1
|
Liu YC, Lin TJ, Chong KY, Chen GY, Kuo CY, Lin YY, Chang CW, Hsiao TF, Wang CL, Shih YC, Yu CJ. Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer. Cell Commun Signal 2025; 23:22. [PMID: 39800687 PMCID: PMC11727508 DOI: 10.1186/s12964-024-02010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies. Previously, we reported an unconventional role for the Golgi tethering factor golgin-97 in inhibiting breast cell motility, and its downregulation was associated with poor patient prognosis. However, the specific role and regulatory mechanism of golgin-97 in cancer progression in vivo remain unclear. METHODS We integrated genetic knockout (KO) of golgin-97, animal models (zebrafish and xenograft mice), multi-omics analysis (next-generation sequencing and proteomics), bioinformatics analysis, and kinase inhibitor treatment to evaluate the effects of golgin-97 KO in triple-negative breast cancer cells. Gene knockdown and kinase inhibitor treatment followed by qRT‒PCR, Western blotting, cell viability, migration, and cytotoxicity assays were performed to elucidate the mechanisms of golgin-97 KO-mediated cancer invasion. A xenograft mouse model was used to investigate cancer progression and drug therapy. RESULTS We demonstrated that golgin-97 KO promoted breast cell metastasis in zebrafish and xenograft mouse models. Multi-omics analysis revealed that the Wnt signaling pathway, MAPK kinase cascades, and inflammatory cytokines are involved in golgin-97 KO-induced breast cancer progression. Targeting the ERK1/2 and p38 MAPK pathways effectively attenuated golgin-97-induced cancer cell migration, reduced the expression of inflammatory mediators, and enhanced the chemotherapeutic effect of paclitaxel in vitro and in vivo. Specifically, compared with the paclitaxel regimen, the combination of ERK1/2 and p38 MAPK inhibitors significantly prevented lung metastasis and lung injury. We further demonstrated that hypoxia is a physiological condition that reduces golgin-97 expression in cancer, revealing a novel and potential feedback loop between ERK/MAPK signaling and golgin-97. CONCLUSION Our results collectively support a novel regulatory role of golgin-97 in ERK/MAPK signaling and the tumor microenvironment, possibly providing new insights for anti-breast cancer drug development.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan
| | - Tsung-Jen Lin
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan
- CardioVascular Research Center, Tzu Chi General Hospital, Hualien City, Hualien County, Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Guan-Ying Chen
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan
| | - Chia-Yu Kuo
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan
| | - Yi-Yun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Wei Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Feng Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yo-Chen Shih
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Jessop E, Young N, Garcia-Del-Valle B, Crusher JT, Obara B, Karakesisoglou I. SIRT2 Inhibition by AGK2 Promotes Perinuclear Cytoskeletal Organisation and Reduces Invasiveness of MDA-MB-231 Triple-Negative Breast Cancer Cells in Confined In Vitro Models. Cells 2024; 13:2023. [PMID: 39682770 DOI: 10.3390/cells13232023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterised by the absence of targetable hormone receptors and increased metastatic rates. As nuclear softening strongly contributes to TNBC's enhanced metastatic capacity, increasing the nuclear stiffness of TNBC cells may present a promising therapeutic avenue. Previous evidence has demonstrated the ability of Sirtuin 2 (SIRT2) inhibition to induce cytoskeletal reorganisation, a key factor in regulating nuclear mechanics. Thus, our study aimed to investigate the effect of SIRT2 inhibition on the nuclear mechanics and migratory behaviour of TNBC cells. To achieve this, SIRT2 was pharmacologically inhibited in MDA-MB-231 cells using AGK2, a SIRT2-specific inhibitor. Although SIRT2 inhibition had no effect on LINC complex composition, the AGK2-treated MDA-MB-231 cells displayed more prominent perinuclear organisations of acetylated α-tubulin, vimentin, and F-actin. Additionally, the nuclei of the AGK2-treated MDA-MB-231 cells exhibited greater resistance to collapse under osmotic shock. Scratch-wound assays also revealed that SIRT2 inhibition led to polarity defects in the MDA-MB-231 cells, while in vitro space-restrictive invasion assays highlighted their reduced migratory capacity upon AGK2 treatment. Taken together, our findings suggest that SIRT2 inhibition promotes a perinuclear cytoskeletal organisation in MDA-MB-231 cells, which enhances their nuclear rigidity and impedes their invasion through confined spaces in vitro.
Collapse
Affiliation(s)
- Emily Jessop
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Natalie Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Jack T Crusher
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | | |
Collapse
|
3
|
Kim MS, Jeong H, Choi BH, Park J, Shin GS, Jung JH, Shin H, Kang KW, Jeon OH, Yu J, Park JH, Park Y, Choi Y, Kim HK, Hong S. GCC2 promotes non-small cell lung cancer progression by maintaining Golgi apparatus integrity and stimulating EGFR signaling pathways. Sci Rep 2024; 14:28926. [PMID: 39572606 PMCID: PMC11582359 DOI: 10.1038/s41598-024-75316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/04/2024] [Indexed: 11/24/2024] Open
Abstract
Fundamental changes in intracellular processes, such as overactive growth signaling pathways, are common in carcinomas and are targets of many cancer therapeutics. GRIP and coiled-coil containing 2 (GCC2) is a trans-Golgi network (TGN) golgin maintaining Golgi apparatus structure and regulating vesicle transport. Here, we found an aberrant overexpression of GCC2 in non-small cell lung cancer (NSCLC) and conducted shRNA-mediated gene knockdown to investigate the role of GCC2 in NSCLC progression. shRNA-mediated GCC2 knockdown suppressed NSCLC cell growth, migration, stemness, and epithelial-mesenchymal transition (EMT) in vitro and tumor growth in vivo. In addition, GCC2 knockdown suppressed cancer cell exosome secretion and the oncogenic capacity of cancer cell-derived exosomes. Mechanistically, GCC2 inhibition decreased epidermal growth factor receptor (EGFR) expression and downstream growth and proliferation signaling. Furthermore, GCC2 inhibition compromised Golgi structural integrity in cancer cells, indicating a functional role of GCC2 in regulating intracellular trafficking and signaling to promote lung cancer progression. Together, these findings suggest GCC2 as a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Min Sang Kim
- Department of Integrated Biomedical and Life Science, Graduate School of Korea University, Seoul, 02855, Republic of Korea
- BK21 FOUR R&E Center for Precision Public Health, Graduate School of Korea University, Seoul, 02855, Republic of Korea
| | - Hyesun Jeong
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Byeong Hyeon Choi
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
- Image Guided Precision Cancer Surgery Institute, Korea University, Seoul, 02841, Korea
| | - Jiho Park
- Department of Integrated Biomedical and Life Science, Graduate School of Korea University, Seoul, 02855, Republic of Korea
- BK21 FOUR R&E Center for Precision Public Health, Graduate School of Korea University, Seoul, 02855, Republic of Korea
| | - Gun Seop Shin
- Department of Integrated Biomedical and Life Science, Graduate School of Korea University, Seoul, 02855, Republic of Korea
- BK21 FOUR R&E Center for Precision Public Health, Graduate School of Korea University, Seoul, 02855, Republic of Korea
| | - Jik-Han Jung
- Department of Bio and Brain Engineeringand, KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyunku Shin
- EXoPERT Corporation, Seoul, 02580, Republic of Korea
| | - Ka-Won Kang
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ok Hwa Jeon
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
- Image Guided Precision Cancer Surgery Institute, Korea University, Seoul, 02841, Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jewon Yu
- EXoPERT Corporation, Seoul, 02580, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineeringand, KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Park
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yeonho Choi
- BK21 FOUR R&E Center for Precision Public Health, Graduate School of Korea University, Seoul, 02855, Republic of Korea
- EXoPERT Corporation, Seoul, 02580, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Koo Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
- Image Guided Precision Cancer Surgery Institute, Korea University, Seoul, 02841, Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Sunghoi Hong
- Department of Integrated Biomedical and Life Science, Graduate School of Korea University, Seoul, 02855, Republic of Korea.
- BK21 FOUR R&E Center for Precision Public Health, Graduate School of Korea University, Seoul, 02855, Republic of Korea.
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Ke R, Kumar S, Singh SK, Rana A, Rana B. Molecular insights into the role of mixed lineage kinase 3 in cancer hallmarks. Biochim Biophys Acta Rev Cancer 2024; 1879:189157. [PMID: 39032538 DOI: 10.1016/j.bbcan.2024.189157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as β-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Krasnova O, Kovaleva A, Saveleva A, Kulakova K, Bystrova O, Martynova M, Domnina A, Sopova J, Neganova I. Mesenchymal stem cells lose the senescent phenotype under 3D cultivation. Stem Cell Res Ther 2023; 14:373. [PMID: 38111010 PMCID: PMC10729581 DOI: 10.1186/s13287-023-03599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) cell culture is widely used in various fields of cell biology. In comparison to conventional two-dimensional (2D) cell culture, 3D cell culture facilitates a more accurate replication of the in vivo microenvironment, which is essential for obtaining more relevant results. The application of 3D cell culture techniques in regenerative medicine, particularly in mesenchymal stem cell (MSC)-based research, has been extensively studied. Many of these studies focus on the enhanced paracrine activity of MSCs cultured in 3D environments. However, few focus on the cellular processes that occur during 3D cultivation. METHODS In this work, we studied the changes occurring within 3D-cultured MSCs (3D-MSCs). Specifically, we examined the expression of numerous senescent-associated markers, the actin cytoskeleton structure, the architecture of the Golgi apparatus and the localization of mTOR, one of the main positive regulators of replicative senescence. In addition, we assessed whether the selective elimination of senescent cells occurs upon 3D culturing by using cell sorting based on autofluorescence. RESULTS Our findings indicate that 3D-MSCs were able to lose replicative senescence markers under 3D cell culture conditions. We observed changes in actin cytoskeleton structure, Golgi apparatus architecture and revealed that 3D cultivation leads to the nuclear localization of mTOR, resulting in a decrease in its active cytoplasmic form. Additionally, our findings provide evidence that 3D cell culture promotes the phenotypic reversion of senescent cell phenotype rather than their removal from the bulk population. CONCLUSION These novel insights into the biology of 3D-MSCs can be applied to research in regenerative medicine to overcome replicative senescence and MSC heterogeneity as they often pose significant concerns regarding safety and effectiveness for therapeutic purposes.
Collapse
Affiliation(s)
- O Krasnova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| | - A Kovaleva
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A Saveleva
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - K Kulakova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - O Bystrova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - M Martynova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A Domnina
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - J Sopova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - I Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
6
|
Phuyal S, Romani P, Dupont S, Farhan H. Mechanobiology of organelles: illuminating their roles in mechanosensing and mechanotransduction. Trends Cell Biol 2023; 33:1049-1061. [PMID: 37236902 DOI: 10.1016/j.tcb.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Mechanobiology studies the mechanisms by which cells sense and respond to physical forces, and the role of these forces in shaping cells and tissues themselves. Mechanosensing can occur at the plasma membrane, which is directly exposed to external forces, but also in the cell's interior, for example, through deformation of the nucleus. Less is known on how the function and morphology of organelles are influenced by alterations in their own mechanical properties, or by external forces. Here, we discuss recent advances on the mechanosensing and mechanotransduction of organelles, including the endoplasmic reticulum (ER), the Golgi apparatus, the endo-lysosmal system, and the mitochondria. We highlight open questions that need to be addressed to gain a broader understanding of the role of organelle mechanobiology.
Collapse
Affiliation(s)
- Santosh Phuyal
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Kuttanamkuzhi A, Panda D, Malaviya R, Gaidhani G, Lahiri M. Altered expression of anti-apoptotic protein Api5 affects breast tumorigenesis. BMC Cancer 2023; 23:374. [PMID: 37095445 PMCID: PMC10127332 DOI: 10.1186/s12885-023-10866-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Apoptosis or programmed cell death plays a vital role in maintaining homeostasis and, therefore, is a tightly regulated process. Deregulation of apoptosis signalling can favour carcinogenesis. Apoptosis inhibitor 5 (Api5), an inhibitor of apoptosis, is upregulated in cancers. Interestingly, Api5 is shown to regulate both apoptosis and cell proliferation. To address the precise functional significance of Api5 in carcinogenesis here we investigate the role of Api5 in breast carcinogenesis. METHODS Initially, we carried out in silico analyses using TCGA and GENT2 datasets to understand expression pattern of API5 in breast cancer patients followed by investigating the protein expression in Indian breast cancer patient samples. To investigate the functional importance of Api5 in breast carcinogenesis, we utilised MCF10A 3D breast acinar cultures and spheroid cultures of malignant breast cells with altered Api5 expression. Various phenotypic and molecular changes induced by altered Api5 expression were studied using these 3D culture models. Furthermore, in vivo tumorigenicity studies were used to confirm the importance of Api5 in breast carcinogenesis. RESULTS In-silico analysis revealed elevated levels of Api5 transcript in breast cancer patients which correlated with poor prognosis. Overexpression of Api5 in non-tumorigenic breast acinar cultures resulted in increased proliferation and cells exhibited a partial EMT-like phenotype with higher migratory potential and disruption in cell polarity. Furthermore, during acini development, the influence of Api5 is mediated via the combined action of FGF2 activated PDK1-Akt/cMYC signalling and Ras-ERK pathways. Conversely, Api5 knock-down downregulated FGF2 signalling leading to reduced proliferation and diminished in vivo tumorigenic potential of the breast cancer cells. CONCLUSION Taken together, our study identifies Api5 as a central player involved in regulating multiple events during breast carcinogenesis including proliferation, and apoptosis through deregulation of FGF2 signalling pathway.
Collapse
Affiliation(s)
- Abhijith Kuttanamkuzhi
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Debiprasad Panda
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Radhika Malaviya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Gautami Gaidhani
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
- The School of Chemistry and Molecular Biology, St. Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India.
| |
Collapse
|
8
|
Tokarz VL, Pereira RVS, Jaldin-Fincati JR, Mylvaganam S, Klip A. Junctional integrity and directional mobility of lymphatic endothelial cell monolayers are disrupted by saturated fatty acids. Mol Biol Cell 2023; 34:ar28. [PMID: 36735487 PMCID: PMC10092641 DOI: 10.1091/mbc.e22-08-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The lymphatic circulation regulates transfer of tissue fluid and immune cells toward the venous circulation. While obesity impairs lymphatic vessel function, the contribution of lymphatic endothelial cells (LEC) to metabolic disease phenotypes is poorly understood. LEC of lymphatic microvessels are in direct contact with the interstitial fluid, whose composition changes during the development of obesity, markedly by increases in saturated fatty acids. Palmitate, the most prevalent saturated fatty acid in lymph and blood, is detrimental to metabolism and function of diverse tissues, but its impact on LEC function is relatively unknown. Here, palmitate (but not its unsaturated counterpart palmitoleate) destabilized adherens junctions in human microvascular LEC in culture, visualized as changes in VE-cadherin, α-catenin, and β-catenin localization. Detachment of these proteins from cortical actin filaments was associated with abundant actomyosin stress fibers. The effects were Rho-associated protein kinase (ROCK)- and myosin-dependent, as inhibition with Y27632 or blebbistatin, respectively, prevented stress fiber accumulation and preserved junctions. Without functional junctions, palmitate-treated LEC failed to directionally migrate to close wounds in two dimensions and failed to form endothelial tubes in three dimensions. A reorganization of the lymphatic endothelial actin cytoskeleton may contribute to lymphatic dysfunction in obesity and could be considered as a therapeutic target.
Collapse
Affiliation(s)
- Victoria L Tokarz
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Rafaela V S Pereira
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Sivakami Mylvaganam
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
9
|
Chen L, Jiang P, Shen X, Lyu J, Liu C, Li L, Huang Y. Cascade Delivery to Golgi Apparatus and On-Site Formation of Subcellular Drug Reservoir for Cancer Metastasis Suppression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204747. [PMID: 36585358 DOI: 10.1002/smll.202204747] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As the foremost cause of cancer-related death, metastasis consists of three steps: invasion, circulation, and colonization. Only targeting one single phase of the metastasis cascade may be insufficient since there are many alternative routes for tumor cells to disseminate. Here, to target the whole cascade of metastasis, hybrid erythrocyte and tumor cell membrane-coated nanoparticle (Hyb-NP) is designed with dual functions of increasing circulation time and recognizing primary, circulating, and colonized tumors. After loading with monensin, a recently reported metastasis inhibitor, the delivery system profoundly reduces spontaneous metastasis in an orthotopic breast cancer model. Underlying mechanism studies reveal that Hyb-NP can deliver monensin to its action site in the Golgi apparatus, and in return, monensin can block the exocytosis of Hyb-NP from the Golgi apparatus, forming a reservoir-like subcellular structure. Notably, the Golgi apparatus reservoir displays three vital functions for suppressing metastasis initialization, including enhanced subcellular drug retention, metastasis-related cytokine release inhibition, and directional migration inhibition. Collectively, based on metastasis cascade targeting at the tissue level, further formation of the Golgi apparatus drug reservoir at the subcellular level provides a potential therapeutic strategy for cancer metastasis suppression.
Collapse
Affiliation(s)
- Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Peihang Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xinran Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiayan Lyu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Chendong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
10
|
Goo BS, Mun DJ, Kim S, Nhung TTM, Lee SB, Woo Y, Kim SJ, Suh BK, Park SJ, Lee HE, Park K, Jang H, Rah JC, Yoon KJ, Baek ST, Park SY, Park SK. Schizophrenia-associated Mitotic Arrest Deficient-1 (MAD1) regulates the polarity of migrating neurons in the developing neocortex. Mol Psychiatry 2023; 28:856-870. [PMID: 36357673 PMCID: PMC9908555 DOI: 10.1038/s41380-022-01856-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Although large-scale genome-wide association studies (GWAS) have identified an association between MAD1L1 (Mitotic Arrest Deficient-1 Like 1) and the pathology of schizophrenia, the molecular mechanisms underlying this association remain unclear. In the present study, we aimed to address these mechanisms by examining the role of MAD1 (the gene product of MAD1L1) in key neurodevelopmental processes in mice and human organoids. Our findings indicated that MAD1 is highly expressed during active cortical development and that MAD1 deficiency leads to impairments in neuronal migration and neurite outgrowth. We also observed that MAD1 is localized to the Golgi apparatus and regulates vesicular trafficking from the Golgi apparatus to the plasma membrane, which is required for the growth and polarity of migrating neurons. In this process, MAD1 physically interacts and collaborates with the kinesin-like protein KIFC3 (kinesin family member C3) to regulate the morphology of the Golgi apparatus and neuronal polarity, thereby ensuring proper neuronal migration and differentiation. Consequently, our findings indicate that MAD1 is an essential regulator of neuronal development and that alterations in MAD1 may underlie schizophrenia pathobiology.
Collapse
Affiliation(s)
- Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seunghyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Hee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
11
|
Huang YRJ, Chiu SC, Tseng JS, Chen JMM, Wei TYW, Chu CY, Kao HTE, Yang CYO, Shih YCE, Yang TY, Chiu KY, Teng CLJ, Yu CTR. The JMJD6/HURP axis promotes cell migration via NF-κB-dependent centrosome repositioning and Cdc42-mediated Golgi repositioning. J Cell Physiol 2022; 237:4517-4530. [PMID: 36250981 DOI: 10.1002/jcp.30900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Golgi apparatus (GA) and centrosome reposition toward cell leading end during directional cell migration in a coupling way, thereby determining cell polarity by transporting essential factors to the proximal plasma membrane. The study provides mechanistic insights into how GA repositioning (GR) is regulated, and how GR and centrosome repositioning (CR) are coupled. Our previous published works reveals that PRMT5 methylates HURP at R122 and the HURP m122 inhibits GR and cell migration by stabilizing GA-associated acetyl-tubulin and then rigidifying GA. The current study further shows that the demethylase JMJD6-guided demethylation of HURP at R122 promotes GR and cell migration. The HURP methylation mimicking mutant 122 F blocks JMJD6-induced GR and cell migration, suggesting JMJD6 relays GR stimulating signal to HURP. Mechanistic studies reveal that the HURP methylation deficiency mutant 122 K promotes GR through NF-κB-induced CR and subsequently CR-dependent Cdc42 upregulation, where Cdc42 couples CR to GR. Taken together, HURP methylation statuses provide a unique opportunity to understand how GR is regulated, and the GA intrinsic mechanism controlling Golgi rigidity and the GA extrinsic mechanism involving NF-κB-CR-Cdc42 cascade collectively dictate GR.
Collapse
Affiliation(s)
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Sen Tseng
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tong-You Wade Wei
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Department of Medicine, Postdoctoral Scholar, University of California, San Diego, California, USA
| | - Chen-Yu Chu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Hsu-Ting Eric Kao
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | | | - Yong-Chun Erin Shih
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kun-Yuan Chiu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Medicine, Division of Hematology/Medical Oncology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| |
Collapse
|
12
|
Sun A, Tian X, Yang W, Lin Q. Overexpression of SCYL1 Is Associated with Progression of Breast Cancer. Curr Oncol 2022; 29:6922-6932. [PMID: 36290821 PMCID: PMC9600755 DOI: 10.3390/curroncol29100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023] Open
Abstract
SCYL1 is a pseudokinase and plays roles in cell division and gene transcription, nuclear/cytoplasmic shuttling of tRNA, protein glycosylation, and Golgi morphology. However, the role of SCYL1 in human breast cancer progression remains largely unknown. In this study, we determined expression of SCYL1 in breast cancer by searching the Cancer Genome Atlas (TCGA) and Tumor Immunoassay Resource (TIMER) databases. Meanwhile, we collected breast tumor tissue samples from 247 cases and detected expression of SCYL1 in the tumors using the tissue microarray assay (TMA). Association of SCYL1 with prognosis of breast cancer was determined based on the PrognoScan database. The results have shown that SCYL1 is overexpressed in breast cancer, and the expression of SCYL1 is associated with poor clinical outcomes of breast cancer patients. Furthermore, knockdown of SCYL1 by shRNAs significantly inhibited the proliferation and migration of breast cancer cells. Taken together, our data suggest that SCYL1 is a biomarker for poor prognosis of breast cancer, has a promoting role in breast cancer progression, and is a potential target for breast cancer therapy.
Collapse
|
13
|
Del Giudice S, De Luca V, Parizadeh S, Russo D, Luini A, Di Martino R. Endogenous and Exogenous Regulatory Signaling in the Secretory Pathway: Role of Golgi Signaling Molecules in Cancer. Front Cell Dev Biol 2022; 10:833663. [PMID: 35399533 PMCID: PMC8984190 DOI: 10.3389/fcell.2022.833663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
The biosynthetic transport route that constitutes the secretory pathway plays a fundamental role in the cell, providing to the synthesis and transport of around one third of human proteins and most lipids. Signaling molecules within autoregulatory circuits on the intracellular membranes of the secretory pathway regulate these processes, especially at the level of the Golgi complex. Indeed, cancer cells can hijack several of these signaling molecules, and therefore also the underlying regulated processes, to bolster their growth or gain more aggressive phenotypes. Here, we review the most important autoregulatory circuits acting on the Golgi, emphasizing the role of specific signaling molecules in cancer. In fact, we propose to draw awareness to highlight the Golgi-localized regulatory systems as potential targets in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Luini
- *Correspondence: Alberto Luini, ; Rosaria Di Martino,
| | | |
Collapse
|
14
|
Campisi D, Desrues L, Dembélé KP, Mutel A, Parment R, Gandolfo P, Castel H, Morin F. The core autophagy protein ATG9A controls dynamics of cell protrusions and directed migration. J Cell Biol 2022; 221:e202106014. [PMID: 35180289 PMCID: PMC8932524 DOI: 10.1083/jcb.202106014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chemotactic migration is a fundamental cellular behavior relying on the coordinated flux of lipids and cargo proteins toward the leading edge. We found here that the core autophagy protein ATG9A plays a critical role in the chemotactic migration of several human cell lines, including highly invasive glioma cells. Depletion of ATG9A protein altered the formation of large and persistent filamentous actin (F-actin)-rich lamellipodia that normally drive directional migration. Using live-cell TIRF microscopy, we demonstrated that ATG9A-positive vesicles are targeted toward the migration front of polarized cells, where their exocytosis correlates with protrusive activity. Finally, we found that ATG9A was critical for efficient delivery of β1 integrin to the leading edge and normal adhesion dynamics. Collectively, our data uncover a new function for ATG9A protein and indicate that ATG9A-positive vesicles are mobilized during chemotactic stimulation to facilitate expansion of the lamellipodium and its anchorage to the extracellular matrix.
Collapse
Affiliation(s)
- Daniele Campisi
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Laurence Desrues
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Kléouforo-Paul Dembélé
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Alexandre Mutel
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Renaud Parment
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Pierrick Gandolfo
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hélène Castel
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Fabrice Morin
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
15
|
Golgi phosphoprotein 3 induces autophagy and epithelial-mesenchymal transition to promote metastasis in colon cancer. Cell Death Dis 2022; 8:76. [PMID: 35190555 PMCID: PMC8861175 DOI: 10.1038/s41420-022-00864-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/15/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
In this study, we aimed to investigate whether and how Golgi phosphoprotein 3 (GOLPH3) facilitates colon cancer metastasis via the regulation of autophagy and epithelial-mesenchymal transition (EMT). The role GOLPH3 plays in colon cancer metastasis was analyzed using western blotting, immunohistochemistry, transwell, wound-healing, and zebrafish assays. Autophagy and EMT were assessed via RNA-sequencing (RNA-seq) analysis, mRFP-GFP-LC3 reporter assays, and their related markers. Significant associations were found between colon cancer clinical and pathological stages and poor prognosis. GOLPH3 facilitates colon cancer metastasis, both in vitro and in vivo. RNA-seq analysis of GOLPH3-overexpressing and control cell models revealed that GOLPH3 enhances EMT and autophagy. Moreover, examination of autophagic, epithelial, and mesenchymal markers in GOLPH3-overexpressing, -silenced, and control cell lines revealed that GOLPH3 promotes EMT and autophagy. When autophagy was inhibited, GOLPH3-promoted metastasis and EMT were counteracted in vitro and in vivo. Using RNA-seq, PI3K/Akt signaling was identified as the key downstream pathway on which GOLPH3 acts. Mechanistically, we demonstrated that GOLPH3 stimulates autophagy and induces EMT via the suppression of the phosphorylation of protein kinase B (Akt) at Ser473. In summary, GOLPH3 induces autophagy and EMT, promoting metastasis in colon cancer. Beyond this, and in contrast to conventional perspectives, we discovered that GOLPH3 represses the phosphorylation of Akt at Ser473.
Collapse
|
16
|
Bui S, Mejia I, Díaz B, Wang Y. Adaptation of the Golgi Apparatus in Cancer Cell Invasion and Metastasis. Front Cell Dev Biol 2021; 9:806482. [PMID: 34957124 PMCID: PMC8703019 DOI: 10.3389/fcell.2021.806482] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus plays a central role in normal cell physiology by promoting cell survival, facilitating proliferation, and enabling cell-cell communication and migration. These roles are partially mediated by well-known Golgi functions, including post-translational modifications, lipid biosynthesis, intracellular trafficking, and protein secretion. In addition, accumulating evidence indicates that the Golgi plays a critical role in sensing and integrating external and internal cues to promote cellular homeostasis. Indeed, the unique structure of the mammalian Golgi can be fine-tuned to adapt different Golgi functions to specific cellular needs. This is particularly relevant in the context of cancer, where unrestrained proliferation and aberrant survival and migration increase the demands in Golgi functions, as well as the need for Golgi-dependent sensing and adaptation to intrinsic and extrinsic stressors. Here, we review and discuss current understanding of how the structure and function of the Golgi apparatus is influenced by oncogenic transformation, and how this adaptation may facilitate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Isabel Mejia
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Begoña Díaz
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Gao J, Gao A, Liu W, Chen L. Golgi stress response: A regulatory mechanism of Golgi function. Biofactors 2021; 47:964-974. [PMID: 34500494 DOI: 10.1002/biof.1780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
The organelle of eukaryotes is a finely regulated system. Once disturbed, it activates the specific autoregulatory systems, namely, organelle autoregulation. Among which, the Golgi stress response accounts for one. When the abundance and capacity of the Golgi apparatus are insufficient compared with cellular demand, the Golgi stress response is activated to enhance the function of the Golgi apparatus. Although the molecular mechanism of the Golgi stress response has not been well characterized yet, it seems to be an important part of the mammalian stress response. In this review, we discuss the current status of research on the six pathways of the mammalian Golgi stress response (the TFE3, heat shock protein 47, CREB3, E26 transformation specific, proteoglycan, and mucin pathways), which regulate the general function of the Golgi apparatus, anti-apoptosis, pro-apoptosis, proteoglycan glycosylation, and mucin glycosylation, respectively.
Collapse
Affiliation(s)
- Jiayin Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
18
|
Chiu SC, Huang YRJ, Wei TYW, Chen JMM, Kuo YC, Huang YTJ, Liao YTA, Yu CTR. The PRMT5/HURP axis retards Golgi repositioning by stabilizing acetyl-tubulin and Golgi apparatus during cell migration. J Cell Physiol 2021; 237:1033-1043. [PMID: 34541678 DOI: 10.1002/jcp.30589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022]
Abstract
The Golgi apparatus (GA) translocates to the cell leading end during directional migration, thereby determining cell polarity and transporting essential factors to the migration apparatus. The study provides mechanistic insights into how GA repositioning (GR) is regulated. We show that the methyltransferase PRMT5 methylates the microtubule regulator HURP at R122. The HURP methylation mimicking mutant 122F impairs GR and cell migration. Mechanistic studies revealed that HURP 122F or endogenous methylated HURP, that is, HURP m122, interacts with acetyl-tubulin. Overexpression of HURP 122F stabilizes the bundling pattern of acetyl-tubulin by decreasing the sensitivity of the latter to a microtubule disrupting agent nocodazole. HURP 122F also rigidifies GA via desensitizing the organelle to several GA disrupting chemicals. Similarly, the acetyl-tubulin mimicking mutant 40Q or tubulin acetyltransferase αTAT1 can rigidify GA, impair GR, and retard cell migration. Reversal of HURP 122F-induced GA rigidification, by knocking down GA assembly factors such as GRASP65 or GM130, attenuates 122F-triggered GR and cell migration. Remarkably, PRMT5 is found downregulated and the level of HURP m122 is decreased during the early hours of wound healing-based cell migration, collectively implying that the PRMT5-HURP-acetyl-tubulin axis plays the role of brake, preventing GR and cell migration before cells reach empty space.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | | | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Yi-Chun Kuo
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
| | - Yu-Ting Jenny Huang
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Yu-Ting Amber Liao
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
| |
Collapse
|
19
|
Suppression of GOLM1 by EGCG through HGF/HGFR/AKT/GSK-3β/β-catenin/c-Myc signaling pathway inhibits cell migration of MDA-MB-231. Food Chem Toxicol 2021; 157:112574. [PMID: 34536514 DOI: 10.1016/j.fct.2021.112574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
Golgi Membrane Protein 1 (GOLM1) has been identified as a prime target for cancer therapy because it overexpresses in many solid tumors, increases tumor growth and metastasis and leads to unfavorable survival. Though various approaches including siRNA interference and antibody targeting have been attempted, GOLM1 has remained an un-targetable molecule because of its mainly intracellular location and the lack of domains that could possibly be interfered with by small molecules. Numerous natural anti-tumoral plant substances have been identified, while their possible function on GOLM1 has never been revealed. This is the first report to study the relationship between GOLM1 downregulation and natural anti-tumoral plant substances and the possible mechanism. Among three tested possible migration-inhibiting natural substances (Epigallocatechin gallate (EGCG), Betulinic acid (BA) and Lupeol), EGCG showed the most potent inhibition effect on GOLM1 expression and MDA-MB-231 cell migration. Knocking down GOLM1 expression further increased the EGCG treatment effect. Molecular docking prediction and following experiments suggested that EGCG may inhibit GOLM1 expression and MDA-MB-231 cells migration through HGF/HGFR/AKT/GSK-3/β-catenin/c-Myc signaling pathway. In all, EGCG is the first identified GOLM1 downregulation natural product. Silencing GOLM1 may be a novel mechanism of potentiated anti-cancer migration effects and cytotoxic effect of EGCG. In addition, this study shed a new way for cancer therapy by combination of GOLM1 silencing and EGCG treatment in the future.
Collapse
|
20
|
Ridge LA, Kewbank D, Schütz D, Stumm R, Scambler PJ, Ivins S. Dual role for CXCL12 signaling in semilunar valve development. Cell Rep 2021; 36:109610. [PMID: 34433040 PMCID: PMC8411116 DOI: 10.1016/j.celrep.2021.109610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/29/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Cxcl12-null embryos have dysplastic, misaligned, and hyperplastic semilunar valves (SLVs). In this study, we show that CXCL12 signaling via its receptor CXCR4 fulfills distinct roles at different stages of SLV development, acting initially as a guidance cue to pattern cellular distribution within the valve primordia during the endocardial-to-mesenchymal transition (endoMT) phase and later regulating mesenchymal cell proliferation during SLV remodeling. Transient, anteriorly localized puncta of internalized CXCR4 are observed in cells undergoing endoMT. In vitro, CXCR4+ cell orientation in response to CXCL12 requires phosphatidylinositol 3-kinase (PI3K) signaling and is inhibited by suppression of endocytosis. This dynamic intracellular localization of CXCR4 during SLV development is related to CXCL12 availability, potentially enabling activation of divergent downstream signaling pathways at key developmental stages. Importantly, Cxcr7-/- mutants display evidence of excessive CXCL12 signaling, indicating a likely role for atypical chemokine receptor CXCR7 in regulating ligand bioavailability and thus CXCR4 signaling output during SLV morphogenesis.
Collapse
Affiliation(s)
- Liam A Ridge
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dania Kewbank
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Peter J Scambler
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Sarah Ivins
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
21
|
Wortzel I, Maik-Rachline G, Yadav SS, Hanoch T, Seger R. Mitotic HOOK3 phosphorylation by ERK1c drives microtubule-dependent Golgi destabilization and fragmentation. iScience 2021; 24:102670. [PMID: 34189435 PMCID: PMC8215223 DOI: 10.1016/j.isci.2021.102670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/07/2020] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
ERK1c is an alternatively spliced isoform of ERK1 that specifically regulates mitotic Golgi fragmentation, which allows division of the Golgi during mitosis. We have previously shown that ERK1c translocates to the Golgi during mitosis where it is activated by a resident MEK1b to induce Golgi fragmentation. However, the mechanism of ERK1c functions in the Golgi remained obscure. Here, we searched for ERK1c substrates and identified HOOK3 as a mediator of ERK1c-induced mitotic Golgi fragmentation, which requires a second phosphorylation by AuroraA for its function. In cycling cells, HOOK3 interacts with microtubules (MTs) and links them to the Golgi. Early in mitosis, HOOK3 is phosphorylated by ERK1c and later by AuroraA, resulting in HOOK3 detachment from the MTs, and elevated interaction with GM130. This detachment modulates Golgi stability and allows fragmentation of the Golgi. This study demonstrates a novel mechanism of Golgi apparatus destabilization early in mitosis to allow mitotic progression.
Collapse
Affiliation(s)
- Inbal Wortzel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Galia Maik-Rachline
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Suresh Singh Yadav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
22
|
Chakravarty V, Anandi L, Ashiq KA, Abhijith K, Umesh R, Lahiri M. Prolonged Exposure to Platelet Activating Factor Transforms Breast Epithelial Cells. Front Genet 2021; 12:634938. [PMID: 33841500 PMCID: PMC8027472 DOI: 10.3389/fgene.2021.634938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/03/2021] [Indexed: 01/06/2023] Open
Abstract
Lipid species are known to have various biological functions owing to their structural differences, and each of them possesses a specific role to play depending upon their location and distribution in the cell. Some of these lipids interact with proteins on the cell membrane and acts as second messengers. The level of lipid mediators is generally maintained in the cell by feedback mechanisms; however, their improper degradation or enhanced production leads to their accumulation in the tumor microenvironment and disturbs the homeostasis of the cell. Platelet activating factor (PAF) is a known phospholipid mediator secreted upon immunological challenges by platelets, neutrophils, basophils, and macrophages. PAF, as a potent inflammatory molecule, is well studied, and its role in various cancers and cardiovascular diseases has also been investigated. Interestingly, increased levels of PAF have been found in the blood plasma of smokers, and breast cancer cells have shown the accumulation of PAF in presence of cigarette smoke extract. This accumulation was found to increase tumor cell motility that in turn could promote metastasis. Beyond this, however, the effect of PAF on tumorigenesis has not yet been well explored. Here, we show that the continuous exposure of 3D breast acinar cultures to PAF resulted in the activation of various oncogenic signaling pathways leading to transformation. We also found that the presence of PAF in the micro-environment increased the expression of PAF receptor (PAF-R), which corroborated with the higher expression of PAF-R detected in some epithelial cancers, as per literature. Thus, this study impresses on the fact that the presence of PAF alters the cellular microenvironment and eventually triggers irreversible effects that can cumulatively lead to transformation.
Collapse
Affiliation(s)
- Vaishali Chakravarty
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Libi Anandi
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - K A Ashiq
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - K Abhijith
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Rintu Umesh
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
23
|
The functional landscape of Golgi membrane protein 1 (GOLM1) phosphoproteome reveal GOLM1 regulating P53 that promotes malignancy. Cell Death Discov 2021; 7:42. [PMID: 33649292 PMCID: PMC7921442 DOI: 10.1038/s41420-021-00422-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Golgi membrane protein 1 (GOLM1) was implicated in carcinogenesis of multiple types of cancer. However, Phosphoproteome landscapes of GOLM1 overexpression in lung cancer remain largely unknown. In this study, using data from the Cancer Genome Atlas (TCGA) and phosphoproteome, we systematically evaluated the feature of GOLM1 and studied its prognostic value in non-small cell lung cancer (NSCLC). The proliferation, migration, and invasion capacities in PC9 cell with GOLM1 overexpression were determined using Trans-well system assay. Tumor engrafts was visualized in mice models and confirmed by ex vivo. An increased expression of GOLM1 had shorter overall survival (OS) in patients with NSCLC in TCGA database. GOLM1 in single gene set enrichment analysis (GSEA) related to adherent's junction, cell cycle, and pathway in cancer. Overexpression of GOLM1 in GOLM1OE PC9 cells promoted cell proliferation, migration, and invasion. Decreased migration and invasion potential were also observed in knockdown of GOLM1 in GOLM1KD PC9 cells in migration assay. An increased expression of GOLM1 could significantly increase the growth of tumor in xenograft mice models. phosphoproteome analysis showed 239 upregulated and 331 downregulated Phosphorylated proteins in GOLM1OE PC9 cells. Overexpression of GOLM1 in GSEA was significantly related to P53 in MAPK signaling pathway. Overexpression of GOLM1enhanced the phosphorylation of P53 protein at site S315 but inhibited the formation of P53 tetramers. These results indicate that overexpression GOLM1 enhances non-small-cell carcinoma aggressiveness through inhibited the formation of P53 tetramer.
Collapse
|
24
|
Ghannoum S, Antos K, Leoncio Netto W, Gomes C, Köhn-Luque A, Farhan H. CellMAPtracer: A User-Friendly Tracking Tool for Long-Term Migratory and Proliferating Cells Associated with FUCCI Systems. Cells 2021; 10:cells10020469. [PMID: 33671785 PMCID: PMC7927118 DOI: 10.3390/cells10020469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 01/23/2023] Open
Abstract
Cell migration is a fundamental biological process of key importance in health and disease. Advances in imaging techniques have paved the way to monitor cell motility. An ever-growing collection of computational tools to track cells has improved our ability to analyze moving cells. One renowned goal in the field is to provide tools that track cell movement as comprehensively and automatically as possible. However, fully automated tracking over long intervals of time is challenged by dividing cells, thus calling for a combination of automated and supervised tracking. Furthermore, after the emergence of various experimental tools to monitor cell-cycle phases, it is of relevance to integrate the monitoring of cell-cycle phases and motility. We developed CellMAPtracer, a multiplatform tracking system that achieves that goal. It can be operated as a conventional, automated tracking tool of single cells in numerous imaging applications. However, CellMAPtracer also allows adjusting tracked cells in a semiautomated supervised fashion, thereby improving the accuracy and facilitating the long-term tracking of migratory and dividing cells. CellMAPtracer is available with a user-friendly graphical interface and does not require any coding or programming skills. CellMAPtracer is compatible with two- and three-color fluorescent ubiquitination-based cell-cycle indicator (FUCCI) systems and allows the user to accurately monitor various migration parameters throughout the cell cycle, thus having great potential to facilitate new discoveries in cell biology.
Collapse
Affiliation(s)
- Salim Ghannoum
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway;
- Correspondence: (S.G.); (K.A.); Tel.: +46-76-577-0129 (S.G.)
| | - Kamil Antos
- Department of Integrative Medical Biology, Umeå University, 90736 Umeå, Sweden
- Correspondence: (S.G.); (K.A.); Tel.: +46-76-577-0129 (S.G.)
| | - Waldir Leoncio Netto
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (W.L.N.); (A.K.-L.)
| | - Cecil Gomes
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA;
| | - Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (W.L.N.); (A.K.-L.)
| | - Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway;
- Institute of Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Liu J, Huang Y, Li T, Jiang Z, Zeng L, Hu Z. The role of the Golgi apparatus in disease (Review). Int J Mol Med 2021; 47:38. [PMID: 33537825 PMCID: PMC7891830 DOI: 10.3892/ijmm.2021.4871] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The Golgi apparatus is known to underpin many important cellular homeostatic functions, including trafficking, sorting and modifications of proteins or lipids. These functions are dysregulated in neurodegenerative diseases, cancer, infectious diseases and cardiovascular diseases, and the number of disease-related genes associated with Golgi apparatus is on the increase. Recently, many studies have suggested that the mutations in the genes encoding Golgi resident proteins can trigger the occurrence of diseases. By summarizing the pathogenesis of these genetic diseases, it was found that most of these diseases have defects in membrane trafficking. Such defects typically result in mislocalization of proteins, impaired glycosylation of proteins, and the accumulation of undegraded proteins. In the present review, we aim to understand the patterns of mutations in the genes encoding Golgi resident proteins and decipher the interplay between Golgi resident proteins and membrane trafficking pathway in cells. Furthermore, the detection of Golgi resident protein in human serum samples has the potential to be used as a diagnostic tool for diseases, and its central role in membrane trafficking pathways provides possible targets for disease therapy. Thus, we also introduced the clinical value of Golgi apparatus in the present review.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
26
|
Quantitative volumetric analysis of the Golgi apparatus following X-ray irradiation by super-resolution 3D-SIM microscopy. Med Mol Morphol 2021; 54:166-172. [PMID: 33501611 PMCID: PMC8139881 DOI: 10.1007/s00795-020-00277-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022]
Abstract
To obtain quantitative volumetric data for the Golgi apparatus after ionizing radiation (IR) using super-resolution three-dimensional structured illumination (3D-SIM) microscopy. Normal human retinal pigment epithelial (RPE) cells were irradiated with X-rays (10 Gy), followed by immunofluorescence staining of the Golgi marker RCAS1. 3D-SIM imaging was performed using DeltaVision OMX version 4 and SoftWoRx 6.1. Polygon rendering and spot signal identification were performed using Imaris 8.1.2. Differences between groups were assessed by Welch’s t test. RCAS1 signals in untreated cells were located adjacent to nuclei and showed a reticular morphology. Upon IR, the area of RCAS1 signals expanded while retaining the reticular morphology. Polygon rendering imaging revealed that the volume of RCAS1 at 48 h post-IR was greater than that for unirradiated cells (93.7 ± 19.0 μm3 vs. 33.0 ± 4.2 μm3, respectively; P < 0.001): a 2.8-fold increase. Spot signal imaging showed that the number of RCAS1 spot signals post-IR was greater than that for unirradiated cells [3.4 ± 0.8 (× 103) versus 1.3 ± 0.2 (× 103), respectively; P < 0.001]: a 2.7-fold increase. This is the first study to report quantitative volumetric data of the Golgi apparatus in response to IR using super-resolution 3D-SIM microscopy.
Collapse
|
27
|
Rieger L, O'Shea S, Godsmark G, Stanicka J, Kelly G, O'Connor R. IGF-1 receptor activity in the Golgi of migratory cancer cells depends on adhesion-dependent phosphorylation of Tyr 1250 and Tyr 1251. Sci Signal 2020; 13:13/633/eaba3176. [PMID: 32457113 DOI: 10.1126/scisignal.aba3176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although insulin-like growth factor 1 (IGF-1) signaling promotes tumor growth and cancer progression, therapies that target the IGF-1 receptor (IGF-1R) have shown poor clinical efficacy. To address IGF-1R activity in cancer cells and how it differs from that of the closely related insulin receptor (IR), we focused on two tyrosines in the IGF-1R C-terminal tail that are not present in the IR and are essential for IGF-1-mediated cancer cell survival, migration, and tumorigenic growth. We found that Tyr1250 and Tyr1251 (Tyr1250/1251) were autophosphorylated in a cell adhesion-dependent manner. To investigate the consequences of this phosphorylation, we generated phosphomimetic Y1250E/Y1251E (EE) and nonphosphorylatable Y1250F/Y1251F (FF) mutant forms of IGF-1R. Although fully competent in kinase activity and signaling, the EE mutant was more rapidly internalized and degraded than either the wild-type or FF receptor. IGF-1 promoted the accumulation of wild-type and EE IGF-1R within the Golgi apparatus, whereas the FF mutant remained at the plasma membrane. Golgi-associated IGF-1R signaling was a feature of migratory cancer cells, and Golgi disruption impaired IGF-1-induced signaling and cell migration. Upon the formation of new cell adhesions, IGF-1R transiently relocalized to the plasma membrane from the Golgi. Thus, phosphorylation at Tyr1250/1251 promoted IGF-1R translocation to and signaling from the Golgi to support an aggressive cancer phenotype. This process distinguishes IGF-1R from IR signaling and could contribute to the poor clinical efficacy of antibodies that target IGF-1R on the cell surface.
Collapse
Affiliation(s)
- Leonie Rieger
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Sandra O'Shea
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Grant Godsmark
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Joanna Stanicka
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Geraldine Kelly
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Rosemary O'Connor
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
28
|
Cassandri M, Butera A, Amelio I, Lena AM, Montanaro M, Mauriello A, Anemona L, Candi E, Knight RA, Agostini M, Melino G. ZNF750 represses breast cancer invasion via epigenetic control of prometastatic genes. Oncogene 2020; 39:4331-4343. [PMID: 32313225 DOI: 10.1038/s41388-020-1277-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
Breast cancer is the second leading cause of cancer-related deaths among women, largely due to the progression of a significant fraction of primary tumours to the metastatic stage. Here, we show that zinc-finger protein 750 (ZNF750) opposes the migration and invasion of breast cancer cells by repressing a prometastatic transcriptional programme, which includes genes involved in focal adhesion and extracellular matrix interactions, such as LAMB3 and CTNNAL1. Mechanistically, ZNF750 recruits the epigenetic modifiers KDM1A and HDAC1 to the promoter regions of LAMB3 and CTNNAL1, influencing histone marks and transactivating these genomic sites. Gene expression analysis in cancer patient datasets indicated that ZNF750 and its targets were negative prognostic factors in breast cancer. Together, our findings shed light on the molecular mechanism by which ZNF750 regulates cell migration and invasion, suggesting a role in breast cancer metastasis.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
- Department of Oncohematology, Bambino Gesu' Children's Hospital, 00146, Rome, Italy
| | - Alessio Butera
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
- Department of Pathology, MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Lucia Anemona
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
- IDI-IRCCS, via Monti di Creta, 106, 00166, Rome, Italy
| | - Richard A Knight
- Department of Pathology, MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
- Department of Pathology, MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
29
|
The Golgi ribbon: mechanisms of maintenance and disassembly during the cell cycle. Biochem Soc Trans 2020; 48:245-256. [PMID: 32010930 DOI: 10.1042/bst20190646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
The Golgi complex (GC) has an essential role in the processing and sorting of proteins and lipids. The GC of mammalian cells is composed of stacks of cisternae connected by membranous tubules to create a continuous network, the Golgi ribbon, whose maintenance requires several core and accessory proteins. Despite this complex structural organization, the Golgi apparatus is highly dynamic, and this property becomes particularly evident during mitosis, when the ribbon undergoes a multistep disassembly process that allows its correct partitioning and inheritance by the daughter cells. Importantly, alterations of the Golgi structure are associated with a variety of physiological and pathological conditions. Here, we review the core mechanisms and signaling pathways involved in both the maintenance and disassembly of the Golgi ribbon, and we also report on the signaling pathways that connect the disassembly of the Golgi ribbon to mitotic entry and progression.
Collapse
|
30
|
Rieger L, O’Connor R. Controlled Signaling-Insulin-Like Growth Factor Receptor Endocytosis and Presence at Intracellular Compartments. Front Endocrinol (Lausanne) 2020; 11:620013. [PMID: 33584548 PMCID: PMC7878670 DOI: 10.3389/fendo.2020.620013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Ligand-induced activation of the IGF-1 receptor triggers plasma-membrane-derived signal transduction but also triggers receptor endocytosis, which was previously thought to limit signaling. However, it is becoming ever more clear that IGF-1R endocytosis and trafficking to specific subcellular locations can define specific signaling responses that are important for key biological processes in normal cells and cancer cells. In different cell types, specific cell adhesion receptors and associated proteins can regulate IGF-1R endocytosis and trafficking. Once internalized, the IGF-1R may be recycled, degraded or translocated to the intracellular membrane compartments of the Golgi apparatus or the nucleus. The IGF-1R is present in the Golgi apparatus of migratory cancer cells where its signaling contributes to aggressive cancer behaviors including cell migration. The IGF-1R is also found in the nucleus of certain cancer cells where it can regulate gene expression. Nuclear IGF-1R is associated with poor clinical outcomes. IGF-1R signaling has also been shown to support mitochondrial biogenesis and function, and IGF-1R inhibition causes mitochondrial dysfunction. How IGF-1R intracellular trafficking and compartmentalized signaling is controlled is still unknown. This is an important area for further study, particularly in cancer.
Collapse
|
31
|
Vaidžiulytė K, Coppey M, Schauer K. Intracellular organization in cell polarity - placing organelles into the polarity loop. J Cell Sci 2019; 132:132/24/jcs230995. [PMID: 31836687 DOI: 10.1242/jcs.230995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many studies have investigated the processes that support polarity establishment and maintenance in cells. On the one hand, polarity complexes at the cell cortex and their downstream signaling pathways have been assigned as major regulators of polarity. On the other hand, intracellular organelles and their polarized trafficking routes have emerged as important components of polarity. In this Review, we argue that rather than trying to identify the prime 'culprit', now it is time to consider all these players as a collective. We highlight that understanding the intimate coordination between the polarized cell cortex and the intracellular compass that is defined by organelle positioning is essential to capture the concept of polarity. After briefly reviewing how polarity emerges from a dynamic maintenance of cellular asymmetries, we highlight how intracellular organelles and their associated trafficking routes provide diverse feedback for dynamic cell polarity maintenance. We argue that the asymmetric organelle compass is an indispensable element of the polarity network.
Collapse
Affiliation(s)
- Kotryna Vaidžiulytė
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France.,Faculty of Science and Engineering, Sorbonne Université, Paris 75005, France
| | - Mathieu Coppey
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France
| | - Kristine Schauer
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France
| |
Collapse
|
32
|
Almeida N, Carrara G, Palmeira CM, Fernandes AS, Parsons M, Smith GL, Saraiva N. Stimulation of cell invasion by the Golgi Ion Channel GAAP/TMBIM4 via an H 2O 2-Dependent Mechanism. Redox Biol 2019; 28:101361. [PMID: 31693977 PMCID: PMC6838802 DOI: 10.1016/j.redox.2019.101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
The mechanisms by which the Golgi apparatus (GA) impacts on cell invasion are poorly understood. The human Golgi Anti-Apoptotic Protein (hGAAP, also known as TMBIM4) is a highly conserved Golgi cation channel that modulates intracellular Ca2+ fluxes. Human GAAP is expressed in all human tissues, is essential for cell viability and provides resistance against a range of apoptotic stresses. Furthermore, hGAAP enhances adhesion and cell migration by increasing the turnover of focal adhesions due to activation of store-operated Ca2+ entry. Here, we describe a GA-derived mechanism that controls cell invasion. The overexpression of hGAAP stimulates 3-dimensional proteolytic cell invasion by a mechanism that is dependent on the accumulation of intracellular hydrogen peroxide, which might be produced by the hGAAP-dependent stimulation of mitochondrial respiration. These findings provide new insight into the complex mechanisms by which Ca2+ and reactive oxygen species signaling contribute to cell invasion and to the role of the GA in these processes.
Collapse
Affiliation(s)
- Nuno Almeida
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra, Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, London, SE1 1UL, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal.
| |
Collapse
|
33
|
Gómez-Escudero J, Clemente C, García-Weber D, Acín-Pérez R, Millán J, Enríquez JA, Bentley K, Carmeliet P, Arroyo AG. PKM2 regulates endothelial cell junction dynamics and angiogenesis via ATP production. Sci Rep 2019; 9:15022. [PMID: 31636306 PMCID: PMC6803685 DOI: 10.1038/s41598-019-50866-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, occurs in pathophysiological contexts such as wound healing, cancer, and chronic inflammatory disease. During sprouting angiogenesis, endothelial tip and stalk cells coordinately remodel their cell-cell junctions to allow collective migration and extension of the sprout while maintaining barrier integrity. All these processes require energy, and the predominant ATP generation route in endothelial cells is glycolysis. However, it remains unclear how ATP reaches the plasma membrane and intercellular junctions. In this study, we demonstrate that the glycolytic enzyme pyruvate kinase 2 (PKM2) is required for sprouting angiogenesis in vitro and in vivo through the regulation of endothelial cell-junction dynamics and collective migration. We show that PKM2-silencing decreases ATP required for proper VE-cadherin internalization/traffic at endothelial cell-cell junctions. Our study provides fresh insight into the role of ATP subcellular compartmentalization in endothelial cells during angiogenesis. Since manipulation of EC glycolysis constitutes a potential therapeutic intervention route, particularly in tumors and chronic inflammatory disease, these findings may help to refine the targeting of endothelial glycolytic activity in disease.
Collapse
Affiliation(s)
- Jesús Gómez-Escudero
- Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Tumour Biology Department, Barts Cancer Institute, John´s Vane Centre, Queen Mary´s University of London. Charterhouse Sq, EC1M 6BQ, London, UK
| | - Cristina Clemente
- Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Centro de Investigaciones Biológicas (CIB-CSIC). Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Diego García-Weber
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Rebeca Acín-Pérez
- Myocardial Pathology Areas, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José A Enríquez
- Myocardial Pathology Areas, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Katie Bentley
- Computational Biology Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cellular Adaptive Behaviour Laboratory, Rudbeck Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Department of Oncology, University of Leuven, B-3000, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongsan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Alicia G Arroyo
- Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- Centro de Investigaciones Biológicas (CIB-CSIC). Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
34
|
Elango R, Vishnubalaji R, Manikandan M, Binhamdan SI, Siyal AA, Alshawakir YA, Alfayez M, Aldahmash A, Alajez NM. Concurrent targeting of BMI1 and CDK4/6 abrogates tumor growth in vitro and in vivo. Sci Rep 2019; 9:13696. [PMID: 31548560 PMCID: PMC6757061 DOI: 10.1038/s41598-019-50140-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
Despite recent advances in cancer management and therapy, resistance to cytotoxic medications remains a major clinical challenge; hence, combination-based anti-cancer treatment regimens are currently gaining momentum. PTC-209 reduced BMI1 protein expression, while palbociclib inhibited CDK4, Rb, and pRbSer795 protein expression in MDA-MB-231 cells. PTC-209 and palbociclib exhibited dose-dependent cytotoxic effects against MDA-MB-231 (breast), HCT116 (colon), and PC-3 (prostate) models, which was more profound in the combination group. Transcriptome and pathway analyses revealed inhibition of insulin signaling, focal adhesion, DNA damage response, and Wnt/pluripotency signaling pathways as well as cell proliferation, and cellular movement functional categories by PTC-209. Transcriptome and pathway analyses revealed palbociclib to mainly affect cell cycle progression and survival. Upstream analysis identified several networks affected by PTC-209 (EZH2, IFNB1, TRIB3, EGFR, SREBF1, IL1A, ERG, TGFB1, MAX, MNT) and palbociclib (RABL6, MITF, RARA, TAL1, AREG, E2F3, FOXM1, ESR1, ERBB2, and E2F). PTC-209 and palbociclib reduced colony and sphere formation, cell migration, and cell viability, which was further enhanced in the combination group. Concordantly, combination of PTC-209 and palbociclib exhibited more profound effects on MDA-MB-231 tumor formation in vivo. Our data suggest concurrent targeting of BMI1 and CDK4/CDK6 might provide novel therapeutic opportunity for breast, colon, and prostate cancer.
Collapse
Affiliation(s)
- Ramesh Elango
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Radhakrishnan Vishnubalaji
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Muthurangan Manikandan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sarah Ibrahim Binhamdan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdul-Aziz Siyal
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Yasser A Alshawakir
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
35
|
Li H, Zhang P, Luo J, Hu D, Huang Y, Zhang ZR, Fu Y, Gong T. Chondroitin Sulfate-Linked Prodrug Nanoparticles Target the Golgi Apparatus for Cancer Metastasis Treatment. ACS NANO 2019; 13:9386-9396. [PMID: 31375027 DOI: 10.1021/acsnano.9b04166] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metastasis is a multistep biological process regulated by multiple signaling pathways. The integrity of the Golgi apparatus plays an important role in these signaling pathways. Inspired by the mechanism and our previous finding about accumulation of chondroitin sulfate in Golgi apparatus in hepatic stellate cells, we developed a Golgi apparatus-targeting prodrug nanoparticle system by synthesizing retinoic acid (RA)-conjugated chondroitin sulfate (CS) (CS-RA). The prodrug nanoparticles appeared to accumulate in the Golgi apparatus in cancer cells and realized RA release under an acidic environment. We confirmed that CS-RA exhibited successful inhibition of multiple metastasis-associated proteins expression in vitro and in vivo by disruption of the Golgi apparatus structure. Following loading with paclitaxel (PTX), the CS-RA based nanoformulation (PTX-CS-RA) inhibited migration, invasion, and angiogenesis in vitro and suppressed tumor growth and metastasis in 4T1-Luc bearing mice. This multistep targeted nanoparticle system potentially enhanced the effect of antimetastasis combined with chemotherapy.
Collapse
Affiliation(s)
- Haohuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Pei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Jingwen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Danrong Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
36
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Kulkarni-Gosavi P, Makhoul C, Gleeson PA. Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett 2019; 593:2289-2305. [PMID: 31378930 DOI: 10.1002/1873-3468.13567] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
In addition to the classical functions of the Golgi in membrane transport and glycosylation, the Golgi apparatus of mammalian cells is now recognised to contribute to the regulation of a range of cellular processes, including mitosis, DNA repair, stress responses, autophagy, apoptosis and inflammation. These processes are often mediated, either directly or indirectly, by membrane scaffold molecules, such as golgins and GRASPs which are located on Golgi membranes. In many cases, these scaffold molecules also link the actin and microtubule cytoskeleton and influence Golgi morphology. An emerging theme is a strong relationship between the morphology of the Golgi and regulation of a variety of signalling pathways. Here, we review the molecular regulation of the morphology of the Golgi, especially the role of the golgins and other scaffolds in the interaction with the microtubule and actin networks. In addition, we discuss the impact of the modulation of the Golgi ribbon in various diseases, such as neurodegeneration and cancer, to the pathology of disease.
Collapse
Affiliation(s)
- Prajakta Kulkarni-Gosavi
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Christian Makhoul
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
38
|
Makhoul C, Gosavi P, Gleeson PA. Golgi Dynamics: The Morphology of the Mammalian Golgi Apparatus in Health and Disease. Front Cell Dev Biol 2019; 7:112. [PMID: 31334231 PMCID: PMC6616279 DOI: 10.3389/fcell.2019.00112] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
In vertebrate cells the Golgi consists of individual stacks fused together into a compact ribbon structure. The function of the ribbon structure of the Golgi has only begun to be appreciated (De Matteis et al., 2008; Gosavi and Gleeson, 2017; Wei and Seemann, 2017). Recent advances have identified a role for the Golgi in the regulation of a broad range of cellular processes and of particular interest is that the modulation of the Golgi ribbon is associated with regulation of a number of signaling pathways (Makhoul et al., 2018). Various cell responses, such as inflammation, and various disorders and diseases, including neurodegeneration and cancer, are associated with the loss of the Golgi ribbon and the appearance of a dispersed or semi-dispersed Golgi. Often the dispersed Golgi is referred to as a “fragmented” morphology. However, the description of a dispersed Golgi ribbon as “fragmented” is inadequate as it does not accurately define the morphological state of the Golgi. This issue is particularly relevant as there are an increasing number of reports describing Golgi fragmentation under physiological and pathological conditions. Knowledge of the precise Golgi architecture is relevant to an appreciation of the functional status of the Golgi apparatus and the underlying molecular mechanism for the contribution of the Golgi to different cellular processes. Here we propose a classification to define the various morphological states of the non-ribbon architecture of the Golgi in mammalian cells as a guide to more precisely define the relationship between the morphological and functional status of this organelle.
Collapse
Affiliation(s)
- Christian Makhoul
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Ding X, Deng G, Liu J, Liu B, Yuan F, Yang X, Chen Q. GOLM1 silencing inhibits the proliferation and motility of human glioblastoma cells via the Wnt/β-catenin signaling pathway. Brain Res 2019; 1717:117-126. [PMID: 30935831 DOI: 10.1016/j.brainres.2019.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 11/28/2022]
Abstract
Golgi membrane protein 1 (GOLM1) is a type II transmembrane protein located in the cis- and medial-Golgi. Due to its function as an oncogene and proprotein convertase (PC) consensus site, GOLM1 will play a vital role in gene-targeted therapies and serve as a candidate tumor biomarker. However, few studies have explored its correlation with glioblastoma (GBM) progression. In this study, we detected the overexpression of the GOLM1 mRNA and protein in clinical GBM samples. The level of secreted GOLM1 in the serum from patients with GBM was also abnormally elevated, as determined by an Elisa. Then we utilized small interfering RNAs (siRNAs) to silence GOLM1 expression in GBM U87 and U251 cells. After silencing GOLM1 expression, the proliferation of cells decreased, the cell cycle was arrested in G1/S phase, and tumor cell motility was also inhibited. Moreover, the levels of proliferation-associated proteins and epithelial-mesenchymal transition (EMT)-related markers were also altered. Additionally, the Wnt/β-catenin signaling pathway was significantly suppressed, particularly the nuclear translocation of β-catenin. Knockdown of GOLM1 also inhibits xenograft tumor growth in nude mouse models.GOLM1 acts as a critical oncogene in GBM by promoting cell proliferation, migration and invasion. Its mechanism may be related to the Wnt/β-catenin signaling pathway. GOLM1 also exhibits great potential as a biomarker for GBM.
Collapse
Affiliation(s)
- Xiang Ding
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Hubei 430060, China; Brain Tumor Clinical Center of Wuhan, Hubei 430060, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Hubei 430060, China; Brain Tumor Clinical Center of Wuhan, Hubei 430060, China
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Hubei 430060, China; Brain Tumor Clinical Center of Wuhan, Hubei 430060, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Hubei 430060, China; Brain Tumor Clinical Center of Wuhan, Hubei 430060, China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Hubei 430060, China; Brain Tumor Clinical Center of Wuhan, Hubei 430060, China
| | - Xue Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Hubei 430060, China; Brain Tumor Clinical Center of Wuhan, Hubei 430060, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Hubei 430060, China; Brain Tumor Clinical Center of Wuhan, Hubei 430060, China.
| |
Collapse
|
40
|
Lu T, Zou Y, Zhou X, Peng W, Hu Z. The mechanism on phosphorylation of Hsp20Ser16 inhibit GA stress and ER stress during OGD/R. PLoS One 2019; 14:e0213410. [PMID: 30845231 PMCID: PMC6405072 DOI: 10.1371/journal.pone.0213410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/20/2019] [Indexed: 11/22/2022] Open
Abstract
Recent research has demonstrated that small heat shock protein (sHsp) phosphorylation plays a variety of roles in neural cells. While the phosphorylation of serine 16 (Ser16) is blocked, Hsp20 no longer has neuroprotective effects. To further investigate the mechanism underlying this process, oxygen-glucose deprivation and reperfusion (OGD/R) was used with human SH-SY5Y cells and mouse N2a neuroblastoma cells. When SH-SY5Y and N2a cells were transfected with pEGFP-Hsp20(WT), pEGFP-Hsp20(S16A), and pEGFP-Hsp20(S16D) plasmids, the Golgi apparatus (GA) became more swollen and scattered, and many small fragments formed in the MOCK and S16A groups after OGD/R (P < 0.05). Meanwhile, the endoplasmic reticulum (ER) network was reduced, and the lamellar structure increased. However, these changes were not as obvious in the WT and S16D groups. Additionally, after OGD/R, Golgi Stress related protein contents were increased in the WT and S16D groups compared with the MOCK and S16A groups (P < 0.05). However, ER Stress related protein contents were decreased in the WT and S16D groups compared with the MOCK and S16A groups (P < 0.05). Our study demonstrates that Hsp20 phosphorylation on Ser16 protects against not only OGD/R-induced GA fragmentation in SH-SY5Y cells and N2a cells via Golgi stress but also OGD/R-induced ER structural changes in SH-SY5Y cells via ER stress. These findings suggest that Hsp20 is a potential drug target for ischemia stroke treatment.
Collapse
Affiliation(s)
- Tonglin Lu
- Department of Intensive Care Unit, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, Hunan, China
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongyi Zou
- Clinical Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Xu Zhou
- Department of Intensive Care Unit, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, Hunan, China
| | - Wenna Peng
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
41
|
Makhoul C, Gosavi P, Duffield R, Delbridge B, Williamson NA, Gleeson PA. Intersectin-1 interacts with the golgin GCC88 to couple the actin network and Golgi architecture. Mol Biol Cell 2019; 30:370-386. [PMID: 30540523 PMCID: PMC6589577 DOI: 10.1091/mbc.e18-05-0313] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
The maintenance of the Golgi ribbon relies on a dynamic balance between the actin and microtubule networks; however, the pathways controlling actin networks remain poorly defined. Previously, we showed that the trans-Golgi network (TGN) membrane tether/golgin, GCC88, modulates the Golgi ribbon architecture. Here, we show that dispersal of the Golgi ribbon by GCC88 is dependent on actin and the involvement of nonmuscle myosin IIA. We have identified the long isoform of intersectin-1 (ITSN-1), a guanine nucleotide exchange factor for Cdc42, as a novel Golgi component and an interaction partner of GCC88 responsible for mediating the actin-dependent dispersal of the Golgi ribbon. We show that perturbation of Golgi morphology by changes in membrane flux, mediated by silencing the retromer subunit Vps26, or in a model of neurodegeneration, induced by Tau overexpression, are also dependent on the ITSN-1-GCC88 interaction. Overall, our study reveals a role for a TGN golgin and ITSN-1 in linking to the actin cytoskeleton and regulating the balance between a compact Golgi ribbon and a dispersed Golgi, a pathway with relevance to pathophysiological conditions.
Collapse
Affiliation(s)
- Christian Makhoul
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Prajakta Gosavi
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Regina Duffield
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bronwen Delbridge
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicholas A. Williamson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A. Gleeson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
42
|
Tang CX, Luan L, Zhang L, Wang Y, Liu XF, Wang J, Xiong Y, Wang D, Huang LY, Gao DS. Golgin-160 and GMAP210 play an important role in U251 cells migration and invasion initiated by GDNF. PLoS One 2019; 14:e0211501. [PMID: 30695072 PMCID: PMC6351060 DOI: 10.1371/journal.pone.0211501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 11/25/2022] Open
Abstract
Gliomas are the most common malignant tumors of the brain and are characteristic of severe migration and invasion. Glial cell line-derived neurotrophic factor (GDNF) promotes glioma development process. However, the regulatory mechanisms of promoting occurrence and development of glioma have not yet been clearly elucidated. In the present study, the mechanism by which GDNF promotes glioma cell migration and invasion through regulating the dispersion and location of the Golgi apparatus (GA) is described. Following GDNF treatment, a change in the volume and position of GA was observed. The stack area of the GA was enlarged and it was more concentrated near the nucleus. Golgin-160 and Golgi microtubule-associated protein 210 (GMAP210) were identified as target molecules regulating GA positioning. In the absence of either golgin-160 or GMAP210 using lentivirus, the migration and invasion of U251 cells were decreased, while it was increased following GDNF. It was also found that the GA was decreased in size and dispersed following golgin-160 or GMAP210 knockdown, as determined by GA green fluorescence assay. Once GDNF was added, the above phenomenon would be twisted, and the concentrated location and volume of the GA was restored. In combination, the present data suggested that the regulation of the position and size of the GA by golgin-160 and GMAP210 play an important role in U251 cell migration and invasion.
Collapse
Affiliation(s)
- Chuan-Xi Tang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lan Luan
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Zhang
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Wang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin-Feng Liu
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Wang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ye Xiong
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Wang
- School of Medicine information, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin-Yan Huang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
43
|
Abstract
The role of the Golgi apparatus in carcinogenesis still remains unclear. A number of structural and functional cis-, medial-, and trans-Golgi proteins as well as a complexity of metabolic pathways which they mediate may indicate a central role of the Golgi apparatus in the development and progression of cancer. Pleiotropy of cellular function of the Golgi apparatus makes it a "metabolic heart" or a relay station of a cell, which combines multiple signaling pathways involved in carcinogenesis. Therefore, any damage to or structural abnormality of the Golgi apparatus, causing its fragmentation and/or biochemical dysregulation, results in an up- or downregulation of signaling pathways and may in turn promote tumor progression, as well as local nodal and distant metastases. Three alternative or parallel models of spatial and functional Golgi organization within tumor cells were proposed: (1) compacted Golgi structure, (2) normal Golgi structure with its increased activity, and (3) the Golgi fragmentation with ministacks formation. Regardless of the assumed model, the increased activity of oncogenesis initiators and promoters with inhibition of suppressor proteins results in an increased cell motility and migration, increased angiogenesis, significantly activated trafficking kinetics, proliferation, EMT induction, decreased susceptibility to apoptosis-inducing factors, and modulating immune response to tumor cell antigens. Eventually, this will lead to the increased metastatic potential of cancer cells and an increased risk of lymph node and distant metastases. This chapter provided an overview of the current state of knowledge of selected Golgi proteins, their role in cytophysiology as well as potential involvement in tumorigenesis.
Collapse
|
44
|
The Golgi architecture and cell sensing. Biochem Soc Trans 2018; 46:1063-1072. [DOI: 10.1042/bst20180323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022]
Abstract
An array of signalling molecules are located at the Golgi apparatus, including phosphoinositides, small GTPases, kinases, and phosphatases, which are linked to multiple signalling pathways. Initially considered to be associated predominantly with membrane trafficking, signalling pathways at the Golgi are now recognised to regulate a diverse range of higher-order functions. Many of these signalling pathways are influenced by the architecture of the Golgi. In vertebrate cells, the Golgi consists of individual stacks fused together into a compact ribbon structure and the function of this ribbon structure has been enigmatic. Notably, recent advances have identified a role for the Golgi ribbon in regulation of cellular processes. Fragmentation of the Golgi ribbon results in modulation of many signalling pathways. Various diseases and disorders, including cancer and neurodegeneration, are associated with the loss of the Golgi ribbon and the appearance of a dispersed fragmented Golgi. Here, we review the emerging theme of the Golgi as a cell sensor and highlight the relationship between the morphological status of the Golgi in vertebrate cells and the modulation of signalling networks.
Collapse
|
45
|
Eisler SA, Curado F, Link G, Schulz S, Noack M, Steinke M, Olayioye MA, Hausser A. A Rho signaling network links microtubules to PKD controlled carrier transport to focal adhesions. eLife 2018; 7:35907. [PMID: 30028295 PMCID: PMC6070338 DOI: 10.7554/elife.35907] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Protein kinase D (PKD) is a family of serine/threonine kinases that is required for the structural integrity and function of the Golgi complex. Despite its importance in the regulation of Golgi function, the molecular mechanisms regulating PKD activity are still incompletely understood. Using the genetically encoded PKD activity reporter G-PKDrep we now uncover a Rho signaling network comprising GEF-H1, the RhoGAP DLC3, and the Rho effector PLCε that regulate the activation of PKD at trans-Golgi membranes. We further show that this molecular network coordinates the formation of TGN-derived Rab6-positive transport carriers delivering cargo for localized exocytosis at focal adhesions.
Collapse
Affiliation(s)
- Stephan A Eisler
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Filipa Curado
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Gisela Link
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sarah Schulz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Melanie Noack
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Maren Steinke
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Monilola A Olayioye
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.,Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Angelika Hausser
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.,Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
46
|
Wei YL, Yang WX. The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility. Gene 2018; 660:28-40. [DOI: 10.1016/j.gene.2018.03.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022]
|
47
|
Li H, Yang LL, Xiao Y, Deng WW, Chen L, Wu L, Zhang WF, Sun ZJ. Overexpression of Golgi Phosphoprotein 2 Is Associated With Poor Prognosis in Oral Squamous Cell Carcinoma. Am J Clin Pathol 2018; 150:74-83. [PMID: 29788173 DOI: 10.1093/ajcp/aqy029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The aims of this study were to investigate the relationship between Golgi phosphoprotein 2 (GOLPH2) and oral squamous cell carcinoma (OSCC) and explore the clinical significance of GOLPH2 in OSCC. METHODS Tissue microarrays from human OSCC samples were stained for GOLPH2 expression and clinicopathologic features. Kaplan-Meier analysis was used to compare the survival of patients with high GOLPH2 expression and patients with low GOLPH2 expression. RESULTS We found GOLPH2 is highly expressed in OSCC tissue, and the GOLPH2 expression in metastatic lymph nodes is higher than in tumor tissue. Our data indicate that patients with higher GOLPH2 expression have poor overall survival compared with those with lower GOLPH2 expression. This study demonstrated that GOLPH2 was associated with CD44, SOX2, Slug, B7-H3, B7-H4, TIM3, and VISTA. CONCLUSIONS These findings suggest GOLPH2 is a potential marker for estimating the patient's prognosis and may be a target for molecular-targeted therapy against OSCC.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Hsu RM, Zhong CY, Wang CL, Liao WC, Yang C, Lin SY, Lin JW, Cheng HY, Li PY, Yu CJ. Golgi tethering factor golgin-97 suppresses breast cancer cell invasiveness by modulating NF-κB activity. Cell Commun Signal 2018; 16:19. [PMID: 29703230 PMCID: PMC5923015 DOI: 10.1186/s12964-018-0230-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Background Golgin-97 is a tethering factor in the trans-Golgi network (TGN) and is crucial for vesicular trafficking and maintaining cell polarity. However, the significance of golgin-97 in human diseases such as cancer remains unclear. Methods We searched for a potential role of golgin-97 in cancers using Kaplan-Meier Plotter (http://kmplot.com) and Oncomine (www.oncomine.org) datasets. Specific functions of golgin-97 in migration and invasion were examined in golgin-97-knockdown and golgin-97-overexpressing cells. cDNA microarray, pathway analysis and qPCR were used to identify gene profiles regulated by golgin-97. The role of golgin-97 in NF-κB signaling pathway was examined by using subcellular fractionation, luciferase reporter assay, western blot analysis and immunofluorescence assay (IFA). Results We found that low expression of golgin-97 correlated with poor overall survival of cancer patients and was associated with invasiveness in breast cancer cells. Golgin-97 knockdown promoted cell migration and invasion, whereas re-expression of golgin-97 restored the above phenotypes in breast cancer cells. Microarray and pathway analyses revealed that golgin-97 knockdown induced the expression of several invasion-promoting genes that were transcriptionally regulated by NF-κB p65. Mechanistically, golgin-97 knockdown significantly reduced IκBα protein levels and activated NF-κB, whereas neither IκBα levels nor NF-κB activity was changed in TGN46- or GCC185-knockdown cells. Conversely, golgin-97 overexpression suppressed NF-κB activity and restored the levels of IκBα in golgin-97-knockdown cells. Interestingly, the results of Golgi-disturbing agent treatment revealed that the loss of Golgi integrity was not involved in the NF-κB activation induced by golgin-97 knockdown. Moreover, both TGN-bound and cytosolic golgin-97 inhibited NF-κB activation, indicating that golgin-97 functions as an NF-κB suppressor regardless of its subcellular localization. Conclusion Our results collectively demonstrate a novel and suppressive role of golgin-97 in cancer invasiveness. We also provide a new avenue for exploring the relationship between the TGN, golgin-97 and NF-κB signaling in tumor progression. Electronic supplementary material The online version of this article (10.1186/s12964-018-0230-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rae-Mann Hsu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cai-Yan Zhong
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Chi Yang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Wei Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Yun Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Yu Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
49
|
Yan G, Ru Y, Wu K, Yan F, Wang Q, Wang J, Pan T, Zhang M, Han H, Li X, Zou L. GOLM1 promotes prostate cancer progression through activating PI3K-AKT-mTOR signaling. Prostate 2018; 78:166-177. [PMID: 29181846 DOI: 10.1002/pros.23461] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most commonly diagnosed cancer in men. Various molecular mechanisms account for PCa progression and elucidation of these mechanisms is key for selection of optimal therapies and improvement of patient outcome. Golgi membrane protein 1 (GOLM1) has been identified as a novel biomarker for PCa, but its biological functions and molecular mechanisms remain poorly understood. METHOD GOLM1 expression was determined in PCa by tissue microarrays (TMAs) and real-time RT-PCR, Western blot, and immunohistochemistry (IHC) analyses. To investigate GOLM1 functions in vitro and in vivo, we overexpressed and knocked down GOLM1 in PCa cell lines and established xenograft mice models. A series of cytological function assays were used to determine the role of GOLM1 in cell proliferation, migration, invasion, and apoptosis. PI3K-AKT-mTOR signaling pathway downstream of GOLM1 was detected by Western blot and IHC analyses. RESULT GOLM1 expression is up-regulated in PCa of all stages and grades. GOLM1 promotes proliferation, migration and invasion, and inhibits apoptosis in PCa cell lines (DU145, PC3, and CWR22Rv1) and xenograft mice models. Moreover, PI3K-AKT-mTOR signaling is positively regulated by GOLM1, whereas PI3 K inhibitor BKM120 significantly abrogates the oncogenic functions of GOLM1. CONCLUSION GOLM1 acts as a critical oncogene by promoting PCa cell proliferation, migration and invasion, and inhibiting apoptosis. GOLM1 plays oncogenic functions mainly through activating PI3K-AKT-mTOR signaling pathway. Therefore, agents that block PI3K-AKT-mTOR signaling pathway could be used in PCa patients with GOLM1 up-regulation.
Collapse
Affiliation(s)
- Guang Yan
- College of Medicine, Soochow University, Suzhou, Jiangsu Province, P.R. China
- Department of Urology, Rocket Army General Hospital of PLA, Beijing, P.R. China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Yi Ru
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Kerong Wu
- College of Medicine, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Fengqi Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Qinhao Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Jingxiang Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Tao Pan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Mei Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Xia Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Lian Zou
- College of Medicine, Soochow University, Suzhou, Jiangsu Province, P.R. China
- Department of Urology, Rocket Army General Hospital of PLA, Beijing, P.R. China
| |
Collapse
|
50
|
Yu RY, Xing L, Cui PF, Qiao JB, He YJ, Chang X, Zhou TJ, Jin QR, Jiang HL, Xiao Y. Regulating the Golgi apparatus by co-delivery of a COX-2 inhibitor and Brefeldin A for suppression of tumor metastasis. Biomater Sci 2018; 6:2144-2155. [DOI: 10.1039/c8bm00381e] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, celecoxib (CLX) and brefeldin A (BFA) were encapsulated into the biocompatible polymer PLGA-PEG to form nanoparticles that act on the Golgi apparatus to treat metastatic breast cancer.
Collapse
|