1
|
Ye N, Feng W, Fu T, Tang D, Zeng Z, Wang B. Membrane fusion, potential threats, and natural antiviral drugs of pseudorabies virus. Vet Res 2023; 54:39. [PMID: 37131259 PMCID: PMC10152797 DOI: 10.1186/s13567-023-01171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Pseudorabies virus (PrV) can infect several animals and causes severe economic losses in the swine industry. Recently, human encephalitis or endophthalmitis caused by PrV infection has been frequently reported in China. Thus, PrV can infect animals and is becoming a potential threat to human health. Although vaccines and drugs are the main strategies to prevent and treat PrV outbreaks, there is no specific drug, and the emergence of new PrV variants has reduced the effectiveness of classical vaccines. Therefore, it is challenging to eradicate PrV. In the present review, the membrane fusion process of PrV entering target cells, which is conducive to revealing new therapeutic and vaccine strategies for PrV, is presented and discussed. The current and potential PrV pathways of infection in humans are analyzed, and it is hypothesized that PrV may become a zoonotic agent. The efficacy of chemically synthesized drugs for treating PrV infections in animals and humans is unsatisfactory. In contrast, multiple extracts of traditional Chinese medicine (TCM) have shown anti-PRV activity, exerting its effects in different phases of the PrV life-cycle and suggesting that TCM compounds may have great potential against PrV. Overall, this review provides insights into developing effective anti-PrV drugs and emphasizes that human PrV infection should receive more attention.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Fu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Guellil M, van Dorp L, Inskip SA, Dittmar JM, Saag L, Tambets K, Hui R, Rose A, D’Atanasio E, Kriiska A, Varul L, Koekkelkoren AMHC, Goldina RD, Cessford C, Solnik A, Metspalu M, Krause J, Herbig A, Robb JE, Houldcroft CJ, Scheib CL. Ancient herpes simplex 1 genomes reveal recent viral structure in Eurasia. SCIENCE ADVANCES 2022; 8:eabo4435. [PMID: 35895820 PMCID: PMC9328674 DOI: 10.1126/sciadv.abo4435] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/10/2022] [Indexed: 05/05/2023]
Abstract
Human herpes simplex virus 1 (HSV-1), a life-long infection spread by oral contact, infects a majority of adults globally. Phylogeographic clustering of sampled diversity into European, pan-Eurasian, and African groups has suggested the virus codiverged with human migrations out of Africa, although a much younger origin has also been proposed. We present three full ancient European HSV-1 genomes and one partial genome, dating from the 3rd to 17th century CE, sequenced to up to 9.5× with paired human genomes up to 10.16×. Considering a dataset of modern and ancient genomes, we apply phylogenetic methods to estimate the age of sampled modern Eurasian HSV-1 diversity to 4.68 (3.87 to 5.65) ka. Extrapolation of estimated rates to a global dataset points to the age of extant sampled HSV-1 as 5.29 (4.60 to 6.12) ka, suggesting HSV-1 lineage replacement coinciding with the late Neolithic period and following Bronze Age migrations.
Collapse
Affiliation(s)
- Meriam Guellil
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia
| | - Lucy van Dorp
- UCL Genetics Institute, Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Sarah A. Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Department of Archaeology and Ancient History, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Jenna M. Dittmar
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Department of Archaeology, University of Aberdeen, UK
| | - Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia
- UCL Genetics Institute, Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia
| | - Ruoyun Hui
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Alan Turing Institute, 2QR, John Dodson House, 96 Euston Rd., London NW1 2DB, UK
| | - Alice Rose
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | | | - Aivar Kriiska
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia
| | - Liivi Varul
- Archaeological Research Collection, School of Humanities, Tallinn University, Tallinn 10130, Estonia
| | | | - Rimma D. Goldina
- Department History of Udmurtia, Archaeology and Ethnology, Udmurt State University, 1, Universitetskaya St. 1, 426034 Izhevsk, Russia
| | - Craig Cessford
- Cambridge Archaeological Unit, Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010 Estonia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - John E. Robb
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | | | - Christiana L. Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia
- St. John’s College, University of Cambridge, Cambridge, CB2 1TP, UK
| |
Collapse
|
3
|
Spear PG. Opportunities, Technology, and the Joy of Discovery. Annu Rev Virol 2022; 9:1-17. [PMID: 35363539 DOI: 10.1146/annurev-virology-100520-012840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My grandparents were immigrants. My paternal grandfather was illiterate. Yet my parents were able to complete college and to become teachers. I had a conventional upbringing in a small town in Florida, graduating from high school in 1960. I was fortunate enough to graduate cum laude from Florida State University and to earn other credentials leading to faculty positions at outstanding institutions of higher education: the University of Chicago and Northwestern University. At a time when women were rarely the leaders of research groups, I was able to establish a well-funded research program and to make contributions to our understanding of viral entry into cells. My best research was done after I became confident enough to seek productive interactions with collaborators. I am grateful for the collaborators and collaborations that moved our field forward and for my trainees who have gone on to successes in many different careers. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Patricia G Spear
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
4
|
A Genome-Wide CRISPR/Cas9 Screen Reveals the Requirement of Host Sphingomyelin Synthase 1 for Infection with Pseudorabies Virus Mutant gD -Pass. Viruses 2021; 13:v13081574. [PMID: 34452438 PMCID: PMC8402627 DOI: 10.3390/v13081574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Herpesviruses are large DNA viruses, which encode up to 300 different proteins including enzymes enabling efficient replication. Nevertheless, they depend on a multitude of host cell proteins for successful propagation. To uncover cellular host factors important for replication of pseudorabies virus (PrV), an alphaherpesvirus of swine, we performed an unbiased genome-wide CRISPR/Cas9 forward screen. To this end, a porcine CRISPR-knockout sgRNA library (SsCRISPRko.v1) targeting 20,598 genes was generated and used to transduce porcine kidney cells. Cells were then infected with either wildtype PrV (PrV-Ka) or a PrV mutant (PrV-gD-Pass) lacking the receptor-binding protein gD, which regained infectivity after serial passaging in cell culture. While no cells survived infection with PrV-Ka, resistant cell colonies were observed after infection with PrV-gD-Pass. In these cells, sphingomyelin synthase 1 (SMS1) was identified as the top hit candidate. Infection efficiency was reduced by up to 90% for PrV-gD-Pass in rabbit RK13-sgms1KO cells compared to wildtype cells accompanied by lower viral progeny titers. Exogenous expression of SMS1 partly reverted the entry defect of PrV-gD-Pass. In contrast, infectivity of PrV-Ka was reduced by 50% on the knockout cells, which could not be restored by exogenous expression of SMS1. These data suggest that SMS1 plays a pivotal role for PrV infection, when the gD-mediated entry pathway is blocked.
Collapse
|
5
|
Carvacho I, Piesche M. RGD-binding integrins and TGF-β in SARS-CoV-2 infections - novel targets to treat COVID-19 patients? Clin Transl Immunology 2021; 10:e1240. [PMID: 33747508 PMCID: PMC7971943 DOI: 10.1002/cti2.1240] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
The new coronavirus SARS-CoV-2 is a global pandemic and a severe public health crisis. SARS-CoV-2 is highly contagious and shows high mortality rates, especially in elderly and patients with pre-existing medical conditions. At the current stage, no effective drugs are available to treat these patients. In this review, we analyse the rationale of targeting RGD-binding integrins to potentially inhibit viral cell infection and to block TGF-β activation, which is involved in the severity of several human pathologies, including the complications of severe COVID-19 cases. Furthermore, we demonstrate the correlation between ACE2 and TGF-β expression and the possible consequences for severe COVID-19 infections. Finally, we list approved drugs or drugs in clinical trials for other diseases that also target the RGD-binding integrins or TGF-β. These drugs have already shown a good safety profile and, therefore, can be faster brought into a trial to treat COVID-19 patients.
Collapse
Affiliation(s)
- Ingrid Carvacho
- Department of Biology and ChemistryFaculty of Basic SciencesUniversidad Católica del MauleTalcaChile
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine FacultyUniversidad Católica del MauleTalcaChile
- Oncology Center, Medicine FacultyUniversidad Católica del MauleTalcaChile
| |
Collapse
|
6
|
Li C, Zhang K, Pan G, Zhang L, Hu X, Zhao G, Deng C, Tan M, Li C, Xu M, Su J, Shen L, Kausar S, Yang L, Abbas MN, Cui H. Bmintegrin β1: A broadly expressed molecule modulates the innate immune response of Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103869. [PMID: 32950537 DOI: 10.1016/j.dci.2020.103869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Integrins are transmembrane glycoproteins that are broadly distributed in living organisms. As a heterodimer, they contain an α and a β subunit, which are reported to be associated with various physiological and pathological processes. In the present study, a 2502 bp full-length cDNA sequence of Bmintegrin β1 was obtained from the silkworm, Bombyx mori. Bmintegrin β1 belongs to the β subunit of the integrin family and contains several typical structures of integrins. Gene expression profile analysis demonstrated that Bmintegrin β1 was ubiquitously expressed in all tested tissues and organs, with the maximum expression levels in fat body and hemocytes. The immunofluorescence results showed that Bmintegrin β1 was located in the cell membrane and widely distributed in fat bodies and different types of hemocytes. Bmintegrin β1 expression was remarkably increased after challenging with different kinds of bacteria and pathogen-associated molecular patterns (PAMPs). Further investigation revealed that Bmintegrin β1 could participate in the agglutination of pathogenic bacteria possibly through direct binding with the relative bacteria and PAMPs. Altogether, this study provides a novel insight into the immune functional features of Bmintegrin β1.
Collapse
Affiliation(s)
- Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Lei Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Xin Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Chaowei Deng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Mengqin Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Changhong Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Man Xu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Li Shen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
7
|
Abstract
Herpesviruses are ubiquitous, double-stranded DNA, enveloped viruses that establish lifelong infections and cause a range of diseases. Entry into host cells requires binding of the virus to specific receptors, followed by the coordinated action of multiple viral entry glycoproteins to trigger membrane fusion. Although the core fusion machinery is conserved for all herpesviruses, each species uses distinct receptors and receptor-binding glycoproteins. Structural studies of the prototypical herpesviruses herpes simplex virus 1 (HSV-1), HSV-2, human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) entry glycoproteins have defined the interaction sites for glycoprotein complexes and receptors, and have revealed conformational changes that occur on receptor binding. Recent crystallography and electron microscopy studies have refined our model of herpesvirus entry into cells, clarifying both the conserved features and the unique features. In this Review, we discuss recent insights into herpesvirus entry by analysing the structures of entry glycoproteins, including the diverse receptor-binding glycoproteins (HSV-1 glycoprotein D (gD), EBV glycoprotein 42 (gp42) and HCMV gH-gL-gO trimer and gH-gL-UL128-UL130-UL131A pentamer), as well gH-gL and the fusion protein gB, which are conserved in all herpesviruses.
Collapse
|
8
|
Localization of the Interaction Site of Herpes Simplex Virus Glycoprotein D (gD) on the Membrane Fusion Regulator, gH/gL. J Virol 2020; 94:JVI.00983-20. [PMID: 32759318 DOI: 10.1128/jvi.00983-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
A cascade of protein-protein interactions between four herpes simplex virus (HSV) glycoproteins (gD, gH/gL, and gB) drive fusion between the HSV envelope and host membrane, thereby allowing for virus entry and infection. Specifically, binding of gD to one of its receptors induces a conformational change that allows gD to bind to the regulatory complex gH/gL, which then activates the fusogen gB, resulting in membrane fusion. Using surface plasmon resonance and a panel of anti-gD monoclonal antibodies (MAbs) that sterically blocked the interaction, we previously showed that gH/gL binds directly to gD at sites distinct from the gD receptor binding site. Here, using an analogous strategy, we first evaluated the ability of a panel of uncharacterized anti-gH/gL MAbs to block binding to gD and/or inhibit fusion. We found that the epitopes of four gD-gH/gL-blocking MAbs were located within flexible regions of the gH N terminus and the gL C terminus, while the fifth was placed around gL residue 77. Taken together, our data localized the gD binding region on gH/gL to a group of gH and gL residues at the membrane distal region of the heterodimer. Surprisingly, a second set of MAbs did not block gD-gH/gL binding but instead stabilized the complex by altering the kinetic binding. However, despite this prolonged gD-gH/gL interaction, "stabilizing" MAbs also inhibited cell-cell fusion, suggesting a unique mechanism by which the fusion process is halted. Our findings support targeting the gD-gH/gL interaction to prevent fusion in both therapeutic and vaccine strategies against HSV.IMPORTANCE Key to developing a human HSV vaccine is an understanding of the virion glycoproteins involved in entry. HSV employs multiple glycoproteins for attachment, receptor interaction, and membrane fusion. Determining how these proteins function was resolved, in part, by structural biology coupled with immunological and biologic evidence. After binding, virion gD interacts with a receptor to activate the regulator gH/gL complex, triggering gB to drive fusion. Multiple questions remain, one being the physical location of each glycoprotein interaction site. Using protective antibodies with known epitopes, we documented the long-sought interaction between gD and gH/gL, detailing the region on gD important to create the gD-gH/gL triplex. Now, we have identified the corresponding gD contact sites on gH/gL. Concurrently we discovered a novel mechanism whereby gH/gL antibodies stabilize the complex and inhibit fusion progression. Our model for the gD-gH/gL triplex provides a new framework for studying fusion, which identifies targets for vaccine development.
Collapse
|
9
|
Li C, Su M, Yin B, Guo D, Wei S, Kong F, Feng L, Wu R, Sun D. Integrin αvβ3 enhances replication of porcine epidemic diarrhea virus on Vero E6 and porcine intestinal epithelial cells. Vet Microbiol 2019; 237:108400. [PMID: 31585640 DOI: 10.1016/j.vetmic.2019.108400] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/12/2023]
Abstract
The entry mechanism of porcine epidemic diarrhea virus (PEDV) remains unclear, especially the virus receptor. Our previous study revealed a potential correlation between integrin αvβ3 and PEDV infection. In the current study, the effect of overexpression, silencing, antibody inhibition, and co-expression with porcine aminopeptidase N (pAPN) of integrin αvβ3 on PEDV infection was investigated and analyzed in African green monkey Vero E6 cells and porcine intestinal epithelial cells (IECs) using the classical strain CV777 and variant strain HM2017 of PEDV. Integrin αvβ3 significantly enhanced the replication of the classical and variant strains of PEDV in Vero E6 cells and IECs. The integrin αv and β3 subunits were both involved in the enhancement of PEDV infection, the Arg-Gly-Asp peptides targeting integrin αvβ3 significantly inhibited replication of PEDV in Vero E6 cells, and co-expression of integrin αvβ3 with pAPN significantly enhanced replication of PEDV in Vero E6 and BHK-21 cells. These results demonstrate that integrin αvβ3 enhances PEDV replication in Vero E6 cells and IECs. These data provide novel insights into the entry mechanism of PEDV.
Collapse
Affiliation(s)
- Chunqiu Li
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Mingjun Su
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, PR China
| | - Donghua Guo
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Shan Wei
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Fanzhi Kong
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Rui Wu
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China.
| |
Collapse
|
10
|
Rider PJF, Musarrat F, Nabil R, Naidu S, Kousoulas KG. First Impressions-the Potential of Altering Initial Host-Virus Interactions for Rational Design of Herpesvirus Vaccine Vectors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:55-65. [PMID: 30560044 DOI: 10.1007/s40588-018-0082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose The earliest host-virus interactions occur during virus attachment and entry into cells. These initial steps in the virus lifecycle influence the outcome of infection beyond delivery of the viral genome into the cell. Herpesviruses alter host signaling pathways and processes during attachment and entry to facilitate virus infection and modulate innate immune responses. We suggest in this review that understanding these early signaling events may inform the rational design of therapeutic and prevention strategies for herpesvirus infection, as well as the engineering of viral vectors for immunotherapy purposes. Recent Findings Recent reports demonstrate that modulation of Herpes Simplex Virus Type-1 (HSV-1) entry results in unexpected enhancement of antiviral immune responses. Summary A variety of evidence suggests that herpesviruses promote specific cellular signaling responses that facilitate viral replication after binding to cell surfaces, as well as during virus entry. Of particular interest is the ability of the virus to alter innate immune responses through these cellular signaling events. Uncovering the underlying immune evasion strategies may lead to the design of live-attenuated vaccines that can generate robust and protective anti-viral immune responses against herpesviruses. These adjuvant properties may be extended to a variety of heterologous antigens expressed by herpesviral vectors.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Rafiq Nabil
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Shan Naidu
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| |
Collapse
|
11
|
Arii J, Kawaguchi Y. The Role of HSV Glycoproteins in Mediating Cell Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:3-21. [PMID: 29896660 DOI: 10.1007/978-981-10-7230-7_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The successful entry of herpes simplex virus (HSV) into a cell is a complex process requiring the interaction of several surface viral glycoproteins with host cell receptors. These viral glycoproteins are currently thought to work sequentially to trigger fusogenic activity, but the process is complicated by the fact that each glycoprotein is known to interact with a range of target cell surface receptor molecules. The glycoproteins concerned are gB, gD, and gH/gL, with at least four host cell receptor molecules known to bind to gB and gD alone. Redundancy among gD receptors is also evident and binding to both the gB and gD receptors simultaneously is known to be required for successful membrane fusion. Receptor type and tissue distribution are commonly considered to define the extent of viral tropism and thus the magnitude of pathogenesis. Viral entry receptors are therefore attractive pharmaceutical target molecules for the prevention and/or treatment of viral infections. However, the large number of HSV glycoprotein receptors makes a comprehensive understanding of HSV pathogenesis in vivo difficult. Here we summarize our current understanding of the various HSV glycoprotein cell surface receptors, define their redundancy and binding specificity, and discuss the significance of these interactions for viral pathogenesis.
Collapse
Affiliation(s)
- Jun Arii
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
12
|
Stavolone L, Lionetti V. Extracellular Matrix in Plants and Animals: Hooks and Locks for Viruses. Front Microbiol 2017; 8:1760. [PMID: 28955324 PMCID: PMC5600933 DOI: 10.3389/fmicb.2017.01760] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/30/2017] [Indexed: 01/15/2023] Open
Abstract
The extracellular matrix (ECM) of animal and plants cells plays important roles in viral diseases. While in animal cells extracellular matrix components can be exploited by viruses for recognition, attachment and entry, the plant cell wall acts as a physical barrier to viral entry and adds a higher level of difficulty to intercellular movement of viruses. Interestingly, both in plant and animal systems, ECM can be strongly remodeled during virus infection, and the understanding of remodeling mechanisms and molecular players offers new perspectives for therapeutic intervention. This review focuses on the different roles played by the ECM in plant and animal hosts during virus infection with special emphasis on the similarities and differences. Possible biotechnological applications aimed at improving viral resistance are discussed.
Collapse
Affiliation(s)
- Livia Stavolone
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle RicercheBari, Italy.,International Institute of Tropical AgricultureIbadan, Nigeria
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie "C. Darwin", "Sapienza" Università di RomaRome, Italy
| |
Collapse
|
13
|
Rohrbeck A, Höltje M, Adolf A, Oms E, Hagemann S, Ahnert-Hilger G, Just I. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif. J Biol Chem 2017; 292:17668-17680. [PMID: 28882889 PMCID: PMC5663871 DOI: 10.1074/jbc.m117.798231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
The Rho ADP-ribosylating C3 exoenzyme (C3bot) is a bacterial protein toxin devoid of a cell-binding or -translocation domain. Nevertheless, C3 can efficiently enter intact cells, including neurons, but the mechanism of C3 binding and uptake is not yet understood. Previously, we identified the intermediate filament vimentin as an extracellular membranous interaction partner of C3. However, uptake of C3 into cells still occurs (although reduced) in the absence of vimentin, indicating involvement of an additional host cell receptor. C3 harbors an Arg–Gly–Asp (RGD) motif, which is the major integrin-binding site, present in a variety of integrin ligands. To check whether the RGD motif of C3 is involved in binding to cells, we performed a competition assay with C3 and RGD peptide or with a monoclonal antibody binding to β1-integrin subunit and binding assays in different cell lines, primary neurons, and synaptosomes with C3-RGD mutants. Here, we report that preincubation of cells with the GRGDNP peptide strongly reduced C3 binding to cells. Moreover, mutation of the RGD motif reduced C3 binding to intact cells and also to recombinant vimentin. Anti-integrin antibodies also lowered the C3 binding to cells. Our results indicate that the RGD motif of C3 is at least one essential C3 motif for binding to host cells and that integrin is an additional receptor for C3 besides vimentin.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| | - Markus Höltje
- the Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin, D-10115 Berlin, Germany
| | - Andrej Adolf
- the Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin, D-10115 Berlin, Germany
| | - Elisabeth Oms
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| | - Sandra Hagemann
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| | - Gudrun Ahnert-Hilger
- the Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin, D-10115 Berlin, Germany
| | - Ingo Just
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| |
Collapse
|
14
|
Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol 2017; 102:1199-1217. [PMID: 28848041 DOI: 10.1189/jlb.4ru0417-145rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses use diverse strategies to elude the immune system, including copying and repurposing host cytokine and cytokine receptor genes. For herpesviruses, the chemokine system of chemotactic cytokines and receptors is a common source of copied genes. Here, we review the current state of knowledge about herpesvirus-encoded chemokines and discuss their possible roles in viral pathogenesis, as well as their clinical potential as novel anti-inflammatory agents or targets for new antiviral strategies.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Insertion of a ligand to HER2 in gB retargets HSV tropism and obviates the need for activation of the other entry glycoproteins. PLoS Pathog 2017; 13:e1006352. [PMID: 28423057 PMCID: PMC5411103 DOI: 10.1371/journal.ppat.1006352] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/01/2017] [Accepted: 04/13/2017] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus (HSV) entry into the cells requires glycoproteins gD, gH/gL and gB, activated in a cascade fashion by conformational modifications induced by cognate receptors and intermolecular signaling. The receptors are nectin1 and HVEM (Herpes virus entry mediator) for gD, and αvβ6 or αvβ8 integrin for gH. In earlier work, insertion of a single chain antibody (scFv) to the cancer receptor HER2 (human epidermal growth factor receptor 2) in gD, or in gH, resulted in HSVs specifically retargeted to the HER2-positive cancer cells, hence in highly specific non-attenuated oncolytic agents. Here, the scFv to HER2 was inserted in gB (gBHER2). The insertion re-targeted the virus tropism to the HER2-positive cancer cells. This was unexpected since gB is known to be a fusogenic glycoprotein, not a tropism determinant. The gB-retargeted recombinant offered the possibility to investigate how HER2 mediated entry. In contrast to wt-gB, the activation of the chimeric gBHER2 did not require the activation of the gD and of gH/gL by their respective receptors. Furthermore, a soluble form of HER2 could replace the membrane-bound HER2 in mediating virus entry, hinting that HER2 acted by inducing conformational changes to the chimeric gB. This study shows that (i) gB can be modified and become the major determinant of HSV tropism; (ii) the chimeric gBHER2 bypasses the requirement for receptor-mediated activation of other essential entry glycoproteins.
Collapse
|
16
|
Zhang Y, Cao G, Zhu L, Chen F, Zar MS, Wang S, Hu X, Wei Y, Xue R, Gong C. Integrin beta and receptor for activated protein kinase C are involved in the cell entry of Bombyx mori cypovirus. Appl Microbiol Biotechnol 2017; 101:3703-3716. [PMID: 28175946 DOI: 10.1007/s00253-017-8158-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
Receptor-mediated endocytosis using a β1 integrin-dependent internalization was considered as the primary mechanism for the initiation of mammalian reovirus infection. Bombyx mori cypovirus (BmCPV) is a member of Reoviridae family which mainly infects the midgut epithelium of silkworm; the cell entry of BmCPV is poorly explored. In this study, co-immunoprecipitation (Co-IP), virus overlay protein binding assay (VOPBA), and BmCPV-protein interaction on the polyvinylidene difluoride membrane (BmCPV-PI-PVDF) methods were employed to screen the interacting proteins of BmCPV, and several proteins including integrin beta and receptor for activated protein kinase C (RACK1) were identified as the candidate interacting proteins for establishing the infection of BmCPV. The infectivity of BmCPV was investigated in vivo and in vitro by RNA interference (RNAi) and antibody blocking methods, and the results showed that the infectivity of BmCPV was significantly reduced by either small interfering RNA-mediated silencing of integrin beta and RACK1 or antibody blocking of integrin beta and RACK1. The expression level of integrin beta or RACK1 is not the highest in the silkworm midgut which is a principal target tissue of BmCPV, suggesting that the molecules other than integrin beta or RACK1 might play a key role in determining the tissue tropism of BmCPV infection. The establishment of BmCPV infection depends on other factors, and these factors interacted with integrin beta and RACK1 to form receptor complex for the cell entry of BmCPV.
Collapse
Affiliation(s)
- Yiling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Suzhou Municipal Key Laboratory of Molecular Diagnostics and Therapeutics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Liyuan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fei Chen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Mian Sahib Zar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Simei Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Department of Hematology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuhong Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Weed DJ, Nicola AV. Herpes simplex virus Membrane Fusion. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:29-47. [PMID: 28528438 PMCID: PMC5869023 DOI: 10.1007/978-3-319-53168-7_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Herpes simplex virus mediates multiple distinct fusion events during infection. HSV entry is initiated by fusion of the viral envelope with either the limiting membrane of a host cell endocytic compartment or the plasma membrane. In the infected cell during viral assembly, immature, enveloped HSV particles in the perinuclear space fuse with the outer nuclear membrane in a process termed de-envelopment. A cell infected with some strains of HSV with defined mutations spread to neighboring cells by a fusion event called syncytium formation. Two experimental methods, the transient cell-cell fusion approach and fusion from without, are useful surrogate assays of HSV fusion. These five fusion processes are considered in terms of their requirements, mechanism, and regulation. The execution and modulation of these events require distinct yet often overlapping sets of viral proteins and host cell factors. The core machinery of HSV gB, gD, and the heterodimer gH/gL is required for most if not all of the HSV fusion mechanisms.
Collapse
Affiliation(s)
- Darin J Weed
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
18
|
Goins WF, Hall B, Cohen JB, Glorioso JC. Retargeting of herpes simplex virus (HSV) vectors. Curr Opin Virol 2016; 21:93-101. [PMID: 27614209 DOI: 10.1016/j.coviro.2016.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 01/17/2023]
Abstract
Gene therapy applications depend on vector delivery and gene expression in the appropriate target cell. Vector infection relies on the distribution of natural virus receptors that may either not be present on the desired target cell or distributed in a manner to give off-target gene expression. Some viruses display a very limited host range, while others, including herpes simplex virus (HSV), can infect almost every cell within the human body. It is often an advantage to retarget virus infectivity to achieve selective target cell infection. Retargeting can be achieved by (i) the inclusion of glycoproteins from other viruses that have a different host-range, (ii) modification of existing viral glycoproteins or coat proteins to incorporate peptide ligands or single-chain antibodies (scFvs) that bind to the desired receptor, or (iii) employing soluble adapters that recognize both the virus and a specific receptor on the target cell. This review summarizes efforts to target HSV using these three strategies.
Collapse
Affiliation(s)
- William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Bonnie Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| |
Collapse
|
19
|
Campadelli-Fiume G, Collins-McMillen D, Gianni T, Yurochko AD. Integrins as Herpesvirus Receptors and Mediators of the Host Signalosome. Annu Rev Virol 2016; 3:215-236. [PMID: 27501260 DOI: 10.1146/annurev-virology-110615-035618] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The repertoire of herpesvirus receptors consists of nonintegrin and integrin molecules. Integrins interact with the conserved glycoproteins gH/gL or gB. This interaction is a conserved biology across the Herpesviridae family, likely directed to promote virus entry and endocytosis. Herpesviruses exploit this interaction to execute a range of critical functions that include (a) relocation of nonintegrin receptors (e.g., herpes simplex virus nectin1 and Kaposi's sarcoma-associated herpesvirus EphA2), or association with nonintegrin receptors (i.e., human cytomegalovirus EGFR), to dictate species-specific entry pathways; (b) activation of multiple signaling pathways (e.g., Ca2+ release, c-Src, FAK, MAPK, and PI3K); and (c) association with Rho GTPases, tyrosine kinase receptors, Toll-like receptors, which result in cytoskeletal remodeling, differential cell type targeting, and innate responses. In turn, integrins can be modulated by viral proteins (e.g., Epstein-Barr virus LMPs) to favor spread of transformed cells. We propose that herpesviruses evolved a multipartite entry system to allow interaction with multiple receptors, including integrins, required for their sophisticated life cycle.
Collapse
Affiliation(s)
- Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Donna Collins-McMillen
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130;
| | - Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130; .,Feist-Weiller Cancer Center and Center for Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| |
Collapse
|
20
|
Role for the αV Integrin Subunit in Varicella-Zoster Virus-Mediated Fusion and Infection. J Virol 2016; 90:7567-78. [PMID: 27279620 DOI: 10.1128/jvi.00792-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella and herpes zoster. Membrane fusion is essential for VZV entry and the distinctive syncytium formation in VZV-infected skin and neuronal tissue. Herpesvirus fusion is mediated by a complex of glycoproteins gB and gH-gL, which are necessary and sufficient for VZV to induce membrane fusion. However, the cellular requirements of fusion are poorly understood. Integrins have been implicated to facilitate entry of several human herpesviruses, but their role in VZV entry has not yet been explored. To determine the involvement of integrins in VZV fusion, a quantitative cell-cell fusion assay was developed using a VZV-permissive melanoma cell line. The cells constitutively expressed a reporter protein and short hairpin RNAs (shRNAs) to knock down the expression of integrin subunits shown to be expressed in these cells by RNA sequencing. The αV integrin subunit was identified as mediating VZV gB/gH-gL fusion, as its knockdown by shRNAs reduced fusion levels to 60% of that of control cells. A comparable reduction in fusion levels was observed when an anti-αV antibody specific to its extracellular domain was tested in the fusion assay, confirming that the domain was important for VZV fusion. In addition, reduced spread was observed in αV knockdown cells infected with the VZV pOka strain relative to that of the control cells. This was demonstrated by reductions in plaque size, replication kinetics, and virion entry in the αV subunit knockdown cells. Thus, the αV integrin subunit is important for VZV gB/gH-gL fusion and infection. IMPORTANCE Varicella-zoster virus (VZV) is a highly infectious pathogen that causes chickenpox and shingles. A common complication of shingles is the excruciating condition called postherpetic neuralgia, which has proven difficult to treat. While a vaccine is now available, it is not recommended for immunocompromised individuals and its efficacy decreases with the recipient's age. These limitations highlight the need for new therapies. This study examines the role of integrins in membrane fusion mediated by VZV glycoproteins gB and gH-gL, a required process for VZV infection. This knowledge will further the understanding of VZV entry and provide insight into the development of better therapies.
Collapse
|
21
|
Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway. Microbiol Mol Biol Rev 2016; 80:663-77. [PMID: 27307580 DOI: 10.1128/mmbr.00018-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease.
Collapse
|
22
|
αvβ3 Integrin Boosts the Innate Immune Response Elicited in Epithelial Cells through Plasma Membrane and Endosomal Toll-Like Receptors. J Virol 2016; 90:4243-4248. [PMID: 26842473 DOI: 10.1128/jvi.03175-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 01/24/2023] Open
Abstract
We report that αvβ3 integrin strongly affects the innate immune response in epithelial cells. αvβ3 integrin greatly increased the response elicited via plasma membrane Toll-like receptors (TLRs) by herpes simplex virus or bacterial ligands. The endosomal TLR3, not the cytosolic sensor interferon gamma-inducible protein 16 (IFI16), was also boosted by αvβ3 integrin. The boosting was exerted specifically by αvβ3 integrin but not by αvβ6 or αvβ8 integrin. Current and previous work indicates that integrin-TLR cooperation occurs in epithelial and monocytic cells. The TLR response should be considered an integrin-TLR response.
Collapse
|
23
|
Walker EB, Pritchard SM, Cunha CW, Aguilar HC, Nicola AV. Polyethylene glycol-mediated fusion of herpes simplex type 1 virions with the plasma membrane of cells that support endocytic entry. Virol J 2015; 12:190. [PMID: 26573723 PMCID: PMC4647588 DOI: 10.1186/s12985-015-0423-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/12/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mouse B78 cells and Chinese hamster ovary (CHO) cells are important to the study of HSV-1 entry because both are resistant to infection at the level of viral entry. When provided with a gD-receptor such as nectin-1, these cells support HSV-1 entry by an endocytosis pathway. Treating some viruses bound to cells with the fusogen polyethylene glycol (PEG) mediates viral fusion with the cell surface but is insufficient to rescue viral entry. It is unclear whether PEG-mediated fusion of HSV with the plasma membrane of B78 or CHO cells results in successful entry and infection. FINDINGS Treating HSV-1 bound to B78 or CHO cells with PEG allowed viral entry as measured by virus-induced beta-galactosidase activity. Based on the mechanism of PEG action, we propose that entry likely proceeds by direct fusion of HSV particles with the plasma membrane. Under the conditions tested, PEG-mediated infection of CHO cells progressed to the level of HSV late gene expression, while B78 cells supported HSV DNA replication. We tested whether proteolysis or acidification of cell-bound virions could trigger HSV fusion with the plasma membrane. Under the conditions tested, mildly acidic pH of 5-6 or the protease trypsin were not capable of triggering HSV-1 fusion as compared to PEG-treated cell-bound virions. CONCLUSIONS B78 cells and CHO cells, which typically endocytose HSV prior to viral penetration, are capable of supporting HSV-1 entry via direct penetration. HSV capsids delivered directly to the cytosol at the periphery of these cells complete the entry process. B78 and CHO cells may be utilized to screen for factors that trigger entry as a consequence of fusion of virions with the cell surface, and PEG treatment can provide a necessary control.
Collapse
Affiliation(s)
- Erik B Walker
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| | - Suzanne M Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| | - Cristina W Cunha
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| | - Hector C Aguilar
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA.
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
24
|
Functional Characterization of Glycoprotein H Chimeras Composed of Conserved Domains of the Pseudorabies Virus and Herpes Simplex Virus 1 Homologs. J Virol 2015; 90:421-32. [PMID: 26491153 DOI: 10.1128/jvi.01985-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/12/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Membrane fusion is indispensable for entry of enveloped viruses into host cells. The conserved core fusion machinery of the Herpesviridae consists of glycoprotein B (gB) and the gH/gL complex. Recently, crystal structures of gH/gL of herpes simplex virus 2 (HSV-2) and Epstein-Barr virus and of a core fragment of pseudorabies virus (PrV) gH identified four structurally conserved gH domains. To investigate functional conservation, chimeric genes encoding combinations of individual domains of PrV and herpes simplex virus 1 (HSV-1) gH were expressed in rabbit kidney cells, and their processing and transport to the cell surface, as well as activity in fusion assays including gB, gD, and gL of PrV or HSV-1, were analyzed. Chimeric gH containing domain I of HSV-1 and domains II to IV of PrV exhibited limited fusion activity in the presence of PrV gB and gD and HSV-1 gL, but not of PrV gL. More strikingly, chimeric gH consisting of PrV domains I to III and HSV-1 domain IV exhibited considerable fusion activity together with PrV gB, gD, and gL. Replacing PrV gB with the HSV-1 protein significantly enhanced this activity. A cell line stably expressing this chimeric gH supported replication of gH-deleted PrV. Our results confirm the specificity of domain I for gL binding, demonstrate functional conservation of domain IV in two alphaherpesviruses from different genera, and indicate species-specific interactions of this domain with gB. They also suggest that gH domains II and III might form a structural and functional unit which does not tolerate major substitutions. IMPORTANCE Envelope glycoprotein H (gH) is essential for herpesvirus-induced membrane fusion, which is required for host cell entry and viral spread. Although gH is structurally conserved within the Herpesviridae, its precise role and its interactions with other components of the viral fusion machinery are not fully understood. Chimeric proteins containing domains of gH proteins from different herpesviruses can serve as tools to elucidate the molecular basis of gH function. The present study shows that the C-terminal part of human herpesvirus 1 (herpes simplex virus 1) gH can functionally substitute for the corresponding part of suid herpesvirus 1 (pseudorabies virus) gH, whereas other tested combinations proved to be nonfunctional. Interestingly, the exchangeable fragment included the membrane-proximal end of the gH ectodomain (domain IV), which is most conserved in sequence and structure and might be capable of transient membrane interaction during fusion.
Collapse
|
25
|
Abstract
This paper discusses physical and structural aspects of the mechanisms herpes simplex virus (HSV) uses for membrane fusion. Calculations show that herpes simplex virus glycoprotein D has such avidity for its receptors that it can hold the virion against the plasma membrane of a neuron strongly enough for glycoprotein B (gB) to disrupt both leaflets of the bilayer. The strong electric field generated by the cell potential across perforations at this disruption would break the hydrogen bonds securing the gB fusion loops, leading to fusion of the plasma and viral membranes. This mechanism agrees with the high stability of the tall trimeric spike structure of gB and is consistent with the probable existence of a more compact initial conformation that would allow it to closely approach the plasma membrane. The release of the fusion domains by disruption of hydrogen bonds is shared with the endocytotic entry pathway where, for some cell types not punctured by gB, the virus is able to induce inward forces that cause endocytosis and the fusion loops are released by acidification. The puncture-fusion mechanism requires low critical strain or high tissue strain, matching primary tropism of neural processes at the vermillion border. In support of this mechanism, this paper proposes a functional superstructure of the antigens essential to entry and reviews its consistency with experimental evidence.
Collapse
Affiliation(s)
- Richard W. Clarke
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB21EW, United Kingdom
| |
Collapse
|
26
|
Hussein HAM, Walker LR, Abdel-Raouf UM, Desouky SA, Montasser AKM, Akula SM. Beyond RGD: virus interactions with integrins. Arch Virol 2015; 160:2669-81. [PMID: 26321473 PMCID: PMC7086847 DOI: 10.1007/s00705-015-2579-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
Viruses successfully infect host cells by initially binding to the surfaces of the cells, followed by an intricate entry process. As multifunctional heterodimeric cell-surface receptor molecules, integrins have been shown to usefully serve as entry receptors for a plethora of viruses. However, the exact role(s) of integrins in viral pathogen internalization has yet to be elaborately described. Notably, several viruses harbor integrin-recognition motifs displayed on viral envelope/capsid-associated proteins. The most common of these motifs is the minimal peptide sequence for binding integrins, RGD (Arg-Gly-Asp), which is known for its role in virus infection via its ability to interact with over half of the more than 20 known integrins. Not all virus-integrin interactions are RGD-dependent, however. Non-RGD-binding integrins have also been shown to effectively promote virus entry and infection as well. Such virus-integrin binding is shown to facilitate adhesion, cytoskeleton rearrangement, integrin activation, and increased intracellular signaling. Also, we have attempted to discuss the role of carbohydrate moieties in virus interactions with receptor-like host cell surface integrins that drive the process of internalization. As much as possible, this article examines the published literature regarding the role of integrins in terms of virus infection and virus-encoded glycosylated proteins that mediate interactions with integrins, and it explores the idea of targeting these receptors as a therapeutic treatment option.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Sayed A Desouky
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | | | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
27
|
Sun D, Shi H, Guo D, Chen J, Shi D, Zhu Q, Zhang X, Feng L. Analysis of protein expression changes of the Vero E6 cells infected with classic PEDV strain CV777 by using quantitative proteomic technique. J Virol Methods 2015; 218:27-39. [PMID: 25783682 PMCID: PMC7113725 DOI: 10.1016/j.jviromet.2015.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/20/2015] [Accepted: 03/07/2015] [Indexed: 01/07/2023]
Abstract
Recent outbreaks of porcine epidemic diarrhea virus (PEDV) have caused widespread concern. The identification of proteins associated with PEDV infection might provide insight into PEDV pathogenesis and facilitate the development of novel antiviral strategies. We analyzed the differential protein profile of PEDV-infected Vero E6 cells using mass spectrometry and an isobaric tag for relative and absolute quantification. A total of 126 proteins were identified that were differentially expressed between the PEDV-infected and mock-infected groups (P<0.05, quantitative ratio ≥1.2), among which the expression of 58 proteins was up-regulated and that of 68 proteins was down-regulated in the PEDV-infected Vero E6 cells, involving in integrin β2/β3, cystatin-C. The Gene Ontology analysis indicated that the molecular function of the differentially expressed proteins (DEPs) was primarily related to binding and catalytic activity, and that the biological functions in which the DEPs are involved included metabolism, organismal systems, cellular processes, genetic information processing, environmental information processing, and diseases. Among the disease-related functions, certain anti-viral pathways and proteins, such as the RIG-I-like receptor, Rap1, autophagy, mitogen-activated protein kinase, PI3K-Akt and Jak-STAT signaling pathways, and integrin β2/β3 and cystatin-C proteins, represented potential factors in PEDV infection. Our findings provide valuable insight into PEDV-Vero E6 cell interactions.
Collapse
Affiliation(s)
- Dongbo Sun
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing 163319, PR China.
| | - Hongyan Shi
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing 163319, PR China
| | - Jianfei Chen
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China
| | - Da Shi
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing 163319, PR China
| | - Xin Zhang
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China
| | - Li Feng
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nangang District, Harbin 150001, PR China.
| |
Collapse
|
28
|
Sheinboim D, Hindiyeh M, Mendelson E, Albeck M, Sredni B, Dovrat S. The immunomodulator, ammonium trichloro[1,2-ethanediolato-O,O']-tellurate, suppresses the propagation of herpes simplex virus 2 by reducing the infectivity of the virus progeny. Int J Mol Med 2015; 36:231-8. [PMID: 25936393 DOI: 10.3892/ijmm.2015.2197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/17/2015] [Indexed: 11/05/2022] Open
Abstract
Persistent investigations for the identification of novel anti-herpetic drugs are being conducted worldwide, as current treatment options are sometimes insufficient. The immunomodulator, ammonium trichloro[1,2‑ethanediolato‑O,O']‑tellurate (AS101), a non‑toxic tellurium (Ⅳ) compound, has been shown to exhibit anti‑viral activity against a variety of viruses in cell cultures and in animal models. In the present study, the anti‑viral activity of AS101 against herpes simplex virus (HSV)‑1 and 2 was investigated in vitro. The results demonstrated that AS101 significantly restricted HSV‑2-induced plaque formation and reduced the infectivity of the HSV‑2 yield, while HSV‑1 was affected to a lesser extent. The incubation of mature HSV‑1 and HSV‑2 viruses with AS101 had no effect on viral infectivity, indicating that the compound interrupts de novo viral synthesis. The addition of AS101 at up to 9 h post‑infection had almost the same effect as did the addition of the drug together with the virus (it maintained 80% of its total anti‑viral capacity). Quantitative PCR and immunofluoresence staining of viral structural proteins revealed that the viral DNA and protein synthesis stages were not interrupted by the administration of AS101. By contrast, in the presence of the compound, significantly fewer viable viruses (≥2 log reduction) were recovered from the AS10‑treated cell cultures. Of note, when we determined the viability of the intracellular virus, formed in the presence of the compound, a less severe (≤1 log) effect was observed. Taken together, these data strongly suggest that AS101 primarily interferes with late stages of viral replication, such as viral particle envelopment or egress, leading to the production of a defective virus progeny.
Collapse
Affiliation(s)
- D Sheinboim
- Central Virology Laboratory, The Chaim Sheba Medical Center, Ramat‑Gan, Israel
| | - M Hindiyeh
- Central Virology Laboratory, The Chaim Sheba Medical Center, Ramat‑Gan, Israel
| | - E Mendelson
- Central Virology Laboratory, The Chaim Sheba Medical Center, Ramat‑Gan, Israel
| | - M Albeck
- Department of Chemistry, Faculty of Exact Sciences, Bar‑Ilan University, Ramat‑Gan, Israel
| | - B Sredni
- The SAFDIÉ Cancer, AIDS and Immunology Research (CAIR) Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar‑Ilan University, Ramat‑Gan, Israel
| | - S Dovrat
- Central Virology Laboratory, The Chaim Sheba Medical Center, Ramat‑Gan, Israel
| |
Collapse
|
29
|
Liu X, Cohen JI. The role of PI3K/Akt in human herpesvirus infection: From the bench to the bedside. Virology 2015; 479-480:568-77. [PMID: 25798530 PMCID: PMC4424147 DOI: 10.1016/j.virol.2015.02.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/25/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections.
Collapse
Affiliation(s)
- XueQiao Liu
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
B Virus (Macacine herpesvirus 1) Glycoprotein D Is Functional but Dispensable for Virus Entry into Macaque and Human Skin Cells. J Virol 2015; 89:5515-24. [PMID: 25740986 DOI: 10.1128/jvi.03568-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/26/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Glycoprotein D (gD) plays an essential role in cell entry of many simplexviruses. B virus (Macacine herpesvirus 1) is closely related to herpes simplex virus 1 (HSV-1) and encodes gD, which shares more than 70% amino acid similarity with HSV-1 gD. Previously, we have demonstrated that B virus gD polyclonal antibodies were unable to neutralize B virus infectivity on epithelial cell lines, suggesting gD is not required for B virus entry into these cells. In the present study, we confirmed this finding by producing a B virus mutant, BV-ΔgDZ, in which the gD gene was replaced with a lacZ expression cassette. Recombinant plaques were selected on complementing VD60 cells expressing HSV-1 gD. Virions lacking gD were produced in Vero cells infected with BV-ΔgDZ. In contrast to HSV-1, B virus lacking gD was able to infect and form plaques on noncomplementing cell lines, including Vero, HEp-2, LLC-MK2, primary human and macaque dermal fibroblasts, and U373 human glioblastoma cells. The gD-negative BV-ΔgDZ also failed to enter entry-resistant murine B78H1 cells bearing a single gD receptor, human nectin-1, but gained the ability to enter when phenotypically supplemented with HSV-1 gD. Cell attachment and penetration rates, as well as the replication characteristics of BV-ΔgDZ in Vero cells, were almost identical to those of wild-type (wt) B virus. These observations indicate that B virus can utilize gD-independent cell entry and transmission mechanisms, in addition to generally used gD-dependent mechanisms. IMPORTANCE B virus is the only known simplexvirus that causes zoonotic infection, resulting in approximately 80% mortality in untreated humans or in lifelong persistence with the constant threat of reactivation in survivors. Here, we report that B virus lacking the gD envelope glycoprotein infects both human and monkey cells as efficiently as wild-type B virus. These data provide evidence for a novel mechanism(s) utilized by B virus to gain access to target cells. This mechanism is different from those used by its close relatives, HSV-1 and -2, where gD is a pivotal protein in the virus entry process. The possibility remains that unidentified receptors, specific for B virus, permit virus entry into target cells through gD-independent pathways. Understanding the molecular mechanisms of B virus entry may help in developing rational therapeutic strategies for the prevention and treatment of B virus infection in both macaques and humans.
Collapse
|
31
|
Abstract
UNLABELLED Nonmuscle myosin heavy chain IIA (NMHC-IIA) has been reported to function as a herpes simplex virus 1 (HSV-1) entry coreceptor by interacting with viral envelope glycoprotein B (gB). Vertebrates have three genetically distinct isoforms of the NMHC-II, designated NMHC-IIA, NMHC-IIB, and NMHC-IIC. COS cells, which are readily infected by HSV-1, do not express NMHC-IIA but do express NMHC-IIB. This observation prompted us to investigate whether NMHC-IIB might associate with HSV-1 gB and be involved in an HSV-1 entry like NMHC-IIA. In these studies, we show that (i) NMHC-IIB coprecipitated with gB in COS-1 cells upon HSV-1 entry; (ii) a specific inhibitor of myosin light chain kinase inhibited cell surface expression of NMHC-IIB in COS-1 cells upon HSV-1 entry as well as HSV-1 infection, as reported with NMHC-IIA; (iii) overexpression of mouse NMHC-IIB in IC21 cells significantly increased their susceptibility to HSV-1 infection; and (iv) knockdown of NMHC-IIB in COS-1 cells inhibited HSV-1 infection as well as cell-cell fusion mediated by HSV-1 envelope glycoproteins. These results supported the hypothesis that, like NMHC-IIA, NMHC-IIB associated with HSV-1 gB and mediated HSV-1 entry. IMPORTANCE Herpes simplex virus 1 (HSV-1) was reported to utilize nonmuscle myosin heavy chain IIA (NMHC-IIA) as an entry coreceptor associating with gB. Vertebrates have three genetically distinct isoforms of NMHC-II. In these isoforms, NMHC-IIB is of special interest since it highly expresses in neuronal tissue, one of the most important cellular targets of HSV-1 in vivo. In this study, we demonstrated that the ability to mediate HSV-1 entry appeared to be conserved in NMHC-II isoforms. These results may provide an insight into the mechanism by which HSV-1 infects a wide variety of cell types in vivo.
Collapse
|
32
|
Structure-based functional analyses of domains II and III of pseudorabies virus glycoprotein H. J Virol 2014; 89:1364-76. [PMID: 25392216 DOI: 10.1128/jvi.02765-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Enveloped viruses utilize membrane fusion for entry into, and release from, host cells. For entry, members of the Herpesviridae require at least three envelope glycoproteins: the homotrimeric gB and a heterodimer of gH and gL. The crystal structures of three gH homologues, including pseudorabies virus (PrV) gH, revealed four conserved domains. Domain II contains a planar β-sheet ("fence") and a syntaxin-like bundle of three α-helices (SLB), similar to those found in eukaryotic fusion proteins, potentially executing an important role in gH function. To test this hypothesis, we introduced targeted mutations into the PrV gH gene, which either disrupt the helices of the SLB by introduction of proline residues or covalently join them by artificial intramolecular disulfide bonds between themselves, to the adjacent fence region, or to domain III. Disruption of either of the three α-helices of the SLB (A250P, V275P, V298P) severely affected gH function in in vitro fusion assays and replication of corresponding PrV mutants. Considerable defects in fusion activity of gH, as well as in penetration kinetics and cell-to-cell spread of PrV mutants, were also observed after disulfide linkage of two α-helices within the SLB (A284C-S291C) or between SLB and domain III (H251C-L432C), as well as by insertions of additional cysteine pairs linking fence, SLB, and domain III. In vitro fusion activity of mutated gH could be partly restored by reduction of the artificial disulfide bonds. Our results indicate that the structure and flexibility of the SLB are relevant for the function of PrV gH in membrane fusion. IMPORTANCE Mutational analysis based on crystal structures of proteins is a powerful tool to understand protein function. Here, we continued our study of pseudorabies virus gH, a part of the core fusion machinery of herpesviruses. We previously showed that the "flap" region in domain IV of PrV gH is important for its function. We now demonstrate that mutations within domain II that interfere with integrity or flexibility of a syntaxin-like three-helix bundle also significantly impair gH function during fusion. These studies provide important insights into the structural requirements of gH for function in fusion.
Collapse
|
33
|
Figliozzi RW, Chen F, Balish M, Ajavon A, Hsia SV. Thyroid hormone-dependent epigenetic suppression of herpes simplex virus-1 gene expression and viral replication in differentiated neuroendocrine cells. J Neurol Sci 2014; 346:164-73. [PMID: 25175854 DOI: 10.1016/j.jns.2014.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022]
Abstract
A global HSV-1 gene repression occurs during latency in sensory neurons where most viral gene transcriptions are suppressed. The molecular mechanisms of gene silencing and how stress factors trigger the reactivation are not well understood. Thyroid hormones are known to be altered due to stress, and with its nuclear receptor impart transcriptional repression or activation depending upon the hormone level. Therefore we hypothesized that triiodothyronine (T3) treatment of infected differentiated neuron like cells would reduce the ability of HSV-1 to produce viral progeny compared to untreated infected cells. Previously we identified putative thyroid hormone receptor elements (TREs) within the promoter regions of HSV-1 thymidine kinase (TK) and other key genes. Searching for a human cell line that can model neuronal HSV-1 infection, we performed HSV-1 infection experiments on differentiated human neuroendocrine cells, LNCaP. Upon androgen deprivation these cells undergo complete differentiation and exhibit neuronal-like morphology and physiology. These cells were readily infected by our HSV-1 recombinant virus, expressing GFP and maintaining many processes iconic of dendritic morphology. Our results demonstrated that differentiated LNCaP cells produced suppressive effects on HSV-1 gene expression and replication compared to its undifferentiated counterpart and T3 treatment has further decreased the viral plaque counts compared to untreated cells. Upon washout of the T3 viral plaque counts were restored, indicating an increase of viral replication. The qRT-PCR experiments using primers for TK showed reduced expression under T3 treatment. ChIP assays using a panel of antibodies for H3 lysine 9 epigenetic marks showed increased repressive marks on the promoter regions of TK. In conclusion we have demonstrated a T3 mediated quiescent infection in differentiated LNCaP cells that has potential to mimic latent infection. In this HSV-1 infection model thyroid hormone treatment caused decreased viral replication, repressed TK expression and increased repressive histone tail marks on the TK promoter.
Collapse
Affiliation(s)
- Robert W Figliozzi
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - Feng Chen
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - Matthew Balish
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - Amakoe Ajavon
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - S Victor Hsia
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA.
| |
Collapse
|
34
|
Herpes simplex virus type 2 glycoprotein H interacts with integrin αvβ3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells. J Virol 2014; 88:10026-38. [PMID: 24942591 DOI: 10.1128/jvi.00725-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Herpes simplex virus (HSV) entry requires multiple interactions at the cell surface and activation of a complex calcium signaling cascade. Previous studies demonstrated that integrins participate in this process, but their precise role has not been determined. These studies were designed to test the hypothesis that integrin αvβ3 signaling promotes the release of intracellular calcium (Ca2+) stores and contributes to viral entry and cell-to-cell spread. Transfection of cells with small interfering RNA (siRNA) targeting integrin αvβ3, but not other integrin subunits, or treatment with cilengitide, an Arg-Gly-Asp (RGD) mimetic, impaired HSV-induced Ca2+ release, viral entry, plaque formation, and cell-to-cell spread of HSV-1 and HSV-2 in human cervical and primary genital tract epithelial cells. Coimmunoprecipitation studies and proximity ligation assays indicated that integrin αvβ3 interacts with glycoprotein H (gH). An HSV-2 gH-null virus was engineered to further assess the role of gH in the virus-induced signaling cascade. The gH-2-null virus bound to cells and activated Akt to induce a small Ca2+ response at the plasma membrane, but it failed to trigger the release of cytoplasmic Ca2+ stores and was impaired for entry and cell-to-cell spread. Silencing of integrin αvβ3 and deletion of gH prevented phosphorylation of focal adhesion kinase (FAK) and the transport of viral capsids to the nuclear pore. Together, these findings demonstrate that integrin signaling is activated downstream of virus-induced Akt signaling and facilitates viral entry through interactions with gH by activating the release of intracellular Ca2+ and FAK phosphorylation. These findings suggest a new target for HSV treatment and suppression. IMPORTANCE Herpes simplex viruses are the leading cause of genital disease worldwide, the most common infection associated with neonatal encephalitis, and a major cofactor for HIV acquisition and transmission. There is no effective vaccine. These epidemiological findings underscore the urgency to develop novel HSV treatment or prevention strategies. This study addresses this gap by further defining the signaling pathways the virus usurps to enter human genital tract epithelial cells. Specifically, the study defines the role played by integrins and by the viral envelope glycoprotein H in entry and cell-to-cell spread. This knowledge will facilitate the identification of new targets for the development of treatment and prevention.
Collapse
|
35
|
Varedi M, Moattari A, Amirghofran Z, Karamizadeh Z, Feizi H. Effects of hypo- and hyperthyroid states on herpes simplex virus infectivity in the rat. Endocr Res 2014; 39:50-5. [PMID: 23883178 DOI: 10.3109/07435800.2013.808208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Available data from in vitro studies show that thyroid hormones (THs) regulate herpes simplex virus (HSV) gene expression and may modulate latency/reactivation of the virus. Whether infectivity of the virus is also affected by THs is not known. Using animal models (in vivo study) and Vero cell culture (in vitro study), we examined the effects of alterations in THs level on HSV-1 infectivity. METHODS Rats were rendered hypo- and hyperthyroid by daily addition of methimazole and l-thyroxine into their drinking water, respectively. Euthyroid animals served as control. All animals were given a single dose of HSV-1 (10(7)TCID50, ip) and sacrificed 3 d later. The spleen of the animals was then removed and viral particles were recovered from the tissue extract through aseptic procedures. Serial dilution of the extracts was prepared and added to Vero cell culture. For the in vitro study, the cultures were pretreated with l-thyroxine and the viral particles were then added. Virus titration was determined by Reed-Muench quantal assay. RESULTS The viral load of spleen in hyperthyroid rats was significantly lower (1000-fold) than that of the euthyroid rats. Similarly, in vitro presence of supraphysiologic levels of l-thyroxine in the culture media of Vero cells decreased virus infectivity. Interestingly, hypothyroid animals showed a significant increase (10-fold) in spleen viral load as compared to that of their euthyroid counterparts. CONCLUSIONS These data clearly show that the HSV-1 infectivity is affected by THs, and suggest that THs or their analogs may have a potential application in prevention and/or treatment of viral infections.
Collapse
|
36
|
Gianni T, Salvioli S, Chesnokova LS, Hutt-Fletcher LM, Campadelli-Fiume G. αvβ6- and αvβ8-integrins serve as interchangeable receptors for HSV gH/gL to promote endocytosis and activation of membrane fusion. PLoS Pathog 2013; 9:e1003806. [PMID: 24367260 PMCID: PMC3868510 DOI: 10.1371/journal.ppat.1003806] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/15/2013] [Indexed: 01/20/2023] Open
Abstract
Herpes simplex virus (HSV) - and herpesviruses in general - encode for a multipartite entry/fusion apparatus. In HSV it consists of the HSV-specific glycoprotein D (gD), and three additional glycoproteins, gH/gL and gB, conserved across the Herpesviridae family and responsible for the execution of fusion. According to the current model, upon receptor binding, gD propagates the activation to gH/gL and to gB in a cascade fashion. Questions remain about how the cascade of activation is controlled and how it is synchronized with virion endocytosis, to avoid premature activation and exhaustion of the glycoproteins. We considered the possibility that such control might be carried out by as yet unknown receptors. Indeed, receptors for HSV gB, but not for gH/gL, have been described. In other members of the Herpesviridae family, such as Epstein-Barr virus, integrin receptors bind gH/gL and trigger conformational changes in the glycoproteins. We report that αvβ6- and αvβ8-integrins serve as receptors for HSV entry into experimental models of keratinocytes and other epithelial and neuronal cells. Evidence rests on loss of function experiments, in which integrins were blocked by antibodies or silenced, and gain of function experiments in which αvβ6-integrin was expressed in integrin-negative cells. αvβ6- and αvβ8-integrins acted independently and are thus interchangeable. Both bind gH/gL with high affinity. The interaction profoundly affects the route of HSV entry and directs the virus to acidic endosomes. In the case of αvβ8, but not αvβ6-integrin, the portal of entry is located at lipid microdomains and requires dynamin 2. Thus, a major role of αvβ6- or αvβ8-integrin in HSV infection appears to be to function as gH/gL receptors and to promote virus endocytosis. We propose that placing the gH/gL activation under the integrin trigger point enables HSV to synchronize virion endocytosis with the cascade of glycoprotein activation that culminates in execution of fusion. In order to infect their hosts and cause disease, viruses must enter their host cells. The human pathogen herpes simplex virus (HSV) - and herpesviruses in general - are equipped with a complex, multipartite entry apparatus, made of four glycoproteins – gD, gH/gL, gB. These glycoproteins must be activated in a timely, coordinated manner. According to the current model, the flux of activation goes from receptor-bound gD, to gH/gL and gB. The premature activation, and hence exhaustion of the glycoproteins must also be prevented. We report on a checkpoint at the gH/gL level. Specifically, αvβ6- and αvβ8-integrins serve as receptors for HSV entry into keratinocytes and other epithelial and neuronal cells. Both bind gH/gL with high affinity. The interaction profoundly affects the pathway of HSV entry, promoting HSV endocytosis into acidic endosomes. For αvβ8-integrin, the portal of entry is at lipid microdomains and requires dynamin 2. We propose that, by placing the activation of gH/gL under control of an integrin trigger point, HSV can synchronize virion endocytosis with the cascade of activation that culminates in the execution of fusion between the virion envelope and cellular membranes.
Collapse
Affiliation(s)
- Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Liudmila S. Chesnokova
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Lindsey M. Hutt-Fletcher
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum–University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
37
|
Guo D, Zhu Q, Zhang H, Sun D. Proteomic analysis of membrane proteins of vero cells: exploration of potential proteins responsible for virus entry. DNA Cell Biol 2013; 33:20-8. [PMID: 24286161 DOI: 10.1089/dna.2013.2193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vero cells are highly susceptible to many viruses in humans and animals, and its membrane proteins (MPs) are responsible for virus entry. In our study, the MP proteome of the Vero cells was investigated using a shotgun LC-MS/MS approach. Six hundred twenty-seven proteins, including a total of 1839 peptides, were identified in MP samples of the Vero cells. In 627 proteins, 307 proteins (48.96%) were annotated in terms of biological process of gene ontology (GO) categories; 356 proteins (56.78%) were annotated in terms of molecular function of GO categories; 414 proteins (66.03%) were annotated in terms of cellular components of GO categories. Of 627 identified proteins, seventeen proteins had been revealed to be virus receptor proteins. The resulting protein lists and highlighted proteins may provide valuable information to increase understanding of virus infection of Vero cells.
Collapse
Affiliation(s)
- Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University , Daqing, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Varedi M, Shiri H, Moattari A, Omrani GHR, Amirghofran Z. Hyperthyroid state or in vitro thyroxine treatment modulates TH1/TH2 responses during exposure to HSV-1 antigens. J Immunotoxicol 2013; 11:160-5. [PMID: 24090439 DOI: 10.3109/1547691x.2013.816983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Increasingly in recent years, thyroid hormones (THs) have been considered to be important regulators of the immune system. However, their roles in host defense against viral infections are not clearly established. Therefore, this study was undertaken to examine proliferative activity and cytokine production by lymphocytes isolated from hyperthyroid and euthyroid Balb/c mice in response to herpes simplex virus-1 (HSV-1). Lymphocytes of hyperthyroid animals showed a significantly higher rate of proliferation and interferon (IFN)-γ production when compared with that by lymphocytes from euthyroid mice. In vitro thyroxine (T4) treatment was similarly effective in the potentiation of proliferation, but not IFNγ production, by euthyroid lymphocytes. Furthermore, the hyperthyroid state significantly attenuated ConA-, but not HSV-1-, induced interleukin (IL)-10 release; in vitro T4 treatment synergized this effect. These findings suggest that supra-physiologic TH levels (i.e. as occur in hyper-thyroid states) or in vitro TH treatment modulate T-helper (TH)1/TH2 lymphocyte responses and thereby amplifies host defenses against viral infections. One may also conclude that THs may have a potential application in viral immunization and/or treatment of viral infections.
Collapse
|
39
|
Pérez de Diego R, Mulvey C, Crawford M, Trotter MWB, Lorenzo L, Sancho-Shimizu V, Abel L, Zhang SY, Casanova JL, Godovac-Zimmermann J. The proteome of Toll-like receptor 3-stimulated human immortalized fibroblasts: implications for susceptibility to herpes simplex virus encephalitis. J Allergy Clin Immunol 2013; 131:1157-66. [PMID: 23434283 DOI: 10.1016/j.jaci.2013.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 12/13/2012] [Accepted: 01/10/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Inborn errors in Toll-like receptor 3 (TLR3)-IFN type I and III pathways have been implicated in susceptibility to herpes simplex virus encephalitis (HSE) in children, but most patients studied do not carry mutations in any of the genes presently associated with HSE susceptibility. Moreover, many patients do not display any TLR3-IFN-related fibroblastic phenotype. OBJECTIVE To study other signaling pathways downstream of TLR3 and/or other independent pathways that may contribute to HSE susceptibility. METHODS We used the stable isotope labeling of amino acids in cell culture proteomics methodology to measure changes in the human immortalized fibroblast proteome after TLR3 activation. RESULTS Cells from healthy controls were compared with cells from a patient with a known genetic etiology of HSE (UNC-93B-/-) and also to cells from an HSE patient with an unknown gene defect. Consistent with known variation in susceptibility of individuals to viral infections, substantial variation in the response level of different healthy controls was observed, but common functional networks could be identified, including upregulation of superoxide dismutase 2. The 2 patients with HSE studied show clear differences in functional response networks when compared with healthy controls and also when compared with each other. CONCLUSIONS The present study delineates a number of novel proteins, TLR3-related pathways, and cellular phenotypes that may help elucidate the genetic basis of childhood HSE. Furthermore, our results reveal superoxide dismutase 2 as a potential therapeutic target for amelioration of the neurologic sequelae caused by HSE.
Collapse
Affiliation(s)
- Rebeca Pérez de Diego
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, and Pediatric Hematology-Immunology Unit, Necker Hospital, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fan Q, Bohannon KP, Longnecker R. Drosophila Schneider 2 (S2) cells: a novel tool for studying HSV-induced membrane fusion. Virology 2013; 437:100-9. [PMID: 23399037 DOI: 10.1016/j.virol.2013.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/31/2012] [Accepted: 01/04/2013] [Indexed: 12/17/2022]
Abstract
Drosophila S2 cells and mammalian CHO-K1 cells were used to investigate the requirements for HSV-1 cell fusion. Infection assays indicated S2 cells were not permissive for HSV-1. HVEM and nectin-1 mediated cell fusion between CHO-K1 cells and S2 cells when either CHO-K1 or S2 cells were used as target cells. Interestingly, PILRα did not mediate fusion between CHO-K1 or S2 cells due to a glycosylation defect of PILRα and gB in S2 cells. Fusion activity was not detected for any receptor tested when S2 cells were used both as target cells and effector cells indicating S2 cells may lack a key cellular factor present in mammalian cells that is required for cell fusion. Thus, insect cells may provide a novel tool to study the interaction of HSV-1 glycoproteins and cellular factors required for fusion, as well as a means to identify unknown cellular factors required for HSV replication.
Collapse
Affiliation(s)
- Qing Fan
- Northwestern University, Department of Microbiology-Immunology, Ward 6-241, 303 East Chicago Avenue, Chicago, IL 60611, United States
| | | | | |
Collapse
|
41
|
Galdiero S, Falanga A, Tarallo R, Russo L, Galdiero E, Cantisani M, Morelli G, Galdiero M. Peptide inhibitors against herpes simplex virus infections. J Pept Sci 2013; 19:148-58. [PMID: 23389903 DOI: 10.1002/psc.2489] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 11/07/2022]
Abstract
Herpes simplex virus (HSV) is a significant human pathogen causing mucocutaneous lesions primarily in the oral or genital mucosa. Although acyclovir (ACV) and related nucleoside analogs provide successful treatment, HSV remains highly prevalent worldwide and is a major cofactor for the spread of human immunodeficiency virus. Encephalitis, meningitis, and blinding keratitis are among the most severe diseases caused by HSV. ACV resistance poses an important problem for immunocompromised patients and highlights the need for new safe and effective agents; therefore, the development of novel strategies to eradicate HSV is a global public health priority. Despite the continued global epidemic of HSV and extensive research, there have been few major breakthroughs in the treatment or prevention of the virus since the introduction of ACV in the 1980s. A therapeutic strategy at the moment not fully addressed is the use of small peptide molecules. These can be either modeled on viral proteins or derived from antimicrobial peptides. Any peptide that interrupts protein-protein or viral protein-host cell membrane interactions is potentially a novel antiviral drug and may be a useful tool for elucidating the mechanisms of viral entry. This review summarizes current knowledge and strategies in the development of synthetic and natural peptides to inhibit HSV infectivity.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Krummenacher C, Carfí A, Eisenberg RJ, Cohen GH. Entry of herpesviruses into cells: the enigma variations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:178-95. [PMID: 23884592 DOI: 10.1007/978-1-4614-7651-1_10] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The entry of herpesviruses into their target cells is complex at many levels. Virus entry proceeds by a succession of interactions between viral envelope glycoproteins and molecules on the cell membrane. The process is divided into distinct steps: attachment to the cell surface, interaction with a specific entry receptor, internalization of the particle (optional and cell specific), and membrane fusion. Several viral envelope glycoproteins are involved in one or several of these steps. The most conserved entry glycoproteins in the herpesvirus family (gB, gH/gL) are involved in membrane fusion. Around this functional core, herpesviruses have a variety of receptor binding glycoproteins, which interact with cell surface proteins often from different families. This interaction activates and controls the actual fusion machinery. Interactions with cellular receptors and between viral glycoproteins have to be tightly coordinated and regulated to guarantee successful entry. Although additional entry receptors for herpesviruses continue to be identified, the molecular interactions between viral glycoproteins remain mostly enigmatic. This chapter will review our current understanding of the molecular interactions that occur during herpesvirus entry from attachment to fusion. Particular emphasis will be placed on structure-based representation of receptor binding as a trigger of fusion during herpes simplex virus entry.
Collapse
Affiliation(s)
- Claude Krummenacher
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
43
|
Integrins and small GTPases as modulators of phagocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:321-54. [PMID: 23351714 DOI: 10.1016/b978-0-12-407699-0.00006-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phagocytosis is the mechanism whereby cells engulf large particles. This process has long been recognized as a critical component of the innate immune response, which constitutes the organism's defense against microorganisms. In addition, phagocytic internalization of apoptotic cells or cell fragments plays important roles in tissue homeostasis and remodeling. Phagocytosis requires target interactions with receptors on the plasma membrane of the phagocytic cell. Integrins have been identified as important mediators of particle clearance, in addition to their well-established roles in cell adhesion, migration and mechanotransduction. Indeed, these ubiquitously expressed proteins impart phagocytic capacity to epithelial, endothelial and mesenchymal cell types. The importance of integrins in particle internalization is emphasized by the ability of microbial and viral pathogens to exploit their signaling pathways to invade host cells, and by the wide variety of disorders that arise from abnormalities in integrin-dependent phagocytic uptake.
Collapse
|
44
|
Stampfer SD, Heldwein EE. Stuck in the middle: structural insights into the role of the gH/gL heterodimer in herpesvirus entry. Curr Opin Virol 2012; 3:13-9. [PMID: 23107819 DOI: 10.1016/j.coviro.2012.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/07/2012] [Indexed: 11/20/2022]
Abstract
Enveloped viruses enter cells by fusing the viral and cellular membranes, and most use a single viral envelope protein that combines receptor-binding and fusogenic functions. In herpesviruses, these functions are distributed among multiple proteins: the conserved fusion protein gB, various non-conserved receptor-binding proteins, and the conserved gH/gL heterodimer that curiously lacks an apparent counterpart in other enveloped viruses. Recent structural studies of gH/gL from HSV-2 and EBV revealed a unique complex with no structural or functional similarity to other viral proteins. Here we analyzed gH/gL structures and highlighted important functional regions. We propose that gH/gL functions as an adaptor that transmits the triggering signals from various non-conserved inputs to the highly conserved fusion protein gB.
Collapse
Affiliation(s)
- Samuel D Stampfer
- Department of Molecular Biology and Microbiology and Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, United States
| | | |
Collapse
|
45
|
Hubbard S, Choudhary S, Maus E, Shukla D, Swenson S, Markland FS, Tiwari V. Contortrostatin, a homodimeric disintegrin isolated from snake venom inhibits herpes simplex virus entry and cell fusion. Antivir Ther 2012; 17:1319-26. [PMID: 22875654 DOI: 10.3851/imp2291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Herpes simplex virus (HSV) causes significant health problems from periodical skin and corneal lesions to encephalitis. HSV entry provides a unique opportunity for therapeutic intervention. In this study, we evaluated contortrostatin (CN), an Arg-Gly-Asp motif containing disintegrin isolated from snake venom, as a novel therapeutic agent with ability to block HSV entry and related membrane fusion. METHODS In vitro efficacy of CN against HSV was determined using an HSV type-1 (HSV-1) entry assay based on the measurement of β-galactosidase reporter activity originating from the genome of a recombinant strain of HSV-1(KOS) gL86. HSV-1 glycoprotein-mediated cell-to-cell fusion was used to study the effect of CN on polykaryocyte formation. Primary as well as transformed cell lines were used for this study. RESULTS Pre-treatment of Chinese hamster ovary (CHO-K1) cells expressing HSV-1 glycoprotein D receptors and primary cultures of human corneal fibroblasts (CF) with CN resulted in the inhibition of entry, cell-to-cell fusion, and polykaryocyte formation. Interestingly, a more pronounced anti-HSV-1 effect was observed in naturally susceptible CF than CHO-K1 cells. CONCLUSIONS CN, a novel venom-derived peptide, exhibits the ability to block two key steps, entry and cell-to-cell fusion, in HSV infection. Showing strong promise for development as an anti-HSV agent, it also demonstrates better prophylactic efficacy in primary cells.
Collapse
Affiliation(s)
- Stephen Hubbard
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Structure-based mutational analysis of the highly conserved domain IV of glycoprotein H of pseudorabies virus. J Virol 2012; 86:8002-13. [PMID: 22623768 DOI: 10.1128/jvi.00690-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glycoprotein H (gH) is an envelope protein conserved in the Herpesviridae. Together with glycoprotein B (gB), the heterodimeric complex of gH and glycoprotein L (gL) mediates penetration and direct viral cell-to-cell spread. In herpes simplex and pseudorabies virus (PrV), coexpression of gH/gL, gB, and gD induces membrane fusion to form polykaryocytes. The recently determined crystal structure of a core fragment of PrV gH revealed marked structural similarity to other gH proteins (M. Backovic et al., Proc. Natl. Acad. Sci. U. S. A. 107:22635-22640, 2010). Within the membrane-proximal part (domain IV), a conserved negatively charged surface loop (flap) is flanked by intramolecular disulfide bonds. Together with an N-linked carbohydrate moiety, this flap covers an underlying patch of hydrophobic residues. To investigate the functional relevance of these structures, nonconservative amino acid substitutions were introduced by site-directed mutagenesis. The mutated proteins were tested for correct expression, fusion activity, and functional complementation of gH-deleted PrV. Several single amino acid changes within the flap and the hydrophobic patch were tolerated, and deletion of the glycosylation site had only minor effects. However, multiple alanine substitutions within the flap or the hydrophobic patch led to significant defects. gH function was also severely affected by disruption of the disulfide bond at the C terminus of the flap and after introduction of cysteine pairs designed to bridge the central part of the flap with the hydrophobic patch. Interestingly, all mutated gH proteins were able to complement gH-deleted PrV, but fusion-deficient gH mutants resulted in a pronounced delay in virus entry.
Collapse
|
47
|
Bowles JB, Steain M, Slobedman B, Abendroth A. Inhibition of integrin α6 expression by cell-free varicella-zoster virus. J Gen Virol 2012; 93:1725-1730. [PMID: 22592262 DOI: 10.1099/vir.0.039917-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Varicella-zoster virus (VZV) causes chickenpox and shingles. VZV is released from infected cells during natural infection, but remains highly cell-associated during experimental infection, and so most studies have utilized cell-associated infection models. We examined the impact of cell-free VZV infection of primary human foreskin fibroblasts (HFFs) on the receptor integrin α6 (ITGA6). qPCR and flow cytometry demonstrated that both cell-free VZV and cell-free UV-inactivated VZV downregulated transcription and cell-surface protein expression of ITGA6. To establish whether ITGA6 altered VZV infection, VZV transcripts and nuclear DNA levels were measured in HFFs treated with ITGA6 blocking antibody before infection. ITGA6 blocking did not impair virus entry but did negatively impact VZV transcription, and this effect was virus specific as transcription of the related herpes simplex virus type 1 was not similarly inhibited. This study identifies modulation of ITGA6 during cell-free VZV infection, and provides the first evidence linking ITGA6 with post-entry productive VZV gene expression.
Collapse
Affiliation(s)
- Joshua B Bowles
- Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Megan Steain
- Infectious Diseases and Immunology, University of Sydney, NSW, Australia.,Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Barry Slobedman
- Infectious Diseases and Immunology, University of Sydney, NSW, Australia.,Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Allison Abendroth
- Infectious Diseases and Immunology, University of Sydney, NSW, Australia.,Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| |
Collapse
|
48
|
Herpes virus fusion and entry: a story with many characters. Viruses 2012; 4:800-32. [PMID: 22754650 PMCID: PMC3386629 DOI: 10.3390/v4050800] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 12/13/2022] Open
Abstract
Herpesviridae comprise a large family of enveloped DNA viruses all of whom employ orthologs of the same three glycoproteins, gB, gH and gL. Additionally, herpesviruses often employ accessory proteins to bind receptors and/or bind the heterodimer gH/gL or even to determine cell tropism. Sorting out how these proteins function has been resolved to a large extent by structural biology coupled with supporting biochemical and biologic evidence. Together with the G protein of vesicular stomatitis virus, gB is a charter member of the Class III fusion proteins. Unlike VSV G, gB only functions when partnered with gH/gL. However, gH/gL does not resemble any known viral fusion protein and there is evidence that its function is to upregulate the fusogenic activity of gB. In the case of herpes simplex virus, gH/gL itself is upregulated into an active state by the conformational change that occurs when gD, the receptor binding protein, binds one of its receptors. In this review we focus primarily on prototypes of the three subfamilies of herpesviruses. We will present our model for how herpes simplex virus (HSV) regulates fusion in series of highly regulated steps. Our model highlights what is known and also provides a framework to address mechanistic questions about fusion by HSV and herpesviruses in general.
Collapse
|
49
|
Affiliation(s)
- Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA and Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
50
|
Glauser DL, Gillet L, Stevenson PG. Virion endocytosis is a major target for murid herpesvirus-4 neutralization. J Gen Virol 2012; 93:1316-1327. [PMID: 22377583 PMCID: PMC3755512 DOI: 10.1099/vir.0.040790-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses consistently transmit from immunocompetent carriers, implying that their neutralization is hard to achieve. Murid herpesvirus-4 (MuHV-4) exploits host IgG Fc receptors to bypass blocks to cell binding, and pH-dependent protein conformation changes to unveil its fusion machinery only after endocytosis. Nevertheless, neutralization remains possible by targeting the virion glycoprotein H (gH)–gL heterodimer, and the neutralizing antibody responses of MuHV-4 carriers are improved by boosting with recombinant gH–gL. We analysed here how gH–gL-directed neutralization works. The MuHV-4 gH–gL binds to heparan sulfate. However, most gH–gL-specific neutralizing antibodies did not block this interaction; neither did they act directly on fusion. Instead, they blocked virion endocytosis and transport to the late endosomes, where membrane fusion normally occurs. The poor endocytosis of gH–gL-neutralized virions was recapitulated precisely by virions genetically lacking gL. Therefore, driving virion uptake appears to be an important function of gH–gL that provides a major target for antibody-mediated neutralization.
Collapse
Affiliation(s)
- Daniel L. Glauser
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Laurent Gillet
- Immunology–Vaccinology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | |
Collapse
|