1
|
Deng J, Cao Y, Hu Z. Entry of Newcastle disease virus into host cells: an interplay among viral and host factors. Arch Virol 2024; 169:227. [PMID: 39428451 DOI: 10.1007/s00705-024-06157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/10/2024] [Indexed: 10/22/2024]
Abstract
Newcastle disease (ND) is a major burden for the poultry industry worldwide, especially in developing countries. The virus that causes this disease, Newcastle disease virus (NDV), is also an effective vector for the development of novel human and animal vaccines and a promising oncolytic virus for cancer therapy. The mechanism of entry of NDV into host cells is of particular interest because it has a significant impact on the infectivity, host range, and pathogenicity of the virus. Here, we present an overview of the entry of NDV into cells, focusing on the interplay among viral and host factors involved in this process. In particular, recent research revealing novel features of NDV attachment to cells, the identification of viral and cellular components that regulate binding of the virus to cells, and the emerging role of novel cellular routes of NDV entry are discussed. More importantly, some of the remaining gaps in our understanding of NDV entry and some fundamental questions for research efforts in the future are also highlighted.
Collapse
Affiliation(s)
- Jing Deng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Yang Y, Wang Y, Campbell DE, Lee HW, Wang L, Baldridge M, López CB. SLC35A2 modulates paramyxovirus fusion events during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609835. [PMID: 39253522 PMCID: PMC11382999 DOI: 10.1101/2024.08.27.609835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized GFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. SLC35A1 knockout (KO) cells showed significantly reduced binding and infection of SeV, NDV and MuV due to the lack of cell surface sialic acids, which act as their receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events during infection with different paramyxoviruses. While the UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, the UGT promoted the formation of larger syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that the UGT facilitates paramyxovirus fusion processes involved in entry and spread.
Collapse
Affiliation(s)
- Yanling Yang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuchen Wang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Heng-Wei Lee
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Sari IP, Ortiz CLD, Yang LW, Chen MH, Perng MD, Wu TY. Development of Fusion-Based Assay as a Drug Screening Platform for Nipah Virus Utilizing Baculovirus Expression Vector System. Int J Mol Sci 2024; 25:9102. [PMID: 39201788 PMCID: PMC11354753 DOI: 10.3390/ijms25169102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a therapeutic countermeasure against NiV is urgently needed. As NiV needs to be handled within a Biological Safety Level (BSL) 4 facility, we had developed a safe drug screening platform utilizing a baculovirus expression vector system (BEVS) based on a NiV-induced syncytium formation that could be handled within a BSL-1 facility. To reconstruct the NiV-induced syncytium formation in BEVS, two baculoviruses were generated to express recombinant proteins that are responsible for inducing the syncytium formation, including one baculovirus exhibiting co-expressed NiV fusion protein (NiV-F) and NiV attachment glycoprotein (NiV-G) and another exhibiting human EphrinB2 protein. Interestingly, syncytium formation was observed in infected insect cells when the medium was modified to have a lower pH level and supplemented with cholesterol. Fusion inhibitory properties of several compounds, such as phytochemicals and a polysulfonated naphthylamine compound, were evaluated using this platform. Among these compounds, suramin showed the highest fusion inhibitory activity against NiV-induced syncytium in the baculovirus expression system. Moreover, our in silico results provide a molecular-level glimpse of suramin's interaction with NiV-G's central hole and EphrinB2's G-H loop, which could be the possible reason for its fusion inhibitory activity.
Collapse
Affiliation(s)
- Indah Permata Sari
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| | - Christopher Llynard D. Ortiz
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan; (C.L.D.O.); (L.-W.Y.)
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lee-Wei Yang
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan; (C.L.D.O.); (L.-W.Y.)
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Hsiang Chen
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| |
Collapse
|
4
|
Wang C, Li M, Wang Y, Ding Q, Fan S, Lan J. Structural insights into the Langya virus attachment glycoprotein. Structure 2024; 32:1090-1098.e3. [PMID: 38815575 DOI: 10.1016/j.str.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/23/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Langya virus (LayV) was recently detected in patients with acute pneumonic diseases in China. Genome alignment indicated that LayV is a type of zoonotic henipavirus (HNV) that might also infect domestic animals. Previous studies revealed that HNVs mainly use ephrin-B1, ephrin-B2, or ephrin-B3 as cell receptors and the attachment glycoprotein (G) is the host cell receptor-binding protein. However, the LayV receptor remains unknown. Here, we present the 2.77 Å crystal structure of the LayV G C-terminal domain (CTD). We show that the LayV G protein CTD possesses a similar architecture as the Mojiang virus (MojV) G protein but is markedly different from the Nipah virus (NiV), Hendra virus (HeV), and Cedar virus (CedV) G proteins. Surface plasmon resonance (SPR) experiments indicate that LayV G does not bind ephrin-B proteins. Steric hindrance may prevent interactions between LayV G and ephrin-B. Our data might facilitate drug development targeting LayV.
Collapse
Affiliation(s)
- Chenghai Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Min Li
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yufan Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shilong Fan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Jun Lan
- School of Biomedical Sciences, Hunan University, Changsha, China.
| |
Collapse
|
5
|
Vazaios K, Stavrakaki Ε, Vogelezang LB, Ju J, Waranecki P, Metselaar DS, Meel MH, Kemp V, van den Hoogen BG, Hoeben RC, Chiocca EA, Goins WF, Stubbs A, Li Y, Alonso MM, Calkoen FG, Hulleman E, van der Lugt J, Lamfers ML. The heterogeneous sensitivity of pediatric brain tumors to different oncolytic viruses is predicted by unique gene expression profiles. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200804. [PMID: 38694569 PMCID: PMC11060958 DOI: 10.1016/j.omton.2024.200804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/04/2024]
Abstract
Despite decades of research, the prognosis of high-grade pediatric brain tumors (PBTs) remains dismal; however, recent cases of favorable clinical responses were documented in clinical trials using oncolytic viruses (OVs). In the current study, we employed four different species of OVs: adenovirus Delta24-RGD, herpes simplex virus rQNestin34.5v1, reovirus R124, and the non-virulent Newcastle disease virus rNDV-F0-GFP against three entities of PBTs (high-grade gliomas, atypical teratoid/rhabdoid tumors, and ependymomas) to determine their in vitro efficacy. These four OVs were screened on 14 patient-derived PBT cell cultures and the degree of oncolysis was assessed using an ATP-based assay. Subsequently, the observed viral efficacies were correlated to whole transcriptome data and Gene Ontology analysis was performed. Although no significant tumor type-specific OV efficacy was observed, the analysis revealed the intrinsic biological processes that associated with OV efficacy. The predictive power of the identified expression profiles was further validated in vitro by screening additional PBTs. In summary, our results demonstrate OV susceptibility of multiple patient-derived PBT entities and the ability to predict in vitro responses to OVs using unique expression profiles. Such profiles may hold promise for future OV preselection with effective oncolytic potency in a specific tumor, therewith potentially improving OV responses.
Collapse
Affiliation(s)
- Konstantinos Vazaios
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Εftychia Stavrakaki
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Lisette B. Vogelezang
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Jie Ju
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Dennis S. Metselaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Michaël H. Meel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | | | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - William F. Goins
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Dr, Pittsburgh, PA 15219, USA
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Yunlei Li
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marta M. Alonso
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Avda. de Pío XII, 55, 31008 Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), Av. de Pío XII, 36, 31008 Pamplona, Spain
| | - Friso G. Calkoen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
6
|
Shi Q, Zhao R, Chen L, Liu T, Di T, Zhang C, Zhang Z, Wang F, Han Z, Sun J, Liu S. Newcastle disease virus activates diverse signaling pathways via Src to facilitate virus entry into host macrophages. J Virol 2024; 98:e0191523. [PMID: 38334327 PMCID: PMC10949470 DOI: 10.1128/jvi.01915-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.
Collapse
Affiliation(s)
- Qiankai Shi
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ran Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Linna Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tianyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tao Di
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunwei Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiying Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fangfang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Wang C, Wang T, Dai J, An Z, Hu R, Duan L, Chen H, Wang X, Chu Z, Liu H, Wang J, Li N, Yang Z, Wang J. 1-Formyl- β-carboline Derivatives Block Newcastle Disease Virus Proliferation through Suppressing Viral Adsorption and Entry Processes. Biomolecules 2021; 11:1687. [PMID: 34827684 PMCID: PMC8616010 DOI: 10.3390/biom11111687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023] Open
Abstract
Newcastle disease virus (NDV) is one of the highly contagious pathogens causing devastating economic effects on the global poultry industry. In the present study, three 1-formyl-β-carboline derivatives (compounds 6, 7, and 9) were found to be potent inhibitors of different genotypes of NDV with IC50 values within 10 μM, which are similar to ribavirin. The virus titers were decreased by the presence of 1-formyl-β-carboline derivatives in a dose-dependent manner, and the inhibition rate was found to exceed 90% at the concentration of 20 μM. These compounds mainly suppressed the adsorption and entry processes of NDV lifecycle. Through DARTS, CETSA, and RBC binding assay, these compounds were identified as novel HN inhibitors, which could directly interact with the NDV HN protein to affect the adsorption of NDV. Furthermore, they could inhibit the entry of NDV through suppressing the PI3K/Akt pathway rather than the ERK pathway. The PI3K/Akt pathway was proved to be involved in NDV entry. Our findings reveal a unique mechanism through which 1-formyl-β-carboline derivatives restrain NDV infection. Moreover, these compounds represent suitable scaffolds for designing novel HN inhibitors.
Collapse
Affiliation(s)
- Chongyang Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Jiangkun Dai
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| | - Zhiyuan An
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Liuyuan Duan
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Hui Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Xiangwei Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Zhili Chu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Na Li
- Instrumental Analysis Center, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Junru Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| |
Collapse
|
8
|
Lipatova AV, Soboleva AV, Gorshkov VA, Bubis JA, Solovyeva EM, Krasnov GS, Kochetkov DV, Vorobyev PO, Ilina IY, Moshkovskii SA, Kjeldsen F, Gorshkov MV, Chumakov PM, Tarasova IA. Multi-Omics Analysis of Glioblastoma Cells' Sensitivity to Oncolytic Viruses. Cancers (Basel) 2021; 13:cancers13215268. [PMID: 34771433 PMCID: PMC8582528 DOI: 10.3390/cancers13215268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This study aims to uncover the contribution of interferon-dependent antiviral mechanisms preserved in tumor cells to the resistance of glioblastoma multiforme cells to oncolytic viruses. To characterize the functionality of interferon signaling, we used omics profiling and titration-based measurements of cell sensitivity to a panel of viruses of diverse oncolytic potential. This study shows why patient-derived glioblastoma cultures can acquire increased resistance to oncolytic viruses in the presence of interferons and suggests an approach to ranking glioblastoma cells by the acquired resistance. Our findings are important for monitoring the oncolytic potential of viruses to overcome IFN-induced resistance of tumor cells and contribute to successful therapy. Abstract Oncolytic viruses have gained momentum in the last decades as a promising tool for cancer treatment. Despite the progress, only a fraction of patients show a positive response to viral therapy. One of the key variable factors contributing to therapy outcomes is interferon-dependent antiviral mechanisms in tumor cells. Here, we evaluated this factor using patient-derived glioblastoma multiforme (GBM) cultures. Cell response to the type I interferons’ (IFNs) stimulation was characterized at mRNA and protein levels. Omics analysis revealed that GBM cells overexpress interferon-stimulated genes (ISGs) and upregulate their proteins, similar to the normal cells. A conserved molecular pattern unambiguously differentiates between the preserved and defective responses. Comparing ISGs’ portraits with titration-based measurements of cell sensitivity to a panel of viruses, the “strength” of IFN-induced resistance acquired by GBM cells was ranked. The study demonstrates that suppressing a single ISG and encoding an essential antiviral protein, does not necessarily increase sensitivity to viruses. Conversely, silencing IFIT3 and PLSCR1 genes in tumor cells can negatively affect the internalization of vesicular stomatitis and Newcastle disease viruses. We present evidence of a complex relationship between the interferon response genes and other factors affecting the sensitivity of tumor cells to viruses.
Collapse
Affiliation(s)
- Anastasiya V. Lipatova
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alesya V. Soboleva
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
| | - Vladimir A. Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (V.A.G.); (F.K.)
| | - Julia A. Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (J.A.B.); (E.M.S.); (M.V.G.)
| | - Elizaveta M. Solovyeva
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (J.A.B.); (E.M.S.); (M.V.G.)
| | - George S. Krasnov
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
| | - Dmitry V. Kochetkov
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel O. Vorobyev
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
| | - Irina Y. Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.Y.I.); (S.A.M.)
| | - Sergei A. Moshkovskii
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.Y.I.); (S.A.M.)
- Department of Biochemistry, Medico-Biological Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (V.A.G.); (F.K.)
| | - Mikhail V. Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (J.A.B.); (E.M.S.); (M.V.G.)
| | - Peter M. Chumakov
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (P.M.C.); (I.A.T.)
| | - Irina A. Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (J.A.B.); (E.M.S.); (M.V.G.)
- Correspondence: (P.M.C.); (I.A.T.)
| |
Collapse
|
9
|
The Expression of Hemagglutinin by a Recombinant Newcastle Disease Virus Causes Structural Changes and Alters Innate Immune Sensing. Vaccines (Basel) 2021; 9:vaccines9070758. [PMID: 34358174 PMCID: PMC8310309 DOI: 10.3390/vaccines9070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Recombinant Newcastle disease viruses (rNDV) have been used as bivalent vectors for vaccination against multiple economically important avian pathogens. NDV-vectored vaccines expressing the immunogenic H5 hemagglutinin (rNDV-H5) are considered attractive candidates to protect poultry from both highly pathogenic avian influenza (HPAI) and Newcastle disease (ND). However, the impact of the insertion of a recombinant protein, such as H5, on the biological characteristics of the parental NDV strain has been little investigated to date. The present study compared a rNDV-H5 vaccine and its parental NDV LaSota strain in terms of their structural and functional characteristics, as well as their recognition by the innate immune sensors. Structural analysis of the rNDV-H5 demonstrated a decreased number of fusion (F) and a higher number of hemagglutinin-neuraminidase (HN) glycoproteins compared to NDV LaSota. These structural differences were accompanied by increased hemagglutinating and neuraminidase activities of rNDV-H5. During in vitro rNDV-H5 infection, increased mRNA expression of TLR3, TLR7, MDA5, and LGP2 was observed, suggesting that the recombinant virus is recognized differently by sensors of innate immunity when compared with the parental NDV LaSota. Given the growing interest in using NDV as a vector against human and animal diseases, these data highlight the importance of thoroughly understanding the recombinant vaccines’ structural organization, functional characteristics, and elicited immune responses.
Collapse
|
10
|
Newcastle Disease Virus Entry into Chicken Macrophages via a pH-Dependent, Dynamin and Caveola-Mediated Endocytic Pathway That Requires Rab5. J Virol 2021; 95:e0228820. [PMID: 33762417 DOI: 10.1128/jvi.02288-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cellular entry pathways and the mechanisms of Newcastle disease virus (NDV) entry into cells are poorly characterized. In this study, we demonstrated that chicken interferon-induced transmembrane protein 1 (chIFITM1), which is located in the early endosomes, could limit the replication of NDV in chicken macrophage cell line HD11, suggesting the endocytic entry of NDV into chicken macrophages. Then, we presented a systematic study about the entry mechanism of NDV into chicken macrophages. First, we demonstrated that a low-pH condition and dynamin were required during NDV entry. However, NDV entry into chicken macrophages was independent of clathrin-mediated endocytosis. We also found that NDV entry was dependent on membrane cholesterol. The NDV entry and replication were significantly reduced by nystatin and phorbol 12-myristate 13-acetate treatment, overexpression of dominant-negative (DN) caveolin-1, or knockdown of caveolin-1, suggesting that NDV entry depends on caveola-mediated endocytosis. However, macropinocytosis did not play a role in NDV entry into chicken macrophages. In addition, we found that Rab5, rather than Rab7, was involved in the entry and traffic of NDV. The colocalization of NDV with Rab5 and early endosome suggested that NDV virion was transported to early endosomes in a Rab5-dependent manner after internalization. Of particular note, the caveola-mediated endocytosis was also utilized by NDV to enter primary chicken macrophages. Moreover, NDV entered different cell types using different pathways. Collectively, our findings demonstrate for the first time that NDV virion enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway and that Rab5 is involved in the traffic and location of NDV. IMPORTANCE Although the pathogenesis of Newcastle disease virus (NDV) has been extensively studied, the detailed mechanism of NDV entry into host cells is largely unknown. Macrophages are the first-line defenders of host defense against infection of pathogens. Chicken macrophages are considered one of the main types of target cells during NDV infection. Here, we comprehensively investigated the entry mechanism of NDV in chicken macrophages. This is the first report to demonstrate that NDV enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway that requires Rab5. The result is important for our understanding of the entry of NDV in chicken macrophages, which will further advance the knowledge of NDV pathogenesis and provide useful clues for the development of novel preventive or therapeutic strategies against NDV infection. In addition, this information will contribute to our further understanding of pathogenesis with regard to other members of the Avulavirus genus in the Paramyxoviridae family.
Collapse
|
11
|
You J, Seok JH, Joo M, Bae JY, Kim JI, Park MS, Kim K. Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins. Biomol Ther (Seoul) 2021; 29:249-262. [PMID: 33875625 PMCID: PMC8094071 DOI: 10.4062/biomolther.2021.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/05/2022] Open
Abstract
The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.
Collapse
Affiliation(s)
- Jaehwan You
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jong Hyeon Seok
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Myungsoo Joo
- School of Korean Medicine, Pusan National University, Pusan 50612, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kisoon Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Ripa I, Andreu S, López-Guerrero JA, Bello-Morales R. Membrane Rafts: Portals for Viral Entry. Front Microbiol 2021; 12:631274. [PMID: 33613502 PMCID: PMC7890030 DOI: 10.3389/fmicb.2021.631274] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/14/2021] [Indexed: 02/02/2023] Open
Abstract
Membrane rafts are dynamic, small (10-200 nm) domains enriched with cholesterol and sphingolipids that compartmentalize cellular processes. Rafts participate in roles essential to the lifecycle of different viral families including virus entry, assembly and/or budding events. Rafts seem to participate in virus attachment and recruitment to the cell surface, as well as the endocytic and non-endocytic mechanisms some viruses use to enter host cells. In this review, we will introduce the specific role of rafts in viral entry and define cellular factors implied in the choice of one entry pathway over the others. Finally, we will summarize the most relevant information about raft participation in the entry process of enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
13
|
Wei X, Shao Y, Han Z, Sun J, Liu S. Glycoprotein-C-gene-deleted recombinant infectious laryngotracheitis virus expressing a genotype VII Newcastle disease virus fusion protein protects against virulent infectious laryngotracheitis virus and Newcastle disease virus. Vet Microbiol 2020; 250:108835. [PMID: 33011664 DOI: 10.1016/j.vetmic.2020.108835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023]
Abstract
To develop an alternative vectored vaccine against both Newcastle disease virus (NDV) and infectious laryngotracheitis virus (ILTV), the glycoprotein C (gC) gene was first deleted from an avirulent ILTV. Based on this gC-deleted ILTV mutant, a recombinant ILTV expressing the fusion protein (F) of a genotype VII NDV (designated ILTV-ΔgC-F) was then constructed. Expression of the NDV F protein in ILTV-ΔgC-F-infected LMH cells was examined with an immunofluorescence assay and western blotting. The F gene was stably maintained in the genome of ILTV-ΔgC-F and the F protein was stably expressed. Compared with the parental virus, ILTV-ΔgC-F demonstrated an increased penetration capacity in vitro, and an increased replication rate in vitro and in vivo. Both the parental virus and ILTV-ΔgC-F were avirulent in chickens. Vaccination of specific-pathogen-free chickens with ILTV-ΔgC-F induced ILTV-specific antibodies, detected with an enzyme-linked immunosorbent assay (ELISA), and provided complete clinical protection against virulent ILTV, although viral shedding and replication were detected in the respiratory tract in the early stage of infection in a very small number of birds. Vaccination with ILTV-ΔgC-F also provided significant protection against challenge with a virulent genotype VII NDV, although the level of NDV-specific antibodies detected with an ELISA was low. Notably, the numbers of birds that were positive for the virulent genotype VII NDV and the replication of the challenge virus NDV in selected target tissues were significantly lower in the ILTV-ΔgC-F-vaccinated chickens than in the control birds. Our results indicate that ILTV-ΔgC-F has potential utility as a bivalent candidate vaccine against both infectious laryngotracheitis and Newcastle disease.
Collapse
Affiliation(s)
- Xiao Wei
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| |
Collapse
|
14
|
Garrido PF, Calvelo M, Blanco-González A, Veleiro U, Suárez F, Conde D, Cabezón A, Piñeiro Á, Garcia-Fandino R. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm 2020; 588:119689. [PMID: 32717282 PMCID: PMC7381410 DOI: 10.1016/j.ijpharm.2020.119689] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
A handful of singular structures and laws can be observed in nature. They are not always evident but, once discovered, it seems obvious how to take advantage of them. In chemistry, the discovery of reproducible patterns stimulates the imagination to develop new functional materials and technological or medical applications. Two clear examples are helical structures at different levels in biological polymers as well as ring and spherical structures of different size and composition. Rings are intuitively observed as holes able to thread elongated structures. A large number of real and fictional stories have rings as inanimate protagonists. The design, development or just discovering of a special ring has often been taken as a symbol of power or success. Several examples are the Piscatory Ring wore by the Pope of the Catholic Church, the NBA Championship ring and the One Ring created by the Dark Lord Sauron in the epic story The Lord of the Rings. In this work, we reveal the power of another extremely powerful kind of rings to fight against the pandemic which is currently affecting the whole world. These rings are as small as ~1 nm of diameter and so versatile that they are able to participate in the attack of viruses, and specifically SARS-CoV-2, in a large range of different ways. This includes the encapsulation and transport of specific drugs, as adjuvants to stabilize proteins, vaccines or other molecules involved in the infection, as cholesterol trappers to destabilize the virus envelope, as carriers for RNA therapies, as direct antiviral drugs and even to rescue blood coagulation upon heparin treatment. “One ring to rule them all. One ring to find them. One ring to bring them all and in the darkness bind them.” J. R. R. Tolkien.
Collapse
Affiliation(s)
- Pablo F Garrido
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Uxía Veleiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Fabián Suárez
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Daniel Conde
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rebeca Garcia-Fandino
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Braga SS. Cyclodextrins: Emerging Medicines of the New Millennium. Biomolecules 2019; 9:E801. [PMID: 31795222 PMCID: PMC6995511 DOI: 10.3390/biom9120801] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclodextrins, since their discovery in the late 19th century, were mainly regarded as excipients. Nevertheless, developments in cyclodextrin research have shown that some of these hosts can capture and include biomolecules, highlighting fatty acids and cholesterol, which implies that they are not inert and that their action may be used in specific medicinal purposes. The present review, centered on literature reports from the year 2000 until the present day, presents a comprehensive description of the known biological activities of cyclodextrins and their implications for medicinal applications. The paper is divided into two main sections, one devoted to the properties and applications of cyclodextrins as active pharmaceutical ingredients in a variety of pathologies, from infectious ailments to cardiovascular dysfunctions and metabolic diseases. The second section is dedicated to the use of cyclodextrins in a range of biomedical technologies.
Collapse
Affiliation(s)
- Susana Santos Braga
- QOPNA & LAQV/REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Shtykova EV, Petoukhov MV, Dadinova LA, Fedorova NV, Tashkin VY, Timofeeva TA, Ksenofontov AL, Loshkarev NA, Baratova LA, Jeffries CM, Svergun DI, Batishchev OV. Solution Structure, Self-Assembly, and Membrane Interactions of the Matrix Protein from Newcastle Disease Virus at Neutral and Acidic pH. J Virol 2019; 93:e01450-18. [PMID: 30567981 PMCID: PMC6401449 DOI: 10.1128/jvi.01450-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus (NDV) is an enveloped paramyxovirus. The matrix protein of the virus (M-NDV) has an innate propensity to produce virus-like particles budding from the plasma membrane of the expressing cell without recruiting other viral proteins. The virus predominantly infects the host cell via fusion with the host plasma membrane or, alternatively, can use receptor-mediated endocytic pathways. The question arises as to what are the mechanisms supporting such diversity, especially concerning the assembling and membrane binding properties of the virus protein scaffold under both neutral and acidic pH conditions. Here, we suggest a novel method of M-NDV isolation in physiological ionic strength and employ a combination of small-angle X-ray scattering, atomic force microscopy with complementary structural techniques, and membrane interaction measurements to characterize the solution behavior/structure of the protein as well as its binding to lipid membranes at pH 4.0 and pH 7.0. We demonstrate that the minimal structural unit of the protein in solution is a dimer that spontaneously assembles in a neutral milieu into hollow helical oligomers by repeating the protein tetramers. Acidic pH conditions decrease the protein oligomerization state to the individual dimers, tetramers, and octamers without changing the density of the protein layer and lipid membrane affinity, thus indicating that the endocytic pathway is a possible facilitator of NDV entry into a host cell through enhanced scaffold disintegration.IMPORTANCE The matrix protein of the Newcastle disease virus (NDV) is one of the most abundant viral proteins that regulates the formation of progeny virions. NDV is an avian pathogen that impacts the economics of bird husbandry due to its resulting morbidity and high mortality rates. Moreover, it belongs to the Avulavirus subfamily of the Paramyxoviridae family of Mononegavirales that include dangerous representatives such as respiratory syncytial virus, human parainfluenza virus, and measles virus. Here, we investigate the solution structure and membrane binding properties of this protein at both acidic and neutral pH to distinguish between possible virus entry pathways and propose a mechanism of assembly of the viral matrix scaffold. This work is fundamental for understanding the mechanisms of viral entry as well as to inform subsequent proposals for the possible use of the virus as an adequate template for future drug or vaccine delivery.
Collapse
Affiliation(s)
- E V Shtykova
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M V Petoukhov
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- EMBL/DESY, Hamburg, Germany
| | - L A Dadinova
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia
| | - N V Fedorova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - V Yu Tashkin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - T A Timofeeva
- D. I. Ivanovsky Institute of Virology, FSBI N. F. Gamaleya NRCEM, Ministry of Health of Russian Federation, Moscow, Russian
| | - A L Ksenofontov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - N A Loshkarev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - L A Baratova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | - D I Svergun
- D. I. Ivanovsky Institute of Virology, FSBI N. F. Gamaleya NRCEM, Ministry of Health of Russian Federation, Moscow, Russian
| | - O V Batishchev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| |
Collapse
|
17
|
Sánchez D, Cesarman-Maus G, Amador-Molina A, Lizano M. Oncolytic Viruses for Canine Cancer Treatment. Cancers (Basel) 2018; 10:cancers10110404. [PMID: 30373251 PMCID: PMC6266482 DOI: 10.3390/cancers10110404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy has been investigated for several decades and is emerging as a plausible biological therapy with several ongoing clinical trials and two viruses are now approved for cancer treatment in humans. The direct cytotoxicity and immune-stimulatory effects make oncolytic viruses an interesting strategy for cancer treatment. In this review, we summarize the results of in vitro and in vivo published studies of oncolytic viruses in different phases of evaluation in dogs, using PubMed and Google scholar as search platforms, without time restrictions (to date). Natural and genetically modified oncolytic viruses were evaluated with some encouraging results. The most studied viruses to date are the reovirus, myxoma virus, and vaccinia, tested mostly in solid tumors such as osteosarcomas, mammary gland tumors, soft tissue sarcomas, and mastocytomas. Although the results are promising, there are issues that need addressing such as ensuring tumor specificity, developing optimal dosing, circumventing preexisting antibodies from previous exposure or the development of antibodies during treatment, and assuring a reasonable safety profile, all of which are required in order to make this approach a successful therapy in dogs.
Collapse
Affiliation(s)
- Diana Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Gabriela Cesarman-Maus
- Department of Hematology, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| | - Alfredo Amador-Molina
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| |
Collapse
|
18
|
NDV entry into dendritic cells through macropinocytosis and suppression of T lymphocyte proliferation. Virology 2018; 518:126-135. [PMID: 29481983 DOI: 10.1016/j.virol.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 01/27/2023]
Abstract
Newcastle disease virus (NDV) causes major economic losses in the poultry industry. Previous studies have shown that NDV utilizes different pathways to infect various cells, including dendritic cells (DCs). Here, we demonstrate that NDV gains entry into DCs mainly via macropinocytosis and clathrin-mediated endocytosis. The detection of cytokines interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12), interleukin-4 (IL-4) and interleukin-10 (IL-10) indicates that NDV significantly induces Th1 responses and lowers Th2 responses. Furthermore, NDV entry into DCs resulted in the upregulation of TNF-related apoptosis-inducing ligand (TRAIL) and cleaved caspase-3 proteins, which in turn activated the extrinsic apoptosis pathway and induced DCs apoptosis. Transwell® co-culture demonstrated that direct contact between live NDV-stimulated DCs and T cells, rather than heated-inactivated NDV, inhibited CD4+ T cell proliferation. Taken together, these findings provide new insights into the mechanism underlying NDV infections, particularly in relation to antigen presentation cells and suppression of T cell proliferation.
Collapse
|
19
|
Tan L, Zhang Y, Zhan Y, Yuan Y, Sun Y, Qiu X, Meng C, Song C, Liao Y, Ding C. Newcastle disease virus employs macropinocytosis and Rab5a-dependent intracellular trafficking to infect DF-1 cells. Oncotarget 2018; 7:86117-86133. [PMID: 27861142 PMCID: PMC5349901 DOI: 10.18632/oncotarget.13345] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 12/01/2022] Open
Abstract
Oncolytic Newcastle disease virus (NDV) reportedly employs direct fusion of the viral envelope with the plasma membrane and caveolae-dependent endocytosis to enter cells. Here, we show that macropinocytosis and clathrin-mediated endocytosis are involved in NDV entry into a galline embryonic fibroblast cell line. Upon specific inhibition of clathrin assembly, GTPase dynamin, Na+/H+ exchangers, Ras-related C3 botulinum toxin substrate 1, p21 activated kinase 1 or protein kinase C, entry of NDV and its propagation were suppressed. NDV entry into cells triggers Rac1-Pak1 signaling and elicits actin rearrangement and plasma membrane ruffling. Moreover, NDV internalization within macropinosomes and trafficking involve Rab5a-positive vesicles. This is the first report demonstrating that NDV utilizes clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter cells. These findings shed new light on the molecular mechanisms underlying NDV entry into cells, and provide potential targets for NDV-mediated therapy in cancer.
Collapse
Affiliation(s)
- Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Yuqiang Zhang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Yuan Zhan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Yanmei Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, P.R. China
| |
Collapse
|
20
|
Yang B, Qi X, Guo H, Jia P, Chen S, Chen Z, Wang T, Wang J, Xue Q. Peste des Petits Ruminants Virus Enters Caprine Endometrial Epithelial Cells via the Caveolae-Mediated Endocytosis Pathway. Front Microbiol 2018; 9:210. [PMID: 29497407 PMCID: PMC5818419 DOI: 10.3389/fmicb.2018.00210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) causes an acute and highly contagious disease of sheep and goats and has spread with alarming speed around the world. The pathology of Peste des petits ruminants is linked to retrogressive changes and necrotic lesions in lymphoid tissues and epithelial cells. However, the process of PPRV entry into host epithelial cells remains largely unknown. Here, we performed a comprehensive study of the entry mechanism of PPRV into caprine endometrial epithelial cells (EECs). We clearly demonstrated that PPRV internalization was inhibited by chloroquine and ammonium chloride, which elevate the pH of various organelles. However, PPRV entry was not affected by chlorpromazine and knockdown of the clathrin heavy chain in EECs. In addition, we found that the internalization of PPRV was dependent on dynamin and membrane cholesterol and was suppressed by silencing of caveolin-1. Macropinocytosis did not play a role, but phosphatidylinositol 3-kinase (PI3K) was required for PPRV internalization. Cell type and receptor-dependent differences indicated that PPRV entry into caprine fetal fibroblast cells (FFCs) occurred via a different route. Taken together, our findings demonstrate that PPRV enters EECs through a cholesterol-dependent caveolae-mediated uptake mechanism that is pH-dependent and requires dynamin and PI3K but is independent of clathrin. This potentially provides insight into the entry mechanisms of other morbilliviruses.
Collapse
Affiliation(s)
- Bo Yang
- China Institute of Veterinary Drug Control, Beijing, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Hui Guo
- China Institute of Veterinary Drug Control, Beijing, China
| | - Peilong Jia
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Shuying Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Zhijie Chen
- China Institute of Veterinary Drug Control, Beijing, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
21
|
Brown VR, Bevins SN. A review of virulent Newcastle disease viruses in the United States and the role of wild birds in viral persistence and spread. Vet Res 2017; 48:68. [PMID: 29073919 PMCID: PMC5659000 DOI: 10.1186/s13567-017-0475-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 11/24/2022] Open
Abstract
Newcastle disease is caused by virulent strains of Newcastle disease virus (NDV), which causes substantial morbidity and mortality events worldwide in poultry. The virus strains can be differentiated as lentogenic, mesogenic, or velogenic based on a mean death time in chicken embryos. Currently, velogenic strains of NDV are not endemic in United States domestic poultry; however, these strains are present in other countries and are occasionally detected in wild birds in the U.S. A viral introduction into domestic poultry could have severe economic consequences due to the loss of production from sick and dying birds, the cost of control measures such as depopulation and disinfection measures, and the trade restrictions that would likely be imposed as a result of an outbreak. Due to the disease-free status of the U.S. and the high cost of a potential viral incursion to the poultry industry, a qualitative risk analysis was performed to evaluate the vulnerabilities of the U.S. against the introduction of virulent strains of NDV. The most likely routes of virus introduction are explored and data gathered by several federal agencies is provided. Recommendations are ultimately provided for data that would be useful to further understand NDV on the landscape and to utilize all existing sampling opportunities to begin to comprehend viral movement and further characterize the risk of NDV introduction into the U.S.
Collapse
Affiliation(s)
- Vienna R Brown
- Oak Ridge Institute for Science and Education (ORISE) supported by the U.S. Department of Homeland Security (DHS), Science and Technology Directorate (S&T), Chemical and Biological Defense Division (CBD), Oak Ridge, TN, USA.
| | - Sarah N Bevins
- United States Department of Agriculture, Animal and Plant Health Inspection Service Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| |
Collapse
|
22
|
Transient activation of the PI3K/Akt pathway promotes Newcastle disease virus replication and enhances anti-apoptotic signaling responses. Oncotarget 2017; 8:23551-23563. [PMID: 28423596 PMCID: PMC5410326 DOI: 10.18632/oncotarget.15796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/06/2017] [Indexed: 01/22/2023] Open
Abstract
Viral infection activates a host's cellular phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which is involved in cell differentiation, growth, survival, and apoptosis. To elucidate molecular mechanisms in the pathogenesis of Newcastle disease virus (NDV), we demonstrated that NDV transiently activates the PI3K/Akt pathway in chicken cells at an early phase of infection. Its activation was observed as early as 15 min post-infection and gradually weakened after 24 h. Incubating cells with a PI3K inhibitor, LY294002 or wortmannin, prior to NDV infection decreased NDV progeny yields and suppressed Akt phosphorylation at early times post-infection. Akt activation is triggered by NDV-GM or NDV-F48E9 and is abolished by methyl β-cyclodextrin and chlorpromazine. Treatment following NDV-La Sota infection had no obvious effect. However, inhibiting PI3K activation promoted apoptotic responses during an early stage of NDV infection. The pan caspase inhibitor ZVAD-FMK mitigated the reduction in Akt phosphorylation by inhibiting PI3K activation, which indicates the signaling pathway promotes cell survival and, in turn, facilitates viral replication. By suppressing premature apoptosis upon NDV infection, the PI3K/Akt pathway enhances the anti-apoptotic response.
Collapse
|
23
|
Masemann D, Boergeling Y, Ludwig S. Employing RNA viruses to fight cancer: novel insights into oncolytic virotherapy. Biol Chem 2017; 398:891-909. [DOI: 10.1515/hsz-2017-0103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/08/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Within recent decades, viruses that specifically target tumor cells have emerged as novel therapeutic agents against cancer. These viruses do not only act via their cell-lytic properties, but also harbor immunostimulatory features to re-direct the tumor microenvironment and stimulate tumor-directed immune responses. Furthermore, oncolytic viruses are considered to be superior to classical cancer therapies due to higher selectivity towards tumor cell destruction and, consequently, less collateral damage of non-transformed healthy tissue. In particular, the field of oncolytic RNA viruses is rapidly developing since these agents possess alternative tumor-targeting strategies compared to established oncolytic DNA viruses. Thus, oncolytic RNA viruses have broadened the field of virotherapy facilitating new strategies to fight cancer. In addition to several naturally occurring oncolytic viruses, genetically modified RNA viruses that are armed to express foreign factors such as immunostimulatory molecules have been successfully tested in early clinical trials showing promising efficacy. This review aims to provide an overview of the most promising RNA viruses in clinical development, to summarize the current knowledge of clinical trials using these viral agents, and to discuss the main issues as well as future perspectives of clinical approaches using oncolytic RNA viruses.
Collapse
|
24
|
Rota P, Papini N, La Rocca P, Montefiori M, Cirillo F, Piccoli M, Scurati R, Olsen L, Allevi P, Anastasia L. Synthesis and chemical characterization of several perfluorinated sialic acid glycals and evaluation of their in vitro antiviral activity against Newcastle disease virus. MEDCHEMCOMM 2017; 8:1505-1513. [PMID: 30108862 PMCID: PMC6072510 DOI: 10.1039/c7md00072c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
Newcastle Disease Virus (NDV), belonging to the Paramyxoviridae family, causes a serious infectious disease in birds, resulting in severe losses in the poultry industry every year. Haemagglutinin neuraminidase glycoprotein (HN) has been recognized as a key protein in the viral infection mechanism, and its inhibition represents an attractive target for the development of new drugs based on sialic acid glycals, with the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid (Neu5Ac2en) as their backbone. Herein we report the synthesis of several Neu5Ac2en glycals and of their perfluorinated C-5 modified derivatives, including their respective stereoisomers at C-4, together with evaluation of their in vitro antiviral activity. While all synthesized compounds were found to be active HN inhibitors in the micromolar range, we found that their potency was influenced by the chain-length of the C-5 perfluorinated acetamido functionality. Thus, the binding modes of the inhibitors were also investigated by performing a docking study. Moreover, the perfluorinated glycals were found to be more active than the corresponding normal C-5 acylic derivatives. Finally, cell-cell fusion assays on NDV infected cells revealed that the addition of a newly synthesized C-4α heptafluorobutyryl derivative almost completely inhibited NDV-induced syncytium formation.
Collapse
Affiliation(s)
- P Rota
- Laboratory of Stem Cells for Tissue Engineering , IRCCS Policlinico San Donato, Piazza Malan 2 , 20097 San Donato Milanese , Milan , Italy . ; ; Tel: +0252774674
- Department of Biomedical , Surgical and Dental Sciences , University of Milan , Via Saldini 50 , 20133 Milan , Italy
| | - N Papini
- Department of Medical Biotechnology and Translational Medicine , University of Milan , Via Fratelli Cervi 93 , 20090 Segrate , Milan , Italy
| | - P La Rocca
- Laboratory of Stem Cells for Tissue Engineering , IRCCS Policlinico San Donato, Piazza Malan 2 , 20097 San Donato Milanese , Milan , Italy . ; ; Tel: +0252774674
- Department of Biomedical , Surgical and Dental Sciences , University of Milan , Via Saldini 50 , 20133 Milan , Italy
| | - M Montefiori
- Department of Drug Design and Pharmacology , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - F Cirillo
- Laboratory of Stem Cells for Tissue Engineering , IRCCS Policlinico San Donato, Piazza Malan 2 , 20097 San Donato Milanese , Milan , Italy . ; ; Tel: +0252774674
| | - M Piccoli
- Laboratory of Stem Cells for Tissue Engineering , IRCCS Policlinico San Donato, Piazza Malan 2 , 20097 San Donato Milanese , Milan , Italy . ; ; Tel: +0252774674
| | - R Scurati
- Department of Drug Design and Pharmacology , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - L Olsen
- Department of Drug Design and Pharmacology , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - P Allevi
- Department of Biomedical , Surgical and Dental Sciences , University of Milan , Via Saldini 50 , 20133 Milan , Italy
| | - L Anastasia
- Laboratory of Stem Cells for Tissue Engineering , IRCCS Policlinico San Donato, Piazza Malan 2 , 20097 San Donato Milanese , Milan , Italy . ; ; Tel: +0252774674
- Department of Biomedical Sciences for Health , University of Milan , Via Fratelli Cervi 9 , 20090 Segrate , Milan , Italy
| |
Collapse
|
25
|
The Microtubule Inhibitor Podofilox Inhibits an Early Entry Step of Human Cytomegalovirus. Viruses 2016; 8:v8100295. [PMID: 27783035 PMCID: PMC5086627 DOI: 10.3390/v8100295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus is a ubiquitous β-herpesvirus that infects many different cell types through an initial binding to cell surface receptors followed by a fusion event at the cell membrane or endocytic vesicle. A recent high-throughput screen to identify compounds that block a step prior to viral gene expression identified podofilox as a potent and nontoxic inhibitor. Time-of-addition studies in combination with quantitative-PCR analysis demonstrated that podofilox limits an early step of virus entry at the cell surface. Podofilox was also able to drastically reduce infection by herpes simplex 1, an α-herpesvirus with a very similar entry process to CMV. Podofilox caused a reduced maximal plateau inhibition of infection by viruses with single step binding processes prior to fusion-like Newcastle disease virus, Sendai virus, and influenza A virus or viruses that enter via endocytosis like vesicular stomatitis virus and a clinical-like strain of CMV. These results indicate that microtubules appear to be participating in the post-binding step of virus entry including the pre- and post-penetration events. Modulation of the plasma membrane is required to promote virus entry for herpesviruses, and that podofilox, unlike colchicine or nocodazole, is able to preferentially target microtubule networks at the plasma membrane.
Collapse
|
26
|
Abstract
The family Paramyxoviridae includes many viruses that significantly affect human and animal health. An essential step in the paramyxovirus life cycle is viral entry into host cells, mediated by virus-cell membrane fusion. Upon viral entry, infection results in expression of the paramyxoviral glycoproteins on the infected cell surface. This can lead to cell-cell fusion (syncytia formation), often linked to pathogenesis. Thus membrane fusion is essential for both viral entry and cell-cell fusion and an attractive target for therapeutic development. While there are important differences between viral-cell and cell-cell membrane fusion, many aspects are conserved. The paramyxoviruses generally utilize two envelope glycoproteins to orchestrate membrane fusion. Here, we discuss the roles of these glycoproteins in distinct steps of the membrane fusion process. These findings can offer insights into evolutionary relationships among Paramyxoviridae genera and offer future targets for prophylactic and therapeutic development.
Collapse
|
27
|
Alkayyal AA, Mahmoud AB, Auer RC. Interleukin-12-expressing oncolytic virus: A promising strategy for cancer immunotherapy. J Taibah Univ Med Sci 2016. [DOI: 10.1016/j.jtumed.2016.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Singh S, Mittal A. Transmembrane Domain Lengths Serve as Signatures of Organismal Complexity and Viral Transport Mechanisms. Sci Rep 2016; 6:22352. [PMID: 26925972 PMCID: PMC4772119 DOI: 10.1038/srep22352] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/12/2016] [Indexed: 12/24/2022] Open
Abstract
It is known that membrane proteins are important in various secretory pathways, with
a possible role of their transmembrane domains (TMDs) as sorting determinant
factors. One key aspect of TMDs associated with various
“checkposts” (i.e. organelles) of intracellular trafficking
is their length. To explore possible linkages in organisms with varying
“complexity” and differences in TMD lengths of membrane
proteins associated with different organelles (such as Endoplasmic Reticulum, Golgi,
Endosomes, Nucleus, Plasma Membrane), we analyzed ~70000 membrane
protein sequences in over 300 genomes of fungi, plants, non-mammalian vertebrates
and mammals. We report that as we move from simpler to complex organisms, variation
in organellar TMD lengths decreases, especially compared to their respective plasma
membranes, with increasing organismal complexity. This suggests an evolutionary
pressure in modulating length of TMDs of membrane proteins with increasing
complexity of communication between sub-cellular compartments. We also report
functional applications of our findings by discovering remarkable distinctions in
TMD lengths of membrane proteins associated with different intracellular transport
pathways. Finally, we show that TMD lengths extracted from viral proteins can serve
as somewhat weak indicators of viral replication sites in plant cells but very
strong indicators of different entry pathways employed by animal viruses.
Collapse
Affiliation(s)
- Snigdha Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
29
|
Green TM, Santos MF, Barsky SH, Rappa G, Lorico A. Analogies Between Cancer-Derived Extracellular Vesicles and Enveloped Viruses with an Emphasis on Human Breast Cancer. CURRENT PATHOBIOLOGY REPORTS 2016; 4:169-179. [PMID: 32226654 PMCID: PMC7099913 DOI: 10.1007/s40139-016-0116-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review Cancer cells utilize extracellular vesicles (EVs) as a means of transferring oncogenic proteins and nucleic acids to other cells to enhance the growth and spread of the tumor. There is an unexpected amount of similarities between these small, membrane-bound particles and enveloped virions, including protein content, physical characteristics (i.e., size and morphology), and mechanisms of entry and exit into target cells. Recent Findings This review describes the attributes shared by both cancer-derived EVs, with an emphasis on breast cancer-derived EVs, and enveloped viral particles and discusses the methods by which virions can utilize the EV pathway as a means of transferring viral material and oncogenes to host cells. Additionally, the possible links between human papilloma virus and its influence on the miRNA content of breast cancer-derived EVs are examined. Summary The rapidly growing field of EVs is allowing investigators from different disciplines to enter uncharted territory. The study of the emerging similarities between cancer-derived EVs and enveloped virions may lead to novel important scientific discoveries.
Collapse
Affiliation(s)
- Toni M Green
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Mark F Santos
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Sanford H Barsky
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Germana Rappa
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Aurelio Lorico
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| |
Collapse
|
30
|
Cox RG, Mainou BA, Johnson M, Hastings AK, Schuster JE, Dermody TS, Williams JV. Human Metapneumovirus Is Capable of Entering Cells by Fusion with Endosomal Membranes. PLoS Pathog 2015; 11:e1005303. [PMID: 26629703 PMCID: PMC4667933 DOI: 10.1371/journal.ppat.1005303] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
Human metapneumovirus (HMPV), a member of the Paramyxoviridae family, is a leading cause of lower respiratory illness. Although receptor binding is thought to initiate fusion at the plasma membrane for paramyxoviruses, the entry mechanism for HMPV is largely uncharacterized. Here we sought to determine whether HMPV initiates fusion at the plasma membrane or following internalization. To study the HMPV entry process in human bronchial epithelial (BEAS-2B) cells, we used fluorescence microscopy, an R18-dequenching fusion assay, and developed a quantitative, fluorescence microscopy assay to follow virus binding, internalization, membrane fusion, and visualize the cellular site of HMPV fusion. We found that HMPV particles are internalized into human bronchial epithelial cells before fusing with endosomes. Using chemical inhibitors and RNA interference, we determined that HMPV particles are internalized via clathrin-mediated endocytosis in a dynamin-dependent manner. HMPV fusion and productive infection are promoted by RGD-binding integrin engagement, internalization, actin polymerization, and dynamin. Further, HMPV fusion is pH-independent, although infection with rare strains is modestly inhibited by RNA interference or chemical inhibition of endosomal acidification. Thus, HMPV can enter via endocytosis, but the viral fusion machinery is not triggered by low pH. Together, our results indicate that HMPV is capable of entering host cells by multiple pathways, including membrane fusion from endosomal compartments. Human metapneumovirus (HMPV) is a paramyxovirus that causes severe lower respiratory tract infections. HMPV infection is initiated by the viral surface fusion (F) glycoprotein. HMPV F attaches to cellular receptors, including RGD-binding integrins, and catalyzes virus membrane fusion with cellular membranes during virus entry. Although most paramyxoviruses enter cells by coupling receptor binding to membrane fusion at the cell surface, the entry mechanism for HMPV is largely uncharacterized. In this study, we sought to determine the cellular site of HMPV fusion. We show that HMPV particles are internalized by clathrin-mediated endocytosis and fuse with endosomal membranes. Furthermore, HMPV engages RGD-binding integrins for endosomal trafficking and full virus membrane fusion with intracellular membranes, suggesting that HMPV uses integrins to facilitate movement into target cells rather than as a trigger for fusion at the cell surface. Inhibition of endosomal acidification had only a modest strain-specific effect, suggesting that low pH exposure is not required for HMPV fusion. These results expand knowledge of mechanisms of HMPV entry and suggest new potential therapeutic interventions against this medically important virus.
Collapse
Affiliation(s)
- Reagan G. Cox
- Department of Pathology, Microbiology, & Immunology, Division of Infectious Diseases, Vanderbilt University School of Medicine; Nashville, Tennessee, United States of America
| | - Bernardo A. Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Monika Johnson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Andrew K. Hastings
- Department of Pathology, Microbiology, & Immunology, Division of Infectious Diseases, Vanderbilt University School of Medicine; Nashville, Tennessee, United States of America
| | - Jennifer E. Schuster
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, United States of America
| | - Terence S. Dermody
- Department of Pathology, Microbiology, & Immunology, Division of Infectious Diseases, Vanderbilt University School of Medicine; Nashville, Tennessee, United States of America
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
31
|
Oncolysis by paramyxoviruses: preclinical and clinical studies. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30019-5. [PMID: 26640815 PMCID: PMC4667943 DOI: 10.1038/mto.2015.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preclinical studies demonstrate that a broad spectrum of human malignant cells can be killed by oncolytic paramyxoviruses, which include cells of ecto-, endo-, and mesodermal origin. In clinical trials, significant reduction in size or even complete elimination of primary tumors and established metastases are reported. Different routes of viral administration (intratumoral, intravenous, intradermal, intraperitoneal, or intrapleural), and single- versus multiple-dose administration schemes have been explored. The reported side effects are grade 1 and 2, with the most common among them being mild fever. Some advantages in using paramyxoviruses as oncolytic agents versus representatives of other viral families exist. The cytoplasmic replication results in a lack of host genome integration and recombination, which makes paramyxoviruses safer and more attractive candidates for widely used therapeutic oncolysis in comparison with retroviruses or some DNA viruses. The list of oncolytic paramyxovirus representatives includes attenuated measles virus (MV), mumps virus (MuV), low pathogenic Newcastle disease (NDV), and Sendai (SeV) viruses. Metastatic cancer cells frequently overexpress on their surface some molecules that can serve as receptors for MV, MuV, NDV, and SeV. This promotes specific viral attachment to the malignant cell, which is frequently followed by specific viral replication. The paramyxoviruses are capable of inducing efficient syncytium-mediated lyses of cancer cells and elicit strong immunomodulatory effects that dramatically enforce anticancer immune surveillance. In general, preclinical studies and phase 1–3 clinical trials yield very encouraging results and warrant continued research of oncolytic paramyxoviruses as a particularly valuable addition to the existing panel of cancer-fighting approaches.
Collapse
|
32
|
Matveeva OV, Guo ZS, Shabalina SA, Chumakov PM. Oncolysis by paramyxoviruses: multiple mechanisms contribute to therapeutic efficiency. Mol Ther Oncolytics 2015; 2:15011. [PMID: 26640816 PMCID: PMC4667958 DOI: 10.1038/mto.2015.11] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/08/2015] [Accepted: 05/14/2015] [Indexed: 12/12/2022] Open
Abstract
Oncolytic paramyxoviruses include some strains of Measles, Mumps, Newcastle disease, and Sendai viruses. All these viruses are well equipped for promoting highly specific and efficient malignant cell death, which can be direct and/or immuno-mediated. A number of proteins that serve as natural receptors for oncolytic paramyxoviruses are frequently overexpressed in malignant cells. Therefore, the preferential interaction of paramyxoviruses with malignant cells rather than with normal cells is promoted. Due to specific genetic defects of cancer cells in the interferon (IFN) and apoptotic pathways, viral replication has the potential to be promoted specifically in tumors. Viral mediation of syncytium formation (a polykaryonic structure) promotes intratumoral paramyxo-virus replication and spreading, without exposure to host neutralizing antibodies. So, two related processes: efficient intratumoral infection spread as well as the consequent mass malignant cell death, both are enhanced. In general, the paramyxoviruses elicit strong anticancer innate and adaptive immune responses by triggering multiple danger signals. The paramyxoviruses are powerful inducers of IFN and other immuno-stimulating cytokines. These viruses efficiently promote anticancer activity of natural killer cells, dendritic cells, and cytotoxic T lymphocytes. Moreover, a neuraminidase (sialidase), a component of the viral envelope of Newcastle Disease, Mumps, and Sendai viruses, can cleave sialic acids on the surface of malignant cells thereby unmasking cancer antigens and exposing them to the immune system. These multiple mechanisms contribute to therapeutic efficacy of oncolytic paramyxovi-ruses and are responsible for encouraging results in preclinical and clinical studies.
Collapse
Affiliation(s)
- Olga V Matveeva
- Biopolymer Design LLC, Acton, Massachusetts, USA
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Zong S Guo
- Division of Surgical Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Paudel S, Shin HJ. Role of trypsin in the replication of Avian metapneumovirus subtype C (strain MN-2a) and its entry into the Vero cells. Mol Cell Probes 2015; 29:485-491. [PMID: 26028611 DOI: 10.1016/j.mcp.2015.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023]
Abstract
To understand the molecular mechanisms of Avian metapneumovirus (aMPV) and the requirements involved in the infection and fusion, trypsin treatment was done in the different stages of virus; before infection, during entry and after virus infection followed by aMPV infection. The growth kinetics of aMPV was compared in time dependent manner. The effect of trypsin was found in the later stage of aMPV infection increasing the numbers of infected cells with the significant higher titer of infectious virions to that of trypsin treated before infection, during entry and aMPV. A serine protease inhibitor reduced aMPV replication in a significant way, whereas cysteine peptidase (E-64), aspartic protease (pepstatin A), and metalloprotease (phosphoramidon) inhibitors had no effect on aMPV replication. Inoculation of aMPV on Vero cells expressing the membrane-associated protease TMPRSS2 resulted in higher virus titers than that inoculated on normal Vero cells and is statistically significant (p < 0.05). Also, an inhibitor of clathrin/caveolae-mediated endocytosis had no effect on virus progeny, indicating that aMPV does not use the endocytic pathway for entry but undergoes direct fusion. The effect of lysosomotropic agents was not significant, suggesting that aMPV does not require low-pH environment in endosomes to fuse its envelope with the plasma membrane.
Collapse
Affiliation(s)
- Sarita Paudel
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hyun-Jin Shin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea; Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
34
|
Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM. Unity in diversity: shared mechanism of entry among paramyxoviruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:1-32. [PMID: 25595799 DOI: 10.1016/bs.pmbts.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus, and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus-encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral "fusion machinery." The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here, we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Biology, Ecole Normale Supérieure, Lyon, France
| | - Eric M Jurgens
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA
| | - Anne Moscona
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA.
| | - Laura M Palermo
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| |
Collapse
|
35
|
Sardina JL, López-Ruano G, Prieto-Bermejo R, Sánchez-Sánchez B, Pérez-Fernández A, Sánchez-Abarca LI, Pérez-Simón JA, Quintales L, Sánchez-Yagüe J, Llanillo M, Antequera F, Hernández-Hernández A. PTPN13 regulates cellular signalling and β-catenin function during megakaryocytic differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2886-99. [PMID: 25193362 DOI: 10.1016/j.bbamcr.2014.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/08/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022]
Abstract
PTPN13 is a high-molecular weight intracellular phosphatase with several isoforms that exhibits a highly modular structure. Although in recent years different roles have been described for PTPN13, we are still far from understanding its function in cell biology. Here we show that PTPN13 expression is activated during megakaryocytic differentiation at the protein and mRNA level. Our results show that the upregulation of PTPN13 inhibits megakaryocytic differentiation, while PTPN13 silencing triggers differentiation. The ability of PTPN13 to alter megakaryocytic differentiation can be explained by its capacity to regulate ERK and STAT signalling. Interestingly, the silencing of β-catenin produced the same effect as PTPN13 downregulation. We demonstrate that both proteins coimmunoprecipitate and colocalise. Moreover, we provide evidence showing that PTPN13 can regulate β-catenin phosphorylation, stability and transcriptional activity. Therefore, the ability of PTPN13 to control megakaryocytic differentiation must be intimately linked to the regulation of β-catenin function. Moreover, our results show for the first time that PTPN13 is stabilised upon Wnt signalling, which makes PTPN13 an important player in canonical Wnt signalling. Our results show that PTPN13 behaves as an important regulator of megakaryocytic differentiation in cell lines and also in murine haematopoietic progenitors. This importance can be explained by the ability of PTPN13 to regulate cellular signalling, and especially through the regulation of β-catenin stability and function. Our results hold true for different megakaryocytic cell lines and also for haematopoietic progenitors, suggesting that these two proteins may play a relevant role during in vivo megakaryopoiesis.
Collapse
Affiliation(s)
- José L Sardina
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain; IBFG, Instituto de Biología Funcional y Genómica, CSIC, Salamanca 37007, Spain
| | - Guillermo López-Ruano
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Beatriz Sánchez-Sánchez
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Alejandro Pérez-Fernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | | | - José Antonio Pérez-Simón
- Department of Hematology, Hospital Universitario Virgen del Rocío/IBIS/CSIC/University of Seville, Spain
| | - Luis Quintales
- IBFG, Instituto de Biología Funcional y Genómica, CSIC, Salamanca 37007, Spain
| | - Jesús Sánchez-Yagüe
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | - Marcial Llanillo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Francisco Antequera
- IBFG, Instituto de Biología Funcional y Genómica, CSIC, Salamanca 37007, Spain
| | - Angel Hernández-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain.
| |
Collapse
|
36
|
Newcastle disease virus interaction in targeted therapy against proliferation and invasion pathways of glioblastoma multiforme. BIOMED RESEARCH INTERNATIONAL 2014; 2014:386470. [PMID: 25243137 PMCID: PMC4160635 DOI: 10.1155/2014/386470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/05/2014] [Accepted: 06/25/2014] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM), or grade IV glioma, is one of the most lethal forms of human brain cancer. Current bioscience has begun to depict more clearly the signalling pathways that are responsible for high-grade glioma initiation, migration, and invasion, opening the door for molecular-based targeted therapy. As such, the application of viruses such as Newcastle disease virus (NDV) as a novel biological bullet to specifically target aberrant signalling in GBM has brought new hope. The abnormal proliferation and aggressive invasion behaviour of GBM is reported to be associated with aberrant Rac1 protein signalling. NDV interacts with Rac1 upon viral entry, syncytium induction, and actin reorganization of the infected cell as part of the replication process. Ultimately, intracellular stress leads the infected glioma cell to undergo cell death. In this review, we describe the characteristics of malignant glioma and the aberrant genetics that drive its aggressive phenotype, and we focus on the use of oncolytic NDV in GBM-targeted therapy and the interaction of NDV in GBM signalling that leads to inhibition of GBM proliferation and invasion, and subsequently, cell death.
Collapse
|
37
|
Newcastle disease virus: current status and our understanding. Virus Res 2014; 184:71-81. [PMID: 24589707 PMCID: PMC7127793 DOI: 10.1016/j.virusres.2014.02.016] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
Newcastle disease (ND) is one of the highly pathogenic viral diseases of avian species. ND is economically significant because of the huge mortality and morbidity associated with it. The disease is endemic in many third world countries where agriculture serves as the primary source of national income. Newcastle disease virus (NDV) belongs to the family Paramyxoviridae and is well characterized member among the avian paramyxovirus serotypes. In recent years, NDV has lured the virologists not only because of its pathogenic potential, but also for its oncolytic activity and its use as a vaccine vector for both humans and animals. The NDV based recombinant vaccine offers a pertinent choice for the construction of live attenuated vaccine due to its modular nature of transcription, minimum recombination frequency, and lack of DNA phase during replication. Our current understanding about the NDV biology is expanding rapidly because of the availability of modern molecular biology tools and high-throughput complete genome sequencing.
Collapse
|
38
|
Wen Z, Zhao B, Song K, Hu X, Chen W, Kong D, Ge J, Bu Z. Recombinant lentogenic Newcastle disease virus expressing Ebola virus GP infects cells independently of exogenous trypsin and uses macropinocytosis as the major pathway for cell entry. Virol J 2013; 10:331. [PMID: 24209904 PMCID: PMC3826533 DOI: 10.1186/1743-422x-10-331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Using reverse genetics, we generated a recombinant low-pathogenic LaSota strain Newcastle disease virus (NDV) expressing the glycoprotein (GP) of Ebola virus (EBOV), designated rLa-EBOVGP, and evaluated its biological characteristic in vivo and in vitro. RESULTS The introduction and expression of the EBOV GP gene did not increase the virulence of the NDV vector in poultry or mice. EBOV GP was incorporated into the particle of the vector virus and the recombinant virus rLa-EBOVGP infected cells and spread within them independently of exogenous trypsin. rLa-EBOVGP is more resistant to NDV antiserum than the vector NDV and is moderately sensitive to EBOV GP antiserum. More importantly, infection with rLa-EBOVGP was markedly inhibited by IPA3, indicating that rLa-EBOVGP uses macropinocytosis as the major internalization pathway for cell entry. CONCLUSIONS The results demonstrate that EBOV GP in recombinant NDV particles functions independently to mediate the viral infection of the host cells and alters the cell-entry pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, People's Republic of China.
| |
Collapse
|
39
|
Goldufsky J, Sivendran S, Harcharik S, Pan M, Bernardo S, Stern RH, Friedlander P, Ruby CE, Saenger Y, Kaufman HL. Oncolytic virus therapy for cancer. Oncolytic Virother 2013; 2:31-46. [PMID: 27512656 DOI: 10.2147/ov.s38901] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The use of oncolytic viruses to treat cancer is based on the selection of tropic tumor viruses or the generation of replication selective vectors that can either directly kill infected tumor cells or increase their susceptibility to cell death and apoptosis through additional exposure to radiation or chemotherapy. In addition, viral vectors can be modified to promote more potent tumor cell death, improve the toxicity profile, and/or generate host antitumor immunity. A variety of viruses have been developed as oncolytic therapeutics, including adenovirus, vaccinia virus, herpesvirus, coxsackie A virus, Newcastle disease virus, and reovirus. The clinical development of oncolytic viral therapy has accelerated in the last few years, with several vectors entering clinical trials for a variety of cancers. In this review, current strategies to optimize the therapeutic effectiveness and safety of the major oncolytic viruses are discussed, and a summary of current clinical trials is provided. Further investigation is needed to characterize better the clinical impact of oncolytic viruses, but there are increasing data demonstrating the potential promise of this approach for the treatment of human and animal cancers.
Collapse
Affiliation(s)
- Joe Goldufsky
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA
| | - Shanthi Sivendran
- Department of Hematology/Oncology Medical Specialists, Lancaster General Health, Lancaster, PA, USA
| | - Sara Harcharik
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Michael Pan
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Sebastian Bernardo
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Richard H Stern
- Department of Radiology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Philip Friedlander
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Carl E Ruby
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA; Department of Surgery, Rush University Medical Center, Chicago IL, USA
| | - Yvonne Saenger
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Howard L Kaufman
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA; Department of Surgery, Rush University Medical Center, Chicago IL, USA
| |
Collapse
|
40
|
Sánchez-Felipe L, Villar E, Muñoz-Barroso I. Entry of Newcastle Disease Virus into the host cell: role of acidic pH and endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:300-9. [PMID: 23994097 PMCID: PMC7094467 DOI: 10.1016/j.bbamem.2013.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/02/2013] [Accepted: 08/13/2013] [Indexed: 12/24/2022]
Abstract
Most paramyxoviruses enter the cell by direct fusion of the viral envelope with the plasma membrane. Our previous studies have shown the colocalization of Newcastle Disease Virus (NDV) with the early endosome marker EEA1 and the inhibition of NDV fusion by the caveolin-phosphorylating drug phorbol 12-myristate 13-acetate (PMA) prompted us to propose that NDV enters the cells via endocytosis. Here we show that the virus-cell fusion and cell-cell fusion promoted by NDV-F are increased by about 30% after brief exposure to low pH in HeLa and ELL-0 cells but not in NDV receptor- deficient cell lines such as GM95 or Lec1. After a brief low-pH exposure, the percentage of NDV fusion at 29 °C was similar to that at 37 °C without acid-pH stimulation, meaning that acid pH would decrease the energetic barrier to enhance fusion. Furthermore, preincubation of cells with the protein kinase C inhibitor bisindolylmaleimide led to the inhibition of about 30% of NDV infectivity, suggesting that a population of virus enters cells through receptor-mediated endocytosis. Moreover, the involvement of the GTPase dynamin in NDV entry is shown as its specific inhibitor, dynasore, also impaired NDV fusion and infectivity. Optimal infection of the host cells was significantly affected by drugs that inhibit endosomal acidification such as concanamycin A, monensin and chloroquine. These results support our hypothesis that entry of NDV into ELL-0 and HeLa cells occurs through the plasma membrane as well as by dynamin- low pH- and receptor- dependent endocytosis. A pulse of low-pH enhanced NDV fusion and infectivity in a cell-dependent manner. NDV infectivity was impaired by a protein kinase C inhibitor. A specific inhibitor of the GTPase dynamin impaired NDV fusion and infectivity. Inhibition of endosomal acidification inhibited NDV fusion and infectivity. NDV may enter by dynamin-acid- and receptor-dependent endocytosis.
Collapse
Affiliation(s)
- Lorena Sánchez-Felipe
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 106/108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | |
Collapse
|
41
|
Streptococcus pneumoniae invades endothelial host cells via multiple pathways and is killed in a lysosome dependent manner. PLoS One 2013; 8:e65626. [PMID: 23785439 PMCID: PMC3681976 DOI: 10.1371/journal.pone.0065626] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae is one of the major causative agents of pneumonia, sepsis, meningitis and other morbidities. In spite of its heavy disease burden, surprisingly little is known about the mechanisms involved in the switch of life style, from commensal colonizer of the nasopharynx to invasive pathogen. In vitro experiments, and mouse models have shown that S. pneumoniae can be internalized by host cells, which coupled with intracellular vesicle transport through the cells, i.e. transcytosis, is suggested to be the first step of invasive disease. To further dissect the process of S. pneumoniae internalization, we chemically inhibited discrete parts of the cellular uptake system. We show that this invasion of the host cells was facilitated via both clathrin- and caveolae-mediated endocytosis. After internalization we demonstrated that the bulk of the internalized S. pneumoniae was killed in the lysosome. Interestingly, inhibition of the lysosome altered transcytosis dynamics as it resulted in an increase in the transport of the internalized bacteria out of the cells via the basal side. These results show that uptake of S. pneumoniae into host cells occurs via multiple pathways, as opposed to the often proposed view of invasion being dependent on specific, and singular receptor-mediated endocytosis. This indicates that the endothelium not only has a critical role as a physical barrier against S. pneumoniae in the blood stream, but also in degrading S. pneumonia cells that have adhered to, and invaded the endothelial cells.
Collapse
|
42
|
Krzyzaniak MA, Zumstein MT, Gerez JA, Picotti P, Helenius A. Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog 2013; 9:e1003309. [PMID: 23593008 PMCID: PMC3623752 DOI: 10.1371/journal.ppat.1003309] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/03/2013] [Indexed: 12/21/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is a highly pathogenic member of the Paramyxoviridae that causes severe respiratory tract infections. Reports in the literature have indicated that to infect cells the incoming viruses either fuse their envelope directly with the plasma membrane or exploit clathrin-mediated endocytosis. To study the entry process in human tissue culture cells (HeLa, A549), we used fluorescence microscopy and developed quantitative, FACS-based assays to follow virus binding to cells, endocytosis, intracellular trafficking, membrane fusion, and infection. A variety of perturbants were employed to characterize the cellular processes involved. We found that immediately after binding to cells RSV activated a signaling cascade involving the EGF receptor, Cdc42, PAK1, and downstream effectors. This led to a series of dramatic actin rearrangements; the cells rounded up, plasma membrane blebs were formed, and there was a significant increase in fluid uptake. If these effects were inhibited using compounds targeting Na+/H+ exchangers, myosin II, PAK1, and other factors, no infection was observed. The RSV was rapidly and efficiently internalized by an actin-dependent process that had all hallmarks of macropinocytosis. Rather than fusing with the plasma membrane, the viruses thus entered Rab5-positive, fluid-filled macropinosomes, and fused with the membranes of these on the average 50 min after internalization. Rab5 was required for infection. To find an explanation for the endocytosis requirement, which is unusual among paramyxoviruses, we analyzed the fusion protein, F, and could show that, although already cleaved by a furin family protease once, it underwent a second, critical proteolytic cleavage after internalization. This cleavage by a furin-like protease removed a small peptide from the F1 subunits, and made the virus infectious. Respiratory Syncytial Virus (RSV) is a highly pathogenic paramyxovirus. We developed assays for RSV endocytosis, intracellular trafficking, membrane fusion, and infection. The results showed that RSV was rapidly and efficiently internalized, and that acid-independent membrane fusion occurred intracellularly after endocytosis. Cell biological studies demonstrated that endocytosis was macropinocytic, and that it was required for infection. The process involved activation of the EGF receptor and its downstream effectors including Cdc42, Pak1, and myosin II. RSV induced transient actin rearrangements accompanied by plasma membrane blebbing, elevated fluid uptake, and internalization of intact RSV particles into large macropinosomes. Expression of a dominant negative Rab5 mutant but not Rab7 decreased infection indicating that RSV penetration is intracellular, and takes place in Rab5 positive macropinosomes before fusion with endolysosomal compartments. The reason why RSV, unlike most paramyxoviruses, depended on endocytic entry was found to be the need for activation of the F protein by a second proteolytic cleavage. It occurred after endocytosis, and involved most likely a furin-like, vacuolar enzyme.
Collapse
Affiliation(s)
| | | | | | - Paola Picotti
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
43
|
|
44
|
Cordo SM, Valko A, Martinez GM, Candurra NA. Membrane localization of Junín virus glycoproteins requires cholesterol and cholesterol rich membranes. Biochem Biophys Res Commun 2012; 430:912-7. [PMID: 23261443 DOI: 10.1016/j.bbrc.2012.12.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 11/16/2022]
Abstract
Arenavirus morphogenesis and budding occurs at cellular plasma membrane; however, the nature of membrane assembly sites remains poorly understood. In this study we examined the effect of different cholesterol-lowering agents on Junín virus (JUNV) multiplication. We found that cholesterol cell depletion reduced JUNV glycoproteins (GPs) membrane expression and virus budding. Analysis of membrane protein insolubility in Triton X-100 suggested that JUNV GPs associate with cholesterol enriched membranes. Rafts dissociation conditions as warm detergent extraction and cholesterol removal by methyl-β-cyclodextrin compound showed to impair GPs cholesterol enriched membrane association. Analysis of GPs transfected cells showed similar results suggesting that membrane raft association is independent of other viral proteins.
Collapse
Affiliation(s)
- Sandra M Cordo
- Laboratorio de Virología, Departamento de Química Biológica, IQUIBICEN, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria, Pabellón II, Piso 4, 1428, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
45
|
Macropinocytosis-like HIV-1 internalization in macrophages is CCR5 dependent and leads to efficient but delayed degradation in endosomal compartments. J Virol 2012; 87:735-45. [PMID: 23115275 DOI: 10.1128/jvi.01802-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
HIV-1 endocytosis by a macropinocytosis-like mechanism has been shown to lead to productive infection in macrophages. However, little is known of this pathway. In this study, we examined HIV-1 endocytosis using biochemical approaches and imaging techniques in order to better understand the mechanisms that allow for productive infection of these cells via the endosomal pathway. We show here that this macropinocytosis-like mechanism is not the sole pathway involved in HIV-1 endocytosis in macrophages. However, this pathway specifically requires CCR5 engagement at the cell surface, which in turn suggests that the virus and its coreceptor are present in the endosomal environment simultaneously. Furthermore, although we observed efficient viral degradation following endocytosis, analyses of HIV-1 transport through the endolysosomal pathway revealed that viral degradation is delayed following endosomal internalization, possibly allowing the virus to complete its fusion.
Collapse
|
46
|
Japanese encephalitis virus enters rat neuroblastoma cells via a pH-dependent, dynamin and caveola-mediated endocytosis pathway. J Virol 2012; 86:13407-22. [PMID: 23015720 DOI: 10.1128/jvi.00903-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus and one of the most common agents of viral encephalitis. The infectious entry process of JEV into host cells remains largely unknown. Here, we present a systemic study concerning the cellular entry mechanism of JEV to B104 rat neuroblastoma cells. It was observed that JEV internalization was inhibited by chloroquine and ammonium chloride, both of which can elevate the pH of acidic organelles. However, JEV entry was not affected by chlorpromazine, overexpression of a dominant-negative form of EPS 15 protein, or silencing of the clathrin heavy chain by small interfering RNA (siRNA). These results suggested that JEV entry depended on the acidic intracellular pH but was independent of clathrin. We found that endocytosis of JEV was dependent on membrane cholesterol and was inhibited by inactivation of caveolin-1 with siRNA or dominant-negative mutants. It was also shown, by using the inhibitor dynasore, the K44A mutant, and specific siRNA, that dynamin was required for JEV entry. Phagocytosis or macropinocytosis did not play a role in JEV internalization. In addition, we showed that JEV entry into the neuroblastoma cells is not virus strain specific by assessing the effect of the pharmacological inhibitors on the internalization of JEV belonging to different genotypes. Taken together, our results demonstrate that JEV enters B104 cells through a dynamin-dependent caveola-mediated uptake with a pH-dependent step, which is distinct from the clathrin-mediated endocytosis used by most flaviviruses.
Collapse
|
47
|
Rift Valley fever virus strain MP-12 enters mammalian host cells via caveola-mediated endocytosis. J Virol 2012; 86:12954-70. [PMID: 22993156 DOI: 10.1128/jvi.02242-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic pathogen capable of causing serious morbidity and mortality in both humans and livestock. The lack of efficient countermeasure strategies, the potential for dispersion into new regions, and the pathogenesis in humans and livestock make RVFV a serious public health concern. The receptors, cellular factors, and entry pathways used by RVFV and other members of the family Bunyaviridae remain largely uncharacterized. Here we provide evidence that RVFV strain MP-12 uses dynamin-dependent caveola-mediated endocytosis for cell entry. Caveolae are lipid raft domains composed of caveolin (the main structural component), cholesterol, and sphingolipids. Caveola-mediated endocytosis is responsible for the uptake of a wide variety of host ligands, as well as bacteria, bacterial toxins, and a number of viruses. To determine the cellular entry mechanism of RVFV, we used small-molecule inhibitors, RNA interference (RNAi), and dominant negative (DN) protein expression to inhibit the major mammalian cell endocytic pathways. Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. Expression of DN caveolin-1 also reduced RVFV infection significantly, while expression of DN EPS15, a protein required for the assembly of clathrin-coated pits, and DN PAK-1, an obligate mediator of macropinocytosis, had no significant impact on RVFV infection. These results together suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis.
Collapse
|
48
|
α2-3- and α2-6- N-linked sialic acids allow efficient interaction of Newcastle Disease Virus with target cells. Glycoconj J 2012; 29:539-49. [PMID: 22869099 PMCID: PMC7088266 DOI: 10.1007/s10719-012-9431-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 11/10/2022]
Abstract
Receptor recognition and binding is the first step in the viral cycle. It has been established that Newcastle Disease Virus (NDV) interacts with sialylated molecules such as gangliosides and glycoproteins at the cell surface. Nevertheless, the specific receptor(s) that mediate virus entry are not well known. We have analysed the role of the sialic acid linkage in the early steps of the viral infection cycle. Pretreatment of ELL-0 cells with both α2,3 and α2,6 specific sialidases led to the inhibition of NDV binding, fusion and infectivity, which were restored after α2,3(N)- and α2,6(N)-sialyltransferase incubation. Moreover, α2,6(N)-sialyltransferases also restored NDV activities in α2-6-linked sialic acid deficient cells. Competition with α2-6 sialic acid-binding lectins led to a reduction in the three NDV activities (binding, fusion and infectivity) suggesting a role for α2-6- linked sialic acid in NDV entry. We conclude that both α2-3- and α2-6- linked sialic acid containing glycoconjugates may be used for NDV infection. NDV was able to efficiently bind, fuse and infect the ganglioside-deficient cell line GM95 to a similar extent to that of its parental MEB4, suggesting that gangliosides are not essential for NDV binding, fusion and infectivity. Nevertheless, the fact that the interaction of NDV with cells deficient in N-glycoprotein expression such as Lec1 was less efficient prompted us to conclude that NDV requires N-linked glycoproteins for efficient attachment and entry into the host cell.
Collapse
|
49
|
Chang A, Dutch RE. Paramyxovirus fusion and entry: multiple paths to a common end. Viruses 2012; 4:613-36. [PMID: 22590688 PMCID: PMC3347325 DOI: 10.3390/v4040613] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 03/10/2012] [Accepted: 04/12/2012] [Indexed: 12/24/2022] Open
Abstract
The paramyxovirus family contains many common human pathogenic viruses, including measles, mumps, the parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the zoonotic henipaviruses, Hendra and Nipah. While the expression of a type 1 fusion protein and a type 2 attachment protein is common to all paramyxoviruses, there is considerable variation in viral attachment, the activation and triggering of the fusion protein, and the process of viral entry. In this review, we discuss recent advances in the understanding of paramyxovirus F protein-mediated membrane fusion, an essential process in viral infectivity. We also review the role of the other surface glycoproteins in receptor binding and viral entry, and the implications for viral infection. Throughout, we concentrate on the commonalities and differences in fusion triggering and viral entry among the members of the family. Finally, we highlight key unanswered questions and how further studies can identify novel targets for the development of therapeutic treatments against these human pathogens.
Collapse
Affiliation(s)
| | - Rebecca E. Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
50
|
Hsu CYM, Uludağ H. Nucleic-acid based gene therapeutics: delivery challenges and modular design of nonviral gene carriers and expression cassettes to overcome intracellular barriers for sustained targeted expression. J Drug Target 2012; 20:301-28. [PMID: 22303844 DOI: 10.3109/1061186x.2012.655247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The delivery of nucleic acid molecules into cells to alter physiological functions at the genetic level is a powerful approach to treat a wide range of inherited and acquired disorders. Biocompatible materials such as cationic polymers, lipids, and peptides are being explored as safer alternatives to viral gene carriers. However, the comparatively low efficiency of nonviral carriers currently hampers their translation into clinical settings. Controlling the size and stability of carrier/nucleic acid complexes is one of the primary hurdles as the physicochemical properties of the complexes can define the uptake pathways, which dictate intracellular routing, endosomal processing, and nucleocytoplasmic transport. In addition to nuclear import, subnuclear trafficking, posttranscriptional events, and immune responses can further limit transfection efficiency. Chemical moieties, reactive linkers or signal peptide have been conjugated to carriers to prevent aggregation, induce membrane destabilization and localize to subcellular compartments. Genetic elements can be inserted into the expression cassette to facilitate nuclear targeting, delimit expression to targeted tissue, and modulate transgene expression. The modular option afforded by both gene carriers and expression cassettes provides a two-tier multicomponent delivery system that can be optimized for targeted gene delivery in a variety of settings.
Collapse
Affiliation(s)
- Charlie Yu Ming Hsu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Cananda
| | | |
Collapse
|