1
|
Xuan W, Yao Y, Wang Y, Chen X, Yao H. A nomogram for predicting coronary artery lesions in patients with Kawasaki disease. Medicine (Baltimore) 2024; 103:e40428. [PMID: 39495992 PMCID: PMC11537659 DOI: 10.1097/md.0000000000040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
As an acute systemic vasculitis, Kawasaki disease (KD) could develop coronary artery lesions (CAL) sometimes. However, its etiology was still unidentified. This study was to construct a predictive model based on clinical features and laboratory parameters, and then perform a rapid risk assessment of CAL. We collected clinical and laboratory data retrospectively for all patients with KD who were hospitalized at our hospital from January 2016 to June 2023. All the patients were divided into CAL and non-CAL groups and then randomly assigned to a training set and a verification set. The independent risk variables of CAL were identified by univariate analysis and multivariate logistic regression analysis of the training set. These components were then utilized to build a predictive nomogram. Calibration curve and receiver operating characteristic curve were used to evaluate the performance of the model. The predictive nomogram was further validated in the verification set. In the training set, 49 KD patients (19.9%) showed CAL. Compared with the non-CAL group, the proportion of fever days ≥ 10, C-reactive protein and total bilirubin were significantly higher in the CAL group, whereas age was younger, hemoglobin and albumin were lower. Younger age, fever days ≥ 10, higher C-reactive protein, lower hemoglobin and albumin were identified as independent risk factors for CAL in KD patients. The nomogram constructed using these factors showed satisfactory calibration degree and discriminatory power (the area under the curve, 0.764). In the verification set, the area under the curve was 0.798. Younger age, fever days ≥ 10, lower hemoglobin and albumin levels, higher C-reactive protein levels were independent risk factors for CAL in KD patients. The predictive nomogram constructed utilizing 5 relevant risk factors could be conveniently used to facilitate the individualized prediction of CAL in KD patients.
Collapse
Affiliation(s)
- Wenjie Xuan
- Department of Pediatrics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | | | | | | | | |
Collapse
|
2
|
Patra PK, Jindal AK, Rikhi R, Kaur A, Srivastava P, Suri D, Rawat A, Pilania R, Singh S. CD40 gene polymorphism and its expression in children with Kawasaki disease from North India: a preliminary case-control study and meta-analysis. Front Pediatr 2023; 11:1252024. [PMID: 37808562 PMCID: PMC10551130 DOI: 10.3389/fped.2023.1252024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction CD40 gene single-nucleotide polymorphisms (SNPs) have been associated with susceptibility and development of coronary artery abnormalities (CAAs) in children with Kawasaki disease (KD) in Japanese, Chinese, and Taiwanese populations. However, data on SNPs of the CD40 gene in patients with KD from the Indian subcontinent are not available. We studied the CD40 gene polymorphisms and its expression in children with KD from North India. Methods SNPs of the CD40 gene (rs4810485, rs1535045) were studied using Sanger sequencing. CD40 expression was studied by flow cytometry. Meta-analysis was carried out to assess the role of both SNPs of the CD40 gene in KD. GRADEpro GDT software (v.3.2) was used to assess the "certainty of evidence." Results Forty-one patients with KD and 41 age-, sex-matched febrile controls were enrolled. However, none of the alleles and genotypes of the CD40 gene were found to be associated with KD. CD40 expression was higher in KD and in KD with CAAs compared to controls, but it failed to reach statistical significance. In a meta-analysis, the T allele of rs153045 was found to be significantly associated with KD (OR = 1.28; 95% confidence interval (: 1.09-1.50; p = 0.002). The GRADE of evidence for this outcome, however, is of " very low certainty." Conclusion The present study found no association between SNPs (rs4810485 and rs153045) and susceptibility to KD. This could be a reflection of a modest sample size. CD40 expression was higher in KD and in KD with CAAs. In the meta-analysis, the T allele of rs153045 was significantly associated with KD. Our study confirms a significant genetic heterogeneity in KD among different ethnicities.
Collapse
Affiliation(s)
- Pratap Kumar Patra
- Department of Pediatrics, All India Institute of Medical Sciences, Patna, India
| | - Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rashmi Rikhi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Priyanka Srivastava
- Genetics and Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rakesh Pilania
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
3
|
Liu X, Chen Y, Yang Y, Su Z, Wang F, Zhanghuang C, Wu Y, Zhang X. Association between FGA gene polymorphisms and coronary artery lesion in Kawasaki disease. Front Med (Lausanne) 2023; 10:1193303. [PMID: 37575991 PMCID: PMC10413112 DOI: 10.3389/fmed.2023.1193303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Objective To investigate the correlation between FGA gene polymorphisms and coronary artery lesion in Kawasaki disease. Methods Two hundred and thirty four children with Kawasaki disease (KD group), 200 healthy children (normal group) and 208 children with non-KD fever (fever group) were enrolled. General clinical indicators, the concentration of serum MMPs, TIMP-1, FG-α,fibrinogen level, molecular function (FMPV/ODmax) and FGA Thr312Ala polymorphism were detected individually by testing peripheral venous blood after fasting in the morning. Results There was no significant difference in average age among the three groups, which were 3.03 ± 1.22 years, 3.17 ± 1.30 years, and 3.21 ± 1.31 years, respectively. Compared with those in the fever group, the levels of white blood cell count (WBC), platelet count (PLT), procalcitonin (PCT), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and fibrinogen (Fg) levels were significantly increased in the KD group. Red blood cell count (RBC) and hemoglobin (Hb) levels were significantly decreased (p < 0.05).The concentration of serum MMPs, TIMP-1, and FG-α in the KD and fever groups were significantly higher than those in the normal group (p < 0.05). The concentration of MMP-2, MMP-3, MMP-9, MMP-13, TIMP-1, and FG-α in the KD group were significantly higher than those in the fever group (p < 0.05).The KD group was divided into two subgroups,55 patients with combined CAL and 179 patients without combined CAL. The plasma fibrinogen concentration in the combined CAL group was significantly higher than that in the non-combined CAL and normal groups (p < 0.01). There was no statistically significant difference in FMPV/ODmax among the three groups (p > 0.05). Compared with normal group, the FGA GG, GA, and AA genotype and G, A allele frequency of the FGA gene polymorphism in the KD group showed no significant difference (p > 0.05). In the KD group, the most common type in children with CAL was GA, while the most common type in children without CAL was GG. Conclusion MMPs and FG-α were significantly upregulated in KD patients. The proportion of FGA genotype GA in children with CAL was significantly higher than that in children without CAL, suggesting that FGA gene polymorphisms affect coronary artery lesion in children with KD.
Collapse
Affiliation(s)
- Xingzhu Liu
- Department of Special Needs Ward, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Yanfei Chen
- Department of Cardiology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Yanfei Yang
- Department of Special Needs Ward, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Zhongjian Su
- Department of Cardiology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Feng Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Chenghao Zhanghuang
- Department of Urology, Yunnan Key Laboratory of Children's Major Disease Research, Kunming Children’s Hospital, Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming, Yunnan, China
| | - Yuqin Wu
- Department of Special Needs Ward, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Xing Zhang
- Department of Cardiology, Kunming Children’s Hospital, Kunming, Yunnan, China
| |
Collapse
|
4
|
Liu J, Su D, Yuan P, Ye B, Qin S, Pang Y. Risk Factors for Coronary Artery Aneurysm in a Chinese Pediatric Population with Kawasaki Disease at Low Risk of Intravenous Immunoglobulin Resistance: A Retrospective Cohort Study. Cardiology 2023; 148:457-468. [PMID: 37231847 PMCID: PMC10614276 DOI: 10.1159/000530708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Multiple scoring systems for predicting intravenous immunoglobulin (IVIG) resistance have been developed. Although low-scoring patients with Kawasaki disease (KD) have a favorable prognosis, many develop coronary artery aneurysms (CAAs). Herein, we determined the risk factors for CAA development among patients with KD with low risk of IVIG resistance. METHODS We compared 14 scoring systems for predicting IVIG resistance among patients with KD hospitalized from 2003 to 2022. Patients were risk stratified using an optimal scoring system. Association between baseline characteristics and CAA development was assessed within the low-risk group. RESULTS Overall, 664 pediatric patients with KD were included; 108 (16.3%) had IVIG resistance, and the Liping scoring system had the highest area under the curve (0.714). According to this system, 444 (66.9%) patients with KD were classified as having low risk of developing IVIG resistance (<5 points). CAA development was significantly associated with male sex (odds ratio [OR], 1.946; 95% CI: 1.015-3.730), age <6 months at fever onset (OR, 3.142; 95% CI: 1.028-9.608), and a baseline maximum Z score of ≥2.72 (OR, 3.451; 95% CI: 2.582-4.612). CAA incidence increased with the number of risk factors, and comparisons with a Kobayashi score of <5 points among patients with KD revealed similar results. CONCLUSIONS Predicting the response to IVIG might help further reduce CAA development in patients with KD.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatrics, First Affiliated Hospital, Guangxi Medical University, Nanning, China,
| | - Danyan Su
- Department of Pediatrics, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Piaoliu Yuan
- Department of Pediatrics, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Bingbing Ye
- Department of Pediatrics, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Suyuan Qin
- Department of Pediatrics, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yusheng Pang
- Department of Pediatrics, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Cai WJ, Ding SG. Retrospective analysis of clinical characteristics and related influencing factors of Kawasaki disease. Medicine (Baltimore) 2022; 101:e32430. [PMID: 36596080 PMCID: PMC9803503 DOI: 10.1097/md.0000000000032430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To compare the clinical characteristics of complete Kawasaki disease (KD) and incomplete Kawasaki disease (IKD), and analyze the possible risk factors of coronary artery lesion (CAL) in KD. The clinical data of 139 children with KD admitted to the hospital from January 2016 to June 2022 were analyzed retrospectively. The differences of clinical characteristics between children with KD and children with IKD were compared. The risk factors of CAL were analyzed using univariate and multivariate logistic regression. Comparison of clinical characteristics between KD and IKD groups, the results showed there was significant difference in terms of conjunctival congestion, rash, lymph node enlargement, hand and foot redness, intravenous immune globulin non reaction and fever time (P < .05). Comparison of laboratory indicators between 2 groups, the results showed that there was significantly difference in the levels of neutrophils (P < .05). 15 cases (15.31%) in KD group were complicated with CAL, and 17 cases (41.46%) in IKD group were complicated with CAL, and the results showed there was a significant difference between the 2 groups (P < .05). Univariate analysis showed that the age and Hb of children with CAL were lower than those of children with nCAL, while C-reactive protein, NT-proBNP, NEUT, and ESR were higher than those of children with nCAL (P < .05). Multivariate analysis showed that the increase of NT-proBNP and the decrease of Hb may be independent risk factors for the occurrence of CAL in children with KD. The clinical manifestation of children with IKD is not typical. Compared with KD children, the fever time is longer and the incidence of CAL is higher. Under-age, increased NT-proBNP and decreased Hb may be independent risk factors for CAL in KD children.
Collapse
Affiliation(s)
- Wen-Juan Cai
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - Sheng-Gang Ding
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
- * Correspondence: Sheng-Gang Ding, Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China (e-mail: )
| |
Collapse
|
6
|
Guo K, Qiu L, Xu Y, Gu X, Zhang L, Lin K, Wang X, Song S, Liu Y, Niu Z, Ma S. Single-Nucleotide Polymorphism LncRNA AC008392.1/rs7248320 in CARD8 is Associated with Kawasaki Disease Susceptibility in the Han Chinese Population. J Inflamm Res 2021; 14:4809-4816. [PMID: 34584439 PMCID: PMC8464376 DOI: 10.2147/jir.s331727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Kawasaki disease (KD) is a multisystem vasculitis in infants and young children and involved in the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation. Genetic factors may increase the risk of KD. To assess the association between rs7248320 in long noncoding RNA (lncRNA) AC008392.1 located in the upstream region of CARD8 and the risk of KD, a case–control study was conducted in the Han Chinese population. Methods This study genotyped the polymorphism rs7248320 in the lncRNA AC008392.1 gene using the TaqMan real-time polymerase chain reaction assay. The genetic contribution of rs7248320 was evaluated using odds ratios (ORs) and 95% confidence intervals (CIs) using unconditional logistic regression analysis. The association between rs7248320 and KD susceptibility was analyzed by performing a hospital-based case–control study including 559 KD patients and 1055 non-KD controls. Results In this study, a significant relationship between rs7248320 and KD risk was observed in the genotype/allele frequency distribution. The rs7248320 polymorphism was associated with a significantly decreased risk of KD after adjustment for age and sex (AG vs AA: adjusted OR = 0.80, 95% CI: 0.64–0.99, P = 0.0421; GG vs AA: adjusted OR = 0.71, 95% CI: 0.51–1.00, P = 0.0492; AG/GG vs AA: adjusted OR = 0.78, 95% CI: 0.63–0.96, P = 0.0186). Moreover, the rs7248320 G allele also exhibited a decreased risk for KD (adjusted OR = 0.83, 95% CI: 0.72–0.97, P = 0.0193) compared with the A allele. In the stratification analysis, compared to the rs7248320 AA genotype, AG/GG genotypes were more protective for males (OR = 0.71, 95% CI: 0.55–0.93, P = 0.0122). Conclusion This study suggests for the first time that the lncRNA AC008392.1 rs7248320 polymorphism may be involved in KD susceptibility in the Han Chinese population.
Collapse
Affiliation(s)
- Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Lijuan Qiu
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Linyuan Zhang
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kun Lin
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaohuan Wang
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shanshan Song
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yu Liu
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Zijian Niu
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shuxuan Ma
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
7
|
Jiao M, Li J, Zhang Q, Xu X, Li R, Dong P, Meng C, Li Y, Wang L, Qi W, Kang K, Wang H, Wang T. Identification of Four Potential Biomarkers Associated With Coronary Artery Disease in Non-diabetic Patients by Gene Co-expression Network Analysis. Front Genet 2020; 11:542. [PMID: 32714363 PMCID: PMC7344232 DOI: 10.3389/fgene.2020.00542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
Background Coronary artery disease (CAD) is a type of cardiovascular disease that greatly hurts the health of human beings. Diabetic status is one of the largest clinical factors affecting CAD-associated gene expression changes. Most of the studies focus on diabetic patients, whereas few have been done for non-diabetic patients. Since the pathophysiological processes may vary among these patients, we cannot simply follow the standard based on the data from diabetic patients. Therefore, the prognostic and predictive diagnostic biomarkers for CAD in non-diabetic patient need to be fully recognized. Materials and Methods To screen out candidate genes associated with CAD in non-diabetic patients, weighted gene co-expression network analysis (WGCNA) was constructed to conduct an analysis of microarray expression profiling in patients with CAD. First, the microarray data GSE20680 and GSE20681 were downloaded from NCBI. We constructed co-expression modules via WGCNA after excluding the diabetic patients. As a result, 18 co-expression modules were screened out, including 1,225 differentially expressed genes (DEGs) that were obtained from 152 patients (luminal stenosis ≥50% in at least one major vessel) and 170 patients (stenosis of <50%). Subsequently, a Pearson's correlation analysis was conducted between the modules and clinical traits. Then, a functional enrichment analysis was conducted, and we used gene network analysis to reveal hub genes. Last, we validated the hub genes with peripheral blood samples in an independent patient cohort using RT-qPCR. Results The results showed that the midnight blue module and the yellow module played vital roles in the pathogenesis of CAD in non-diabetic patients. Additionally, CD40, F11R, TNRC18, and calcium/calmodulin-dependent protein kinase type II gamma (CAMK2G) were screened out and validated using enzyme-linked immunosorbent assay (ELISA) in an independent patient cohort and immunohistochemical (IHC) staining in an atherosclerosis mouse model. Conclusion Our findings demonstrate that hub genes, CD40, F11R, TNRC18, and CAMK2G, are surrogate diagnostic biomarkers and/or therapeutic targets for CAD in non-diabetic patients and require deeper validation.
Collapse
Affiliation(s)
- Min Jiao
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingtian Li
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Quan Zhang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiufeng Xu
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ruidong Li
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA, United States
| | - Peikang Dong
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chun Meng
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yi Li
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Lijuan Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Wanpeng Qi
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kai Kang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
8
|
Abstract
Kawasaki disease is an acute febrile illness and systemic vasculitis of unknown aetiology that predominantly afflicts young children, causes coronary artery aneurysms and can result in long-term cardiovascular sequelae. Kawasaki disease is the leading cause of acquired heart disease among children in the USA. Coronary artery aneurysms develop in some untreated children with Kawasaki disease, leading to ischaemic heart disease and myocardial infarction. Although intravenous immunoglobulin (IVIG) treatment reduces the risk of development of coronary artery aneurysms, some children have IVIG-resistant Kawasaki disease and are at increased risk of developing coronary artery damage. In addition, the lack of specific diagnostic tests and biomarkers for Kawasaki disease make early diagnosis and treatment challenging. The use of experimental mouse models of Kawasaki disease vasculitis has considerably improved our understanding of the pathology of the disease and helped characterize the cellular and molecular immune mechanisms contributing to cardiovascular complications, in turn leading to the development of innovative therapeutic approaches. Here, we outline the pathophysiology of Kawasaki disease and summarize and discuss the progress gained from experimental mouse models and their potential therapeutic translation to human disease. This Review outlines the pathophysiology of Kawasaki disease and discusses the progress gained from experimental mouse models and their potential therapeutic translation to human disease. Kawasaki disease is a childhood systemic vasculitis leading to the development of coronary artery aneurysms; it is the leading cause of acquired heart disease in children in developed countries. The cause of Kawasaki disease is unknown, although it is suspected to be triggered by an unidentified infectious pathogen in genetically predisposed children. Kawasaki disease might not be a normal immune response to an unusual environmental stimulus, but rather a genetically determined unusual and uncontrolled immune response to a common stimulus. Although the aetiological agent in humans is unknown, mouse models of Kawasaki disease vasculitis demonstrate similar pathological features and have substantially accelerated discoveries in the field. Genetic and transcriptomic analysis of blood samples from patients with Kawasaki disease and experimental evidence generated using mouse models have demonstrated the critical role of IL-1β in the pathogenesis of this disease and the therapeutic potential of targeting this pathway (currently under investigation in clinical trials).
Collapse
|
9
|
Tang B, Lo HH, Lei C, U KI, Hsiao WLW, Guo X, Bai J, Wong VKW, Law BYK. Adjuvant herbal therapy for targeting susceptibility genes to Kawasaki disease: An overview of epidemiology, pathogenesis, diagnosis and pharmacological treatment of Kawasaki disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153208. [PMID: 32283413 PMCID: PMC7118492 DOI: 10.1016/j.phymed.2020.153208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is a self-limiting acute systemic vasculitis occur mainly in infants and young children under 5 years old. Although the use of acetylsalicylic acid (AAS) in combination with intravenous immunoglobulin (IVIG) remains the standard therapy to KD, the etiology, genetic susceptibility genes and pathogenic factors of KD are still un-elucidated. PURPOSE Current obstacles in the treatment of KD include the lack of standard clinical and genetic markers for early diagnosis, possible severe side effect of AAS (Reye's syndrome), and the refractory KD cases with resistance to IVIG therapy, therefore, this review has focused on introducing the current advances in the identification of genetic susceptibility genes, environmental factors, diagnostic markers and adjuvant pharmacological intervention for KD. RESULTS With an overall update in the development of KD from different aspects, our current bioinformatics data has suggested CASP3, CD40 and TLR4 as the possible pathogenic factors or diagnostic markers of KD. Besides, a list of herbal medicines which may work as the adjunct therapy for KD via targeting different proposed molecular targets of KD have also been summarized. CONCLUSION With the aid of modern pharmacological research and technology, it is anticipated that novel therapeutic remedies, especially active herbal chemicals targeting precise clinical markers of KD could be developed for accurate diagnosis and treatment of the disease.
Collapse
Key Words
- AAS, acetylsalicylic acid
- AHA, the American Heart Association
- Adjuvant therapy
- C IVIG, intravenous immunoglobulin
- CALs, coronary artery lesions
- CASP, caspase
- CD, cluster of differentiation
- CRP, C-reactive protein
- DAVID, Database for Annotation, Visualization and Integrated Discovery
- Diagnostic marker
- Epidemiology
- FCGR2A, Fc fragment of immunoglobulin G, low-affinity IIa
- GWAS, genome-wide association method
- HAdV, the human adenovirus
- Herbal chemicals
- IL, Interleukin
- ITPKC, inositol 1,4,5-triphosphate 3-kinase
- KD, Kawasaki disease
- Kawasaki disease
- MyD88, myeloid differentiation factor 88
- NF-κB, nuclear factor κB
- RS, Reye's syndrome
- SNPs, single nucleotide polymorphisms
- Susceptibility genes
- TCMs, traditional Chinese medicines
- TLR4, toll-like receptor 4
- TNF, tumor necrosis factor
- Th, T helper
Collapse
Affiliation(s)
- Bin Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cheng Lei
- Department of Pediatrics, Kiang Wu Hospital, Macau SAR, China
| | - Ka In U
- Department of Pediatrics, Kiang Wu Hospital, Macau SAR, China
| | - Wen-Luan Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoling Guo
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Jun Bai
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
10
|
Lo MS. A framework for understanding Kawasaki disease pathogenesis. Clin Immunol 2020; 214:108385. [PMID: 32173601 DOI: 10.1016/j.clim.2020.108385] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Kawasaki disease (KD) is a common vasculitis of childhood, typically affecting children under the age of five. Despite many aspects of its presentation that bear resemblence to acute infection, no causative infectious agent has been identified despite years of intense scrutiny. Unlike most infections, however, there are significant differences in racial predilection that suggest a strong genetic influence. The inflammatory response in KD specifically targets the coronary arteries, also unusual for an infectious condition. In this review, we discuss recent hypotheses on KD pathogenesis as well as new insights into the innate immune response and mechanisms behind vascular damage. The pathogenesis is complex, however, and remains inadequately understood.
Collapse
Affiliation(s)
- Mindy S Lo
- Division of Immunology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, United States of America; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
11
|
van Stijn D, Slegers A, Zaaijer H, Kuijpers T. Lower CMV and EBV Exposure in Children With Kawasaki Disease Suggests an Under-Challenged Immune System. Front Pediatr 2020; 8:627957. [PMID: 33585370 PMCID: PMC7873854 DOI: 10.3389/fped.2020.627957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 12/03/2022] Open
Abstract
Background: Kawasaki Disease (KD) is a pediatric vasculitis of which the pathogenesis is unclear. The hypothesis is that genetically pre-disposed children develop KD when they encounter a pathogen which remains most often unidentified or pathogen derived factors. Since age is a dominant factor, prior immune status in children could influence their reactivity and hence the acquisition of KD. We hypothesized that systemic immune responses early in life could protect against developing KD. With this study we tested whether the incidence of previous systemic cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection is lower in children with KD compared to healthy age-matched controls. Methods and Results: We compared 86 KD patients with an age-matched control group regarding CMV and EBV VCA IgG measurements (taken before or 9 months after IVIG treatment). We found that both CMV and EBV had an almost 2-fold lower seroprevalence in the KD population than in the control group. Conclusions: We suggest that an under-challenged immune system causes an altered immune reactivity which may affect the response to a pathological trigger causing KD in susceptible children.
Collapse
Affiliation(s)
- Diana van Stijn
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Annemarie Slegers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hans Zaaijer
- Laboratory of Clinical Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Zhang D, Liu L, Huang X, Tian J. Insights Into Coronary Artery Lesions in Kawasaki Disease. Front Pediatr 2020; 8:493. [PMID: 32984207 PMCID: PMC7477115 DOI: 10.3389/fped.2020.00493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
This review summarizes recent advances in understanding the development of coronary arteritis in Kawasaki disease. Kawasaki disease is the most common cause of acquired heart disease among children characterized with coronary artery abnormalities, which can cause myocardial ischemia, infarction, and even death. The pathogenic factors of Kawasaki disease and the pathological process of coronary artery disease are not clear at present, which brings challenges to the prevention and treatment of the disease. The treatment of Kawasaki disease focuses mainly on timely administration of intravenous high doses of immunoglobulin and aspirin. However, there are still some patients who do not respond well to this standard treatment, and its management remains a challenge. As a result, coronary artery lesions still occur in patients and affect their quality of life. In this review, we discuss updated research data of Kawasaki disease coronary artery lesions.
Collapse
Affiliation(s)
- Danfeng Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Cardiology, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lingjuan Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Cardiology, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xupei Huang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Jie Tian
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Cardiology, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
13
|
Menikou S, Langford PR, Levin M. Kawasaki Disease: The Role of Immune Complexes Revisited. Front Immunol 2019; 10:1156. [PMID: 31263461 PMCID: PMC6584825 DOI: 10.3389/fimmu.2019.01156] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Kawasaki disease (KD) is an inflammatory disease in children associated with vasculitis affecting predominantly the coronary arteries and is now the most common cause of acquired heart disease in children in developed countries. The etiology of KD is unknown but epidemiological studies implicate an infectious agent or toxin, which causes disease in genetically predisposed individuals. The presence of immune complexes (ICs) in the serum of children with KD was established in numerous studies during the 1970s and 80s. More recent genetic studies have identified variation in Fcγ receptors and genes controlling immunoglobulin production associated with KD. In this review we link the genetic findings and IC studies and suggest a key role for their interaction in pathophysiology of the disease.
Collapse
Affiliation(s)
- Stephanie Menikou
- Section of Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Paul R Langford
- Section of Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Analysis of Genetic Variation in CD40 and CD40L: Relationship with mRNA Relative Expression and Soluble Proteins in Acute Coronary Syndrome. J Immunol Res 2019; 2019:8063983. [PMID: 31183392 PMCID: PMC6515173 DOI: 10.1155/2019/8063983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 11/27/2022] Open
Abstract
Acute coronary syndrome (ACS) can be triggered by the presence of inflammatory factors which promote the activation of immune cells by costimulatory molecules such as CD40 and its ligand CD40L. Environmental and genetic factors are involved in the etiology of the ACS. The aim of this study was to explore the gene and protein expression associated with CD40 and CD40L genetic variants in ACS patients from the western Mexican population. A total of 620 individuals from western Mexico were recruited: 320 ACS patients and 300 individuals without a history of ischemic cardiopathy were evaluated. The genotype was determined using TaqMan SNP genotyping assays. CD40 and CD40L expressions at the mRNA level were quantified using TaqMan Gene Expression Assays. Soluble protein isoforms were measured by enzyme-linked immunosorbent assay. We did not find evidence of association between CD40 (rs1883832, rs4810485, and rs11086998) and CD40L (rs3092952 and rs3092920) genetic variants and susceptibility to ACS, although rs1883832 and rs4810485 were significantly associated with high sCD40 plasma levels. Plasma levels of sCD40L can be affected by gender and the clinical spectrum of acute coronary syndrome. Our results do not suggest a functional role of CD40 and CD40L genetic variants in ACS. However, they could reflect the inflammatory process and platelet activation in ACS patients, even when they are under pharmacological therapy. Due to the important roles of the CD40-CD40L system in the pathogenesis of ACS, longitudinal studies are required to determine if soluble levels of CD40 and CD40L could be clinically useful markers of a recurrent cardiovascular event after an ACS.
Collapse
|
15
|
Soussi M, Kallel A, Ben Wafi S, Ben Halima M, Sanhaji H, Mourali MS, Jemaa R, Feki M. Associations of rs1883832 and rs4810485 polymorphisms of CD40 gene with myocardial infarction in the Tunisian population. Biomarkers 2019; 24:530-537. [PMID: 30924686 DOI: 10.1080/1354750x.2019.1602168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Context: Cluster of differentiation 40 (CD40), and its ligand CD40L, are major co-stimulatory molecules whose interactions are important in both cellular and humoral immunity, and has been suggested to play a role in the pathogenesis of acute coronary syndrome. Objective: The aim of this study was to examine the association of CD40 polymorphisms (-1 C>T (rs1883832) and 945G>T (rs4810485)) and myocardial infarction (MI), and to test the association of CD40 gene haplotypes with MI in Tunisians. Materials and methods: Three hundred and fifty MI patients and 301 apparently healthy controls were included in the study. The polymorphisms of CD40 were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: There were significant differences in the genotype and allele frequencies of CD40 gene -1 C>T (rs1883832) polymorphism between cases and controls. Stratifying according to gender, the association between the TT genotype and MI was statistically significant in males, only. Haplotype analysis revealed that the C-T and T-G haplotypes were associated with an increased risk of MI (p = 0.012 and p < 0.001, respectively). Conclusions: Our work showed a significant association between the -1 C>T (rs1883832) polymorphism of the CD40 gene and MI in the Tunisians.
Collapse
Affiliation(s)
- Meriem Soussi
- a Laboratory of Biochemistry, Faculty of Medicine of Tunis, Rabta Hospital, University of Tunis El Manar , Tunis , Tunisia.,b Faculty of Sciences of Tunis, University of Tunis El Manar , Tunis , Tunisia
| | - Amani Kallel
- a Laboratory of Biochemistry, Faculty of Medicine of Tunis, Rabta Hospital, University of Tunis El Manar , Tunis , Tunisia
| | - Safa Ben Wafi
- a Laboratory of Biochemistry, Faculty of Medicine of Tunis, Rabta Hospital, University of Tunis El Manar , Tunis , Tunisia.,b Faculty of Sciences of Tunis, University of Tunis El Manar , Tunis , Tunisia
| | - Meriam Ben Halima
- a Laboratory of Biochemistry, Faculty of Medicine of Tunis, Rabta Hospital, University of Tunis El Manar , Tunis , Tunisia.,b Faculty of Sciences of Tunis, University of Tunis El Manar , Tunis , Tunisia
| | - Haifa Sanhaji
- a Laboratory of Biochemistry, Faculty of Medicine of Tunis, Rabta Hospital, University of Tunis El Manar , Tunis , Tunisia
| | | | - Riadh Jemaa
- a Laboratory of Biochemistry, Faculty of Medicine of Tunis, Rabta Hospital, University of Tunis El Manar , Tunis , Tunisia
| | - Moncef Feki
- a Laboratory of Biochemistry, Faculty of Medicine of Tunis, Rabta Hospital, University of Tunis El Manar , Tunis , Tunisia
| |
Collapse
|
16
|
Shen W, Liao Y, Garcia R, Kesavabhotla K, Xu B, Li H. Association of CD40 SNPs with Moyamoya in a Chinese children population. Br J Neurosurg 2019; 33:398-401. [PMID: 30681383 DOI: 10.1080/02688697.2018.1559275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: The etiology of Moyamoya disease (MMD) remains unknown to a large extent. Immune and inflammation dysfunction may play a role in the pathogenesis of this rare disease. Coexisting Kawasaki disease (KD) with MMD were reported and both diseases have a feature of vasculopathy, raising the hypothesis that there may be some common pathologic factors. We investigated single nucleotide polymorphisms (SNPs) previously identified in KD and performed a genetic analysis among Chinese pediatric patients with MMD. Results: We analyzed patients' DNA for the SNPs in B lymphoid tyrosine kinase, CD40, and coatomer protein complex beta-2 subunit, which had been associated with KD by literatures. Genotyping was performed by sequencing the genetic regions containing the SNPs with customized primers. A total of 5 genotype polymorphisms were examined among 48 pediatric MMD cases and 50 healthy controls. The mean age of MMD children was 6.72 ± 3.63 years old, while 7.31 ± 3.79 in controls. We found two SNPs of CD40 were associated with MMD. Polymorphisms rs4813003 major allele CC and rs1535045 minor allele TT were significantly higher in MMD cases. The other SNPs showed no statistical difference between MMD cases and controls. Conclusions: Our findings provide evidence that there may be a relationship between MMD and auto-immune dysfunction. We hypothesize that these genetic features may lead to the pathogenesis within the vascular wall. Further study regarding whether CD40 can function as the personalized target of MMD should be investigated in future.
Collapse
Affiliation(s)
- Wenjun Shen
- a Department of Pediatric Neurosurgery, Children's Hospital of Fudan University , Shanghai , China
| | - Yujun Liao
- b Department of Neurosurgery, Huashan Hospital of Fudan University , Shanghai , China
| | - Roxanna Garcia
- c Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , USA
| | - Kartik Kesavabhotla
- c Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , USA
| | - Bin Xu
- b Department of Neurosurgery, Huashan Hospital of Fudan University , Shanghai , China
| | - Hao Li
- a Department of Pediatric Neurosurgery, Children's Hospital of Fudan University , Shanghai , China
| |
Collapse
|
17
|
Chaudhary H, Nameirakpam J, Kumrah R, Pandiarajan V, Suri D, Rawat A, Singh S. Biomarkers for Kawasaki Disease: Clinical Utility and the Challenges Ahead. Front Pediatr 2019; 7:242. [PMID: 31275907 PMCID: PMC6591436 DOI: 10.3389/fped.2019.00242] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
Kawasaki disease (KD) has replaced acute rheumatic fever as the most common cause of acquired heart disease in children in the developed world and is increasingly being recognized from several developing countries. It is a systemic vasculitis with a predilection for coronary arteries. The diagnosis is based on a constellation of clinical findings that appear in a temporal sequence. Quite understandably, this can become a problem in situations wherein the clinical features are not typical. In such situations, it can be very difficult, if not impossible, to arrive at a diagnosis. Several biomarkers have been recognized in children with acute KD but none of these has reasonably high sensitivity and specificity in predicting the course of the illness. A line up of inflammatory, proteomic, gene expression and micro-RNA based biomarkers has been studied in association with KD. The commonly used inflammatory markers e.g. erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and total leucocyte counts (TLC) lack specificity for KD. Proteomic studies are based on the identification of specific proteins in serum, plasma and urine by gel electrophoresis. A host of genetic studies have identified genes associated with KD and some of these genes can predict the course and coronary outcomes in the affected individuals. Most of these tests are in the early stages of their development and some of these can predict the course, propensity to develop coronary artery sequelae, intravenous immunoglobulin (IVIg) resistance and the severity of the illness in a patient. Development of clinical criteria based on these tests will improve our diagnostic acumen and aid in early identification and prevention of cardiovascular complications.
Collapse
Affiliation(s)
- Himanshi Chaudhary
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Johnson Nameirakpam
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Kumrah
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vignesh Pandiarajan
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
18
|
TBXA2R rs4523 G allele is associated with decreased susceptibility to Kawasaki disease. Cytokine 2018; 111:216-221. [PMID: 30179800 DOI: 10.1016/j.cyto.2018.08.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 02/06/2023]
Abstract
Kawasaki disease is a multi-system vasculitis and a primary cause of acquired heart disease among children. Genetic factors may increase susceptibility to Kawasaki disease. TBXA2R is a G-protein-coupled receptor that participates in tissue inflammation and is associated with susceptibility to several diseases, but its relevance in Kawasaki disease is unclear. We genotyped TBXA2R (rs1131882 and rs4523) in 694 Kawasaki disease cases and 657 healthy controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the intensity of the associations. We found a significantly decreased risk of Kawasaki disease associated with TBXA2R rs4523 G variant genotypes (AG vs AA: adjusted OR = 0.788, 95%CI = 0.626-0.993; GG vs AA: adjusted OR = 0.459, 95%CI = 0.258-0.815; AG/GG vs AA: adjusted OR = 0.744, 95%CI = 0.595-0.929; GG vs AG/AA: adjusted OR = 0.497, 95% CI = 0.281-0.879). In the combined analysis of the two single-nucleotide polymorphisms (SNPs), we found that individuals with two unfavorable genotypes exhibited decreased risk for Kawasaki disease (adjusted OR = 0.754, 95%CI = 0.577-0.985) compared with those who did not have or one unfavorable genotypes. This cumulative effect on protection is effect-genotype dose-dependent (ptrend = 0.022). Moreover, the combined analysis indicated that the two unfavorable genotypes were associated with a decreased risk of Kawasaki disease in children 12-60 months of age, females and the subgroup with non-coronary artery lesion (NCAL) formation compared with those who did not have or one unfavorable genotypes. In conclusion, the TBXA2R rs4523 G allele may contribute to protection against Kawasaki disease and decreased risk of coronary artery aneurysm complications in a southern Chinese population.
Collapse
|
19
|
Marchesi A, Tarissi de Jacobis I, Rigante D, Rimini A, Malorni W, Corsello G, Bossi G, Buonuomo S, Cardinale F, Cortis E, De Benedetti F, De Zorzi A, Duse M, Del Principe D, Dellepiane RM, D'Isanto L, El Hachem M, Esposito S, Falcini F, Giordano U, Maggio MC, Mannarino S, Marseglia G, Martino S, Marucci G, Massaro R, Pescosolido C, Pietraforte D, Pietrogrande MC, Salice P, Secinaro A, Straface E, Villani A. Kawasaki disease: guidelines of the Italian Society of Pediatrics, part I - definition, epidemiology, etiopathogenesis, clinical expression and management of the acute phase. Ital J Pediatr 2018; 44:102. [PMID: 30157897 PMCID: PMC6116535 DOI: 10.1186/s13052-018-0536-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 05/03/2018] [Indexed: 12/18/2022] Open
Abstract
The primary purpose of these practical guidelines related to Kawasaki disease (KD) is to contribute to prompt diagnosis and appropriate treatment on the basis of different specialists’ contributions in the field. A set of 40 recommendations is provided, divided in two parts: the first describes the definition of KD, its epidemiology, etiopathogenetic hints, presentation, clinical course and general management, including treatment of the acute phase, through specific 23 recommendations. Their application is aimed at improving the rate of treatment with intravenous immunoglobulin and the overall potential development of coronary artery abnormalities in KD. Guidelines, however, should not be considered a norm that limits treatment options of pediatricians and practitioners, as treatment modalities other than those recommended may be required as a result of peculiar medical circumstances, patient’s condition, and disease severity or complications.
Collapse
Affiliation(s)
- Alessandra Marchesi
- Bambino Gesù Children's Hospital, Rome, Italy, Piazza S. Onofrio n. 4, 00165, Rome, Italy.
| | | | - Donato Rigante
- Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | | | | | | | | | - Sabrina Buonuomo
- Bambino Gesù Children's Hospital, Rome, Italy, Piazza S. Onofrio n. 4, 00165, Rome, Italy
| | | | | | - Fabrizio De Benedetti
- Bambino Gesù Children's Hospital, Rome, Italy, Piazza S. Onofrio n. 4, 00165, Rome, Italy
| | - Andrea De Zorzi
- Bambino Gesù Children's Hospital, Rome, Italy, Piazza S. Onofrio n. 4, 00165, Rome, Italy
| | - Marzia Duse
- , Università degli Studi Sapienza, Rome, Italy
| | | | | | | | - Maya El Hachem
- Bambino Gesù Children's Hospital, Rome, Italy, Piazza S. Onofrio n. 4, 00165, Rome, Italy
| | | | | | - Ugo Giordano
- Bambino Gesù Children's Hospital, Rome, Italy, Piazza S. Onofrio n. 4, 00165, Rome, Italy
| | | | | | | | | | - Giulia Marucci
- Bambino Gesù Children's Hospital, Rome, Italy, Piazza S. Onofrio n. 4, 00165, Rome, Italy
| | | | | | | | | | | | - Aurelio Secinaro
- Bambino Gesù Children's Hospital, Rome, Italy, Piazza S. Onofrio n. 4, 00165, Rome, Italy
| | | | - Alberto Villani
- Bambino Gesù Children's Hospital, Rome, Italy, Piazza S. Onofrio n. 4, 00165, Rome, Italy
| |
Collapse
|
20
|
Chen J, Li JH, Zhao SJ, Wang DY, Zhang WZ, Liang WJ. Clinical significance of costimulatory molecules CD40/CD40L and CD134/CD134L in coronary heart disease: A case-control study. Medicine (Baltimore) 2017; 96:e7634. [PMID: 28796044 PMCID: PMC5556210 DOI: 10.1097/md.0000000000007634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of the study was to evaluate the potential role of CD40/CD40 ligand (CD40L) and CD134/CD134 ligand (CD134L) in the development of coronary heart disease (CHD) via the performance of a case-control study.The research objects were 234 cases of CHD patients and 120 cases of well-matched normal controls. Following the separation of peripheral blood mononuclear cells (PBMCs), real-time quantitative PCR (qRT-PCR), Western blot, immunohistochemistry, and flow cytometry were applied for the detection of mRNA levels and expression levels of CD40/CD40L and CD134/CD134L; meanwhile, intercellular adhesion molecule-1 (ICAM-1) and Fas protein mRNA levels were detected using qRT-PCR.There was no statistical difference in the comparison of baseline characteristics between groups, indicating comparability between groups. qRT-PCR and Western blot analysis indicated that CD40/CD40L and CD134/CD134L mRNA and protein expression levels were all increased in the CHD group than those in the control group. Flow cytometry further confirmed the similar tendency. Meanwhile, ICAM-1 and Fas protein mRNA levels were elevated in the CHD group and positively correlated with the above parameters. Furthermore, CD40/CD40L expression rates were negatively correlated with gender and different types of CHD. Meanwhile, CD134/CD134L expressions were also higher in male patients, in patients with family history, previous history of hypertension, diabetes, and cerebrovascular diseases.CD40/CD40L and CD134/CD134L are increased and may have potential correlation with clinical pathological features of patients with CHD. Further in-depth exploration of costimulatory molecules for CHD guidance as well as intrinsic mechanisms are needed combined with in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Jun Chen
- Department of Cardiovascular Medicine, Guangzhou Panyu Central Hospital,
- Panyu District Cardiovascular Disease Research Institute of Guangzhou, Guangzhou, P.R. China
| | - Jian-Hao Li
- Department of Cardiovascular Medicine, Guangzhou Panyu Central Hospital,
- Panyu District Cardiovascular Disease Research Institute of Guangzhou, Guangzhou, P.R. China
| | - Shan-Jun Zhao
- Department of Cardiovascular Medicine, Guangzhou Panyu Central Hospital,
- Panyu District Cardiovascular Disease Research Institute of Guangzhou, Guangzhou, P.R. China
| | - Da-Yu Wang
- Department of Cardiovascular Medicine, Guangzhou Panyu Central Hospital,
- Panyu District Cardiovascular Disease Research Institute of Guangzhou, Guangzhou, P.R. China
| | - Wen-Zhu Zhang
- Department of Cardiovascular Medicine, Guangzhou Panyu Central Hospital,
- Panyu District Cardiovascular Disease Research Institute of Guangzhou, Guangzhou, P.R. China
| | - Wei-Jie Liang
- Department of Cardiovascular Medicine, Guangzhou Panyu Central Hospital,
- Panyu District Cardiovascular Disease Research Institute of Guangzhou, Guangzhou, P.R. China
| |
Collapse
|
21
|
Michel NA, Zirlik A, Wolf D. CD40L and Its Receptors in Atherothrombosis-An Update. Front Cardiovasc Med 2017; 4:40. [PMID: 28676852 PMCID: PMC5477003 DOI: 10.3389/fcvm.2017.00040] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/29/2017] [Indexed: 12/30/2022] Open
Abstract
CD40L (CD154), a member of the tumor necrosis factor superfamily, is a co-stimulatory molecule that was first discovered on activated T cells. Beyond its fundamental role in adaptive immunity-ligation of CD40L to its receptor CD40 is a prerequisite for B cell activation and antibody production-evidence from more than two decades has expanded our understanding of CD40L as a powerful modulator of inflammatory pathways. Although inhibition of CD40L with neutralizing antibodies has induced life-threatening side effects in clinical trials, the discovery of cell-specific effects and novel receptors with distinct functional consequences has opened a new path for therapies that specifically target detrimental properties of CD40L. Here, we carefully evaluate the signaling network of CD40L by gene enrichment analysis and its cell-specific expression, and thoroughly discuss its role in cardiovascular pathologies with a specific emphasis on atherosclerotic and thrombotic disease.
Collapse
Affiliation(s)
- Nathaly Anto Michel
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Kuo HC. Preventing coronary artery lesions in Kawasaki disease. Biomed J 2017; 40:141-146. [PMID: 28651735 PMCID: PMC6136281 DOI: 10.1016/j.bj.2017.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
A form of systemic vasculitis that affects mostly small and medium-sized vessels, Kawasaki disease (KD) is most commonly found in children under the age of 5 years old. Though its etiology is unknown, KD has been the most frequent acquired heart disease in developing countries. Its incidence has increased over recent decades in many centuries, including Japan, Korea, and China. The most severe complications of KD are coronary artery lesions (CAL), including dilation, fistula, aneurysm, arterial remodeling, stenosis, and occlusion. Aneurysm formation has been observed in 20–25% of KD patients that do not receive intravenous immunoglobulin (IVIG) treatment, and in 3–5% that do receive it. Coronary artery dilation has been found in about 30% of KD patients in the acute stage, although mostly in the transient form. Diminishing the occurrence and regression of CAL is a vital part of treating KD. In this review article, I demonstrate the clinical method to prevent CAL formation used at the Kawasaki Disease Center in Taiwan.
Collapse
Affiliation(s)
- Ho-Chang Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Dissecting Kawasaki disease: a state-of-the-art review. Eur J Pediatr 2017; 176:995-1009. [PMID: 28656474 PMCID: PMC5511310 DOI: 10.1007/s00431-017-2937-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Kawasaki disease (KD) is a pediatric vasculitis with coronary artery aneurysms (CAA) as its main complication. The diagnosis is based on the presence of persistent fever and clinical features including exanthema, lymphadenopathy, conjunctival injection, and changes to the mucosae and extremities. Although the etiology remains unknown, the current consensus is that it is likely caused by an (infectious) trigger initiating an abnormal immune response in genetically predisposed children. Treatment consists of high dose intravenous immunoglobulin (IVIG) and is directed at preventing the development of CAA. Unfortunately, 10-20% of all patients fail to respond to IVIG and these children need additional anti-inflammatory treatment. Coronary artery lesions are diagnosed by echocardiography in the acute and subacute phases. Both absolute arterial diameters and z-scores, adjusted for height and weight, are used as criteria for CAA. Close monitoring of CAA is important as ischemic symptoms or myocardial infarction due to thrombosis or stenosis can occur. These complications are most likely to arise in the largest, so-called giant CAA. Apart from the presence of CAA, it is unclear whether KD causes an increased cardiovascular risk due to the vasculitis itself. CONCLUSION Many aspects of KD remain unknown, although there is growing knowledge on the etiology, treatment, and development and classification of CAA. Since children with previous KD are entering adulthood, long-term follow-up is increasingly important. What is known: • Kawasaki disease (KD) is a pediatric vasculitis with coronary artery damage as its main complication. • Although KD approaches its 50th birthday since its first description, many aspects of the disease remain poorly understood. What is new: • In recent years, multiple genetic candidate pathways involved in KD have been identified, with recently promising information about the ITPKC pathway. • As increasing numbers of KD patients are reaching adulthood, increasing information is available about the long-term consequences of coronary artery damage and broader cardiovascular risk.
Collapse
|
24
|
Kuo HC, Wang CL, Yang KD, Lo MH, Hsieh KS, Li SC, Huang YH. Plasma Prostaglandin E2 Levels Correlated with the Prevention of Intravenous Immunoglobulin Resistance and Coronary Artery Lesions Formation via CD40L in Kawasaki Disease. PLoS One 2016; 11:e0161265. [PMID: 27525421 PMCID: PMC4985059 DOI: 10.1371/journal.pone.0161265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A form of systemic vasculitis, Kawasaki disease (KD) occurs most frequently in children under the age of five years old. Previous studies have found that Prostaglandin E2 (PGE2) correlates with KD, although the related mechanisms are still unknown. CD40L may also be a marker of vasculitis in KD, so this study focuses on PGE2 and CD40L expression in KD. MATERIALS AND METHODS This study consisted of a total of 144 KD patients, whose intravenous immunoglobulin (IVIG)/coronary arterial lesion (CAL) formation resistance was evaluated. PGE2 levels were evaluated in vitro to study the effect of CD40L on CD4+ T lymphocytes. RESULTS PGE2 levels significantly increased after IVIG treatment (p<0.05), especially in patients who responded to initial IVIG treatment (p = 0.004) and for patients without CAL formation (p = 0.016). Furthermore, an in vitro study revealed that IVIG acted as a trigger for PGE2 expression in the acute-stage mononuclear cells of KD patients. According to our findings, both IVIG and PGE2 can impede surface CD40L expressions on CD4+ T lymphocytes (p<0.05). CONCLUSIONS The results of this study are among the first to find that plasma PGE2 is correlated with the prevention of IVIG resistance and CAL formation through CD40L in KD.
Collapse
Affiliation(s)
- Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Lu Wang
- Department of Pediatrics, Po-Jen Hospital, Kaohsiung, Taiwan
| | - Kuender D. Yang
- Institute of Biomedical Sciences, Mackay Medical School and Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Mao-Hung Lo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
25
|
He L, Sheng Y, Huang C, Huang G. Identification of Differentially Expressed Genes in Kawasaki Disease Patients as Potential Biomarkers for IVIG Sensitivity by Bioinformatics Analysis. Pediatr Cardiol 2016; 37:1003-12. [PMID: 27160104 DOI: 10.1007/s00246-016-1381-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
Kawasaki disease (KD) is a leading cause of acquired heart disease predominantly affecting infants and young children. Intravenous immunoglobulin (IVIG) is applied as the most favorable treatment against KD, but IVIG resistant remains exist. Although several clinical scoring systems have been developed to identify children at highest risk of IVIG resistance, there is a need to identify sufficiently sensitive biomarkers for IVIG treatment. Some differentially expressed genes (DEGs) could be the promising potential biomarkers for IVIG-related sensitivity diagnosis. We employed a systematic and integrative bioinformatics framework to identify such kind of genes. The performance of the candidate genes was evaluated by hierarchical clustering, ROC analysis and literature mining. By analyzing three datasets of KD patients, 34 DEGs of the three groups have been found to be associated with IVIG-related sensitivity. A module of 12 genes could predict resistant group patients with high accuracy, and a module of ten genes could predict responsive group patients effectively with accuracy of 96 %. And three of them are most likely to serve as drug targets or diagnostic biomarkers in the future. Compared with unsupervised hierarchical clustering analysis, our modules could distinct IVIG-resistant patients efficiently. Two groups of DEGs could predict IVIG-related sensitivity with high accuracy, which are potential biomarkers for the clinical diagnosis and prediction of IVIG treatment response in KD patients, improving the prognosis of patients.
Collapse
Affiliation(s)
- Lan He
- Pediatric Heart Center, Children's Hospital, Fudan University, Shanghai, China
| | - Youyu Sheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunyun Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Guoying Huang
- Pediatric Heart Center, Children's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Genetic variants in PLCB4/PLCB1 as susceptibility loci for coronary artery aneurysm formation in Kawasaki disease in Han Chinese in Taiwan. Sci Rep 2015; 5:14762. [PMID: 26434682 PMCID: PMC4593004 DOI: 10.1038/srep14762] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022] Open
Abstract
Kawasaki disease (KD) is an acute, inflammatory, and self-limited vasculitis affecting infants and young children. Coronary artery aneurysm (CAA) formation is the major complication of KD and the leading cause of acquired cardiovascular disease among children. To identify susceptible loci that might predispose patients with KD to CAA formation, a genome-wide association screen was performed in a Taiwanese KD cohort. Patients with both KD and CAA had longer fever duration and delayed intravenous immunoglobulin treatment time. After adjusting for these factors, 100 susceptibility loci were identified. Four genes were identified from a single cluster of 35 using the Ingenuity Pathway Analysis (IPA) Knowledge Base. Silencing KCNQ5, PLCB1, PLCB4, and PLCL1 inhibited the effect of lipopolysaccharide-induced endothelial cell inflammation with varying degrees of proinflammatory cytokine expression. PLCB1 showed the most significant inhibition. Endothelial cell inflammation was also inhibited by using a phospholipase C (PLC) inhibitor. The single nucleotide polymorphism rs6140791 was identified between PLCB4 and PLCB1. Plasma PLC levels were higher in patients with KD and CC+CG rs6140791genotypes, and these genotypes were more prevalent in patients with KD who also had CAA. Our results suggest that polymorphism of the PLCB4/B1 genes might be involved in the CAA pathogenesis of KD.
Collapse
|
27
|
Ko TM, Kuo HC, Chang JS, Chen SP, Liu YM, Chen HW, Tsai FJ, Lee YC, Chen CH, Wu JY, Chen YT. CXCL10/IP-10 is a biomarker and mediator for Kawasaki disease. Circ Res 2015; 116:876-83. [PMID: 25605650 DOI: 10.1161/circresaha.116.305834] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Kawasaki disease (KD), an acute febrile vasculitis, is the most common cause of acquired heart disease in childhood; however, diagnosing KD can be difficult. OBJECTIVE To identify unique proteomic biomarkers that can be used to facilitate earlier diagnosis of KD. METHODS AND RESULTS We enrolled 214 children with fever and clinical features suggestive of KD. Of those, only 100 were diagnosed with KD. Their plasma samples were globally analyzed for cytokines, chemokines, and cell adhesion molecules using an unbiased, large-scale, quantitative protein array. This study was conducted in 3 stages: discovery, replication, and blinded validation. During the discovery phase (n [KD]=37; n [control]=20), the expression of interleukin-17F, sCD40L, E-selectin, CCL23 (myeloid progenitor inhibitory factor 1), and CXCL10 (IFN-γ-inducible protein 10 [IP-10]) were upregulated during the acute phase in patients with KD when compared with that in the controls. A notable increase was observed in the IP-10 levels (KD, 3037 ± 226.7 pg/mL; control, 672 ± 130.4 pg/mL; P=4.1 × 10(-11)). Receiver-operating characteristic analysis of the combined discovery and replication data (n [KD]=77; n [control]=77) showed that the IP-10 level had high area under the curve values (0.94 [95% confidence interval, 0.9055-0.9778]; sensitivity, 100%; and specificity, 77%). With 1318 pg/mL as the optimal cutoff, the blinded validation study confirmed that the IP-10 levels were a good predictor of KD. With intravenous immunoglobulin treatment, the IP-10 levels returned to normal. The downstream receptor of IP-10, CXCR3, was activated in the T cells of patients with acute KD. CONCLUSIONS IP-10 may be used as a biomarker to facilitate KD diagnosis, and it may provide clues about the pathogenesis of KD.
Collapse
Affiliation(s)
- Tai-Ming Ko
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Ho-Chang Kuo
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Jeng-Sheng Chang
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Shih-Ping Chen
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Yi-Min Liu
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Hui-Wen Chen
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Fuu-Jen Tsai
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Yi-Ching Lee
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Chien-Hsiun Chen
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Jer-Yuarn Wu
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.).
| | - Yuan-Tsong Chen
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.).
| |
Collapse
|
28
|
Lin YJ, Chang JS, Liu X, Hung CH, Lin TH, Huang SM, Jeang KT, Chen CY, Liao CC, Lin CW, Lai CH, Tien N, Lan YC, Ho MW, Chien WK, Chen JH, Huang YC, Tsang H, Wu JY, Chen CH, Chang LC, Tsai FJ. Association between GRIN3A gene polymorphism in Kawasaki disease and coronary artery aneurysms in Taiwanese children. PLoS One 2013; 8:e81384. [PMID: 24278430 PMCID: PMC3838481 DOI: 10.1371/journal.pone.0081384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 10/14/2013] [Indexed: 02/07/2023] Open
Abstract
Kawasaki disease (KD) is pediatric systemic vasculitis with the classic complication of coronary artery aneurysm (CAA). It is the leading cause of acquired cardiovascular diseases in children. Some severe cases present with multi-organ involvement or neurological dysfunction. To identify the role of the glutamate receptor, ionotropic, N-methyl-d-aspartate 3A (GRIN3A) in KD, we investigated genetic variations in GRIN3A in a Taiwanese cohort of 262 KD patients (76 with and 186 without CAA complications). We used univariate and multivariate regression analyses to identify the associations between clinical characteristics and GRIN3A genetic variations in KD. According to univariate regression analysis, CAA formation in KD was significantly associated with fever duration (p < 0.0001), first Intravenous immunoglobulin (IVIG) used (days after day one of fever) (p < 0.0001), and the GRIN3A (rs7849782) genetic variant (p < 0.001). KD patients with GG+GC genotype showed a lower rate of developing CAA (GG+GC genotype: odds ratio = 0.26; 95% CI = 0.14–0.46). Significant associations were identified between KD with CAA complication and the GRIN3A (rs7849782) genetic variant by using multivariate regression analysis. Specifically, significant correlations were observed between KD with CAA complications and the presence of GG+GC genotypes for the GRIN3A rs7849782 single-nucleotide polymorphism (full model: odds ratio = 0.25; 95% CI = 0.14–0.46). Our results suggest that a polymorphism of the GRIN3A gene may play a role in KD pathogenesis.
Collapse
Affiliation(s)
- Ying-Ju Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jeng-Sheng Chang
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan
| | - Xiang Liu
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Science, Chang-Gung University, Chiayi, Taiwan
| | - Ting-Hsu Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chia-Yen Chen
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chiu-Chu Liao
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ni Tien
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yu-Ching Lan
- Department of Health Risk Management, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Kuei Chien
- Biostatistics Center, China Medical University, Taichung, Taiwan
- Biostatistics Center, Taipei Medical University, Taichung, Taiwan
| | - Jin-Hua Chen
- Biostatistics Center, China Medical University, Taichung, Taiwan
- Biostatistics Center, Taipei Medical University, Taichung, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsinyi Tsang
- The Laboratory of Molecular Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jer-Yuarn Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsiun Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan
- Asia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Bayers S, Shulman ST, Paller AS. Kawasaki disease: part I. Diagnosis, clinical features, and pathogenesis. J Am Acad Dermatol 2013; 69:501.e1-11; quiz 511-2. [PMID: 24034379 DOI: 10.1016/j.jaad.2013.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/30/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
Kawasaki disease, or mucocutaneous lymph node syndrome, most commonly affects children between 6 months and 5 years of age. Approximately 90% of patients have mucocutaneous manifestations. This article will focus on the epidemiology of Kawasaki disease in the United States as it relates to other countries, the diagnosis of Kawasaki disease, its clinical course, and the currently accepted theories of pathogenesis. A particular focus is given to the various dermatologic manifestations that may occur.
Collapse
Affiliation(s)
- Stephanie Bayers
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | |
Collapse
|
30
|
Understanding the pathogenesis of Kawasaki disease by network and pathway analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:989307. [PMID: 23533546 PMCID: PMC3606754 DOI: 10.1155/2013/989307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
Abstract
Kawasaki disease (KD) is a complex disease, leading to the damage of multisystems. The pathogen that triggers this sophisticated disease is still unknown since it was first reported in 1967. To increase our knowledge on the effects of genes in KD, we extracted statistically significant genes so far associated with this mysterious illness from candidate gene studies and genome-wide association studies. These genes contributed to susceptibility to KD, coronary artery lesions, resistance to initial IVIG treatment, incomplete KD, and so on. Gene ontology category and pathways were analyzed for relationships among these statistically significant genes. These genes were represented in a variety of functional categories, including immune response, inflammatory response, and cellular calcium ion homeostasis. They were mainly enriched in the pathway of immune response. We further highlighted the compelling immune pathway of NF-AT signal and leukocyte interactions combined with another transcription factor NF- κ B in the pathogenesis of KD. STRING analysis, a network analysis focusing on protein interactions, validated close contact between these genes and implied the importance of this pathway. This data will contribute to understanding pathogenesis of KD.
Collapse
|