.25713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/11/2020] [Indexed: 12/14/2022]
Abstract
Human metapneumovirus (HMPV) is a leading cause of lower respiratory tract infection (LRTI) in pediatric and geriatric populations. We recently found that two PDZ-binding motifs of the M2-2 protein, 29-DEMI-32 and 39-KEALSDGI-46, play a significant role in mediating HMPV immune evasion in airway epithelial cells (AECs). However, their role in the overall pulmonary responses to HMPV infection has not been investigated. In this study, we found that two recombinant HMPVs (rHMPV) lacking the individual M2-2 PDZ-binding motif are attenuated in mouse lungs. Mice infected with mutants produce more cytokines/chemokines in bronchoalveolar lavage (BAL) fluid compared to mice infected with wild-type rHMPV. In addition, both mutants are able to enhance the pulmonary recruitment of dendritic cells (DCs) and T cells and induce effective protections against the HMPV challenge. The DC maturation is also significantly improved by the motif mutation. Taken together, our data provide proof-of-principle for two live-attenuated M2-2 mutants to be promising HMPV vaccine candidates that are effective in inducing higher pulmonary innate immunity and generating protection against HMPV infection.
Collapse
Affiliation(s)
- Eun-Jin Choi
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
| | - Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
| | - Yu Chen
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
| | - Weiyu Yan
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
- Honeybee Research Institute, Jiangxi Agriculture University, Nanchang, Jiangxi, China
| | - Liqing Li
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
- Department of Microbiology, The University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Atanu Choudhury
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
- The University of Texas at Austin, Austin, TX78712, USA
| | - Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston
- Sealy Center for Molecular Medicine, UTMB, Galveston, TX 77555, USA
- The Institute of Translational Sciences, UTMB, Galveston, TX 77555, USA
- The Institute for Human Infections and Immunity, UTMB, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Ballegeer M, Saelens X. Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:v12050542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
Affiliation(s)
- Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
9
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542&set/a 882111696+808152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
10
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020. [DOI: 10.3390/v12050542
expr 836379838 + 819716165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
11
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
12
|
Rouka E, Hatzoglou C, Gourgoulianis KI, Zarogiannis SG. Interactome networks between the human respiratory syncytial virus (HRSV), the human metapneumovirus (ΗMPV), and their host: In silico investigation and comparative functional enrichment analysis. Microb Pathog 2020; 141:104000. [PMID: 31988005 DOI: 10.1016/j.micpath.2020.104000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVES Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are leading causes of upper and lower respiratory tract infections in non-immunocompetent subjects, yet the mechanisms by which they induce their pathogenicity differ significantly and remain elusive. In this study we aimed at identifying the gene interaction networks between the HRSV, HMPV respiratory pathogens and their host along with the different cell-signaling pathways associated with the above interactomes. MATERIALS AND METHODS The Viruses STRING database (http://viruses.string-db.org/) was used for the identification of the host-viruses interaction networks. The two lists of the predicted functional partners were entered in the FunRich tool (http://www.funrich.org) for the construction of the Venn diagram and the comparative Funcional Enrichment Analysis (FEA) with respect to biological pathways. The sets of the common and unique human genes identified in the two networks were also analyzed. The computational predictions regarding the shared human genes in the host-HRSV and the host-HMPV interactomes were further evaluated via the analysis of the GSE111732 dataset. miRNA transcriptomics data were mapped to gene targets using the miRNomics pipeline of the GeneTrail2 database (https://genetrail2.bioinf.uni-sb.de/). RESULTS Eleven out of twenty predicted human genes were common in the two interactomes (TLR4, SOCS3, SFXN1, AKT1, SFXN3, LY96, SFXN2, SOCS7, CISH, SOCS6, SOCS1). FEA of these common genes identified the kit receptor and the GH receptor signaling pathways as the most significantly enriched annotations. The remaining nine genes of the host-HRSV and the host-HMPV interaction networks were the IFIH1, DDX58, NCL, IRF3, STAT2, HSPA4, CD209, KLF6, CHKA and the MYD88, SOCS4, SOCS2, SOCS5 AKT2, AKT3, SFXN4, SFXN5 and TLR3 respectively. Distinct cell-signaling pathways were enriched per interactome. The comparative FEA highlighted the association of the host-HRSV functional partners with the negative regulation of RIG-I/MDA5 signaling. The analysis with respect to miRNAs mapping to gene targets of the GSE111732 dataset indicated that nine out of the eleven common host genes are either enriched or depleted in the sample sets (HRSV or HMPV infected) as compared with the reference set (non-infected), although with no significant scores. CONCLUSIONS We have identified both shared and unique host genes as members of the HRSV and HMPV interaction networks. The disparate human genes likely contribute to distinct responses in airway epithelial cells.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Transfusion Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41334, Larissa, Greece; Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece.
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41334, Larissa, Greece.
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41334, Larissa, Greece.
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41334, Larissa, Greece.
| |
Collapse
|
13
|
Cell-Type-Specific Transcription of Innate Immune Regulators in response to HMPV Infection. Mediators Inflamm 2019; 2019:4964239. [PMID: 31686982 PMCID: PMC6803734 DOI: 10.1155/2019/4964239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/18/2019] [Accepted: 08/24/2019] [Indexed: 12/17/2022] Open
Abstract
Human metapneumovirus (HMPV) may cause severe respiratory disease. The early innate immune response to viruses like HMPV is characterized by induction of antiviral interferons (IFNs) and proinflammatory immune mediators that are essential in shaping adaptive immune responses. Although innate immune responses to HMPV have been comprehensively studied in mice and murine immune cells, there is less information on these responses in human cells, comparing different cell types infected with the same HMPV strain. The aim of this study was to characterize the HMPV-induced mRNA expression of critical innate immune mediators in human primary cells relevant for airway disease. In particular, we determined type I versus type III IFN expression in human epithelial cells and monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs). In epithelial cells, HMPV induced only low levels of IFN-β mRNA, while a robust mRNA expression of IFN-λs was found in epithelial cells, MDMs, and MDDCs. In addition, we determined induction of the interferon regulatory factors (IRFs) IRF1, IRF3, and IRF7 and critical inflammatory cytokines (IL-6, IP-10, and IL-1β). Interestingly, IRF1 mRNA was predominantly induced in MDMs and MDDCs. Overall, our results suggest that for HMPV infection of MDDCs, MDMs, NECs, and A549 cells (the cell types examined), cell type is a strong determinator of the ability of HMPV to induce different innate immune mediators. HMPV induces the transcription of IFN-β and IRF1 to higher extents in MDMs and MDDCs than in A549s and NECs, whereas the induction of type III IFN-λ and IRF7 is considerable in MDMs, MDDCs, and A549 epithelial cells.
Collapse
|
14
|
Soto JA, Gálvez NMS, Benavente FM, Pizarro-Ortega MS, Lay MK, Riedel C, Bueno SM, Gonzalez PA, Kalergis AM. Human Metapneumovirus: Mechanisms and Molecular Targets Used by the Virus to Avoid the Immune System. Front Immunol 2018; 9:2466. [PMID: 30405642 PMCID: PMC6207598 DOI: 10.3389/fimmu.2018.02466] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022] Open
Abstract
Human metapneumovirus (hMPV) is a respiratory virus, first reported the year 2001. Since then, it has been described as one of the main etiological agents that causes acute lower respiratory tract infections (ALRTIs), which is characterized by symptoms such as bronchiolitis, wheezing and coughing. Susceptible population to hMPV-infection includes newborn, children, elderly and immunocompromised individuals. This viral agent is a negative-sense, single-stranded RNA enveloped virus, that belongs to the Pneumoviridae family and Metapneumovirus genus. Early reports—previous to 2001—state several cases of respiratory illness without clear identification of the responsible pathogen, which could be related to hMPV. Despite the similarities of hMPV with several other viruses, such as the human respiratory syncytial virus or influenza virus, mechanisms used by hMPV to avoid the host immune system are still unclear. In fact, evidence indicates that hMPV induces a poor innate immune response, thereby affecting the adaptive immunity. Among these mechanisms, is the promotion of an anergic state in T cells, instead of an effective polarization or activation, which could be induced by low levels of cytokine secretion. Further, the evidences support the notion that hMPV interferes with several pattern recognition receptors (PRRs) and cell signaling pathways triggered by interferon-associated genes. However, these mechanisms reported in hMPV are not like the ones reported for hRSV, as the latter has two non-structural proteins that are able to inhibit these pathways. Several reports suggest that viral glycoproteins, such as G and SH, could play immune-modulator roles during infection. In this work, we discuss the state of the art regarding the mechanisms that underlie the poor immunity elicited by hMPV. Importantly, these mechanisms will be compared with those elicited by other common respiratory viruses.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Uche IK, Guerrero-Plata A. Interferon-Mediated Response to Human Metapneumovirus Infection. Viruses 2018; 10:v10090505. [PMID: 30231515 PMCID: PMC6163993 DOI: 10.3390/v10090505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 12/13/2022] Open
Abstract
Human metapneumovirus (HMPV) is one of the leading causes of respiratory diseases in infants and children worldwide. Although this pathogen infects mainly young children, elderly and immunocompromised people can be also seriously affected. To date, there is no commercial vaccine available against it. Upon HMPV infection, the host innate arm of defense produces interferons (IFNs), which are critical for limiting HMPV replication. In this review, we offer an updated landscape of the HMPV mediated-IFN response in different models as well as some of the defense tactics employed by the virus to circumvent IFN response.
Collapse
Affiliation(s)
- Ifeanyi K Uche
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
- Center for Experimental Infectious Disease Research, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
16
|
Human Metapneumovirus Small Hydrophobic Protein Inhibits Interferon Induction in Plasmacytoid Dendritic Cells. Viruses 2018; 10:v10060278. [PMID: 29789500 PMCID: PMC6024365 DOI: 10.3390/v10060278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022] Open
Abstract
Human metapneumovirus (hMPV), a leading cause of respiratory tract infections in infants, encodes a small hydrophobic (SH) protein of unknown function. Here we show that infection of plasmacytoid dendritic cells (pDCs) with a recombinant virus lacking SH expression (rhMPV-ΔSH) enhanced the secretion of type I interferons (IFNs), which required TLR7 and MyD88 expression. HMPV SH protein inhibited TLR7/MyD88/TRAF6 signaling leading to IFN gene transcription, identifying a novel mechanism by which paramyxovirus SH proteins modulate innate immune responses.
Collapse
|
17
|
Diab M, Vitenshtein A, Drori Y, Yamin R, Danziger O, Zamostiano R, Mandelboim M, Bacharach E, Mandelboim O. Suppression of human metapneumovirus (HMPV) infection by the innate sensing gene CEACAM1. Oncotarget 2018; 7:66468-66479. [PMID: 27634893 PMCID: PMC5341814 DOI: 10.18632/oncotarget.11979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
The innate sensing system is equipped with PRRs specialized in recognizing molecular structures (PAMPs) of various pathogens. This leads to the induction of anti-viral genes and inhibition of virus growth. Human Metapneumovirus (HMPV) is a major respiratory virus that causes an upper and lower respiratory tract infection in children. In this study we show that upon HMPV infection, the innate sensing system detects the viral RNA through the RIG-I sensor leading to induction of CEACAM1 expression. We further show that CEACAM1 is induced via binding of IRF3 to the CEACAM1 promoter. We demonstrate that induction of CEACAM1 suppresses the viral loads via inhibition of the translation machinery in the infected cells in an SHP2-dependent manner. In summary, we show here that HMPV-infected cells upregulates CEACAM1 to restrict HMPV infection.
Collapse
Affiliation(s)
- Mohammad Diab
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Alon Vitenshtein
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yaron Drori
- Central Virology Laboratory, Ministry of Health, Public Health Services, Chaim, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel.,Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Oded Danziger
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Zamostiano
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Public Health Services, Chaim, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel.,Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eran Bacharach
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
18
|
Okamoto M, Tsukamoto H, Kouwaki T, Seya T, Oshiumi H. Recognition of Viral RNA by Pattern Recognition Receptors in the Induction of Innate Immunity and Excessive Inflammation During Respiratory Viral Infections. Viral Immunol 2017; 30:408-420. [PMID: 28609250 DOI: 10.1089/vim.2016.0178] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The innate immune system is the first line of defense against virus infection that triggers the expression of type I interferon (IFN) and proinflammatory cytokines. Pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns, resulting in the induction of innate immune responses. Viral RNA in endosomes is recognized by Toll-like receptors, and cytoplasmic viral RNA is recognized by RIG-I-like receptors. The host innate immune response is critical for protection against virus infection. However, it has been postulated that an excessive inflammatory response in the lung caused by the innate immune response is harmful to the host and is a cause of lethality during influenza A virus infection. Although the deletion of genes encoding PRRs or proinflammatory cytokines does not improve the mortality of mice infected with influenza A virus, a partial block of the innate immune response is successful in decreasing the mortality rate of mice without a loss of protection against virus infection. In addition, morbidity and mortality rates are influenced by other factors. For example, secondary bacterial infection increases the mortality rate in patients with influenza A virus and in animal models of the disease, and environmental factors, such as cigarette smoke and fine particles, also affect the innate immune response. In this review, we summarize recent findings related to the role of PRRs in innate immune response during respiratory viral infection.
Collapse
Affiliation(s)
- Masaaki Okamoto
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Hirotake Tsukamoto
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Takahisa Kouwaki
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Tsukasa Seya
- 2 Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| | - Hiroyuki Oshiumi
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan .,3 PRESTO JST, Kumamoto, Japan
| |
Collapse
|
19
|
Abstract
Globally, as a leading agent of acute respiratory tract infections in children <5 years of age and the elderly, the human metapneumovirus (HMPV) has gained considerable attention. As inferred from studies comparing vaccinated and experimentally infected mice, the acquired immune response elicited by this pathogen fails to efficiently clear the virus from the airways, which leads to an exaggerated inflammatory response and lung damage. Furthermore, after disease resolution, there is a poor development of T and B cell immunological memory, which is believed to promote reinfections and viral spread in the community. In this article, we discuss the molecular mechanisms that shape the interactions of HMPV with host tissues that lead to pulmonary pathology and to the development of adaptive immunity that fails to protect against natural infections by this virus.
Collapse
|
20
|
Chen Y, Deng X, Deng J, Zhou J, Ren Y, Liu S, Prusak DJ, Wood TG, Bao X. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion. Virology 2016; 499:361-368. [PMID: 27743962 PMCID: PMC5102771 DOI: 10.1016/j.virol.2016.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 01/12/2023]
Abstract
Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. This manuscript describes a molecular mechanism underlying the immune evasion of hMPV. Results create the design basis for safer and more effective hMPV vaccines/therapeutic molecules. We demonstrate the contribution of TRAFs in antiviral responses to hMPV infection.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoling Deng
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Junfang Deng
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Jiehua Zhou
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China
| | - Yuping Ren
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Shengxuan Liu
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Deborah J Prusak
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States; The Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, United States; The Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
21
|
Deng J, Chen Y, Liu G, Ren J, Go C, Ivanciuc T, Deepthi K, Casola A, Garofalo RP, Bao X. Mitochondrial antiviral-signalling protein plays an essential role in host immunity against human metapneumovirus. J Gen Virol 2015; 96:2104-2113. [PMID: 25953917 DOI: 10.1099/vir.0.000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human metapneumovirus (hMPV) is a common cause of respiratory tract infection in the paediatrics population. Recently, we and others have shown that retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) are essential for hMPV-induced cellular antiviral signalling. However, the contribution of those receptors to host immunity against pulmonary hMPV infection is largely unexplored. In this study, mice deficient in mitochondrial antiviral-signalling protein (MAVS), an adaptor of RLRs, were used to investigate the role(s) of these receptors in pulmonary immune responses to hMPV infection. MAVS deletion significantly impaired the induction of antiviral and pro-inflammatory cytokines and the recruitment of immune cells to the bronchoalveolar lavage fluid by hMPV. Compared with WT mice, mice lacking MAVS demonstrated decreased abilities to activate pulmonary dendritic cells (DCs) and abnormal primary T-cell responses to hMPV infection. In addition, mice deficient in MAVS had a higher peak of viral load at day 5 post-infection (p.i.) than WT mice, but were able to clear hMPV by day 7 p.i. similarly to WT mice. Taken together, our data indicate a role of MAVS-mediated pathways in the pulmonary immune responses to hMPV infection and the early control of hMPV replication.
Collapse
Affiliation(s)
- Junfang Deng
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, PR China
| | - Yu Chen
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pediatrics, TongJi Hospital, Huazhong University of Science and Technology, PR China
| | - Guangliang Liu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Otorhinolaryngology, Sixth Affiliated Hospital, Sun Yat-Sen University, PR China
| | - Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Caroline Go
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Kolli Deepthi
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
22
|
Komaravelli N, Kelley JP, Garofalo MP, Wu H, Casola A, Kolli D. Role of dietary antioxidants in human metapneumovirus infection. Virus Res 2015; 200:19-23. [PMID: 25645280 DOI: 10.1016/j.virusres.2015.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
Abstract
Human metapneumovirus (hMPV) is a major cause of respiratory tract infections in children, elderly and immunocompromised hosts, for which no vaccine or treatment are currently available. Oxidative stress and inflammatory responses represent important pathogenic mechanism(s) of hMPV infection. Here, we explored the potential protective role of dietary antioxidants in hMPV infection. Treatment of airway epithelial cells with resveratrol and quercetin during hMPV infection significantly reduced cellular oxidative damage, inflammatory mediator secretion and viral replication, without affecting viral gene transcription and protein synthesis, indicating that inhibition of viral replication occurred at the level of viral assembly and/or release. Modulation of proinflammatory mediator expression occurred through the inhibition of transcription factor nuclear factor (NF)-κB and interferon regulatory factor (IRF)-3 binding to their cognate site of endogenous gene promoters. Our results indicate the use of dietary antioxidants as an effective treatment approach for modulating hMPV induced lung oxidative damage and inflammation.
Collapse
Affiliation(s)
- Narayana Komaravelli
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - John P Kelley
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Matteo P Garofalo
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Haotian Wu
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Antonella Casola
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Deepthi Kolli
- Departments of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
23
|
Abstract
Acute respiratory tract infection (RTI) is a leading cause of morbidity and mortality worldwide and the majority of RTIs are caused by viruses, among which respiratory syncytial virus (RSV) and the closely related human metapneumovirus (hMPV) figure prominently. Host innate immune response has been implicated in recognition, protection and immune pathological mechanisms. Host-viral interactions are generally initiated via host recognition of pathogen-associated molecular patterns (PAMPs) of the virus. This recognition occurs through host pattern recognition receptors (PRRs) which are expressed on innate immune cells such as epithelial cells, dendritic cells, macrophages and neutrophils. Multiple PRR families, including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs), contribute significantly to viral detection, leading to induction of cytokines, chemokines and type I interferons (IFNs), which subsequently facilitate the eradication of the virus. This review focuses on the current literature on RSV and hMPV infection and the role of PRRs in establishing/mediating the infection in both in vitro and in vivo models. A better understanding of the complex interplay between these two viruses and host PRRs might lead to efficient prophylactic and therapeutic treatments, as well as the development of adequate vaccines.
Collapse
|
24
|
Lai SH, Liao SL, Wong KS, Lin TY. Defective innate immune responses to respiratory syncytial virus infection in ovalbumin-sensitized mice. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 50:17-25. [PMID: 25708602 DOI: 10.1016/j.jmii.2014.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 08/06/2014] [Accepted: 09/22/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND/PURPOSE Respiratory viral infections have frequently been reported to closely correlate with asthma exacerbations. Distinctive expression of cytokine/chemokine and anomalous responses of innate immunity induced by respiratory viral infections were suggested to play a key role. This study further evaluates the effects of airway sensitization on innate immunity in response to different viruses. METHODS Murine sensitization was established using an ovalbumin (OVA) sensitization model. Mice were subsequently infected with either respiratory syncytial virus (RSV) or human metapneumovirus (hMPV). Type I interferon (IFN), cytokines, and chemokines were measured in bronchoalveolar lavage (BAL) fluid. Pulmonary tissue samples were collected for the analysis of viral titers and type I IFN signal transcriptors. RESULTS Distinct expressions of cytokine/chemokine responses after viral infection were also found in mice with OVA sensitization. A significant increase of virus replication was found in lungs of RSV-infected sensitized mice. The increment of RSV titer was associated with the decreased levels of type I IFN. Although Toll-like receptor 3 (TLR3) expression was significantly increased in the lungs, the key signal transcriptor, IFN regulatory factor 3, was significantly suppressed in the RSV-infected sensitized mice. CONCLUSION A defective antiviral innate response was observed in the murine respiratory allergy model. Suppressed expression of IFN signal transcriptor contributes to decreased production of type I IFN. The defective innate immune response might result in acute viral exacerbations of allergic airway diseases.
Collapse
Affiliation(s)
- Shen-Hao Lai
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan
| | - Sui-Ling Liao
- Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kin-Sun Wong
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
25
|
Werner JL, Steele C. Innate receptors and cellular defense against pulmonary infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3842-50. [PMID: 25281754 PMCID: PMC4185409 DOI: 10.4049/jimmunol.1400978] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the United States, lung infections consistently rank in the top 10 leading causes of death, accounting for >50,000 deaths annually. Moreover, >140,000 deaths occur annually as a result of chronic lung diseases, some of which may be complicated by an infectious process. The lung is constantly exposed to the environment and is susceptible to infectious complications caused by bacterial, viral, fungal, and parasitic pathogens. Indeed, we are continually faced with the threat of morbidity and mortality associated with annual influenza virus infections, new respiratory viruses (e.g., SARS-CoV), and lung infections caused by antibiotic-resistant "ESKAPE pathogens" (three of which target the lung). This review highlights innate immune receptors and cell types that function to protect against infectious challenges to the respiratory system yet also may be associated with exacerbations in chronic lung diseases.
Collapse
Affiliation(s)
- Jessica L Werner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
26
|
Spann KM, Baturcam E, Schagen J, Jones C, Straub CP, Preston FM, Chen L, Phipps S, Sly PD, Fantino E. Viral and host factors determine innate immune responses in airway epithelial cells from children with wheeze and atopy. Thorax 2014; 69:918-25. [PMID: 24811725 PMCID: PMC4174127 DOI: 10.1136/thoraxjnl-2013-204908] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Airway epithelial cells (AEC) from patients with asthma, appear to have an impaired interferon (IFN)-β and -λ response to infection with rhinovirus. OBJECTIVES To determine if impaired IFN responses can be identified in young children at risk of developing asthma due to atopy and/or early life wheeze, and if the site of infection or the infecting virus influence the antiviral response. METHODS Nasal (N) and tracheal (T) epithelial cells (EC) were collected from children categorised with atopy and/or wheeze based on specific IgE to locally common aeroallergens and a questionnaire concerning respiratory health. Submerged primary cultures were infected with respiratory syncytial virus (RSV) or human metapneumovirus (hMPV), and IFN production, inflammatory cytokine expression and viral replication quantified. RESULTS Nasal epithelial cells (NEC), but not tracheal epithelial cells (TEC), from children with wheeze and/or atopy produced less IFN-β, but not IFN-λ, in response to RSV infection; this was associated with higher viral shedding. However, IFN-regulated factors IRF-7, Mx-1 and CXCL-10, and inflammatory cytokines were not differentially regulated. NECs and TECs from children with wheeze and/or atopy demonstrated no impairment of the IFN response (β or λ) to hMPV infection. Despite this, more hMPV was shed from these cells. CONCLUSIONS AECs from children with wheeze and/or atopy do not have an intrinsic defect in the production of IFN-β or -λ, however, this response is influenced by the infecting virus. Higher viral load is associated with atopy and wheeze suggesting an impaired antiviral response to RSV and hMPV that is not influenced by production of IFNs.
Collapse
Affiliation(s)
- Kirsten M Spann
- Clinical Medical Virology Centre, The University of Queensland, Herston, Queensland, Australia Sir Albert Sakzewski Virus Research Centre, Queensland Children's Hospital and Health District, Herston, Queensland, Australia Australian Infectious Disease Research Centre, Queensland, Australia
| | - Engin Baturcam
- Clinical Medical Virology Centre, The University of Queensland, Herston, Queensland, Australia Sir Albert Sakzewski Virus Research Centre, Queensland Children's Hospital and Health District, Herston, Queensland, Australia Queensland Children's Medical Research Institute, Herston, Queensland, Australia
| | - Johanna Schagen
- Queensland Children's Medical Research Institute, Herston, Queensland, Australia
| | - Carmen Jones
- Queensland Children's Medical Research Institute, Herston, Queensland, Australia
| | - Claire P Straub
- Clinical Medical Virology Centre, The University of Queensland, Herston, Queensland, Australia Sir Albert Sakzewski Virus Research Centre, Queensland Children's Hospital and Health District, Herston, Queensland, Australia
| | - F Maxine Preston
- Clinical Medical Virology Centre, The University of Queensland, Herston, Queensland, Australia Sir Albert Sakzewski Virus Research Centre, Queensland Children's Hospital and Health District, Herston, Queensland, Australia
| | - Linping Chen
- Queensland Children's Medical Research Institute, Herston, Queensland, Australia
| | - Simon Phipps
- Australian Infectious Disease Research Centre, Queensland, Australia School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Peter D Sly
- Australian Infectious Disease Research Centre, Queensland, Australia Queensland Children's Medical Research Institute, Herston, Queensland, Australia Global Change Institute, University of Queensland, Queensland, Australia
| | - Emmanuelle Fantino
- Queensland Children's Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
27
|
van den Hoogen BG, van Boheemen S, de Rijck J, van Nieuwkoop S, Smith DJ, Laksono B, Gultyaev A, Osterhaus ADME, Fouchier RAM. Excessive production and extreme editing of human metapneumovirus defective interfering RNA is associated with type I IFN induction. J Gen Virol 2014; 95:1625-1633. [PMID: 24760760 PMCID: PMC4103063 DOI: 10.1099/vir.0.066100-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type I IFN production is one of the hallmarks of host innate immune responses upon virus infection. Whilst most respiratory viruses carry IFN antagonists, reports on human metapneumovirus (HMPV) have been conflicting. Using deep sequencing, we have demonstrated that HMPV particles accumulate excessive amounts of defective interfering RNA (DIs) rapidly upon in vitro passage, and that these are associated with IFN induction. Importantly, the DIs were edited extensively; up to 70% of the original A and T residues had mutated to G or C, respectively. Such high editing rates of viral RNA have not, to our knowledge, been reported before. Bioinformatics and PCR assays indicated that adenosine deaminase acting on RNA (ADAR) was the most likely editing enzyme. HMPV thus has an unusually high propensity to generate DIs, which are edited at an unprecedented high frequency. The conflicting published data on HMPV IFN induction and antagonism are probably explained by DIs in virus stocks. The interaction of HMPV DIs with the RNA-editing machinery and IFN responses warrants further investigation.
Collapse
Affiliation(s)
| | | | - Jonneke de Rijck
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Brigitta Laksono
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Spann KM, Loh Z, Lynch JP, Ullah A, Zhang V, Baturcam E, Werder RB, Khajornjiraphan N, Rudd P, Loo YM, Suhrbier A, Gale M, Upham JW, Phipps S. IRF-3, IRF-7, and IPS-1 promote host defense against acute human metapneumovirus infection in neonatal mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1795-806. [PMID: 24726644 DOI: 10.1016/j.ajpath.2014.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/27/2014] [Accepted: 02/18/2014] [Indexed: 12/16/2022]
Abstract
Human metapneumovirus (hMPV) is a leading cause of respiratory tract disease in children and is associated with acute bronchiolitis, pneumonia, and asthma exacerbations, yet the mechanisms by which the host immune response to hMPV is regulated are poorly understood. By using gene-deleted neonatal mice, we examined the contributions of the innate receptor signaling molecules interferon (IFN)-β promoter stimulator 1 (IPS-1), IFN regulatory factor (IRF) 3, and IRF7. Viral load in the lungs was markedly greater in IPS-1(-/-) > IRF3/7(-/-) > IRF3(-/-), but not IRF7(-/-), mice compared with wild-type mice. IFN-β and IFN-λ2/3 (IL-28A/B) production was attenuated in the bronchoalveolar lavage fluid in all factor-deficient mice compared with wild-type mice at 1 day after infection, although IFN-λ2/3 was greater in IRF3/7(-/-) mice at 5 days after infection. IRF7(-/-) and IRF3/7(-/-) mice presented with airway eosinophilia, whereas only IRF3/7(-/-) mice developed an exaggerated type 1 and 17 helper T-cell response, characterized by natural killer T-cell and neutrophilic inflammation. Despite having the highest viral load, IPS-1(-/-) mice did not develop a proinflammatory cytokine or granulocytic response to hMPV infection. Our findings demonstrate that IFN-β, but not IFN-λ2/3, produced via an IPS-1-IRF3 signaling pathway, is important for hMPV clearance. In the absence of a robust type I IFN-α/β response, targeting the IPS-1 signaling pathway may limit the overexuberant inflammatory response that occurs as a consequence of viral persistence.
Collapse
Affiliation(s)
- Kirsten M Spann
- Clinical Medical Virology Centre, University of Queensland, St. Lucia, Australia; Sir Albert Sakzewski Virus Research Centre, Children's Hospital Queensland, Australia; Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Australia.
| | - Zhixuan Loh
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | - Jason P Lynch
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | - Ashik Ullah
- Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Vivian Zhang
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | - Engin Baturcam
- Clinical Medical Virology Centre, University of Queensland, St. Lucia, Australia; Sir Albert Sakzewski Virus Research Centre, Children's Hospital Queensland, Australia; Queensland Childrens Medical Research Institute, University of Queensland, Herston, Australia
| | - Rhiannon B Werder
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | | | - Penny Rudd
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Australia; QIMR Berghofer Institute of Medical Research, Brisbane, Australia
| | - Yeuh-Ming Loo
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Australia; QIMR Berghofer Institute of Medical Research, Brisbane, Australia
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington
| | - John W Upham
- Lung and Allergy Research Centre, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Australia; Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, Australia
| | - Simon Phipps
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Australia; School of Biomedical Sciences, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
29
|
Ren J, Liu G, Go J, Kolli D, Zhang G, Bao X. Human metapneumovirus M2-2 protein inhibits innate immune response in monocyte-derived dendritic cells. PLoS One 2014; 9:e91865. [PMID: 24618691 PMCID: PMC3950292 DOI: 10.1371/journal.pone.0091865] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/17/2014] [Indexed: 01/12/2023] Open
Abstract
Human metapneumovirus (hMPV) is a leading cause of lower respiratory infection in young children, the elderly and immunocompromised patients. Repeated hMPV infections occur throughout life. However, immune evasion mechanisms of hMPV infection are largely unknown. Recently, our group has demonstrated that hMPV M2-2 protein, an important virulence factor, contributes to immune evasion in airway epithelial cells by targeting the mitochondrial antiviral-signaling protein (MAVS). Whether M2-2 regulates the innate immunity in human dendritic cells (DC), an important family of immune cells controlling antigen presenting, is currently unknown. We found that human DC infected with a virus lacking M2-2 protein expression (rhMPV-ΔM2-2) produced higher levels of cytokines, chemokines and IFNs, compared to cells infected with wild-type virus (rhMPV-WT), suggesting that M2-2 protein inhibits innate immunity in human DC. In parallel, we found that myeloid differentiation primary response gene 88 (MyD88), an essential adaptor for Toll-like receptors (TLRs), plays a critical role in inducing immune response of human DC, as downregulation of MyD88 by siRNA blocked the induction of immune regulatory molecules by hMPV. Since M2-2 is a cytoplasmic protein, we investigated whether M2-2 interferes with MyD88-mediated antiviral signaling. We found that indeed M2-2 protein associated with MyD88 and inhibited MyD88-dependent gene transcription. In this study, we also identified the domains of M2-2 responsible for its immune inhibitory function in human DC. In summary, our results demonstrate that M2-2 contributes to hMPV immune evasion by inhibiting MyD88-dependent cellular responses in human DC.
Collapse
Affiliation(s)
- Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Guangliang Liu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Otorhinolaryngology, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jonathan Go
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Deepthi Kolli
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Guanping Zhang
- Department of Otorhinolaryngology, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Velayutham TS, Kolli D, Ivanciuc T, Garofalo RP, Casola A. Critical role of TLR4 in human metapneumovirus mediated innate immune responses and disease pathogenesis. PLoS One 2013; 8:e78849. [PMID: 24205331 PMCID: PMC3812158 DOI: 10.1371/journal.pone.0078849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
Human metapneumovirus (hMPV) is one of the main causes of acute respiratory tract infections in children, elderly and immunocompromised patients. The mammalian Toll-like receptors (TLR) were identified as critical regulators of innate immunity to a variety of microbes, including viruses. We have recently shown that hMPV-induced cytokine, chemokine and type I interferon secretion in dendritic cells occurs via TLR4, however, its role in hMPV-induced disease is unknown. In this study, wild-type(WT) and TLR4-deficient mice (TLR4−/−) were infected with hMPV and examined for clinical disease parameters, such as body weight loss and airway obstruction, viral clearance, lung inflammation, dendritic cell maturation, T-cell proliferation and antibody production. Our results demonstrate that absence of TLR4 in hMPV-infected mice significantly reduced the inflammatory response as well as disease severity, shown by reduced body weight loss and airway obstruction and hyperresponsiveness (AHR), compared to WT mice. Levels of cytokines and chemokines were also significantly lower in the TLR4−/− mice. Accordingly, recruitment of inflammatory cells in the BAL, lungs, as well as in lymph nodes, was significantly reduced in the TLR4−/− mice, however, viral replication and clearance, as well as T-cell proliferation and neutralizing antibody production, were not affected. Our findings indicate that TLR4 is important for the activation of the innate immune response to hMPV, however it does play a role in disease pathogenesis, as lack of TLR4 expression is associated with reduced clinical manifestations of hMPV disease, without affecting viral protection.
Collapse
Affiliation(s)
- Thangam Sudha Velayutham
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Deepthi Kolli
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Céspedes PF, Gonzalez PA, Kalergis AM. Human metapneumovirus keeps dendritic cells from priming antigen-specific naive T cells. Immunology 2013; 139:366-76. [PMID: 23374037 DOI: 10.1111/imm.12083] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/30/2012] [Accepted: 01/28/2013] [Indexed: 12/22/2022] Open
Abstract
Human metapneumovirus (hMPV) is the second most common cause of acute lower respiratory tract infections in children, causing a significant public health burden worldwide. Given that hMPV can repeatedly infect the host without major antigenic changes, it has been suggested that hMPV may have evolved molecular mechanisms to impair host adaptive immunity and, more specifically, T-cell memory. Recent studies have shown that hMPV can interfere with superantigen-induced T-cell activation by infecting conventional dendritic cells (DCs). Here, we show that hMPV infects mouse DCs in a restricted manner and induces moderate maturation. Nonetheless, hMPV-infected DCs are rendered inefficient at activating naive antigen-specific CD4(+) T cells (OT-II), which not only display reduced proliferation, but also show a marked reduction in surface activation markers and interleukin-2 secretion. Decreased T-cell activation was not mediated by interference with DC-T-cell immunological synapse formation as recently described for the human respiratory syncytial virus (hRSV), but rather by soluble factors secreted by hMPV-infected DCs. These data suggest that although hMPV infection is restricted within DCs, it is sufficient to interfere with their capacity to activate naive T cells. Altogether, by interfering with DC function and productive priming of antigen-inexperienced T cells, hMPV could impair the generation of long-term immunity.
Collapse
Affiliation(s)
- Pablo F Céspedes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Santiago, Chile
| | | | | |
Collapse
|
32
|
Ren J, Kolli D, Deng J, Fang R, Gong B, Xue M, Casola A, Garofalo RP, Wang T, Bao X. MyD88 controls human metapneumovirus-induced pulmonary immune responses and disease pathogenesis. Virus Res 2013; 176:241-50. [PMID: 23845303 DOI: 10.1016/j.virusres.2013.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/23/2013] [Accepted: 06/26/2013] [Indexed: 12/14/2022]
Abstract
Human metapneumovirus (hMPV) is a common cause of lung and airway infections in infants and young children. Recently, we and others have shown that hMPV infection induces Toll-like receptor (TLR)-dependent cellular signaling. However, the contribution of TLR-mediated signaling in host defenses against pulmonary hMPV infection and associated disease pathogenesis has not been elucidated. In this study, mice deficient in MyD88, a common adaptor of TLRs, was used to investigate the contribution of TLRs to in vivo pulmonary response to hMPV infection. MyD88(-/-) mice have significantly reduced pulmonary inflammation and associated disease compared with wild-type (WT) C57BL/6 mice after intranasal infection with hMPV. hMPV-induced cytokines and chemokines in bronchoalveolar lavage fluid (BALF) and isolated lung conventional dendritic cells (cDC) are also significantly impaired by MyD88 deletion. In addition, we found that MyD88 is required for the recruitment of DC, T cells, and other immune cells to the lungs, and for the functional regulation of DC and T cells in response to hMPV infection. Taken together, our data indicate that MyD88-mediated pathways are essential for the pulmonary immune and pathogenic responses to this viral pathogen.
Collapse
Affiliation(s)
- Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bao X, Kolli D, Ren J, Liu T, Garofalo RP, Casola A. Human metapneumovirus glycoprotein G disrupts mitochondrial signaling in airway epithelial cells. PLoS One 2013; 8:e62568. [PMID: 23626834 PMCID: PMC3633857 DOI: 10.1371/journal.pone.0062568] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/22/2013] [Indexed: 12/21/2022] Open
Abstract
Human metapneumovirus (hMPV) is a recently identified RNA virus belonging to the Paramyxoviridae family. It is a common cause of respiratory tract infections in children, adults, and immunocompromised patients, for which no specific treatment or vaccine is available. Recent investigations in our lab identified hMPV glycoprotein G as an important virulence factor, as a recombinant virus lacking the G protein (rhMPV-ΔG) exhibited enhanced production of important immune and antiviral mediators, such as cytokines, chemokines and type I interferon (IFN) in airway epithelial cells, and expression of G protein alone inhibits cellular signaling dependent on retinoic induced gene (RIG)-I, a RNA helicase with a fundamental role in initiating hMPV-induced cellular responses. In this study, we have further investigated the mechanism underlying the inhibitory role of hMPV G protein on RIG-I-dependent signaling. We found that the interaction of hMPV G with RIG-I occurs primarily through the CARD domains of RIG-I N-terminus, preventing RIG-I association with the adaptor protein MAVS (mitochondrial antiviral signaling protein), recruitment of RIG-I to mitochondria, as well as the interaction between mitochondria and mitochondria-associated membrane (MAM) component of the endoplasmic reticulum (ER), which contains STINGS, an important part of the viral-induced RIG-I/MAVS signaling pathway, leading in the end to the inhibition of cytokine, chemokine and type I IFN expression. Mutagenesis analysis showed that hMPV G protein cytoplasmic domain played a major role in the observed inhibitory activity, and recombinant viruses expressing a G protein with amino acid substitution in position 2 and 3 recapitulated most of the phenotype observed with rhMPV-ΔG mutant upon infection of airway epithelial cells.
Collapse
Affiliation(s)
- Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail: (XB); (AC)
| | - Deepthi Kolli
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Junping Ren
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail: (XB); (AC)
| |
Collapse
|
34
|
da Conceição TM, Rust NM, Berbel ACER, Martins NB, do Nascimento Santos CA, Da Poian AT, de Arruda LB. Essential role of RIG-I in the activation of endothelial cells by dengue virus. Virology 2013; 435:281-92. [PMID: 23089253 DOI: 10.1016/j.virol.2012.09.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/12/2012] [Accepted: 09/28/2012] [Indexed: 01/09/2023]
Abstract
Dengue virus (DENV) infection is associated to exacerbated inflammatory response and structural and functional alterations in the vascular endothelium. However, the mechanisms underlying DENV-induced endothelial cell activation and their role in the inflammatory response were not investigated so far. We demonstrated that human brain microvascular endothelial cells (HBMECs) are susceptible to DENV infection, which induces the expression of the cytoplasmic pattern recognition receptor (PRR) RIG-I. Infection of HBMECs promoted an increase in the production of type I IFN and proinflammatory cytokines, which were abolished after RIG-I silencing. DENV-infected HBMECs also presented a higher ICAM-1 expression dependent on RIG-I activation as well. On the other hand, ablation of RIG-I did not interfere with virus replication. Our data suggest that RIG-I activation by DENV may participate in the disease pathogenesis through the modulation of cytokine release and expression of adhesion molecules, probably contributing to leukocyte recruitment and amplification of the inflammatory response.
Collapse
Affiliation(s)
- Thaís Moraes da Conceição
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Bloco E, lab. E-018. Av. Carlos Chagas Filho, 373. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Kolli D, Bao X, Casola A. Human metapneumovirus antagonism of innate immune responses. Viruses 2012; 4:3551-71. [PMID: 23223197 PMCID: PMC3528279 DOI: 10.3390/v4123551] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/20/2012] [Accepted: 11/30/2012] [Indexed: 12/03/2022] Open
Abstract
Human metapneumovirus (hMPV) is a recently identified RNA virus belonging to the Paramyxoviridae family, which includes several major human and animal pathogens. Epidemiological studies indicate that hMPV is a significant human respiratory pathogen with worldwide distribution. It is associated with respiratory illnesses in children, adults, and immunocompromised patients, ranging from upper respiratory tract infections to severe bronchiolitis and pneumonia. Interferon (IFN) represents a major line of defense against virus infection, and in response, viruses have evolved countermeasures to inhibit IFN production as well as IFN signaling. Although the strategies of IFN evasion are similar, the specific mechanisms by which paramyxoviruses inhibit IFN responses are quite diverse. In this review, we will present an overview of the strategies that hMPV uses to subvert cellular signaling in airway epithelial cells, the major target of infection, as well as in primary immune cells.
Collapse
Affiliation(s)
- Deepthi Kolli
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
| | - Xiaoyong Bao
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
| | - Antonella Casola
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
- Microbiology and Immunology, University of Texas Medical Branch at Galveston, Texas, USA
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Texas, USA
| |
Collapse
|
36
|
Critical role of MDA5 in the interferon response induced by human metapneumovirus infection in dendritic cells and in vivo. J Virol 2012; 87:1242-51. [PMID: 23152520 DOI: 10.1128/jvi.01213-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human metapneumovirus (hMPV) is a respiratory paramyxovirus of global clinical relevance. Despite the substantial knowledge generated during the last 10 years about hMPV infection, information regarding the activation of the immune response against this virus remains largely unknown. In this study, we demonstrated that the helicase melanoma differentiation-associated gene 5 (MDA5) is essential to induce the interferon response after hMPV infection in human and mouse dendritic cells as well as in an experimental mouse model of infection. Our findings in vitro and in vivo showed that MDA5 is required for the expression and activation of interferon (IFN) regulatory factors (IRFs). hMPV infection induces activation of IRF-3, and it regulates the expression of IRF-7. However, both IRF-3 and IRF-7 are critical for the production of type I and type III IFNs. In addition, our in vivo studies in hMPV-infected mice indicated that MDA5 alters viral clearance, enhances disease severity and pulmonary inflammation, and regulates the production of cytokines and chemokines in response to hMPV. These findings are relevant for a better understanding of the pathogenesis of hMPV infection.
Collapse
|
37
|
Human metapneumovirus M2-2 protein inhibits innate cellular signaling by targeting MAVS. J Virol 2012; 86:13049-61. [PMID: 23015697 DOI: 10.1128/jvi.01248-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human metapneumovirus (hMPV) is a leading cause of respiratory infections in pediatric populations globally, with no prophylactic or therapeutic measures. Recently, a recombinant hMPV lacking the M2-2 protein (rhMPV-ΔM2-2) demonstrated reduced replication in the respiratory tract of animal models, making it a promising live vaccine candidate. However, the exact nature of the interaction between the M2-2 protein and host cells that regulates viral infection/propagation is largely unknown. By taking advantage of the available reverse genetics system and ectopic expression system for viral protein, we found that M2-2 not only promotes viral gene transcription and replication but subverts host innate immunity, therefore identifying M2-2 as a novel virulence factor, in addition to the previously described hMPV G protein. Since we have shown that the RIG-I/MAVS pathway plays an important role in hMPV-induced signaling in airway epithelial cells, we investigated whether M2-2 antagonizes the host cellular responses by targeting this pathway. Reporter gene assays and coimmunoprecipitation studies indicated that M2-2 targets MAVS, an inhibitory mechanism different from what we previously reported for hMPV G, which affects RIG-I- but not MAVS-dependent gene transcription. In addition, we found that the domains of M2-2 responsible for the regulation of viral gene transcription and antiviral signaling are different. Our findings collectively demonstrate that M2-2 contributes to hMPV immune evasion through the inhibition of MAVS-dependent cellular responses.
Collapse
|
38
|
Bayon JCL, Lina B, Rosa-Calatrava M, Boivin G. Recent developments with live-attenuated recombinant paramyxovirus vaccines. Rev Med Virol 2012; 23:15-34. [DOI: 10.1002/rmv.1717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/14/2012] [Accepted: 03/22/2012] [Indexed: 12/30/2022]
Affiliation(s)
- Jean-Christophe Le Bayon
- Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610/Equipe VirCell, Université de Lyon; Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Faculté de médecine RTH Laennec; Lyon France
- Research Center in Infectious Diseases; CHUQ-CHUL and Université Laval; Québec City QC Canada
| | - Bruno Lina
- Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610/Equipe VirCell, Université de Lyon; Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Faculté de médecine RTH Laennec; Lyon France
- Laboratoire de Virologie, Centre de Biologie et de Pathologie Est; Hospices Civils de Lyon; Lyon Bron Cedex France
| | - Manuel Rosa-Calatrava
- Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610/Equipe VirCell, Université de Lyon; Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Faculté de médecine RTH Laennec; Lyon France
| | - Guy Boivin
- Research Center in Infectious Diseases; CHUQ-CHUL and Université Laval; Québec City QC Canada
| |
Collapse
|
39
|
Abstract
It has been 10 years since human metapneumovirus (HMPV) was identified as a causative agent of respiratory illness in humans. Since then, numerous studies have contributed to a substantial body of knowledge on many aspects of HMPV. This review summarizes our current knowledge on HMPV, HMPV disease pathogenesis, and disease intervention strategies and identifies a number of areas with key questions to be addressed in the future.
Collapse
|
40
|
Hwang SY, Sun HY, Lee KH, Oh BH, Cha YJ, Kim BH, Yoo JY. 5'-Triphosphate-RNA-independent activation of RIG-I via RNA aptamer with enhanced antiviral activity. Nucleic Acids Res 2012; 40:2724-33. [PMID: 22127865 PMCID: PMC3315321 DOI: 10.1093/nar/gkr1098] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/04/2011] [Accepted: 11/04/2011] [Indexed: 12/25/2022] Open
Abstract
RIG-I is a cytosolic receptor for non-self RNA that mediates immune responses against viral infections through IFNα/β production. In an attempt to identify novel tools that modulate IFNα/β production, we used SELEX technology to screen RNA aptamers that specifically target RIG-I protein. Most of the selected RIG-I aptamers contained polyU motifs in the second half regions that played critical roles in the activation of RIG-I-mediated IFNβ production. Unlike other known ligands, RIG-I aptamer bound and activated RIG-I in a 5'-triphosphate-independent manner. The helicase and RD domain of RIG-I were used for aptamer binding, but intact RIG-I protein was required to exert aptamer-mediated signaling activation. Furthermore, replication of NDV, VSV and influenza virus in infected host cells was efficiently blocked by pre- or post-treatment with RIG-I aptamer. Based on these data, we propose that RIG-I aptamer has strong potential to be an antiviral agent that specifically boosts the RIG-I-dependent signaling cascade.
Collapse
Affiliation(s)
- Sun-Young Hwang
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hwa-Young Sun
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Kwang-Hoon Lee
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Byung-Ha Oh
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Yu Jin Cha
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Byeang Hyean Kim
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
41
|
Swiecki M, McCartney SA, Wang Y, Colonna M. TLR7/9 versus TLR3/MDA5 signaling during virus infections and diabetes. J Leukoc Biol 2011; 90:691-701. [PMID: 21844166 DOI: 10.1189/jlb.0311166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IFN-I are pleiotropic cytokines that impact innate and adaptive immune responses. In this article, we discuss TLR7/9 versus TLR3/MDA5 signaling in antiviral responses and diabetes. pDCs are thought to have a critical role in antiviral defense because of their ability to rapidly secrete large amounts of IFN-I through TLR7/9 signaling. A recent study demonstrates that although pDCs are a source of IFN-I in vivo, their overall contribution to viral containment is limited and time-dependent, such that additional cellular sources of IFN-I are required to fully control viral infections. dsRNA sensors, such as TLR3 and MDA5, provide another important trigger for antiviral IFN-I responses, which can be exploited to enhance immune responses to vaccines. In the absence of infection, IFN-I production by pDCs or from signaling through dsRNA sensors has been implicated in the pathogenesis of autoimmune diseases such as diabetes. However, recent data demonstrate that IFN-I production via TLR3 and MDA5 is critical to counter diabetes caused by a virus with preferential tropism for pancreatic β-cells. This highlights the complexity of the host antiviral response and how multiple cellular and molecular components balance protective versus pathological responses.
Collapse
Affiliation(s)
- Melissa Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Antiviral innate immunity is triggered by sensing viral nucleic acids. RIG-I (retinoic acid-inducible gene-I) is an intracellular molecule that responds to viral nucleic acids and activates downstream signaling, resulting in the induction of members of the type I interferon (IFN) family, which are regarded among the most important effectors of the innate immune system. Although RIG-I is expressed ubiquitously in the cytoplasm, its levels are subject to transcriptional and post-transcriptional regulation. RIG-I belongs to the IFN-stimulated gene (ISG) family, but certain cells regulate its expression through IFN-independent mechanisms. Several lines of evidence indicate that deregulated RIG-I signaling is associated with autoimmune disorders. Further studies suggest that RIG-I has functions in addition to those directly related to its role in RNA sensing and host defense. We have much to learn and discover regarding this interesting cytoplasmic sensor so that we can capitalize on its properties for the treatment of viral infections, immune disorders, cancer, and perhaps other conditions.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | |
Collapse
|
43
|
Kessler JR, Kremer JR, Muller CP. Interplay of measles virus with early induced cytokines reveals different wild type phenotypes. Virus Res 2010; 155:195-202. [PMID: 20950658 DOI: 10.1016/j.virusres.2010.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 10/19/2022]
Abstract
Differential effects of measles virus (MV) on the innate immune response may influence virus spread and severity of disease. Using a representative panel of 22 MV strains including 14 different genotypes, we found that wild-type (wt) differ considerably in their sensitivity to type I interferon (IFN). The wt virus production was 2-47-fold lower in IFN-alpha treated Vero/hSLAM cells, whereas vaccine virus production was reduced only 2-3-fold. Sequence analysis of the MV-P/C/V gene, revealed no obvious amino acid mutations that correlated with the different phenotypes. Strains also widely differed in their ability to induce type I IFN, tumor necrosis factor (TNF) alpha and other cytokines in human A549/hSLAM cells. Some wt strains that were highly sensitive to type I IFN induced only low levels of these and other cytokines. In vitro wt strains that produced the 5' copy-back defective interfering RNAs (5'cb-diRNA) characterized by Shingai et al. (2007), induced high levels of cytokines that otherwise were only reached by vaccine strains. These 5'cb-diRNAs emerged only in virus cultures during multiple passaging and were not detectable in clinical samples of measles patients. These subgenomic RNAs are an important confounding parameter in passaged wt viruses which must be carefully assessed in all in vitro studies. The present data show that MV wt strains differ in their sensitivity and their ability to temper with the innate immune response, which may result in differences in virulence.
Collapse
Affiliation(s)
- Julia R Kessler
- Laboratoire National de Santé, Institute of Immunology, Centre de Recherche Public-Santé/WHO Regional Reference, 20A rue Auguste Lumière, L-1950 Luxembourg, Luxembourg
| | | | | |
Collapse
|
44
|
Goutagny N, Jiang Z, Tian J, Parroche P, Schlicki J, Monks BG, Ulbrandt N, Ji H, Kiener P, Coyle AJ, Fitzgerald KA. Cell type-specific recognition of human metapneumoviruses (HMPVs) by retinoic acid-inducible gene I (RIG-I) and TLR7 and viral interference of RIG-I ligand recognition by HMPV-B1 phosphoprotein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:1168-79. [PMID: 20042593 PMCID: PMC2834787 DOI: 10.4049/jimmunol.0902750] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human metapneumoviruses (HMPVs) are recently identified Paramyxoviridae that contribute to respiratory tract infections in children. No effective treatments or vaccines are available. Successful defense against virus infection relies on early detection by germ line-encoded pattern recognition receptors and activation of cytokine and type I IFN genes. Recently, the RNA helicase retinoic acid-inducible gene I (RIG-I) has been shown to sense HMPV. In this study, we investigated the abilities of two prototype strains of HMPV (A1 [NL\1\00] and B1 [NL\1\99]) to activate RIG-I and induce type I IFNs. Despite the abilities of both HMPV-A1 and HMPV-B1 to infect and replicate in cell lines and primary cells, only the HMPV-A1 strain triggered RIG-I to induce IFNA/B gene transcription. The failure of the HMPV-B1 strain to elicit type I IFN production was dependent on the B1 phosphoprotein, which specifically prevented RIG-I-mediated sensing of HMPV viral 5' triphosphate RNA. In contrast to most cell types, plasmacytoid dendritic cells displayed a unique ability to sense both HMPV-A1 and HMPV-B1 and in this case sensing was via TLR7 rather than RIG-I. Collectively, these data reveal differential mechanisms of sensing for two closely related viruses, which operate in cell type-specific manners.
Collapse
Affiliation(s)
- Nadege Goutagny
- Division of Infectious Diseases and Immunology, Department of Medicine, The University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhaozhao Jiang
- Division of Infectious Diseases and Immunology, Department of Medicine, The University of Massachusetts Medical School, Worcester, MA 01605
| | - Jane Tian
- Medimmune Inc., Gaithersburg, MD 20878
| | | | | | - Brian G. Monks
- Division of Infectious Diseases and Immunology, Department of Medicine, The University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Hong Ji
- Medimmune Inc., Gaithersburg, MD 20878
| | | | | | - Katherine A. Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, The University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
45
|
Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev 2010; 23:74-98. [PMID: 20065326 PMCID: PMC2806659 DOI: 10.1128/cmr.00032-09] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In global terms, respiratory viral infection is a major cause of morbidity and mortality. Infancy, in particular, is a time of increased disease susceptibility and severity. Early-life viral infection causes acute illness and can be associated with the development of wheezing and asthma in later life. The most commonly detected viruses are respiratory syncytial virus (RSV), rhinovirus (RV), and influenza virus. In this review we explore the complete picture from epidemiology and virology to clinical impact and immunology. Three striking aspects emerge. The first is the degree of similarity: although the infecting viruses are all different, the clinical outcome, viral evasion strategies, immune response, and long-term sequelae share many common features. The second is the interplay between the infant immune system and viral infection: the immaturity of the infant immune system alters the outcome of viral infection, but at the same time, viral infection shapes the development of the infant immune system and its future responses. Finally, both the virus and the immune response contribute to damage to the lungs and subsequent disease, and therefore, any prevention or treatment needs to address both of these factors.
Collapse
Affiliation(s)
- John S Tregoning
- Centre for Infection, Department of Cellular and Molecular Medicine, St. George's University of London, London, United Kingdom.
| | | |
Collapse
|
46
|
Bao X, Liu T, Shan Y, Li K, Garofalo RP, Casola A. Human metapneumovirus glycoprotein G inhibits innate immune responses. PLoS Pathog 2008; 4:e1000077. [PMID: 18516301 PMCID: PMC2386556 DOI: 10.1371/journal.ppat.1000077] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 04/25/2008] [Indexed: 01/02/2023] Open
Abstract
Human metapneumovirus (hMPV) is a leading cause of acute respiratory tract infection in infants, as well as in the elderly and immunocompromised patients. No effective treatment or vaccine for hMPV is currently available. A recombinant hMPV lacking the G protein (rhMPV-Delta G) was recently developed as a potential vaccine candidate and shown to be attenuated in the respiratory tract of a rodent model of infection. The mechanism of its attenuation, as well as the role of G protein in modulation of hMPV-induced cellular responses in vitro, as well as in vivo, is currently unknown. In this study, we found that rhMPV-Delta G-infected airway epithelial cells produced higher levels of chemokines and type I interferon (IFN) compared to cells infected with rhMPV-WT. Infection of airway epithelial cells with rhMPV-Delta G enhanced activation of transcription factors belonging to the nuclear factor (NF)-kappaB and interferon regulatory factor (IRF) families, as revealed by increased nuclear translocation and/or phosphorylation of these transcription factors. Compared to rhMPV-WT, rhMPV-Delta G also increased IRF- and NF-kappaB-dependent gene transcription, which was reversely inhibited by G protein expression. Since RNA helicases have been shown to play a fundamental role in initiating viral-induced cellular signaling, we investigated whether retinoic induced gene (RIG)-I was the target of G protein inhibitory activity. We found that indeed G protein associated with RIG-I and inhibited RIG-I-dependent gene transcription, identifying an important mechanism by which hMPV affects innate immune responses. This is the first study investigating the role of hMPV G protein in cellular signaling and identifies G as an important virulence factor, as it inhibits the production of important immune and antiviral mediators by targeting RIG-I, a major intracellular viral RNA sensor.
Collapse
Affiliation(s)
- Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tianshuang Liu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yichu Shan
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kui Li
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|