1
|
Swanson J, Tonne J, Sangsuwannukul T, Thompson J, Kendall B, Liseth O, Metko M, Vile R. APOBEC3B expression in 293T viral producer cells drives mutations in chimeric antigen receptors and reduces CAR T cell efficacy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200873. [PMID: 39403625 PMCID: PMC11472098 DOI: 10.1016/j.omton.2024.200873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 11/07/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are a clinically approved therapy for blood cancers. To produce clinical-grade CAR T cells, a retroviral or lentiviral vector is used to deliver the CAR and associated genes to patient T cells. Apolipoprotein B editing enzyme, catalytic polypeptide 3 (APOBEC3) enzymes are known to be upregulated after transfection and retroviral infection and to deaminate cytidine to uracil in nucleic acids, resulting in cytidine-to-thymine mutations in DNA. Here, we hypothesized that APOBEC3 enzymes, induced during the production of CAR T cells, impact the efficacy of the resulting CAR T cells. We demonstrated that APOBEC3 family member APOBEC3B was upregulated at the RNA and protein levels after transfection of HEK293T cells with plasmids to make lentivirus, and that APOBEC3 signature mutations were present in the CAR construct. APOBEC3B overexpression in HEK293T cells led to further mutations in the resulting CAR T cells, and significantly decreased CAR T cell killing. APOBEC3B knockout in HEK293T cells led to reduced mutations in the CAR construct and significantly increased in CAR T cell killing. These results suggest that generation of CAR-expressing viruses from producer cell lines deficient in genome-modifying proteins such as APOBEC3B could enhance the quality of CAR T cell production.
Collapse
Affiliation(s)
- Jack Swanson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Kendall
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Olivia Liseth
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Vile
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Differential gene expression reveals host factors for viral shedding variation in mallards ( Anas platyrhynchos) infected with low-pathogenic avian influenza virus. J Gen Virol 2022; 103:10.1099/jgv.0.001724. [PMID: 35353676 PMCID: PMC10519146 DOI: 10.1099/jgv.0.001724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraspecific variation in pathogen shedding impacts disease transmission dynamics; therefore, understanding the host factors associated with individual variation in pathogen shedding is key to controlling and preventing outbreaks. In this study, ileum and bursa of Fabricius tissues of wild-bred mallards (Anas platyrhynchos) infected with low-pathogenic avian influenza (LPAIV) were evaluated at various post-infection time points to determine genetic host factors associated with intraspecific variation in viral shedding. By analysing transcriptome sequencing data (RNA-seq), we found that LPAIV-infected wild-bred mallards do not exhibit differential gene expression compared to uninfected birds, but that gene expression was associated with cloacal viral shedding quantity early in the infection. In both tissues, immune gene expression was higher in high/moderate shedding birds compared to low shedding birds, and significant positive relationships with viral shedding were observed. In the ileum, expression for host genes involved in viral cell entry was lower in low shedders compared to moderate shedders at 1 day post-infection (DPI), and expression for host genes promoting viral replication was higher in high shedders compared to low shedders at 2 DPI. Our findings indicate that viral shedding is a key factor for gene expression differences in LPAIV-infected wild-bred mallards, and the genes identified in this study could be important for understanding the molecular mechanisms driving intraspecific variation in pathogen shedding.
Collapse
Affiliation(s)
- Amanda C. Dolinski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jared J. Homola
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Mark D. Jankowski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- U.S. Environmental Protection Agency, Region 10, Seattle,
WA 98101
| | - John D. Robinson
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan
State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Wiecek AJ, Jacobson DH, Lason W, Secrier M. Pan-Cancer Survey of Tumor Mass Dormancy and Underlying Mutational Processes. Front Cell Dev Biol 2021; 9:698659. [PMID: 34307377 PMCID: PMC8299471 DOI: 10.3389/fcell.2021.698659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Tumor mass dormancy is the key intermediate step between immune surveillance and cancer progression, yet due to its transitory nature it has been difficult to capture and characterize. Little is understood of its prevalence across cancer types and of the mutational background that may favor such a state. While this balance is finely tuned internally by the equilibrium between cell proliferation and cell death, the main external factors contributing to tumor mass dormancy are immunological and angiogenic. To understand the genomic and cellular context in which tumor mass dormancy may develop, we comprehensively profiled signals of immune and angiogenic dormancy in 9,631 cancers from the Cancer Genome Atlas and linked them to tumor mutagenesis. We find evidence for immunological and angiogenic dormancy-like signals in 16.5% of bulk sequenced tumors, with a frequency of up to 33% in certain tissues. Mutations in the CASP8 and HRAS oncogenes were positively selected in dormant tumors, suggesting an evolutionary pressure for controlling cell growth/apoptosis signals. By surveying the mutational damage patterns left in the genome by known cancer risk factors, we found that aging-induced mutations were relatively depleted in these tumors, while patterns of smoking and defective base excision repair were linked with increased tumor mass dormancy. Furthermore, we identified a link between APOBEC mutagenesis and dormancy, which comes in conjunction with immune exhaustion and may partly depend on the expression of the angiogenesis regulator PLG as well as interferon and chemokine signals. Tumor mass dormancy also appeared to be impaired in hypoxic conditions in the majority of cancers. The microenvironment of dormant cancers was enriched in cytotoxic and regulatory T cells, as expected, but also in macrophages and showed a reduction in inflammatory Th17 signals. Finally, tumor mass dormancy was linked with improved patient survival outcomes. Our analysis sheds light onto the complex interplay between dormancy, exhaustion, APOBEC activity and hypoxia, and sets directions for future mechanistic explorations.
Collapse
Affiliation(s)
- Anna Julia Wiecek
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, United Kingdom
| | - Daniel Hadar Jacobson
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, United Kingdom.,UCL Cancer Institute, Paul O'Gorman Building, University College London, London, United Kingdom
| | - Wojciech Lason
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, United Kingdom
| | - Maria Secrier
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, United Kingdom
| |
Collapse
|
4
|
van der Sluis RM, Egedal JH, Jakobsen MR. Plasmacytoid Dendritic Cells as Cell-Based Therapeutics: A Novel Immunotherapy to Treat Human Immunodeficiency Virus Infection? Front Cell Infect Microbiol 2020; 10:249. [PMID: 32528903 PMCID: PMC7264089 DOI: 10.3389/fcimb.2020.00249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in mediating innate and adaptive immune responses. Since their discovery in the late 1970's, DCs have been recognized as the most potent antigen-presenting cells (APCs). DCs have a superior capacity for acquiring, processing, and presenting antigens to T cells and they express costimulatory or coinhibitory molecules that determine immune activation or anergy. For these reasons, cell-based therapeutic approaches using DCs have been explored in cancer and infectious diseases but with limited success. In humans, DCs are divided into heterogeneous subsets with distinct characteristics. Two major subsets are CD11c+ myeloid (m)DCs and CD11c− plasmacytoid (p)DCs. pDCs are different from mDCs and play an essential role in the innate immune system via the production of type I interferons (IFN). However, pDCs are also able to take-up antigens and effectively cross present them. Given the rarity of pDCs in blood and technical difficulties in obtaining them from human blood samples, the understanding of human pDC biology and their potential in immunotherapeutic approaches (e.g. cell-based vaccines) is limited. However, due to the recent advancements in cell culturing systems that allow for the generation of functional pDCs from CD34+ hematopoietic stem and progenitor cells (HSPC), studying pDCs has become easier. In this mini-review, we hypothesize about the use of pDCs as a cell-based therapy to treat HIV by enhancing anti-HIV-immune responses of the adaptive immune system and enhancing the anti-viral responses of the innate immune system. Additionally, we discuss obstacles to overcome before this approach becomes clinically applicable.
Collapse
Affiliation(s)
- Renée M van der Sluis
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
5
|
Wang X, Liu J, Zhou L, Ho WZ. Morphine Withdrawal Enhances HIV Infection of Macrophages. Front Immunol 2019; 10:2601. [PMID: 31803178 PMCID: PMC6872497 DOI: 10.3389/fimmu.2019.02601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/21/2019] [Indexed: 12/29/2022] Open
Abstract
Opioid withdrawal recurs at high rates in opioid use disorder and compromises the immune system. In general, there are two types of opioid withdrawal: abrupt withdrawal (AW) and precipitated withdrawal (PW). In this study, we examined the effect of morphine AW or morphine PW on HIV infection of human blood monocyte-derived macrophages. We observed that both morphine AW and PW enhanced the susceptibility of macrophages to HIV infection. In addition, both AW and PW activated HIV replication in the latently infected myeloid cells (U1 and OM10.1). Investigation of mechanisms responsible for these observations showed that both AW and PW could inhibit the expression of multiple intracellular HIV inhibitory factors, including APOBE3G/F, SAMHD1, MX2, and HIV restriction microRNAs (miR-28, miR-125b, and miR-150) in macrophages. These findings provide additional evidence to support the notion that opioid use compromises the intracellular anti-HIV immunity and facilitates HIV infection and persistence in macrophages.
Collapse
Affiliation(s)
| | | | | | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Martín-Moreno A, Muñoz-Fernández MA. Dendritic Cells, the Double Agent in the War Against HIV-1. Front Immunol 2019; 10:2485. [PMID: 31708924 PMCID: PMC6820366 DOI: 10.3389/fimmu.2019.02485] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) infects cells from the immune system and has thus developed tools to circumvent the host immunity and use it in its advance. Dendritic cells (DCs) are the first immune cells to encounter the HIV, and being the main antigen (Ag) presenting cells, they link the innate and the adaptive immune responses. While DCs work to promote an efficient immune response and halt the infection, HIV-1 has ways to take advantage of their role and uses DCs to gain faster and more efficient access to CD4+ T cells. Due to their ability to activate a specific immune response, DCs are promising candidates to achieve the functional cure of HIV-1 infection, but knowing the molecular partakers that determine the relationship between virus and cell is the key for the rational and successful design of a DC-based therapy. In this review, we summarize the current state of knowledge on how both DC subsets (myeloid and plasmacytoid DCs) act in presence of HIV-1, and focus on different pathways that the virus can take after binding to DC. First, we explore the consequences of HIV-1 recognition by each receptor on DCs, including CD4 and DC-SIGN. Second, we look at cellular mechanisms that prevent productive infection and weapons that turn cellular defense into a Trojan horse that hides the virus all the way to T cell. Finally, we discuss the possible outcomes of DC-T cell contact.
Collapse
Affiliation(s)
- Alba Martín-Moreno
- Sección de Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mª Angeles Muñoz-Fernández
- Sección de Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| |
Collapse
|
7
|
Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019; 8:cells8080922. [PMID: 31426525 PMCID: PMC6721663 DOI: 10.3390/cells8080922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.
Collapse
|
8
|
Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Front Cell Infect Microbiol 2019; 9:69. [PMID: 30968001 PMCID: PMC6439341 DOI: 10.3389/fcimb.2019.00069] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 01/09/2023] Open
Abstract
Despite the fact that great efforts have been made in the prevention and therapy of HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. Highly active antiretroviral therapy (HAART) can suppress virus replication, but it cannot eradicate latent viral reservoirs in HIV-1/AIDS patients. Recently, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system has been engineered as an effective gene-editing technology with the potential to treat HIV-1/AIDS. It can be used to target cellular co-factors or HIV-1 genome to reduce HIV-1 infection and clear the provirus, as well as to induce transcriptional activation of latent virus in latent viral reservoirs for elimination. This versatile gene editing technology has been successfully applied to HIV-1/AIDS prevention and reduction in human cells and animal models. Here, we update the rapid progress of CRISPR/Cas9-based HIV-1/AIDS therapy research in recent years and discuss the limitations and future perspectives of its application.
Collapse
Affiliation(s)
- Qiaoqiao Xiao
- School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China.,Laboratory of Medical Virology, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Deyin Guo
- Laboratory of Medical Virology, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuliang Chen
- School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China.,Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Han R, Song YJ, Sun SY, Zhou Q, Chen XZ, Zheng QL, Cheng H. Influence of Human Papillomavirus E7 Oncoprotein on Maturation and Function of Plasmacytoid Dendritic Cells In Vitro. Virol Sin 2018; 33:493-501. [PMID: 30569289 PMCID: PMC6335218 DOI: 10.1007/s12250-018-0069-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
The major difficulties of human papillomavirus (HPV) treatment are its persistence and recurrence. The HPV E7 oncoprotein-loaded dendritic cells have been evaluated as cellular vaccine in previous reports. Plasmacytoid dendritic cells (pDCs) play an essential role of connecting the innate immune response and adaptive immune response in the immune system. But they function in HPV E7 loading is unclear. To investigate whether loading of the HPV type 6b, 11, and 16 E7 proteins affects the activity of pDCs, human peripheral blood-separated pDCs and mouse bone marrow-derived pDCs were pulsed with the HPV E7 proteins. The expression levels of CD40, CD80, CD86, and MHC II were significantly upregulated in pDCs upon HPV 6b/11 E7 protein pulse. The secretion and gene expression of type I IFN and IL-6 were both upregulated by HPV 6b/11 E7 proteins, more significant than HPV 16 E7 protein. The expression of essential factors of TLR signaling pathway and JNK/p38 MAP kinase signaling pathway were all increased in HPV 6b/11 E7 proteins pulsed pDCs. Our results suggest that HPV E7 proteins could promote the differentiation and maturation of pDCs and activate the TLR and MAPK pathway to induce host innate immune response. It might be conducive to explore novel immunotherapy targeting HPV infection with HPV E7 loaded pDC.
Collapse
Affiliation(s)
- Rui Han
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yin-Jing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Si-Yuan Sun
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xian-Zhen Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiao-Li Zheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
10
|
Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1. Front Immunol 2018; 9:2876. [PMID: 30574147 PMCID: PMC6291751 DOI: 10.3389/fimmu.2018.02876] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Antiviral restriction factors are host cellular proteins that constitute a first line of defense blocking viral replication and propagation. In addition to interfering at critical steps of the viral replication cycle, some restriction factors also act as innate sensors triggering innate responses against infections. Accumulating evidence suggests an additional role for restriction factors in promoting antiviral cellular immunity to combat viruses. Here, we review the recent progress in our understanding on how restriction factors, particularly APOBEC3G, SAMHD1, Tetherin, and TRIM5α have the cell-autonomous potential to induce cellular resistance against HIV-1 while promoting antiviral innate and adaptive immune responses. Also, we provide an overview of how these restriction factors may connect with protein degradation pathways to modulate anti-HIV-1 cellular immune responses, and we summarize the potential of restriction factors-based therapeutics. This review brings a global perspective on the influence of restrictions factors in intrinsic, innate, and also adaptive antiviral immunity opening up novel research avenues for therapeutic strategies in the fields of drug discovery, gene therapy, and vaccines to control viral infections.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Alba Ruiz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Arnaud Moris
- Sorbonne Université, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
11
|
From APOBEC to ZAP: Diverse mechanisms used by cellular restriction factors to inhibit virus infections. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:382-394. [PMID: 30290238 PMCID: PMC6334645 DOI: 10.1016/j.bbamcr.2018.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 12/30/2022]
Abstract
Antiviral restriction factors are cellular proteins that inhibit the entry, replication, or spread of viruses. These proteins are critical components of the innate immune system and function to limit the severity and host range of virus infections. Here we review the current knowledge on the mechanisms of action of several restriction factors that affect multiple viruses at distinct stages of their life cycles. For example, APOBEC3G deaminates cytosines to hypermutate reverse transcribed viral DNA; IFITM3 alters membranes to inhibit virus membrane fusion; MXA/B oligomerize on viral protein complexes to inhibit virus replication; SAMHD1 decreases dNTP intracellular concentrations to prevent reverse transcription of retrovirus genomes; tetherin prevents release of budding virions from cells; Viperin catalyzes formation of a nucleoside analogue that inhibits viral RNA polymerases; and ZAP binds virus RNAs to target them for degradation. We also discuss countermeasures employed by specific viruses against these restriction factors, and mention secondary functions of several of these factors in modulating immune responses. These important examples highlight the diverse strategies cells have evolved to combat virus infections.
Collapse
|
12
|
Luo MT, Fan Y, Mu D, Yao YG, Zheng YT. Molecular cloning and characterization of APOBEC3 family in tree shrew. Gene 2017; 646:143-152. [PMID: 29292195 DOI: 10.1016/j.gene.2017.12.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 11/17/2022]
Abstract
The APOBEC3 family is a series antiviral factors that inhibit the replication of many viruses, such as HIV-1 and HBV. Tree shrews (Tupaia belangeri) possess great potential as an animal model for human diseases and therapeutic responses. However, the APOBEC3 family is unknown in tree shrews. Recent work has showed the presence of the APOBEC3 family in tree shrews. In this work, the cDNA sequences of five APOBEC3 members were identified in tree shrews, namely, tsAPOBEC3A, -3C, -3F, -3G and -3H. The results showed that their sequences encoded a zinc (Z)-coordinating-domain as a characteristic of APOBEC3 proteins. Phylogenetic analysis revealed that the tree shrew APOBEC3 (tsAPOBEC3) genes have occurred independently and that they are clustered with other mammalian APOBEC3 members. Transcript expression analysis indicated that tsAPOBEC3 genes are constitutively expressed, and high in immune-related tissues. tsAPOBEC3 gene expression was up-regulated in hepatocytes and PBMCs by IFN-α stimulation. Finally, tsAPOBEC3 proteins could edit both sides of DNA by inserting G→A and C→T hypermutations. Overall, the results suggest that the tsAPOBEC3 family could play a key role in defense immunity through distinct editing mechanisms. Our results provided insights into the genetic basis for the development of a tree shrew model for studying viral infection. Future studies will focus on deepening our understanding on the antiviral functions of these editing enzymes in tree shrew.
Collapse
Affiliation(s)
- Meng-Ting Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Dan Mu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215006, China..
| |
Collapse
|
13
|
Covino DA, Gauzzi MC, Fantuzzi L. Understanding the regulation of APOBEC3 expression: Current evidence and much to learn. J Leukoc Biol 2017; 103:433-444. [DOI: 10.1002/jlb.2mr0717-310r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Laura Fantuzzi
- National Center for Global Health; Istituto Superiore di Sanità; Rome Italy
| |
Collapse
|
14
|
Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression. Viruses 2017; 9:v9080233. [PMID: 28825669 PMCID: PMC5580490 DOI: 10.3390/v9080233] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
The apolipoprotein B messenger RNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family of cytidine deaminases plays an important role in the innate immune response to viral infections by editing viral genomes. However, the cytidine deaminase activity of APOBEC3 enzymes also induces somatic mutations in host genomes, which may drive cancer progression. Recent studies of human papillomavirus (HPV) infection and disease outcome highlight this duality. HPV infection is potently inhibited by one family member, APOBEC3A. Expression of APOBEC3A and APOBEC3B is highly elevated by the HPV oncoproteins E6 and E7 during persistent virus infection and disease progression. Furthermore, there is a high prevalence of APOBEC3A and APOBEC3B mutation signatures in HPV-associated cancers. These findings suggest that induction of an APOBEC3-mediated antiviral response during HPV infection may inadvertently contribute to cancer mutagenesis and virus evolution. Here, we discuss current understanding of APOBEC3A and APOBEC3B biology in HPV restriction, evolution, and associated cancer mutagenesis.
Collapse
|
15
|
Miyagi E, Kao S, Fumitaka M, Buckler-White A, Plishka R, Strebel K. Long-term passage of Vif-null HIV-1 in CD4 + T cells expressing sub-lethal levels of APOBEC proteins fails to develop APOBEC resistance. Virology 2017; 504:1-11. [PMID: 28131088 DOI: 10.1016/j.virol.2017.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
Abstract
APOBEC3G (A3G) is a cytidine deaminase with potent antiviral activity that is antagonized by Vif. A3G is expressed in a cell type-specific manner and some semi-permissive cells, including A3.01, express A3G but fail to block replication of Vif-null HIV-1. Here we explored the semi-permissive nature of A3.01 cells and found it to be defined exclusively by the levels of A3G. Indeed, minor changes in A3G levels rendered A3.01 cells either fully permissive or non-permissive for Vif-null HIV-1. Our data indicate that A3.01 cells express sub-lethal levels of catalytically active A3G that affects Vif-null HIV-1 at the proviral level but does not completely block virus replication due to purifying selection. Attempts to use the selective pressure exerted by such sub-lethal levels of A3G to select for APOBEC-resistant Vif-null virus capable of replicating in H9 cells failed despite passaging virus for five months, demonstrating that Vif is a critical viral accessory protein.
Collapse
Affiliation(s)
- Eri Miyagi
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States
| | - Sandra Kao
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States
| | - Miyoshi Fumitaka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States
| | - Ron Plishka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, United States.
| |
Collapse
|
16
|
Schott K, Riess M, König R. Role of Innate Genes in HIV Replication. Curr Top Microbiol Immunol 2017; 419:69-111. [PMID: 28685292 DOI: 10.1007/82_2017_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells use an elaborate innate immune surveillance and defense system against virus infections. Here, we discuss recent studies that reveal how HIV-1 is sensed by the innate immune system. Furthermore, we present mechanisms on the counteraction of HIV-1. We will provide an overview how HIV-1 actively utilizes host cellular factors to avoid sensing. Additionally, we will summarize effectors of the innate response that provide an antiviral cellular state. HIV-1 has evolved passive mechanism to avoid restriction and to regulate the innate response. We review in detail two prominent examples of these cellular factors: (i) NLRX1, a negative regulator of the innate response that HIV-1 actively usurps to block cytosolic innate sensing; (ii) SAMHD1, a restriction factor blocking the virus at the reverse transcription step that HIV-1 passively avoids to escape sensing.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Maximilian Riess
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany.
| |
Collapse
|
17
|
The Use of Recombinant Feline Interferon Omega Therapy as an Immune-Modulator in Cats Naturally Infected with Feline Immunodeficiency Virus: New Perspectives. Vet Sci 2016; 3:vetsci3040032. [PMID: 29056740 PMCID: PMC5606590 DOI: 10.3390/vetsci3040032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022] Open
Abstract
Type I interferons (IFNs) are well-known cytokines that, among their main functions, are key components of the host immune response against viral infections. Due to its immune modulation properties, they are commonly used in the therapeutic approach of various retroviral infections, namely human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV). In HIV infection, it has been shown that IFN therapy limits early viral replication, particularly useful on post-exposure prophylaxis. In veterinary medicine, recombinant feline interferon omega (rFeIFN-ω) was the first interferon licensed for use in cats. Several studies have recently shown that this compound seems to stimulate the innate immunity, decreasing clinical signs and co-infections in naturally FIV-infected cats. More than summarizing the main conclusions about rFeIFN-ω in cats, this review emphasizes the immune-modulation properties of IFN therapy, opening new perspectives for its use in retroviral infections. Either in FIV-infected cats or in HIV individuals, type I IFNs seem to induce an innate immune-modulation and should not be overlooked as a therapeutic option in retroviral infections.
Collapse
|
18
|
Abstract
The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.
Collapse
Affiliation(s)
- Sachini U Siriwardena
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University , Detroit, Michigan 48201, United States
- Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
19
|
Oliva H, Pacheco R, Martinez-Navio JM, Rodríguez-García M, Naranjo-Gómez M, Climent N, Prado C, Gil C, Plana M, García F, Miró JM, Franco R, Borras FE, Navaratnam N, Gatell JM, Gallart T. Increased expression with differential subcellular location of cytidine deaminase APOBEC3G in human CD4(+) T-cell activation and dendritic cell maturation. Immunol Cell Biol 2016; 94:689-700. [PMID: 26987686 DOI: 10.1038/icb.2016.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 01/04/2023]
Abstract
APOBEC3G (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G; A3G) is an innate defense protein showing activity against retroviruses and retrotransposons. Activated CD4(+) T cells are highly permissive for HIV-1 replication, whereas resting CD4(+) T cells are refractory. Dendritic cells (DCs), especially mature DCs, are also refractory. We investigated whether these differences could be related to a differential A3G expression and/or subcellular distribution. We found that A3G mRNA and protein expression is very low in resting CD4(+) T cells and immature DCs, but increases strongly following T-cell activation and DC maturation. The Apo-7 anti-A3G monoclonal antibody (mAb), which was specifically developed, confirmed these differences at the protein level and disclosed that A3G is mainly cytoplasmic in resting CD4(+) T cells and immature DCs. Nevertheless, A3G translocates to the nucleus in activated-proliferating CD4(+) T cells, yet remaining cytoplasmic in matured DCs, a finding confirmed by immunoblotting analysis of cytoplasmic and nuclear fractions. Apo-7 mAb was able to immunoprecipitate endogenous A3G allowing to detect complexes with numerous proteins in activated-proliferating but not in resting CD4(+) T cells. The results show for the first time the nuclear translocation of A3G in activated-proliferating CD4(+) T cells.
Collapse
Affiliation(s)
- Harold Oliva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Rodrigo Pacheco
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.,Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Santiago, Chile
| | - José M Martinez-Navio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marta Rodríguez-García
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Service of Immunology, Hospital Clínic Universitari de Barcelona, Barcelona, Spain
| | - Mar Naranjo-Gómez
- LIRAD (Laboratory of Immunobiology for Research and Diagnostic Applications), Institut d'Investigació Germans Trias-Pujol, Autonomous University of Barcelona, Badalona (Barcelona), Spain
| | - Núria Climent
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Carolina Prado
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Santiago, Chile
| | - Cristina Gil
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Felipe García
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Service of Infectious Diseases and AIDS Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - José M Miró
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Service of Infectious Diseases and AIDS Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBERNED Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc E Borras
- IVECAT-Group, Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain.,Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Naveenan Navaratnam
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - José M Gatell
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Service of Infectious Diseases and AIDS Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Teresa Gallart
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Service of Immunology, Hospital Clínic Universitari de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Wang X, Ma TC, Li JL, Zhou Y, Geller EB, Adler MW, Peng JS, Zhou W, Zhou DJ, Ho WZ. Heroin inhibits HIV-restriction miRNAs and enhances HIV infection of macrophages. Front Microbiol 2015; 6:1230. [PMID: 26583016 PMCID: PMC4632020 DOI: 10.3389/fmicb.2015.01230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/20/2015] [Indexed: 12/16/2022] Open
Abstract
Although opioids have been extensively studied for their impact on the immune system, limited information is available about the specific actions of opioids on intracellular antiviral innate immunity against HIV infection. Thus, we investigated whether heroin, one of the most abused drugs, inhibits the expression of intracellular HIV restriction microRNA (miRNA) and facilitates HIV replication in macrophages. Heroin treatment of macrophages enhanced HIV replication, which was associated with the downregulation of several HIV restriction miRNAs. These heroin-mediated actions on the miRNAs and HIV could be antagonized by naltrexone, an opioid receptor antagonist. Furthermore, the in vitro negative impact of heroin on HIV-associated miRNAs was confirmed by the in vivo observation that heroin addicts had significantly lower levels of macrophage-derived HIV restriction miRNAs than those in the control subjects. These in vitro and in vivo findings indicate that heroin use compromises intracellular anti-HIV innate immunity, providing a favorable microenvironment for HIV survival in the target cells.
Collapse
Affiliation(s)
- Xu Wang
- School of Basic Medical Sciences, Wuhan University Wuhan, China ; Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia PA, USA
| | - Tong-Cui Ma
- School of Basic Medical Sciences, Wuhan University Wuhan, China ; Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia PA, USA ; The Center for Animal Experiment/ABSL-III Laboratory, Wuhan University Wuhan, China
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia PA, USA
| | - Yu Zhou
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia PA, USA
| | - Ellen B Geller
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia PA, USA
| | - Martin W Adler
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia PA, USA
| | - Jin-Song Peng
- Wuhan Center for Disease Prevention and Control Wuhan, China
| | - Wang Zhou
- Wuhan Center for Disease Prevention and Control Wuhan, China
| | - Dun-Jin Zhou
- Wuhan Center for Disease Prevention and Control Wuhan, China
| | - Wen-Zhe Ho
- School of Basic Medical Sciences, Wuhan University Wuhan, China ; Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia PA, USA ; The Center for Animal Experiment/ABSL-III Laboratory, Wuhan University Wuhan, China
| |
Collapse
|
21
|
Chang MO, Suzuki T, Kitajima M, Takaku H. Baculovirus Infection of Human Monocyte-Derived Dendritic Cells Restricts HIV-1 Replication. AIDS Res Hum Retroviruses 2015; 31:1023-31. [PMID: 26178669 DOI: 10.1089/aid.2015.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acquired immune deficiency syndrome (AIDS) is mainly caused by infection with human immunodeficiency virus-1 (HIV-1) and still poses a global threat for which we lack a protective or therapeutic vaccine. Dendritic cells (DCs) play a major role in the onset of HIV infection, providing one of the primary sites of HIV replication, and also act as viral reservoirs in vivo. Previous studies have shown that baculovirus (BV) induces strong host immune responses against infections and malignancies. In this study, we infected human monocyte-derived DCs with recombinant BV (AcCAG-gag) and showed that AcCAG-gag-infected human DCs underwent maturation and produced interferon alpha and other proinflammatory cytokines accompanied by increases in the mRNA and protein expression levels of APOBEC3 (A3A, A3F, and A3G), proteins associated with the inhibition of HIV-1 replication. Surprisingly, HIV-1 inhibition is also observed in human DCs infected with a wild-type BV, as determined by the production of inflammatory cytokines, the expression of A3, and a reduction in the p24 level. Our findings outline the mechanism underlying the inhibition of HIV-1 in BV-infected human DCs and pave the way for the use of BV as an effective tool for immunotherapy against HIV-1.
Collapse
Affiliation(s)
- Myint Oo Chang
- 1 High Technology Research Centre, Chiba Institute of Technology , Chiba, Japan
| | - Tomoyuki Suzuki
- 2 Department of Life and Environmental Sciences, Chiba Institute of Technology , Chiba, Japan
| | - Masayuki Kitajima
- 2 Department of Life and Environmental Sciences, Chiba Institute of Technology , Chiba, Japan
- 3 Department of Immunology and Pathology, Research Institute National Center for Global Health and Medicine , Chiba, Japan
| | - Hiroshi Takaku
- 1 High Technology Research Centre, Chiba Institute of Technology , Chiba, Japan
- 2 Department of Life and Environmental Sciences, Chiba Institute of Technology , Chiba, Japan
- 4 Research Institute, Chiba Institute of Technology , Chiba, Japan
| |
Collapse
|
22
|
He X, Li J, Wu J, Zhang M, Gao P. Associations between activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like cytidine deaminase expression, hepatitis B virus (HBV) replication and HBV-associated liver disease (Review). Mol Med Rep 2015; 12:6405-14. [PMID: 26398702 PMCID: PMC4626158 DOI: 10.3892/mmr.2015.4312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
The hepatitis B virus (HBV) infection is a major risk factor in the development of chronic hepatitis (CH) and hepa-tocellular carcinoma (HCC). The activation-induced cytidine deaminase (AID)/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases is significant in innate immunity, as it restricts numerous viruses, including HBV, through hypermutation-dependent and -independent mechanisms. It is important to induce covalently closed circular (ccc)DNA degradation by interferon-α without causing side effects in the infected host cell. Furthermore, organisms possess multiple mechanisms to regulate the expression of AID/APOBECs, control their enzymatic activity and restrict their access to DNA or RNA substrates. Therefore, the AID/APOBECs present promising targets for preventing and treating viral infections. In addition, gene polymorphisms of the AID/APOBEC family may alter host susceptibility to HBV acquisition and CH disease progression. Through G-to-A hypermutation, AID/APOBECs also edit HBV DNA and facilitate the mutation of HBV DNA, which may assist the virus to evolve and potentially escape from the immune responses. The AID/APOBEC family and their associated editing patterns may also exert oncogenic activity. Understanding the effects of cytidine deaminases in CH virus-induced hepatocarcinogenesis may aid with developing efficient prophylactic and therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Xiuting He
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jie Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Wu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Manli Zhang
- Department of Gastroenterology, The Second Branch of The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
23
|
Dai M, Wang X, Li JL, Zhou Y, Sang M, Liu JB, Wu JG, Ho WZ. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages. FASEB J 2015; 29:4978-88. [PMID: 26296370 DOI: 10.1096/fj.15-273128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022]
Abstract
Bluetongue virus (BTV), a nonenveloped double-stranded RNA virus, is a potent inducer of type Ι interferons in multiple cell systems. In this study, we report that BTV16 treatment of primary human macrophages induced both type I and III IFN expression, resulting in the production of multiple antiviral factors, including myxovirus resistance protein A, 2',5'-oligoadenylate synthetase, and the IFN-stimulated gene 56. Additionally, BTV-treated macrophages expressed increased HIV restriction factors (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 G/F/H) and CC chemokines (macrophage inflammatory protein 1-α, macrophage inflammatory protein 1-β, regulated on activation of normal T cell expressed and secreted), the ligands for HIV entry coreceptor CC chemokine receptor type 5. BTV16 also induced the expression of tetherin, which restricts HIV release from infected cells. Furthermore, TLR3 signaling of macrophages by BTV16 resulted in the induction of several anti-HIV microRNAs (miRNA-28, -29a, -125b, -150, -223, and -382). More importantly, the induction of antiviral responses by BTV resulted in significant suppression of HIV in macrophages. These findings demonstrate the potential of BTV-mediated TLR3 activation in macrophage innate immunity against HIV.
Collapse
Affiliation(s)
- Ming Dai
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xu Wang
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jie-Liang Li
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yu Zhou
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ming Sang
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jin-Biao Liu
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jian-Guo Wu
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Zhe Ho
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Sachdeva R, Li Y, Shilpi RY, Simm M. Human X-DING-CD4 mediates resistance to HIV-1 infection through novel paracrine-like signaling. FEBS J 2015; 282:937-50. [PMID: 25581464 DOI: 10.1111/febs.13192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/30/2022]
Abstract
X-DING-CD4 is a novel phosphatase mediating antiviral responses to HIV-1 infection. This protein is constitutively expressed and secreted by HIV-1 resistant CD4(+) T cells and its mRNA transcription is up-regulated in peripheral blood mononuclear cells from HIV-1 elite controllers. The secreted/soluble X-DING-CD4 protein form is of particular importance because it blocks virus transcription when added to HIV-1 susceptible cells. The present study aimed to determine the contribution of this factor to the induction of the antiviral response in target cells. We found that soluble X-DING-CD4 enters cells by endocytosis and that influx of this protein induced transcription of interferon-α and endogenous X-DING-CD4 mRNA in transformed CD4(+) T cells and primary macrophages. Treatment of HIV-1 susceptible cells with exogenous X-DING-CD4 caused depletion of phosphorylated p50 and p65 nuclear factor kappa β subunits and a significant reduction in p50/p65 nuclear factor kappa β binding to the HIV-1 long terminal repeat. Taken together, these findings indicate a novel antiviral mechanism mediated by the influx of soluble X-DING-CD4, its signaling to promote self-amplification, and functional duality as an endogenous innate immunity effector and exogenous factor regulating gene expression in bystander cells.
Collapse
Affiliation(s)
- Rakhee Sachdeva
- Protein Chemistry Laboratory, St Luke's/Roosevelt Institute for Health Sciences, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
25
|
Moris A, Murray S, Cardinaud S. AID and APOBECs span the gap between innate and adaptive immunity. Front Microbiol 2014; 5:534. [PMID: 25352838 PMCID: PMC4195361 DOI: 10.3389/fmicb.2014.00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
The activation-induced deaminase (AID)/APOBEC cytidine deaminases participate in a diversity of biological processes from the regulation of protein expression to embryonic development and host defenses. In its classical role, AID mutates germline-encoded sequences of B cell receptors, a key aspect of adaptive immunity, and APOBEC1, mutates apoprotein B pre-mRNA, yielding two isoforms important for cellular function and plasma lipid metabolism. Investigations over the last ten years have uncovered a role of the APOBEC superfamily in intrinsic immunity against viruses and innate immunity against viral infection by deamination and mutation of viral genomes. Further, discovery in the area of human immunodeficiency virus (HIV) infection revealed that the HIV viral infectivity factor protein interacts with APOBEC3G, targeting it for proteosomal degradation, overriding its antiviral function. More recently, our and others' work have uncovered that the AID and APOBEC cytidine deaminase family members have an even more direct link between activity against viral infection and induction and shaping of adaptive immunity than previously thought, including that of antigen processing for cytotoxic T lymphocyte activity and natural killer cell activation. Newly ascribed functions of these cytodine deaminases will be discussed, including their newly identified roles in adaptive immunity, epigenetic regulation, and cell differentiation. Herein this review we discuss AID and APOBEC cytodine deaminases as a link between innate and adaptive immunity uncovered by recent studies.
Collapse
Affiliation(s)
- Arnaud Moris
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France ; Department of Immunology, Hôpital Pitié-Salpêtière Paris, France
| | - Shannon Murray
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| | - Sylvain Cardinaud
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| |
Collapse
|
26
|
Bekeredjian-Ding I, Greil J, Ammann S, Parcina M. Plasmacytoid Dendritic Cells: Neglected Regulators of the Immune Response to Staphylococcus aureus. Front Immunol 2014; 5:238. [PMID: 24904586 PMCID: PMC4033153 DOI: 10.3389/fimmu.2014.00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/08/2014] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are a rare subset of leukocytes equipped with Fcγ and Fcε receptors, which exert contrary effects on sensing of microbial nucleic acids by endosomal Toll-like receptors. In this article, we explain how pDC contribute to the immune response to Staphylococcus aureus. Under normal circumstances the pDC participates in the memory response to the pathogen: pDC activation is initiated by uptake of staphylococcal immune complexes with IgG or IgE. However, protein A-expressing S. aureus strains additionally trigger pDC activation in the absence of immunoglobulin. In this context, staphylococci exploit the pDC to induce antigen-independent differentiation of IL-10 producing plasmablasts, an elegant means to propagate immune evasion. We further discuss the role of type I interferons in infection with S. aureus and the implications of these findings for the development of immune based therapies and vaccination.
Collapse
Affiliation(s)
| | - Johann Greil
- Institute for Microbiology, Immunology and Parasitology, University Hospital Bonn , Bonn , Germany ; Department of Pediatrics, University Hospital Heidelberg , Heidelberg , Germany
| | - Sandra Ammann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg , Germany
| | - Marijo Parcina
- Institute for Microbiology, Immunology and Parasitology, University Hospital Bonn , Bonn , Germany
| |
Collapse
|
27
|
Said EA, Al-Yafei F, Zadjali F, Hasson SS, Al-Balushi MS, Al-Mahruqi S, Koh CY, Al-Naamani K, Al-Busaidi JZ, Idris MA, Balkhair A, Al-Jabri AA. Association of single-nucleotide polymorphisms in TLR7 (Gln11Leu) and TLR9 (1635A/G) with a higher CD4T cell count during HIV infection. Immunol Lett 2014; 160:58-64. [PMID: 24747071 DOI: 10.1016/j.imlet.2014.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Toll-like receptors (TLRs) are essential elements of the innate immune response to different infections including HIV-1 infection. The single-nucleotide polymorphisms (SNPs) in TLRs have been associated with CD4T cell count and HIV disease progression. The TLR7 (Gln11Leu) SNP was shown to be associated with a rapid decline of CD4T cell count. A relation between TLR9 (1635A/G) SNP and CD4T cells count in HIV-infected patients is suggested, although the outcome associated with this SNP is still controversial. OBJECTIVES To determine the relation of the TLR7 (Gln11Leu) and TLR9 (1635A/G) SNPs with the damage to the immune system during HIV infection as reflected by the average CD4T cell count. METHODS A total of 63 HIV-infected patients and 100 healthy individuals (controls) were enrolled in this study. The above named SNPs were analyzed after amplification of the regions that potentially contain the SNPs by polymerase chain reaction (PCR) and sequencing of the PCR products. The frequency of these SNPs and their relation with the CD4T cell count were investigated. RESULTS The TLR7 (AA) genotype 'Gln' had a trend toward being associated with a CD4T cell count >400cells/μl after controlling viremia via HAART. Additionally, the TLR9 1635 (GG) genotype was associated with a low average CD4T cell count and the TLR9 1635 (AG) genotype was significantly related to a higher average CD4T cell count during the viremic period in HIV-infected patients. CONCLUSION The results of this longitudinal study supports the presence of an association between the TLR9 (1635A/G) genotype and the CD4T cell count, which helps clarifying the controversial results regarding this association. It also suggests that the CD4T cell count during the viremic period might be linked to the combination of both TLR7 (Gln11Leu) and TLR9 (1635A/G) genotypes. These results may help predicting the damage to the immune system, and thus impacting the planning for novel anti-HIV strategies.
Collapse
Affiliation(s)
- E A Said
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box: 35, Code: 123, Muscat, Oman.
| | - F Al-Yafei
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box: 35, Code: 123, Muscat, Oman
| | - F Zadjali
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box: 35, Code: 123, Muscat, Oman
| | - S S Hasson
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box: 35, Code: 123, Muscat, Oman
| | - M S Al-Balushi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box: 35, Code: 123, Muscat, Oman
| | - S Al-Mahruqi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box: 35, Code: 123, Muscat, Oman
| | - C Y Koh
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box: 35, Code: 123, Muscat, Oman
| | - K Al-Naamani
- Department of Hepatology, Armed Forces Hospital, Muscat, Oman
| | - J Z Al-Busaidi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box: 35, Code: 123, Muscat, Oman
| | - M A Idris
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box: 35, Code: 123, Muscat, Oman
| | - A Balkhair
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box: 35, Code: 123, Muscat, Oman
| | - A A Al-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box: 35, Code: 123, Muscat, Oman
| |
Collapse
|
28
|
Hu Z, Wu X, Ge J, Wang X. Inhibition of virus replication and induction of human tetherin gene expression by equine IFN-α1. Vet Immunol Immunopathol 2013; 156:107-13. [PMID: 24144682 DOI: 10.1016/j.vetimm.2013.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/21/2013] [Accepted: 09/16/2013] [Indexed: 11/30/2022]
Abstract
Type I interferons (IFNs) play important roles in the defense of host cells against viral infection by inducing the expression of a diverse range of antiviral factors. IFNs from different animals likely share similar features with human IFNs, and some of them have cross-species activities. Equine IFN-α was proved effective in both equine and human cells. However, the previous studies mostly focused on the inhibition of virus induced cytopathic effects. In this study, we used virus-specific assays to demonstrate the antiviral activities of equine IFN-α1 in both equine and human cells. Equine IFN-α1 inhibited the expression of viral structural proteins and the production of virions of equine infectious anemia virus (EIAV) and equine arteritis virus (EAV) in equine cells. In addition, equine IFN-α1 inhibited the production of EIAV virus-like particles (VLP) from human 293T cells. An IFN-inducible human gene, tetherin, was induced in 293T cells by equine IFN-α1. Its induction correlated with the inhibition of VLP release from the cell membrane. This result indicates that equine IFN-α1 shares a similar mechanism of action with human IFN-α in regulating antiviral genes expression in human cells.
Collapse
Affiliation(s)
- Zhe Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agriculture Sciences, PR China
| | | | | | | |
Collapse
|
29
|
microRNA control of interferons and interferon induced anti-viral activity. Mol Immunol 2013; 56:781-93. [PMID: 23962477 DOI: 10.1016/j.molimm.2013.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 12/22/2022]
Abstract
Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.
Collapse
|
30
|
Mussil B, Suspène R, Aynaud MM, Gauvrit A, Vartanian JP, Wain-Hobson S. Human APOBEC3A isoforms translocate to the nucleus and induce DNA double strand breaks leading to cell stress and death. PLoS One 2013; 8:e73641. [PMID: 23977391 PMCID: PMC3748023 DOI: 10.1371/journal.pone.0073641] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/21/2013] [Indexed: 01/14/2023] Open
Abstract
Human APOBEC3 enzymes deaminate single stranded DNA. At least five can deaminate mitochondrial DNA in the cytoplasm, while three can deaminate viral DNA in the nucleus. However, only one, APOBEC3A, can hypermutate genomic DNA. We analysed the distribution and function of the two APOBEC3A isoforms p1 and p2 in transfected cell lines. Both can translocate to the nucleus and hypermutate CMYC DNA and induce DNA double strand breaks as visualized by the detection of ©H2AX or Chk2. APOBEC3A induced G1 phase cell cycle arrest and triggered several members of the intrinsic apoptosis pathway. Activation of purified human CD4+ T lymphocytes with PHA, IL2 and interferon α resulted in C->T hypermutation of genomic DNA and double stranded breaks suggesting a role for APOBEC3A in pro-inflammatory conditions. As chronic inflammation underlies many diseases including numerous cancers, it is possible that APOBEC3A induction may generate many of the lesions typical of a cancer genome.
Collapse
Affiliation(s)
- Bianka Mussil
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | | | | | - Anne Gauvrit
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | | | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
31
|
Wang Y, Wang X, Li J, Zhou Y, Ho W. RIG-I activation inhibits HIV replication in macrophages. J Leukoc Biol 2013; 94:337-41. [PMID: 23744645 PMCID: PMC3714567 DOI: 10.1189/jlb.0313158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/15/2013] [Accepted: 05/22/2013] [Indexed: 12/31/2022] Open
Abstract
The RIG-I signaling pathway is critical in the activation of the type I IFN-dependent antiviral innate-immune response. We thus examined whether RIG-I activation can inhibit HIV replication in macrophages. We showed that the stimulation of monocyte-derived macrophages with 5'ppp-dsRNA, a synthetic ligand for RIG-I, induced the expression of RIG-I, IFN-α/β, and several IRFs, key regulators of the IFN signaling pathway. In addition, RIG-I activation induced the expression of multiple intracellular HIV-restriction factors, including ISGs, several members of the APOBEC3 family, tetherin and CC chemokines, the ligands for HIV entry coreceptor (CCR5). The inductions of these factors were associated with the inhibition of HIV replication in macrophages stimulated by 5'ppp-dsRNA. These observations highlight the importance of RIG-I signaling in macrophage innate immunity against HIV, which can be beneficial for the treatment of HIV disease, where intracellular immune defense is compromised by the virus.
Collapse
Affiliation(s)
- Yizhong Wang
- Temple University School of Medicine, 843 MERB, 3500 N. Broad St., Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
32
|
Sehgal M, Khan ZK, Talal AH, Jain P. Dendritic Cells in HIV-1 and HCV Infection: Can They Help Win the Battle? Virology (Auckl) 2013; 4:1-25. [PMID: 25512691 PMCID: PMC4222345 DOI: 10.4137/vrt.s11046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent infections with human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are a major cause of morbidity and mortality worldwide. As sentinels of our immune system, dendritic cells (DCs) play a central role in initiating and regulating a potent antiviral immune response. Recent advances in our understanding of the role of DCs during HIV-1 and HCV infection have provided crucial insights into the mechanisms employed by these viruses to impair DC functions in order to evade an effective immune response against them. Modulation of the immunological synapse between DC and T-cell, as well as dysregulation of the crosstalk between DCs and natural killer (NK) cells, are emerging as two crucial mechanisms. This review focuses on understanding the interaction of HIV-1 and HCV with DCs not only to understand the immunopathogenesis of chronic HIV-1 and HCV infection, but also to explore the possibilities of DC-based immunotherapeutic approaches against them. Host genetic makeup is known to play major roles in infection outcome and rate of disease progression, as well as response to anti-viral therapy in both HIV-1 and HCV-infected individuals. Therefore, we highlight the genetic variations that can potentially affect DC functions, especially in the setting of chronic viral infection. Altogether, we address if DCs’ potential as critical effectors of antiviral immune response could indeed be utilized to combat chronic infection with HIV-1 and HCV.
Collapse
Affiliation(s)
- Mohit Sehgal
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew H Talal
- Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Learning from the messengers: innate sensing of viruses and cytokine regulation of immunity - clues for treatments and vaccines. Viruses 2013; 5:470-527. [PMID: 23435233 PMCID: PMC3640511 DOI: 10.3390/v5020470] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/14/2022] Open
Abstract
Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs), recognizing distinct conserved pathogen-associated molecular patterns (PAMPs). The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs) and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs) and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response.
Collapse
|
34
|
|
35
|
Wang X, Wang Y, Ye L, Li J, Zhou Y, Sakarcan S, Ho W. Modulation of intracellular restriction factors contributes to methamphetamine-mediated enhancement of acquired immune deficiency syndrome virus infection of macrophages. Curr HIV Res 2012; 10:407-14. [PMID: 22591364 DOI: 10.2174/157016212802138797] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/10/2012] [Accepted: 02/12/2012] [Indexed: 12/13/2022]
Abstract
Epidemiological studies have demonstrated that the use of methamphetamine (METH), a sympathomimetic stimulant, is particularly common among patients infected with HIV. In vitro studies have determined that METH enhances HIV infection of CD4+ T cells, monocyte-derived dendritic cells, and macrophages. In addition, animal studies have also showed that METH treatment increases brain viral load of SIV-infected monkeys and promotes HIV replication and viremia in HIV/hu-CycT1 transgenic mice. However, the mechanisms (s) of METH actions on HIV remain to be determined. In this study, we investigated the impact of METH on intracellular restriction factors against HIV and SIV. We demonstrated that METH treatment of human blood mononuclear phagocytes significantly affected the expression of anti-HIV microRNAs and several key elements (RIG-I, IRF-3/5, SOCS-2, 3 and PIAS-1, 3, X, Y) in the type I IFN pathway. The suppression of these innate restriction factors was associated with a reduced production of type I IFNs and the enhancement of HIV or SIV infection of macrophages. These findings indicate that METH use impairs intracellular innate antiviral mechanism(s) in macrophages, contributing to cell susceptibility to the acquired immune deficiency syndrome (AIDS) virus infection.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
APOBEC3G restricts HIV-1 to a greater extent than APOBEC3F and APOBEC3DE in human primary CD4+ T cells and macrophages. J Virol 2012; 87:444-53. [PMID: 23097438 DOI: 10.1128/jvi.00676-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC3 proteins inhibit HIV-1 replication in experimental systems and induce hypermutation in infected patients; however, the relative contributions of several APOBEC3 proteins to restriction of HIV-1 replication in the absence of the viral Vif protein in human primary CD4(+) T cells and macrophages are unknown. We observed significant inhibition of HIV-1Δvif produced in 293T cells in the presence of APOBEC3DE (A3DE), APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H haplotype II (A3H HapII) but not APOBEC3B (A3B), APOBEC3C (A3C), or APOBEC3H haplotype I (A3H HapI). Our previous studies showed that Vif amino acids Y(40)RHHY(44) are important for inducing proteasomal degradation of A3G, whereas amino acids (14)DRMR(17) are important for degradation of A3F and A3DE. Here, we introduced substitution mutations of (40)YRHHY(44) and (14)DRMR(17) in replication-competent HIV-1 to generate vif mutants NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 to compare the antiviral activity of A3G to the combined antiviral activity of A3F and A3DE in activated CD4(+) T cells and macrophages. During the first 15 days (round 1), in which multiple cycles of viral replication occurred, both the NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 mutants replicated in activated CD4(+) T cells and macrophages, and only the NL4-3 YRHHY>A5 mutant showed a 2- to 4-day delay in replication compared to the wild type. During the subsequent 27 days (round 2) of cultures initiated with peak virus obtained from round 1, the NL4-3 YRHHY>A5 mutant exhibited a longer, 8- to 10-day delay and the NL4-3 DRMR>A4 mutant exhibited a 2- to 6-day delay in replication compared to the wild type. The NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 mutant proviruses displayed G-to-A hypermutations primarily in GG and GA dinucleotides as expected of A3G- and A3F- or A3DE-mediated deamination, respectively. We conclude that A3G exerts a greater restriction effect on HIV-1 than A3F and A3DE.
Collapse
|
37
|
Chang MO, Suzuki T, Yamamoto N, Watanabe M, Takaku H. HIV-1 Gag-virus-like particles inhibit HIV-1 replication in dendritic cells and T cells through IFN-α-dependent upregulation of APOBEC3G and 3F. J Innate Immun 2012; 4:579-90. [PMID: 22739040 DOI: 10.1159/000339402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/10/2012] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infection and the acquired immune deficiency syndrome (AIDS) pandemic remain global threats in the absence of a protective or a therapeutic vaccine. HIV-1 replication is reportedly inhibited by some cellular factors, including APOBEC3G (A3G) and APOBEC3F (A3F), which are well known inhibitors of HIV-1. Recently, HIV-1 Gag-virus-like particles (Gag-VLPs) have been shown to be safe and potent HIV-1 vaccine candidates that can elicit strong cellular and humoral immunity without need of any adjuvant. In this report, we stimulated human monocyte-derived dendritic cells (DCs) with Gag-VLPs and we demonstrated that Gag-VLP-treated DCs (VLP-DCs) produced interferon alpha (IFN-α), along with an increase in mRNA and protein expression of A3G and A3F. Gag-VLPs inhibited HIV-1 replication not only in DCs themselves, but also in cocultured T cells in an IFN-α-dependent manner. In addition, A3G/3F content in HIV virions released from VLP-DCs increased. Both the increase in A3G/3F expression and the inhibition of HIV-1 replication were reversed by anti-IFN-α or anti-IFNAR antibodies. Our findings in this study provide insight into the mechanism of Gag-VLP-induced inhibition of HIV-1 replication in DCs and T cells.
Collapse
Affiliation(s)
- Myint Oo Chang
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Chiba, Japan.
| | | | | | | | | |
Collapse
|
38
|
Abstract
CD56+ T cells, the crucial component of the host innate immune system, play an important role in defense against viral infections. We investigated the noncytolytic anti-HIV-1 activity of primary CD56+ T cells. SNs collected from CD56+ T cell cultures inhibited HIV-1 infection and replication. This CD56+ T SN-mediated anti-HIV-1 activity was broad-spectrum, as CD56+ T SNs could inhibit infections by laboratory-adapted and clinical strains of HIV-1. The antibody to IFN-γ could partially block the CD56+ T SN-mediated anti-HIV effect. Investigation of mechanism(s) of the CD56+ T cell action on HIV-1 showed that although CD56+ T SN had little effect on HIV-1 entry coreceptor CCR5 expression, CD56+ T SN induced the expression of CC-chemokines, the ligands for CCR5. The antibodies to CC-chemokines also significantly blocked CD56+ T SN-mediated anti-HIV activity. Furthermore, CD56+ T SN up-regulated the expression of STAT-1/-2 and enhanced the expression of IRF1, -3, -7, and -9, resulting in the induction of endogenous IFN-α/β expression in macrophages. Moreover, CD56+ T SN up-regulated intracellular expression of APOBEC3G/3F, the recently identified HIV-1 restriction factors. These findings provide compelling evidence that CD56+ T cells may have a critical role in innate immunity against HIV-1 infection.
Collapse
Affiliation(s)
- Wei Hou
- Animal Biosafety Level 3 Laboratory/Center for Animal Experiment, Wuhan University, Wuhan, P. R. China
| | | | | |
Collapse
|
39
|
Zhou D, Kang KH, Spector SA. Production of interferon α by human immunodeficiency virus type 1 in human plasmacytoid dendritic cells is dependent on induction of autophagy. J Infect Dis 2012; 205:1258-67. [PMID: 22396599 DOI: 10.1093/infdis/jis187] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The mechanisms responsible for interferon α (IFN-α) production by plasmacytoid dendritic cells (pDCs) during human immunodeficiency virus type 1 (HIV-1) infection are unknown. This research examined the roles of Toll-like receptor 7 (TLR7) and autophagy in IFN-α production by pDCs during HIV-1 infection. METHODS pDCs from human peripheral blood mononuclear cells were incubated with infectious or aldrithiol 2 (AT-2)-inactivated HIV-1 or with uridine-rich single-stranded RNA40 (ssRNA40) from the HIV-1 long terminal repeat. IFN-α was quantified by enzyme-linked immunosorbant assay. Autophagic proteins were detected by Western blot, and autophagosomes were identified using immunofluorescent and confocal microscopy. To inhibit autophagy, pDCs were treated with the phosphoinositide-3 kinase inhibitor 3-methyladenine (3-MA) or were transfected with autophagy-related protein 7 or TLR7 small interfering RNA (siRNA). RESULTS Increased levels of IFN-α were present in culture supernatants following 16-hour incubation of pDCs with infectious or AT-2-inactivated HIV-1. Treatment of pDCs with ssRNA40 but not ssRNA41 resulted in high levels of IFN-α. pDCs exposed to HIV-1 gp120, rapamycin, or 3-MA alone failed to induce IFN-α. Pretreatment of pDCs with 3-MA significantly reduced the induction of IFN-α by ssRNA40. Similarly, knock down of autophagy-related protein 7 and TLR7 by use of siRNA significantly reduced the induction of IFN-α by ssRNA40 or HIV-1. CONCLUSIONS These findings demonstrate that IFN-α production by pDCs exposed to infectious or noninfectious HIV-1 and ssRNA40 occurs through induction of autophagy following TLR7 signaling.
Collapse
Affiliation(s)
- Dejiang Zhou
- Department of Pediatrics, Division of Infectious Diseases, University of California-San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
40
|
Wang Y, Wang X, Ye L, Li J, Song L, Fulambarkar N, Ho W. Morphine suppresses IFN signaling pathway and enhances AIDS virus infection. PLoS One 2012; 7:e31167. [PMID: 22359571 PMCID: PMC3281044 DOI: 10.1371/journal.pone.0031167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/03/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Opioids exert a profound influence on immunomodulation and enhance HIV infection and replication. However, the mechanism(s) of their action remains to be determined. We thus investigated the impact of morphine on the intracellular innate antiviral immunity. METHODOLOGY/PRINCIPAL FINDINGS Seven-day-cultured macrophages were infected with equal amounts of cell-free HIV Bal or SIV Delta(B670) for 2 h at 37°C after 24 h of treatment with or without morphine. Effect of morphine on HIV/SIV infection and replication was evaluated by HIV/SIV RT activity assay and indirect immunofluorescence for HIV p24 or SIV p28 antigen. The mRNA expression of cellular factors suppressed or induced by morphine treatment was analyzed by the real-time RT-PCR. We demonstrated that morphine treatment of human blood monocyte-derived macrophages significantly inhibited the expression of interferons (IFN-α, IFN-β and IFN-λ) and IFN-inducible genes (APOBEC3C/3F/3G and 3H). The further experiments showed that morphine suppressed the expression of several key elements (RIG-I and IRF-7) in IFN signaling pathway. In addition, morphine treatment induced the expression of suppressor of cytokine signaling protein-1, 2, 3 (SOCS-1, 2, 3) and protein inhibitors of activated STAT-1, 3, X, Y (PIAS-1, 3, X, Y), the key negative regulators of IFN signaling pathway. CONCLUSIONS These findings indicate that morphine impairs intracellular innate antiviral mechanism(s) in macrophages, contributing to cell susceptibility to AIDS virus infection.
Collapse
Affiliation(s)
- Yizhong Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Li Ye
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- The Center for Animal Experiment/ABSL-3 Laboratory, Wuhan University, Hubei, People's Republic of China
| | - Jieliang Li
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Li Song
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nilija Fulambarkar
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Wenzhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- The Center for Animal Experiment/ABSL-3 Laboratory, Wuhan University, Hubei, People's Republic of China
- * E-mail:
| |
Collapse
|
41
|
Evolution of the primate APOBEC3A cytidine deaminase gene and identification of related coding regions. PLoS One 2012; 7:e30036. [PMID: 22272271 PMCID: PMC3260193 DOI: 10.1371/journal.pone.0030036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/08/2011] [Indexed: 12/30/2022] Open
Abstract
The APOBEC3 gene cluster encodes six cytidine deaminases (A3A-C, A3DE, A3F-H) with single stranded DNA (ssDNA) substrate specificity. For the moment A3A is the only enzyme that can initiate catabolism of both mitochondrial and nuclear DNA. Human A3A expression is initiated from two different methionine codons M1 or M13, both of which are in adequate but sub-optimal Kozak environments. In the present study, we have analyzed the genetic diversity among A3A genes across a wide range of 12 primates including New World monkeys, Old World monkeys and Hominids. Sequence variation was observed in exons 1–4 in all primates with up to 31% overall amino acid variation. Importantly for 3 hominids codon M1 was mutated to a threonine codon or valine codon, while for 5/12 primates strong Kozak M1 or M13 codons were found. Positive selection was apparent along a few branches which differed compared to positive selection in the carboxy-terminal of A3G that clusters with A3A among human cytidine deaminases. In the course of analyses, two novel non-functional A3A-related fragments were identified on chromosome 4 and 8 kb upstream of the A3 locus. This qualitative and quantitative variation among primate A3A genes suggest that subtle differences in function might ensue as more light is shed on this increasingly important enzyme.
Collapse
|
42
|
Ahmed Z, Czubala M, Blanchet F, Piguet V. HIV impairment of immune responses in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:201-38. [PMID: 22975877 DOI: 10.1007/978-1-4614-4433-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Dendritic cells and their subsets are diverse populations of immune cells in the skin and mucous membranes that possess the ability to sense the presence of microbes and orchestrate an efficient and adapted immune response. Dendritic cells (DC) have the unique ability to act as a bridge between the innate and adaptive immune responses. These cells are composed of a number of subsets behaving with preferential and specific features depending on their location and surrounding environment. Langerhans cells (LC) or dermal DC (dDC) are readily present in mucosal areas. Other DC subsets such as plasmacytoid DC (pDC), myeloid DC (myDC), or monocyte-derived DC (MDDC) are thought to be recruited or differentiated in sites of pathogenic challenge. Upon HIV infection, DC and their subsets are likely among the very first immune cells to encounter incoming pathogens and initiate innate and adaptive immune responses. However, as evidenced during HIV infection, some pathogens have evolved subtle strategies to hijack key cellular machineries essential to generate efficient antiviral responses and subvert immune responses for spread and survival.In this chapter, we review recent research aimed at investigating the involvement of DC subtypes in HIV transmission at mucosal sites, concentrating on HIV impact on cellular signalling and trafficking pathways in DC leading to DC-mediated immune response alterations and viral immune evasion. We also address some aspects of DC functions during the chronic immune pathogenesis and conclude with an overview of the current and novel therapeutic and prophylactic strategies aimed at improving DC-mediated immune responses, thus to potentially tackle the early events of mucosal HIV infection and spread.
Collapse
Affiliation(s)
- Zahra Ahmed
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine, Cardiff, Wales, UK
| | | | | | | |
Collapse
|
43
|
Penicillium marneffei-stimulated dendritic cells enhance HIV-1 trans-infection and promote viral infection by activating primary CD4+ T cells. PLoS One 2011; 6:e27609. [PMID: 22110688 PMCID: PMC3217999 DOI: 10.1371/journal.pone.0027609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022] Open
Abstract
Penicillium marneffei (P. marneffei) is considered an indicator pathogen of AIDS, and the endemicity and clinical features of P. marneffei have been described. While, how the co-infection of P. marneffei exacerbate deterioration of the immune response remains poorly understood. Here we isolated P. marneffei from the cutaneous lesions of AIDS patients and analyzed its effects on HIV-1-dendritic cells (DCs) interaction. We demonstrated that the monocyte-derived dendritic cells (MDDCs) could be activated by both thermally dimorphic forms of P. marneffei for significantly promoting HIV-1 trans-infection of CD4+ T cells, while these activated MDDCs were refractory to HIV-1 infection. Mechanistically, P. marneffei-activated MDDCs endocytosed large amounts of HIV-1 and sequestrated the internalized viruses into tetrapasnin CD81+ compartments potentially for proteolysis escaping. The activated MDDCs increased expression of intercellular adhesion molecule 1 and facilitated the formation of DC-T-cell conjunctions, where much more viruses were recruited. Moreover, we found that P. marneffei-stimulated MDDCs efficiently activated resting CD4+ T cells and induced more susceptible targets for viral infection. Our findings demonstrate that DC function and its interaction with HIV-1 have been modulated by opportunistic pathogens such as P. marneffei for viral dissemination and infection amplification, highlighting the importance of understanding DC-HIV-1 interaction for viral immunopathogenesis elucidation.
Collapse
|
44
|
Barat C, Pepin J, Tremblay MJ. HIV-1 replication in monocyte-derived dendritic cells is stimulated by melarsoprol, one of the main drugs against human African trypanosomiasis. J Mol Biol 2011; 410:1052-64. [PMID: 21763506 DOI: 10.1016/j.jmb.2011.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 01/08/2023]
Abstract
Human African trypanosomiasis (HAT) is a disease caused by the protozoan parasite Trypanosoma brucei, the causative agent of sleeping sickness that is still endemic in well defined regions of sub-Saharan Africa. Co-infections with this human pathogen and human immunodeficiency virus (HIV) are not uncommon, but their potential interaction has been little studied. The organo-arsenical drug melarsoprol has been widely used for the treatment of late stage trypanosomiasis since the early 1950s and is still widely used despite very serious adverse effects. Because arsenic trioxide, another trivalent arsenical structurally related to melarsoprol, has been shown to markedly increase HIV replication in dendritic cells (DCs), we tested the effect of melarsoprol on virus replication in various primary human immune cell types, including DCs. We show here that this medicinal drug stimulates the replication of several strains of HIV-1, specifically in monocyte-derived DCs, and also renders such cells susceptible to HIV-2 infection. The drug acts mainly through an increase in the efficacy of the reverse transcription process, and this effect is mediated, at least partly, by an inhibition of expression of the cellular restriction factor APOBEC3G. These observations raise concerns about the harmful effect that melarsoprol might exert on the natural history of HIV in co-infected patients and on virus transmission.
Collapse
Affiliation(s)
- Corinne Barat
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec-CHUL, and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec (QC), Canada
| | | | | |
Collapse
|
45
|
Suspène R, Aynaud MM, Koch S, Pasdeloup D, Labetoulle M, Gaertner B, Vartanian JP, Meyerhans A, Wain-Hobson S. Genetic editing of herpes simplex virus 1 and Epstein-Barr herpesvirus genomes by human APOBEC3 cytidine deaminases in culture and in vivo. J Virol 2011; 85:7594-602. [PMID: 21632763 PMCID: PMC3147940 DOI: 10.1128/jvi.00290-11] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/16/2011] [Indexed: 12/21/2022] Open
Abstract
Human APOBEC3 cytidine deaminases target and edit single-stranded DNA, which can be of viral, mitochondrial, or nuclear origin. Retrovirus genomes, such as human immunodeficiency virus (HIV) genomes deficient in the vif gene and the hepatitis B virus genome, are particularly vulnerable. The genomes of some DNA viruses, such as human papillomaviruses, can be edited in vivo and in transfection experiments. Accordingly, herpesviruses should be no exception. This is indeed the case for herpes simplex virus 1 (HSV-1) in tissue culture, where APOBEC3C (A3C) overexpression can reduce virus titers and the particle/PFU ratio ∼10-fold. Nonetheless, A3A, A3G, and AICDA can edit what is presumably a small fraction of HSV genomes in an experimental setting without seriously impacting the viral titer. Hyperediting was found in HSV genomes recovered from 4/8 uncultured buccal lesions. The phenomenon is not restricted to HSV, since hyperedited Epstein-Barr virus (EBV) genomes were readily recovered from 4/5 established cell lines, indicating that episomes are vulnerable to editing. These findings suggest that the widely expressed A3C cytidine deaminase can function as a restriction factor for some human herpesviruses. That the A3C gene is not induced by type I interferons begs the question whether some herpesviruses encode A3C antagonists.
Collapse
Affiliation(s)
- Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
- Department of Virology, Saarland University, 66421 Homburg, Germany
| | - Marie-Ming Aynaud
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Stefanie Koch
- Department of Virology, Saarland University, 66421 Homburg, Germany
| | - David Pasdeloup
- Laboratoire de Virologie Moléculaire et Structurale, CNRS UPR 3296, 91198 Gif-sur-Yvette, France
| | - Marc Labetoulle
- Laboratoire de Virologie Moléculaire et Structurale, CNRS UPR 3296, 91198 Gif-sur-Yvette, France
| | - Barbara Gaertner
- Department of Virology, Saarland University, 66421 Homburg, Germany
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Andreas Meyerhans
- Department of Virology, Saarland University, 66421 Homburg, Germany
- ICREA Infection Biology Lab, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
46
|
Suspène R, Aynaud MM, Guétard D, Henry M, Eckhoff G, Marchio A, Pineau P, Dejean A, Vartanian JP, Wain-Hobson S. Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism. Proc Natl Acad Sci U S A 2011; 108:4858-63. [PMID: 21368204 PMCID: PMC3064337 DOI: 10.1073/pnas.1009687108] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human APOBEC3 (A3A-A3H) locus encodes six cytidine deaminases that edit single-stranded DNA, the result being DNA peppered with uridine. Although several cytidine deaminases are clearly restriction factors for retroviruses and hepadnaviruses, it is not known if APOBEC3 enzymes have roles outside of these settings. It is shown here that both human mitochondrial and nuclear DNA are vulnerable to somatic hypermutation by A3 deaminases, with APOBEC3A standing out among them. The degree of editing is much greater in patients lacking the uracil DNA-glycolyase gene, indicating that the observed levels of editing reflect a dynamic composed of A3 editing and DNA catabolism involving uracil DNA-glycolyase. Nonetheless, hyper- and lightly mutated sequences went hand in hand, raising the hypothesis that recurrent low-level mutation by APOBEC3A could catalyze the transition from a healthy to a cancer genome.
Collapse
Affiliation(s)
- Rodolphe Suspène
- Institut Pasteur, Molecular Retrovirology Unit, Centre National de la Recherche Scientifique URA3015 and
| | - Marie-Ming Aynaud
- Institut Pasteur, Molecular Retrovirology Unit, Centre National de la Recherche Scientifique URA3015 and
| | - Denise Guétard
- Institut Pasteur, Molecular Retrovirology Unit, Centre National de la Recherche Scientifique URA3015 and
| | - Michel Henry
- Institut Pasteur, Molecular Retrovirology Unit, Centre National de la Recherche Scientifique URA3015 and
| | - Grace Eckhoff
- Institut Pasteur, Molecular Retrovirology Unit, Centre National de la Recherche Scientifique URA3015 and
| | - Agnès Marchio
- Nuclear Organization and Oncogenesis Unit, 75724 Paris cedex 15, France; and
| | - Pascal Pineau
- Nuclear Organization and Oncogenesis Unit, 75724 Paris cedex 15, France; and
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, 75724 Paris cedex 15, France; and
- Institut National de la Santé et de la Recherche Médicale, U579, 75724 Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Institut Pasteur, Molecular Retrovirology Unit, Centre National de la Recherche Scientifique URA3015 and
| | - Simon Wain-Hobson
- Institut Pasteur, Molecular Retrovirology Unit, Centre National de la Recherche Scientifique URA3015 and
| |
Collapse
|
47
|
Chiu YL. Biochemical fractionation and purification of high-molecular-mass APOBEC3G complexes. Methods Mol Biol 2011; 718:185-206. [PMID: 21370050 DOI: 10.1007/978-1-61779-018-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Human APOBEC3G (A3G) is a cytidine deaminase that broadly restricts the replication of many retroviruses, including HIV-1. In different cell types, cytoplasmic A3G is expressed in high-molecular-mass (HMM) RNA-protein complexes or low-molecular-mass (LMM) forms displaying different biological activities. LMM A3G has been proposed to restrict HIV-1 infection soon after virion entry in resting CD4 T cells, monocytes, and mature dendritic cells. Cellular activation and specific cytokine signaling promote the recruitment of LMM A3G into HMM complexes that are likely nucleated by the induced expression of Alu retroelement RNAs. HMM A3G sequesters these retroelement RNAs away from the nuclear LINE-derived enzymes required for Alu retrotransposition. However, assembly of A3G into HMM complexes suppresses its enzymatic activity and may render cells permissive to HIV-1 infection. During HIV-1 virion formation, newly synthesized LMM A3G is preferentially encapsidated when the HIV-1 viral protein viral infectivity factor is absent and employs sequential actions to restrict HIV-1. A3G's biological activities are tightly regulated by its ability to assemble into HMM complexes. Here, we describe in detail the procedures for biochemical fractionation and purification of HMM A3G complexes. Purified HMM A3G complexes will be useful for studying many aspects of the A3G biology, including A3G's roles in restricting retroviral replication, inhibiting retroelement mobility, and potentially regulating cellular RNA function.
Collapse
Affiliation(s)
- Ya-Lin Chiu
- Department of Medicine, Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA.
| |
Collapse
|
48
|
Stalder R, Blanchet F, Mangeat B, Piguet V. Arsenic modulates APOBEC3G-mediated restriction to HIV-1 infection in myeloid dendritic cells. J Leukoc Biol 2010; 88:1251-8. [PMID: 20807705 DOI: 10.1189/jlb.0310176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
DC are major targets of HIV-1 during the early events of infection. Yet, HIV-1 infects these cells only inefficiently in vitro as compared with CD4+T lymphocytes. Accordingly, we have previously identified a strong post-entry block to HIV-1 replication in MDDC as a result of the cellular restriction factor A3G. Furthermore, we have demonstrated that As₂O₃, a drug used to treat acute promyelocytic leukemia, can fully eliminate the potent post-entry restriction of HIV-1 infection in MDDC and in blood-derived MyDC by mechanisms that were unclear. We are now exploring the interplay between As₂O₃ and A3G-mediated restriction in primary DC subsets. Here, we report that As₂O₃ counteracts A3G-mediated restriction in MyDC but not in MDDC. RNAi of A3G in MyDC indicated that the As₂O₃-mediated increase of HIV-1 infection was largely dependent on the presence of the cellular restriction factor. This study reveals an unexpected interplay between As₂O₃ and A3G-mediated restriction to HIV-1 infection in primary human MyDC.
Collapse
Affiliation(s)
- Romaine Stalder
- Departments of Dermatology and Venereology and Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Switzerland
| | | | | | | |
Collapse
|
49
|
Zhou Y, Wang X, Liu M, Hu Q, Song L, Ye L, Zhou D, Ho W. A critical function of toll-like receptor-3 in the induction of anti-human immunodeficiency virus activities in macrophages. Immunology 2010; 131:40-9. [PMID: 20636339 DOI: 10.1111/j.1365-2567.2010.03270.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptor-3 (TLR-3) recognizes double-stranded RNA and induces multiple intracellular events responsible for innate anti-viral immunity against a number of viral infections. Activation of TLR-3 inhibits human immunodeficiency virus (HIV) replication, but the mechanism(s) underlying the action of TLR-3 activation on HIV are largely unknown. Here we demonstrate that treatment of monocyte-derived macrophages with poly I:C, a synthetic ligand for TLR-3, significantly inhibited HIV infection and replication. Investigation of the mechanisms showed that TLR-3 activation resulted in the induction of type I interferon inducible antiviral factors, including APOBEC3G and tetherin, the newly identified anti-HIV cellular proteins. In addition, poly I:C-treated macrophages expressed increased levels of CC chemokines, the ligands for CCR5. Furthermore, TLR-3 activation in macrophages induced the expression of cellular microRNAs (miRNA-28, -125b, -150, -223 and -382), the newly identified intracellular HIV restriction factors. These findings indicate that TLR-3-mediated induction of multiple anti-HIV factors should be beneficial for the treatment of HIV disease where innate immune responses are compromised by the virus.
Collapse
Affiliation(s)
- Yu Zhou
- Division of Virology, Wuhan Centres for Disease Control and Prevention, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Renard M, Henry M, Guétard D, Vartanian JP, Wain-Hobson S. APOBEC1 and APOBEC3 Cytidine Deaminases as Restriction Factors for Hepadnaviral Genomes in Non-Humans In Vivo. J Mol Biol 2010; 400:323-34. [DOI: 10.1016/j.jmb.2010.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 05/03/2010] [Accepted: 05/14/2010] [Indexed: 01/12/2023]
|