1
|
Sellers RS, Dormitzer PR. Toxicologic Pathology Forum: mRNA Vaccine Safety-Separating Fact From Fiction. Toxicol Pathol 2024; 52:333-342. [PMID: 39254115 PMCID: PMC11528946 DOI: 10.1177/01926233241278298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
SARS-CoV-2 spread rapidly across the globe, contributing to the death of millions of individuals from 2019 to 2023, and has continued to be a major cause of morbidity and mortality after the pandemic. At the start of the pandemic, no vaccines or anti-viral treatments were available to reduce the burden of disease associated with this virus, as it was a novel SARS coronavirus. Because of the tremendous need, the development of vaccines to protect against COVID-19 was critically important. The flexibility and ease of manufacture of nucleic acid-based vaccines, specifically mRNA-based products, allowed the accelerated development of COVID-19 vaccines. Although mRNA-based vaccines and therapeutics had been in clinical trials for over a decade, there were no licensed mRNA vaccines on the market at the start of the pandemic. The rapid development of mRNA-based COVID-19 vaccines reduced serious complications and death from the virus but also engendered significant public concerns, which continue now, years after emergency-use authorization and subsequent licensure of these vaccines. This article summarizes and addresses some of the safety concerns that continue to be expressed about these vaccines and their underlying technology.
Collapse
Affiliation(s)
- Rani S. Sellers
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
2
|
Williams AH, Zhan CG. Staying Ahead of the Game: How SARS-CoV-2 has Accelerated the Application of Machine Learning in Pandemic Management. BioDrugs 2023; 37:649-674. [PMID: 37464099 DOI: 10.1007/s40259-023-00611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 07/20/2023]
Abstract
In recent years, machine learning (ML) techniques have garnered considerable interest for their potential use in accelerating the rate of drug discovery. With the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the utilization of ML has become even more crucial in the search for effective antiviral medications. The pandemic has presented the scientific community with a unique challenge, and the rapid identification of potential treatments has become an urgent priority. Researchers have been able to accelerate the process of identifying drug candidates, repurposing existing drugs, and designing new compounds with desirable properties using machine learning in drug discovery. To train predictive models, ML techniques in drug discovery rely on the analysis of large datasets, including both experimental and clinical data. These models can be used to predict the biological activities, potential side effects, and interactions with specific target proteins of drug candidates. This strategy has proven to be an effective method for identifying potential coronavirus disease 2019 (COVID-19) and other disease treatments. This paper offers a thorough analysis of the various ML techniques implemented to combat COVID-19, including supervised and unsupervised learning, deep learning, and natural language processing. The paper discusses the impact of these techniques on pandemic drug development, including the identification of potential treatments, the understanding of the disease mechanism, and the creation of effective and safe therapeutics. The lessons learned can be applied to future outbreaks and drug discovery initiatives.
Collapse
Affiliation(s)
- Alexander H Williams
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- GSK Upper Providence, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
3
|
Xuan R, Gao J, Lin Q, Yue W, Liu T, Hu S, Song G. Mitochondrial DNA Diversity of Mesocricetus auratus and Other Cricetinae Species among Cricetidae Family. Biochem Genet 2022; 60:1881-1894. [PMID: 35122557 PMCID: PMC8817650 DOI: 10.1007/s10528-022-10195-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Abstract
Unique anatomical and physiological features have made hamster species desirable research models. Comparative genomics and phylogenetic analysis of the hamster family members to clarify their evolution and genetic relationship, can provide a genetic basis for the comprehension of the variable research results obtained using different hamster models. The Syrian golden hamster (Mesocricetus auratus) is the most widely used species. In this study, we sequenced the complete mitochondrial genome (mitogenome) of M. auratus, compared it with the mitogenome of other Cricetinae subfamily species, and defined its phylogenetic position in the Cricetidae family. Our results show that the mitogenome organization, gene arrangement, base composition, and genetic analysis of the protein coding genes (PCGs) of M. auratus are similar to those observed in previous reports on Cricetinae species. Nonetheless, our analysis clarifies some striking differences of M. auratus relative to other subfamily members, namely distinct codon usage frequency of TAT (Tyr), AAT (Asn), and GAA (Glu) and the presence of the conserved sequence block 3 (CSB-3) in the control region of M. auratus mitogenome and other hamsters (not found in Arvicolinae). These results suggest the particularity of amino acid codon usage bias of M. auratus and special regulatory signals for the heavy strand replication in Cricetinae. Additionally, Bayesian inference/maximum likelihood (BI/ML) tree shows that Cricetinae and Arvicolinae are sister taxa sharing a common ancestor, and Neotominae split prior to the split between Cricetinae and Arvicolinae. Our results support taxonomy revisions in Cricetulus kamensis and Cricetulus migratorius, and further revision is needed within the other two subfamilies. Among the hamster research models, Cricetulus griseus is the species with highest sequence similarity and closer genetic relationship with M. auratus. Our results show mitochondrial DNA diversity of M. auratus and other Cricetinae species and provide genetic basis for judgement of different hamster models, promoting the development and usage of hamsters with regional characteristics.
Collapse
Affiliation(s)
- Ruijing Xuan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Jiping Gao
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Qiang Lin
- Key Laboratory of Genome Information and Sciences, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Wenbin Yue
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Tianfu Liu
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Songnian Hu
- Key Laboratory of Genome Information and Sciences, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
4
|
Di Stefano L, Ogburn EL, Ram M, Scharfstein DO, Li T, Khanal P, Baksh SN, McBee N, Gruber J, Gildea MR, Clark MR, Goldenberg NA, Bennani Y, Brown SM, Buckel WR, Clement ME, Mulligan MJ, O’Halloran JA, Rauseo AM, Self WH, Semler MW, Seto T, Stout JE, Ulrich RJ, Victory J, Bierer BE, Hanley DF, Freilich D. Hydroxychloroquine/chloroquine for the treatment of hospitalized patients with COVID-19: An individual participant data meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.10.22269008. [PMID: 35043124 PMCID: PMC8764733 DOI: 10.1101/2022.01.10.22269008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Results from observational studies and randomized clinical trials (RCTs) have led to the consensus that hydroxychloroquine (HCQ) and chloroquine (CQ) are not effective for COVID-19 prevention or treatment. Pooling individual participant data, including unanalyzed data from trials terminated early, enables more detailed investigation of the efficacy and safety of HCQ/CQ among subgroups of hospitalized patients. Methods We searched ClinicalTrials.gov in May and June 2020 for US-based RCTs evaluating HCQ/CQ in hospitalized COVID-19 patients in which the outcomes defined in this study were recorded or could be extrapolated. The primary outcome was a 7-point ordinal scale measured between day 28 and 35 post enrollment; comparisons used proportional odds ratios. Harmonized de-identified data were collected via a common template spreadsheet sent to each principal investigator. The data were analyzed by fitting a prespecified Bayesian ordinal regression model and standardizing the resulting predictions. Results Eight of 19 trials met eligibility criteria and agreed to participate. Patient-level data were available from 770 participants (412 HCQ/CQ vs 358 control). Baseline characteristics were similar between groups. We did not find evidence of a difference in COVID-19 ordinal scores between days 28 and 35 post-enrollment in the pooled patient population (odds ratio, 0.97; 95% credible interval, 0.76-1.24; higher favors HCQ/CQ), and found no convincing evidence of meaningful treatment effect heterogeneity among prespecified subgroups. Adverse event and serious adverse event rates were numerically higher with HCQ/CQ vs control (0.39 vs 0.29 and 0.13 vs 0.09 per patient, respectively). Conclusions The findings of this individual participant data meta-analysis reinforce those of individual RCTs that HCQ/CQ is not efficacious for treatment of COVID-19 in hospitalized patients.
Collapse
Affiliation(s)
- Leon Di Stefano
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth L. Ogburn
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Malathi Ram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Daniel O. Scharfstein
- Division of Biostatistics, Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tianjing Li
- University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Preeti Khanal
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sheriza N. Baksh
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nichol McBee
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joshua Gruber
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Marianne R. Gildea
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
- Current address: FHI 360, Durham, North Carolina
| | - Megan R. Clark
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Neil A. Goldenberg
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Johns Hopkins All Children’s Institute for Clinical and Translational Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida
| | - Yussef Bennani
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
- University Medical Center, New Orleans, New Orleans, Louisiana
| | - Samuel M. Brown
- Division of Pulmonary and Critical Care Medicine, Intermountain Medical Center, Murray, Utah
- University of Utah, Salt Lake City, Utah
| | | | - Meredith E. Clement
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
- University Medical Center, New Orleans, New Orleans, Louisiana
| | - Mark J. Mulligan
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, New York
- Vaccine Center, New York University Grossman School of Medicine, New York, New York
| | - Jane A. O’Halloran
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Adriana M. Rauseo
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Wesley H. Self
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew W. Semler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd Seto
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii
| | - Jason E. Stout
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, New York
| | - Jennifer Victory
- Bassett Research Institute, Bassett Medical Center, Cooperstown, New York
| | - Barbara E. Bierer
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Daniel F. Hanley
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel Freilich
- Department of Internal Medicine, Division of Infectious Diseases, Bassett Medical Center, Cooperstown, New York
| |
Collapse
|
5
|
Zarkoob H, Allué-Guardia A, Chen YC, Garcia-Vilanova A, Jung O, Coon S, Song MJ, Park JG, Oladunni F, Miller J, Tung YT, Kosik I, Schultz D, Iben J, Li T, Fu J, Porter FD, Yewdell J, Martinez-Sobrido L, Cherry S, Torrelles JB, Ferrer M, Lee EM. Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents. Commun Biol 2022; 5:810. [PMID: 35962146 PMCID: PMC9373898 DOI: 10.1038/s42003-022-03753-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens.
Collapse
Affiliation(s)
- Hoda Zarkoob
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Anna Allué-Guardia
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Yu-Chi Chen
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Andreu Garcia-Vilanova
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Olive Jung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.,Biomedical Ultrasonics & Biotherapy Laboratory, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, UK
| | - Steven Coon
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Min Jae Song
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jun-Gyu Park
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Fatai Oladunni
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jesse Miller
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yen-Ting Tung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ivan Kosik
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,High Throughput Screening Core, University of Pennsylvania, Philadelphia, PA, USA
| | - James Iben
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Tianwei Li
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Jiaqi Fu
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Jonathan Yewdell
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luis Martinez-Sobrido
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sara Cherry
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jordi B Torrelles
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| | - Emily M Lee
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
6
|
Lithium salts as a treatment for COVID-19: Pre-clinical outcomes. Biomed Pharmacother 2022; 149:112872. [PMID: 35364381 PMCID: PMC8947939 DOI: 10.1016/j.biopha.2022.112872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Identifying effective drugs for Coronavirus disease 2019 (COVID-19) is urgently needed. An efficient approach is to evaluate whether existing approved drugs have anti-SARS-CoV-2 effects. The antiviral properties of lithium salts have been studied for many years. Their anti-inflammatory and immune-potentiating effects result from the inhibition of glycogen synthase kinase-3. AIMS To obtain pre-clinical evidence on the safety and therapeutic effects of lithium salts in the treatment of COVID-19. RESULTS Six different concentrations of lithium, ranging 2-12 mmol/L, were evaluated. Lithium inhibited the replication of SARS-CoV-2 virus in a dose-dependent manner with an IC50 value of 4 mmol/L. Lithium-treated wells showed a significantly higher percentage of monolayer conservation than viral control, particularly at concentrations higher than 6 mmol/L, verified through microscopic observation, the neutral red assay, and the determination of N protein in the supernatants of treated wells. Hamsters treated with lithium showed less intense disease with fewer signs. No lithium-related mortality or overt signs of toxicity were observed during the experiment. A trend of decreasing viral load in nasopharyngeal swabs and lungs was observed in treated hamsters compared to controls. CONCLUSIONS These results provide pre-clinical evidence of the antiviral and immunotherapeutic effects of lithium against SARS-CoV-2, which supports an advance to clinical trials on COVID-19's patients.
Collapse
|
7
|
GNS561 Exhibits Potent Antiviral Activity against SARS-CoV-2 through Autophagy Inhibition. Viruses 2022; 14:v14010132. [PMID: 35062337 PMCID: PMC8778678 DOI: 10.3390/v14010132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 02/08/2023] Open
Abstract
Since December 2019, SARS-CoV-2 has spread quickly worldwide, leading to more than 280 million confirmed cases, including over 5,000,000 deaths. Interestingly, coronaviruses were found to subvert and hijack autophagic process to allow their viral replication. Autophagy-modulating compounds thus rapidly emerged as an attractive strategy to fight SARS-CoV-2 infection, including the well-known chloroquine (CQ). Here, we investigated the antiviral activity and associated mechanism of GNS561/Ezurpimtrostat, a small lysosomotropic molecule inhibitor of late-stage autophagy. Interestingly, GNS561 exhibited antiviral activity of 6–40 nM depending on the viral strain considered, currently positioning it as the most powerful molecule investigated in SARS-CoV-2 infection. We then showed that GNS561 was located in lysosome-associated-membrane-protein-2-positive (LAMP2-positive) lysosomes, together with SARS-CoV-2. Moreover, GNS561 increased LC3-II spot size and caused the accumulation of autophagic vacuoles and the presence of multilamellar bodies, suggesting that GNS561 disrupted the autophagy mechanism. To confirm our findings, we used the K18-hACE2 mouse model and highlighted that GNS561 treatment led to a decline in SARS-CoV-2 virions in the lungs associated with a disruption of the autophagy pathway. Overall, our study highlights GNS561 as a powerful drug in the treatment of SARS-CoV-2 infection and supports the hypothesis that autophagy blockers could be an alternative strategy for COVID-19.
Collapse
|
8
|
Gorshkov K, Chen CZ, Bostwick R, Rasmussen L, Tran BN, Cheng YS, Xu M, Pradhan M, Henderson M, Zhu W, Oh E, Susumu K, Wolak M, Shamim K, Huang W, Hu X, Shen M, Klumpp-Thomas C, Itkin Z, Shinn P, Carlos de la Torre J, Simeonov A, Michael SG, Hall MD, Lo DC, Zheng W. The SARS-CoV-2 Cytopathic Effect Is Blocked by Lysosome Alkalizing Small Molecules. ACS Infect Dis 2021; 7:1389-1408. [PMID: 33346633 PMCID: PMC7771250 DOI: 10.1021/acsinfecdis.0c00349] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Understanding the SARS-CoV-2 virus’
pathways of infection,
virus–host–protein interactions, and mechanisms of virus-induced
cytopathic effects will greatly aid in the discovery and design of
new therapeutics to treat COVID-19. Chloroquine and hydroxychloroquine,
extensively explored as clinical agents for COVID-19, have multiple
cellular effects including alkalizing lysosomes and blocking autophagy
as well as exhibiting dose-limiting toxicities in patients. Therefore,
we evaluated additional lysosomotropic compounds to identify an alternative
lysosome-based drug repurposing opportunity. We found that six of
these compounds blocked the cytopathic effect of SARS-CoV-2 in Vero
E6 cells with half-maximal effective concentration (EC50) values ranging from 2.0 to 13 μM and selectivity indices
(SIs; SI = CC50/EC50) ranging from 1.5- to >10-fold.
The compounds (1) blocked lysosome functioning and autophagy, (2)
prevented pseudotyped particle entry, (3) increased lysosomal pH,
and (4) reduced (ROC-325) viral titers in the EpiAirway 3D tissue
model. Consistent with these findings, the siRNA knockdown of ATP6V0D1
blocked the HCoV-NL63 cytopathic effect in LLC-MK2 cells. Moreover,
an analysis of SARS-CoV-2 infected Vero E6 cell lysate revealed significant
dysregulation of autophagy and lysosomal function, suggesting a contribution
of the lysosome to the life cycle of SARS-CoV-2. Our findings suggest
the lysosome as a potential host cell target to combat SARS-CoV-2
infections and inhibitors of lysosomal function could become an important
component of drug combination therapies aimed at improving treatment
and outcomes for COVID-19.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Robert Bostwick
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Lynn Rasmussen
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Bruce Nguyen Tran
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Yu-Shan Cheng
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Miao Xu
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Mark Henderson
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Zhu
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, Naval Research Laboratory, Washington, D.C. 20375, United States
- Jacobs Corporation, Hanover, Maryland 21076, United States
| | - Mason Wolak
- Optical Sciences Division, Code 5600, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Khalida Shamim
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Min Shen
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Zina Itkin
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Paul Shinn
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, IMM6, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Sam G. Michael
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Donald C. Lo
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Zheng
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
9
|
Zarkoob H, Allué-Guardia A, Chen YC, Jung O, Garcia-Vilanova A, Song MJ, Park JG, Oladunni F, Miller J, Tung YT, Kosik I, Schultz D, Yewdell J, Torrelles JB, Martinez-Sobrido L, Cherry S, Ferrer M, Lee EM. Modeling SARS-CoV-2 and Influenza Infections and Antiviral Treatments in Human Lung Epithelial Tissue Equivalents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.11.443693. [PMID: 34013274 PMCID: PMC8132232 DOI: 10.1101/2021.05.11.443693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third coronavirus in less than 20 years to spillover from an animal reservoir and cause severe disease in humans. High impact respiratory viruses such as pathogenic beta-coronaviruses and influenza viruses, as well as other emerging respiratory viruses, pose an ongoing global health threat to humans. There is a critical need for physiologically relevant, robust and ready to use, in vitro cellular assay platforms to rapidly model the infectivity of emerging respiratory viruses and discover and develop new antiviral treatments. Here, we validate in vitro human alveolar and tracheobronchial tissue equivalents and assess their usefulness as in vitro assay platforms in the context of live SARS-CoV-2 and influenza A virus infections. We establish the cellular complexity of two distinct tracheobronchial and alveolar epithelial air liquid interface (ALI) tissue models, describe SARS-CoV-2 and influenza virus infectivity rates and patterns in these ALI tissues, the viral-induced cytokine production as it relates to tissue-specific disease, and demonstrate the pharmacologically validity of these lung epithelium models as antiviral drug screening assay platforms.
Collapse
Affiliation(s)
- Hoda Zarkoob
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Anna Allué-Guardia
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Yu-Chi Chen
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Olive Jung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
- Biomedical Ultrasonics & Biotherapy Laboratory, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, UK
| | - Andreu Garcia-Vilanova
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Min Jae Song
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Jun-Gyu Park
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Fatai Oladunni
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Jesse Miller
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Yen-Ting Tung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Ivan Kosik
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA
- High Throughput Screening Core, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Yewdell
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jordi B. Torrelles
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Luis Martinez-Sobrido
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Sara Cherry
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Marc Ferrer
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Emily M. Lee
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| |
Collapse
|
10
|
Insight in the Current Progress in the Largest Clinical Trials for Covid-19 Drug Management (As of January 2021). ACTA ACUST UNITED AC 2021; 42:5-18. [PMID: 33894123 DOI: 10.2478/prilozi-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The outbreak of the COVID-19 pandemic has generated the largest global health crisis of the 21st century, evolving into accelerating socioeconomic disruption. In spite of all rapidly and widely emerging scientific data on epidemiology, diagnosis, prevention and treatment of the COVID-19 disease, severe acute respiratory coronavirus 2 (SARS-CoV-2) is continuing to propagate in lack of definitive and specific therapeutic agents. Current therapeutic strategies are mainly focused on viral inhibition by antiviral drugs and hampering the exuberant immune response of the host by immunomodulatory drugs. In this review, we have studied the reports of the largest clinical trials intended to COVID-19 treatment published during the first year of the pandemics. In general, these results concentrate on seven therapeutic options: remdesivir, chloroguine/hydroxychloroquine, lopinavir-ritonavir combination, corticosteroids, tocilizumab, convalescent plasma and monoclonal antibodies. In line with the reviewed data, as of January 2021, most of the evidence support the use of remdesivir in hospitalized patients with moderate and severe forms of the disease and provide reliable data on the substantial beneficial effect of corticosteroids in patients requiring supplemental oxygen. Moreover, preliminary RECOVERY trial results have demonstrated the efficacy of tociluzumab in the treatment of critically ill patients. The reports presenting the outcomes of the other immune-based therapies under investigation are enthusiastically awaited.
Collapse
|
11
|
Changal K, Paternite D, Mack S, Veria S, Bashir R, Patel M, Soni R, Ali M, Mir T, Sheikh M, Ramanathan PK. Coronavirus disease 2019 (COVID-19) and QTc prolongation. BMC Cardiovasc Disord 2021; 21:158. [PMID: 33784966 PMCID: PMC8007653 DOI: 10.1186/s12872-021-01963-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The cause-and-effect relationship of QTc prolongation in Coronavirus disease 2019 (COVID-19) patients has not been studied well. OBJECTIVE We attempt to better understand the relationship of QTc prolongation in COVID-19 patients in this study. METHODS This is a retrospective, hospital-based, observational study. All patients with normal baseline QTc interval who were hospitalized with the diagnosis of COVID-19 infection at two hospitals in Ohio, USA were included in this study. RESULTS Sixty-nine patients had QTc prolongation, and 210 patients continued to have normal QTc during hospitalization. The baseline QTc intervals were comparable in the two groups. Patients with QTc prolongation were older (mean age 67 vs. 60, P 0.003), more likely to have underlying cardiovascular disease (48% versus 26%, P 0.001), ischemic heart disease (29% versus 17%, P 0.026), congestive heart failure with preserved ejection fraction (16% versus 8%, P 0.042), chronic kidney disease (23% versus 10%, P 0.005), and end-stage renal disease (12% versus 1%, P < 0.001). Patients with QTc prolongation were more likely to have received hydroxychloroquine (75% versus 59%, P 0.018), azithromycin (18% vs. 14%, P 0.034), a combination of hydroxychloroquine and azithromycin (29% vs 7%, P < 0.001), more than 1 QT prolonging agents (59% vs. 32%, P < 0.001). Patients who were on angiotensin-converting enzyme inhibitors (ACEi) were less likely to develop QTc prolongation (11% versus 26%, P 0.014). QTc prolongation was not associated with increased ventricular arrhythmias or mortality. CONCLUSION Older age, ESRD, underlying cardiovascular disease, potential virus mediated cardiac injury, and drugs like hydroxychloroquine/azithromycin, contribute to QTc prolongation in COVID-19 patients. The role of ACEi in preventing QTc prolongation in COVID-19 patients needs to be studied further.
Collapse
Affiliation(s)
- Khalid Changal
- Cardiovascular Medicine, University of Toledo, Toledo, OH, USA.
| | - David Paternite
- University of Toledo College of Medicine and Life Sciences, Toledo, USA
| | - Sean Mack
- University of Toledo College of Medicine and Life Sciences, Toledo, USA
| | - Spiro Veria
- University of Toledo College of Medicine and Life Sciences, Toledo, USA
| | | | - Mitra Patel
- University of Toledo College of Medicine and Life Sciences, Toledo, USA
| | - Ronak Soni
- Cardiovascular Medicine, University of Toledo, Toledo, OH, USA
| | - Muhammad Ali
- Internal Medicine, University of Toledo, Toledo, OH, USA
| | - Tanveer Mir
- Internal Medicine, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Mujeeb Sheikh
- Department of Cardiovascular Medicine and Interventional Cardiology, Promedica Toledo Hospital, 2109 Hughes Dr, Jobst Tower 3rd, Floor, Toledo, OH, 43606, USA.
| | - P Kasi Ramanathan
- Department of Cardiovascular Medicine and Interventional Cardiology, Promedica Toledo Hospital, 2109 Hughes Dr, Jobst Tower 3rd, Floor, Toledo, OH, 43606, USA
| |
Collapse
|
12
|
Agarwal M, Ranjan P, Baitha U, Mittal A. Hydroxychloroquine as a Chemoprophylactic Agent for COVID-19: A Clinico-Pharmacological Review. Front Pharmacol 2020; 11:593099. [PMID: 33390974 PMCID: PMC7773916 DOI: 10.3389/fphar.2020.593099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Hydroxychloroquine has gained much attention as one of the candidate drugs that can be repurposed as a prophylactic agent against SARS-CoV-2, the agent responsible for the COVID-19 pandemic. Due to high transmissibility and presence of asymptomatic carriers and presymptomatic transmission, there is need for a chemoprophylactic agent to protect the high-risk population. In this review, we dissect the currently available evidence on hydroxychloroquine prophylaxis from a clinical and pharmacological point of view. In vitro studies on Vero cells show that hydroxychloroquine effectively inhibits SARS-CoV-2 by affecting viral entry and viral transport via endolysosomes. However, this efficacy has failed to replicate in in vivo animal models as well as in most clinical observational studies and clinical trials assessing pre-exposure prophylaxis and postexposure prophylaxis in healthcare workers. An analysis of the pharmacology of HCQ in COVID-19 reveals certain possible reasons for this failure-a pharmacokinetic failure due to failure to achieve adequate drug concentration at the target site and attenuation of its inhibitory effect due to the presence of TMPRSS2 in airway epithelial cells. Currently, many clinical trials on HCQ prophylaxis in HCW are ongoing; these factors should be taken into account. Using higher doses of HCQ for prophylaxis is likely to be associated with increased safety concerns; thus, it may be worthwhile to focus on other possible interventions.
Collapse
Affiliation(s)
- Mudit Agarwal
- MBBS, All India Institute of Medical Sciences, New Delhi, India
| | - Piyush Ranjan
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Upendra Baitha
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Mittal
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Identification of an Antiviral Compound from the Pandemic Response Box that Efficiently Inhibits SARS-CoV-2 Infection In Vitro. Microorganisms 2020; 8:microorganisms8121872. [PMID: 33256227 PMCID: PMC7760777 DOI: 10.3390/microorganisms8121872] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
With over 50 million currently confirmed cases worldwide, including more than 1.3 million deaths, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has a major impact on the economy and health care system. Currently, limited prophylactic or therapeutic intervention options are available against SARS-CoV-2. In this study, 400 compounds from the antimicrobial “pandemic response box” library were screened for inhibiting properties against SARS-CoV-2. An initial screen on Vero E6 cells identified five compounds that inhibited SARS-CoV-2 replication. However, validation of the selected hits in a human lung cell line highlighted that only a single compound, namely Retro-2.1, efficiently inhibited SARS-CoV-2 replication. Additional analysis revealed that the antiviral activity of Retro-2.1 occurs at a post-entry stage of the viral replication cycle. Combined, these data demonstrate that stringent in vitro screening of preselected compounds in multiple cell lines refines the rapid identification of new potential antiviral candidate drugs targeting SARS-CoV-2.
Collapse
|
14
|
Stricker RB, Fesler MC. Flattening the Risk: Pre-Exposure Prophylaxis for COVID-19. Infect Drug Resist 2020; 13:3689-3694. [PMID: 33116688 PMCID: PMC7586021 DOI: 10.2147/idr.s264831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/23/2020] [Indexed: 01/14/2023] Open
Abstract
To date, more than 35 million people worldwide have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), and more than one million have died in the COVID-19 pandemic. International economies are stalled and social isolation based on palpable fear of death remains the order of the day. The United States and other countries are moving toward resuming work activities and social interaction to boost economic recovery. While this makes financial sense, from a medical perspective our population has already suffered and will continue to suffer severe losses in the absence of a viable aggressive prophylaxis strategy for SARS-CoV-2. Herein, we present a plan to address this problem.
Collapse
|
15
|
Leist SR, Schäfer A, Martinez DR. Cell and animal models of SARS-CoV-2 pathogenesis and immunity. Dis Model Mech 2020; 13:dmm046581. [PMID: 32887790 PMCID: PMC7490513 DOI: 10.1242/dmm.046581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023] Open
Abstract
The spread of the novel virus SARS coronavirus 2 (SARS-CoV-2) was explosive, with cases first identified in December 2019, and >22 million people infected and >775,000 deaths as of August 2020. SARS-CoV-2 can cause severe respiratory disease in humans leading to coronavirus disease 2019 (COVID-19). The development of effective clinical interventions, such as antivirals and vaccines that can limit or even prevent the burden and spread of SARS-CoV-2, is a global health priority. Testing of leading antivirals, monoclonal antibody therapies and vaccines against SARS-CoV-2 will require robust animal and cell models of viral pathogenesis. In this Special Article, we discuss the cell-based and animal models of SARS-CoV-2 infection and pathogenesis that have been described as of August 2020. We also outline the outstanding questions for which researchers can leverage animal and cell-based models to improve our understanding of SARS-CoV-2 pathogenesis and protective immunity. Taken together, the refinement of models of SARS-CoV-2 infection will be critical to guide the development of therapeutics and vaccines against SARS-CoV-2 to end the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Funnell SGP, Dowling WE, Muñoz-Fontela C, Gsell PS, Ingber DE, Hamilton GA, Delang L, Rocha-Pereira J, Kaptein S, Dallmeier KH, Neyts J, Rosenke K, de Wit E, Feldmann H, Maisonnasse P, Le Grand R, Frieman MB, Coleman CM. Emerging preclinical evidence does not support broad use of hydroxychloroquine in COVID-19 patients. Nat Commun 2020; 11:4253. [PMID: 32848158 PMCID: PMC7450055 DOI: 10.1038/s41467-020-17907-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/25/2020] [Indexed: 11/17/2022] Open
Abstract
There is an urgent need for drugs, therapies and vaccines to be available to protect the human population against COVID-19. One of the first approaches taken in the COVID-19 global response was to consider repurposing licensed drugs. This commentary highlights an extraordinary international collaborative effort of independent researchers who have recently all come to the same conclusion—that chloroquine or hydroxchloroquine are unlikely to provide clinical benefit against COVID-19.
Collapse
Affiliation(s)
- S G P Funnell
- National Infection Service, Public Health England, Porton Down, Manor Farm Road, Salisbury, Wiltshire, SP40JG, UK.
| | - W E Dowling
- Coalition for Epidemic Preparedness Innovations, 1901 Pennsylvania Avenue, NW, Suite 1003, Washington, DC, 20006, USA
| | - C Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse. 74, 20359, Hamburg, Germany
| | - P-S Gsell
- World Health Organisation, Avenue Appia, 1211, Geneva, Switzerland
| | - D E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - G A Hamilton
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | - L Delang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, Global Virus Network, KU Leuven, 3000, Leuven, Belgium
| | - J Rocha-Pereira
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, Global Virus Network, KU Leuven, 3000, Leuven, Belgium
| | - S Kaptein
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, Global Virus Network, KU Leuven, 3000, Leuven, Belgium
| | - K H Dallmeier
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, Global Virus Network, KU Leuven, 3000, Leuven, Belgium
| | - J Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, Global Virus Network, KU Leuven, 3000, Leuven, Belgium
| | - K Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, 59840, MT, USA
| | - E de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, 59840, MT, USA
| | - H Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, 59840, MT, USA
| | - P Maisonnasse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, 92265, France
| | - R Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases » (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, 92265, France
| | - M B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - C M Coleman
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
17
|
Jarvis MA, Hansen FA, Rosenke K, Haddock E, Rollinson C, Rule S, Sewell G, Hughes A, Feldmann H. Evaluation of drugs for potential repurposing against COVID-19 using a tier-based scoring system. Antivir Ther 2020; 25:223-231. [PMID: 32744511 PMCID: PMC11071128 DOI: 10.3851/imp3368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND As the coronavirus disease 2019 (COVID-19) pandemic grows daily, we remain with no prophylactic and only minimal therapeutic interventions to prevent or ameliorate severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Prior to SARS-CoV-2 emergence, high throughput screens utilizing clinically developed drugs identified compounds with in vitro inhibitory effect on human coronaviruses that may have potential for repurposing as treatment options for COVID-19. However, caution should be applied to repurposing of these drugs when they are taken out of context of human pharmacokinetic parameters associated with normal therapeutic use. METHODS Our aim was to provide a tier-based scoring system to interrogate this data set and match each drug with its human pharmacokinetic criteria, such as route of administration, therapeutic plasma levels and half-life, tissue distribution and safety. RESULTS Our analysis excluded most previously identified drugs but identified members of four drug classes (antimalarial amino-quinolones, selective estrogen receptor modulators [SERMs], low potency tricyclic antipsychotics and tricyclic antidepressants) as potential drug candidates for COVID-19. Two of them, the tricyclic antipsychotics and tricyclic antidepressants were further excluded based on a high adverse event profile. CONCLUSIONS In summary, our findings using a new pharmacokinetic-based scoring system supports efficacy testing of only a minority of candidates against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Michael A Jarvis
- University of Plymouth, Plymouth, Devon, UK
- The Vaccine Group, Ltd, Plymouth, Devon, UK
| | - Frederick A Hansen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kyle Rosenke
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | - Simon Rule
- University Hospitals Plymouth NHS Trust, Plymouth, Devon, UK
| | - Graham Sewell
- The Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Andrew Hughes
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|