1
|
Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus 2023; 15:e50703. [PMID: 38234925 PMCID: PMC10792266 DOI: 10.7759/cureus.50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex and dynamic disease. The "hallmarks of cancer" were proposed by Hanahan and Weinberg (2000) as a group of biological competencies that human cells attain as they progress from normalcy to neoplastic transformation. These competencies include self-sufficiency in proliferative signaling, insensitivity to growth-suppressive signals and immune surveillance, the ability to evade cell death, enabling replicative immortality, reprogramming energy metabolism, inducing angiogenesis, and activating tissue invasion and metastasis. Underlying these competencies are genome instability, which expedites their acquisition, and inflammation, which fosters their function(s). Additionally, cancer exhibits another dimension of complexity: a heterogeneous repertoire of infiltrating and resident host cells, secreted factors, and extracellular matrix, known as the tumor microenvironment, that through a dynamic and reciprocal relationship with cancer cells supports immortality, local invasion, and metastatic dissemination. This staggering intricacy calls for caution when advising all people with cancer (or a previous history of cancer) to receive the COVID-19 primary vaccine series plus additional booster doses. Moreover, because these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, safety, and the risk of interactions with anticancer therapies, which could reduce the value and innocuity of either medical treatment. After reviewing the available literature, we are particularly concerned that certain COVID-19 vaccines may generate a pro-tumorigenic milieu (i.e., a specific environment that could lead to neoplastic transformation) that predisposes some (stable) oncologic patients and survivors to cancer progression, recurrence, and/or metastasis. This hypothesis is based on biological plausibility and fulfillment of the multi-hit hypothesis of oncogenesis (i.e., induction of lymphopenia and inflammation, downregulation of angiotensin-converting enzyme 2 (ACE2) expression, activation of oncogenic cascades, sequestration of tumor suppressor proteins, dysregulation of the RNA-G quadruplex-protein binding system, alteration of type I interferon responses, unsilencing of retrotransposable elements, etc.) together with growing evidence and safety reports filed to Vaccine Adverse Effects Report System (VAERS) suggesting that some cancer patients experienced disease exacerbation or recurrence following COVID-19 vaccination. In light of the above and because some of these concerns (i.e., alteration of oncogenic pathways, promotion of inflammatory cascades, and dysregulation of the renin-angiotensin system) also apply to cancer patients infected with SARS-CoV-2, we encourage the scientific and medical community to urgently evaluate the impact of both COVID-19 and COVID-19 vaccination on cancer biology and tumor registries, adjusting public health recommendations accordingly.
Collapse
Affiliation(s)
- Raquel Valdes Angues
- Neurology, Oregon Health and Science University School of Medicine, Portland, USA
| | | |
Collapse
|
2
|
Yong KSM, Anderson DE, Zheng AKE, Liu M, Tan SY, Tan WWS, Chen Q, Wang LF. Comparison of infection and human immune responses of two SARS-CoV-2 strains in a humanized hACE2 NIKO mouse model. Sci Rep 2023; 13:12484. [PMID: 37528224 PMCID: PMC10394059 DOI: 10.1038/s41598-023-39628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023] Open
Abstract
The COVID-19 pandemic has sickened millions, cost lives and has devastated the global economy. Various animal models for experimental infection with SARS-CoV-2 have played a key role in many aspects of COVID-19 research. Here, we describe a humanized hACE2 (adenovirus expressing hACE2) NOD-SCID IL2Rγ-/- (NIKO) mouse model and compare infection with ancestral and mutant (SARS-CoV-2-∆382) strains of SARS-CoV-2. Immune cell infiltration, inflammation, lung damage and pro-inflammatory cytokines and chemokines was observed in humanized hACE2 NIKO mice. Humanized hACE2 NIKO mice infected with the ancestral and mutant SARS-CoV-2 strain had lung inflammation and production of pro-inflammatory cytokines and chemokines. This model can aid in examining the pathological basis of SARS-CoV-2 infection in a human immune environment and evaluation of therapeutic interventions.
Collapse
Affiliation(s)
- Kylie Su Mei Yong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adrian Kang Eng Zheng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Singhealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
3
|
McMahon CL, Castro J, Silvas J, Muniz Perez A, Estrada M, Carrion R, Hsieh J. Fetal brain vulnerability to SARS-CoV-2 infection. Brain Behav Immun 2023; 112:188-205. [PMID: 37329995 PMCID: PMC10270733 DOI: 10.1016/j.bbi.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
Whether or not SARS-CoV-2 can cross from mother to fetus during a prenatal infection has been controversial; however, recent evidence such as viral RNA detection in umbilical cord blood and amniotic fluid, as well as the discovery of additional entry receptors in fetal tissues suggests a potential for viral transmission to and infection of the fetus. Furthermore, neonates exposed to maternal COVID-19 during later development have displayed neurodevelopmental and motor skill deficiencies, suggesting the potential for consequential neurological infection or inflammation in utero. Thus, we investigated transmission potential of SARS-CoV-2 and the consequences of infection on the developing brain using human ACE2 knock-in mice. In this model, we found that viral transmission to the fetal tissues, including the brain, occurred at later developmental stages, and that infection primarily targeted male fetuses. In the brain, SARS-CoV-2 infection largely occurred within the vasculature, but also within other cells such as neurons, glia, and choroid plexus cells; however, viral replication and increased cell death were not observed in fetal tissues. Interestingly, early gross developmental differences were observed between infected and mock-infected offspring, and high levels of gliosis were seen in the infected brains 7 days post initial infection despite viral clearance at this time point. In the pregnant mice, we also observed more severe COVID-19 infections, with greater weight loss and viral dissemination to the brain, compared to non-pregnant mice. Surprisingly, we did not observe an increase in maternal inflammation or the antiviral IFN response in these infected mice, despite showing clinical signs of disease. Overall, these findings have concerning implications regarding neurodevelopment and pregnancy complications of the mother following prenatal COVID-19 exposure.
Collapse
Affiliation(s)
- Courtney L McMahon
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Joshua Castro
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jesus Silvas
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Aranis Muniz Perez
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Manuel Estrada
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
4
|
Kulkarni PG, Sakharkar A, Banerjee T. Understanding the role of nACE2 in neurogenic hypertension among COVID-19 patients. Hypertens Res 2022; 45:254-269. [PMID: 34848886 PMCID: PMC8630198 DOI: 10.1038/s41440-021-00800-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
Currently, the third and fourth waves of the coronavirus disease -19 (COVID-19) pandemic are creating havoc in many parts of the world. Although vaccination programs have been launched in most countries, emerging new strains of the virus along with geographical variations are leading to varying success rates of the available vaccines. The presence of comorbidities such as diabetes, cardiovascular diseases and hypertension is responsible for increasing the severity of COVID-19 and, thus, the COVID-19 mortality rate. Angiotensin-converting enzyme 2 (ACE2), which is utilized by SARS-CoV-2 for entry into host cells, is widely expressed in the lungs, kidneys, testes, gut, adipose tissue, and brain. Infection within host cells mediates RAS overactivation, which leads to a decrease in the ACE2/ACE ratio, AT2R/AT1R ratio, and MasR/AT1R ratio. Such imbalances lead to the development of heightened inflammatory responses, such as cytokine storms, leading to post-COVID-19 complications and mortality. As the association of SARS-CoV-2 infection and hypertension remains unclear, this report provides an overview of the effects of SARS-CoV-2 infection on patients with hypertension. We discuss here the interaction of ACE2 with SARS-CoV-2, focusing on neuronal ACE2 (nACE2), and further shed light on the possible involvement of nACE2 in hypertension. SARS-CoV-2 enters the brain through neuronal ACE2 and spreads in various regions of the brain. The effect of viral binding to neuronal ACE2 in areas of the brain that regulate salt/water balance and blood pressure is also discussed in light of the neural regulation of hypertension in COVID-19.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University Ganeshkhind Road, Pune, 411007, India
| | - Amul Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University Ganeshkhind Road, Pune, 411007, India.
| | - Tanushree Banerjee
- Molecular Neuroscience Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune, 411 033, India.
| |
Collapse
|
5
|
Park JG, Pino PA, Akhter A, Alvarez X, Torrelles JB, Martinez-Sobrido L. Animal Models of COVID-19: Transgenic Mouse Model. Methods Mol Biol 2022; 2452:259-289. [PMID: 35554912 PMCID: PMC9563002 DOI: 10.1007/978-1-0716-2111-0_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), emerged in December 2019 in Wuhan, China, and rapidly spread throughout the world, threatening global public health. An animal model is a valuable and a crucial tool that allows understanding of nature in the pathogenesis of SARS-CoV-2 and its associated COVID-19 disease. Here we introduce detailed protocols of SARS-CoV-2 infection and COVID-19 disease using C57BL/6 (B6) transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) from the human cytokeratin 18 promoter (K18 hACE2). To mimic natural SARS-CoV-2 infection, K18 hACE2 transgenic mice are infected intranasally under anesthesia. Upon infection, viral pathogenesis is determined by monitoring changes in body weight (morbidity) and monitoring survival (mortality), cytokine/chemokine responses, gross-lung pathology, histopathology, and viral replication in tissues. The presence of the virus and viral replication is evaluated by immunohistochemistry (IHC) and viral titrations, respectively, from the upper (nasal turbinate) and the lower (lungs) respiratory tracts, and nervous system (brain). Also, the immune response to SARS-CoV-2 infection is measured by cytokine/chemokine enzyme-linked immunosorbent assay (ELISA) from lung, spleen and brain homogenates to characterize the cytokine storm that hallmarks as one of the major causes of death caused by SARS-CoV-2 infection. This small rodent animal model based on the use of K18 hACE2 transgenic mice represents an excellent option to understand the pathogenicity of natural SARS-CoV-2 strains and its recently described Variants of Concern (VoC), and will be applicable to the identification and characterization of prophylactic (vaccine) and therapeutic (antiviral and/or neutralizing monoclonal antibodies) strategies for the prevention or treatment of SARS-CoV-2 infection or its associated COVID-19 disease.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Paula A Pino
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Anwari Akhter
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Xavier Alvarez
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jordi B Torrelles
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
6
|
Cáceres CJ, Cardenas-Garcia S, Carnaccini S, Seibert B, Rajao DS, Wang J, Perez DR. Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. Sci Rep 2021; 11:9609. [PMID: 33953295 PMCID: PMC8100161 DOI: 10.1038/s41598-021-89013-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the defining global health emergency of this century. GC-376 is a Mpro inhibitor with antiviral activity against SARS-CoV-2 in vitro. Using the K18-hACE2 mouse model, the in vivo antiviral efficacy of GC-376 against SARS-CoV-2 was evaluated. GC-376 treatment was not toxic in K18-hACE2 mice. Overall outcome of clinical symptoms and survival upon SARS-CoV-2 challenge were not improved in mice treated with GC-376 compared to controls. The treatment with GC-376 slightly improved survival from 0 to 20% in mice challenged with a high virus dose at 105 TCID50/mouse. Most notably, GC-376 treatment led to milder tissue lesions, reduced viral loads, fewer presence of viral antigen, and reduced inflammation in comparison to vehicle-treated controls in mice challenged with a low virus dose at 103 TCID50/mouse. This was particularly the case in the brain where a 5-log reduction in viral titers was observed in GC-376 treated mice compared to vehicle controls. This study supports the notion that GC-376 represents a promising lead candidate for further development to treat SARS-CoV-2 infection and that the K18-hACE2 mouse model is suitable to study antiviral therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- C Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Silvia Carnaccini
- Tifton Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Selvaraj P, Lien CZ, Liu S, Stauft CB, Nunez IA, Hernandez M, Nimako E, Ortega MA, Starost MF, Dennis JU, Wang TT. SARS-CoV-2 infection induces protective immunity and limits transmission in Syrian hamsters. Life Sci Alliance 2021; 4:e202000886. [PMID: 33574037 PMCID: PMC7893819 DOI: 10.26508/lsa.202000886] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
A critical question in understanding the immunity to SARS-COV-2 is whether recovered patients are protected against re-challenge and transmission upon second exposure. We developed a Syrian hamster model in which intranasal inoculation of just 100 TCID50 virus caused viral pneumonia. Aged hamsters developed more severe disease and even succumbed to SARS-CoV-2 infection, representing the first lethal model using genetically unmodified laboratory animals. After initial viral clearance, the hamsters were re-challenged with 105 TCID50 SARS-CoV-2 and displayed more than 4 log reduction in median viral loads in both nasal washes and lungs in comparison to primary infections. Most importantly, re-challenged hamsters were unable to transmit virus to naïve hamsters, and this was accompanied by the presence of neutralizing antibodies. Altogether, these results show that SARS-CoV-2 infection induces protective immunity that not only prevents re-exposure but also limits transmission in hamsters. These findings may help guide public health policies and vaccine development and aid evaluation of effective vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Prabhuanand Selvaraj
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Christopher Z Lien
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Shufeng Liu
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Charles B Stauft
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ivette A Nunez
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Mario Hernandez
- Division of Veterinary Services, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Eric Nimako
- Division of Veterinary Services, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Mario A Ortega
- Division of Veterinary Services, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Matthew F Starost
- Division of Veterinary Resources, Diagnostic and Research Services Branch, National Institutes of Health, Rockville Pike, MD, USA
| | - John U Dennis
- Division of Veterinary Services, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Tony T Wang
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
8
|
Amanat F, Strohmeier S, Rathnasinghe R, Schotsaert M, Coughlan L, García-Sastre A, Krammer F. Introduction of Two Prolines and Removal of the Polybasic Cleavage Site Lead to Higher Efficacy of a Recombinant Spike-Based SARS-CoV-2 Vaccine in the Mouse Model. mBio 2021; 12:e02648-20. [PMID: 33653892 PMCID: PMC8092267 DOI: 10.1128/mbio.02648-20] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/22/2021] [Indexed: 12/25/2022] Open
Abstract
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the prime target for vaccine development. The spike protein mediates both binding to host cells and membrane fusion and is also so far the only known viral target of neutralizing antibodies. Coronavirus spike proteins are large trimers that are relatively unstable, a feature that might be enhanced by the presence of a polybasic cleavage site in SARS-CoV-2 spike. Exchange of K986 and V987 for prolines has been shown to stabilize the trimers of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus spike proteins. Here, we test multiple versions of a soluble spike protein for their immunogenicity and protective effect against SARS-CoV-2 challenge in a mouse model that transiently expresses human angiotensin-converting enzyme 2 via adenovirus transduction. Variants tested include spike proteins with a deleted polybasic cleavage site, proline mutations, or a combination thereof, besides the wild-type protein. While all versions of the protein were able to induce neutralizing antibodies, only the antigen with both a deleted cleavage site and the K986P and V987P (PP) mutations completely protected from challenge in this mouse model.IMPORTANCE A vaccine for SARS-CoV-2 is urgently needed. A better understanding of antigen design and attributes that vaccine candidates need to have to induce protective immunity is of high importance. The data presented here validate the choice of antigens that contain the PP mutations and suggest that deletion of the polybasic cleavage site may lead to a further-optimized design.
Collapse
Affiliation(s)
- Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Joaquín Cáceres C, Cardenas-Garcia S, Carnaccini S, Seibert B, Rajao DS, Wang J, Perez DR. Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33532776 DOI: 10.1101/2021.01.27.428428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the defining global health emergency of this century. GC-376 is a M pro inhibitor with antiviral activity against SARS-CoV-2 in vitro . Using the K18-hACE2 mouse model, the in vivo antiviral efficacy of GC-376 against SARS-CoV-2 was evaluated. GC-376 treatment was not toxic in K18-hACE2 mice and produced milder tissue lesions, reduced viral loads, fewer presence of viral antigen, and reduced inflammation in comparison to vehicle-treated controls, most notably in the brain in mice challenged with a low virus dose. Although GC-376 was not sufficient to improve neither clinical symptoms nor survival, it did show a positive effect against SARS-CoV-2 in vivo . This study supports the notion that the K18-hACE2 mouse model is suitable to study antiviral therapies against SARS-CoV-2, and GC-376 represents a promising lead candidate for further development to treat SARS-CoV-2 infection.
Collapse
|
10
|
Gurumurthy CB, Quadros RM, Richardson GP, Poluektova LY, Mansour SL, Ohtsuka M. Genetically modified mouse models to help fight COVID-19. Nat Protoc 2020; 15:3777-3787. [PMID: 33106680 PMCID: PMC7704938 DOI: 10.1038/s41596-020-00403-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
The research community is in a race to understand the molecular mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, to repurpose currently available antiviral drugs and to develop new therapies and vaccines against coronavirus disease 2019 (COVID-19). One major challenge in achieving these goals is the paucity of suitable preclinical animal models. Mice constitute ~70% of all the laboratory animal species used in biomedical research. Unfortunately, SARS-CoV-2 infects mice only if they have been genetically modified to express human ACE2. The inherent resistance of wild-type mice to SARS-CoV-2, combined with a wealth of genetic tools that are available only for modifying mice, offers a unique opportunity to create a versatile set of genetically engineered mouse models useful for COVID-19 research. We propose three broad categories of these models and more than two dozen designs that may be useful for SARS-CoV-2 research and for fighting COVID-19.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Mouse Genome Engineering Core Facility, Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Suzanne L Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Masato Ohtsuka
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, School of Medicine, Tokai University, Isehara, Japan.
- The Institute of Medical Sciences, Tokai University, Isehara, Japan.
| |
Collapse
|
11
|
Oladunni FS, Park JG, Pino PA, Gonzalez O, Akhter A, Allué-Guardia A, Olmo-Fontánez A, Gautam S, Garcia-Vilanova A, Ye C, Chiem K, Headley C, Dwivedi V, Parodi LM, Alfson KJ, Staples HM, Schami A, Garcia JI, Whigham A, Platt RN, Gazi M, Martinez J, Chuba C, Earley S, Rodriguez OH, Mdaki SD, Kavelish KN, Escalona R, Hallam CRA, Christie C, Patterson JL, Anderson TJC, Carrion R, Dick EJ, Hall-Ursone S, Schlesinger LS, Alvarez X, Kaushal D, Giavedoni LD, Turner J, Martinez-Sobrido L, Torrelles JB. Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat Commun 2020; 11:6122. [PMID: 33257679 PMCID: PMC7705712 DOI: 10.1038/s41467-020-19891-7] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease would benefit from validated small animal models. Here, we show that transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2 transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2 transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 6. K18 hACE2 transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.
Collapse
Affiliation(s)
- Fatai S Oladunni
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Paula A Pino
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Olga Gonzalez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Anwari Akhter
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | - Angélica Olmo-Fontánez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Shalini Gautam
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Colwyn Headley
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Varun Dwivedi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Laura M Parodi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Kendra J Alfson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Hilary M Staples
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Alyssa Schami
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Juan I Garcia
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Alison Whigham
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Roy Neal Platt
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Michal Gazi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jesse Martinez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Colin Chuba
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Stephanie Earley
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | | | | | - Renee Escalona
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Cory R A Hallam
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Corbett Christie
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jean L Patterson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Tim J C Anderson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Edward J Dick
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | | | - Xavier Alvarez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Luis D Giavedoni
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA.
| | | | | |
Collapse
|
12
|
Seo SH, Jang Y. Cold-Adapted Live Attenuated SARS-Cov-2 Vaccine Completely Protects Human ACE2 Transgenic Mice from SARS-Cov-2 Infection. Vaccines (Basel) 2020; 8:E584. [PMID: 33022950 PMCID: PMC7712048 DOI: 10.3390/vaccines8040584] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/20/2023] Open
Abstract
A safe and effective vaccine that can provide herd immunity against severe acute respiratory syndrome coronavirus (SARS-CoV-2) is urgently needed to stop the spread of this virus among humans. Many human viral vaccines are live, attenuated forms of viruses that elicit humoral and cellular immunity. Here, we describe a cold-adapted live-attenuated vaccine (SARS-CoV-2/human/Korea/CNUHV03-CA22 °C/2020) developed by gradually adapting the growth of SARS-CoV-2 from 37 °C to 22 °C in Vero cells. This vaccine can be potentially administered to humans as a nasal spray. Its single dose strongly induced neutralising antibodies (titre > 640), cellular immunity, and mucosal IgA antibodies in intranasally immunised K18-hACE2 mice, which are very susceptible to SARS-CoV-2 and SARS-CoV infections. The one-dose vaccinated mice were completely protected from SARS-CoV-2 infection and did not show body weight loss, death, or the presence of virus in tissues, such as the nasal turbinates, brain, lungs, and kidneys. These results demonstrate that the cold-adapted live attenuated SARS-CoV-2 vaccine we have developed may be a candidate SARS-CoV-2 vaccine for humans.
Collapse
Affiliation(s)
- Sang Heui Seo
- Laboratory of Influenza Research, College of Veterinary Medicine, Daejeon 34134, Korea;
- Institute of Influenza Virus, Chungnam National University, Daejeon 34134, Korea
| | - Yunyueng Jang
- Laboratory of Influenza Research, College of Veterinary Medicine, Daejeon 34134, Korea;
- Institute of Influenza Virus, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
13
|
Muñoz-Fontela C, Dowling WE, Funnell SGP, Gsell PS, Riveros-Balta AX, Albrecht RA, Andersen H, Baric RS, Carroll MW, Cavaleri M, Qin C, Crozier I, Dallmeier K, de Waal L, de Wit E, Delang L, Dohm E, Duprex WP, Falzarano D, Finch CL, Frieman MB, Graham BS, Gralinski LE, Guilfoyle K, Haagmans BL, Hamilton GA, Hartman AL, Herfst S, Kaptein SJF, Klimstra WB, Knezevic I, Krause PR, Kuhn JH, Le Grand R, Lewis MG, Liu WC, Maisonnasse P, McElroy AK, Munster V, Oreshkova N, Rasmussen AL, Rocha-Pereira J, Rockx B, Rodríguez E, Rogers TF, Salguero FJ, Schotsaert M, Stittelaar KJ, Thibaut HJ, Tseng CT, Vergara-Alert J, Beer M, Brasel T, Chan JFW, García-Sastre A, Neyts J, Perlman S, Reed DS, Richt JA, Roy CJ, Segalés J, Vasan SS, Henao-Restrepo AM, Barouch DH. Animal models for COVID-19. Nature 2020; 586:509-515. [PMID: 32967005 PMCID: PMC8136862 DOI: 10.1038/s41586-020-2787-6] [Citation(s) in RCA: 625] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - William E Dowling
- Centre for Epidemic Preparedness Innovations (CEPI), Washington, DC, USA
| | | | | | | | - Randy A Albrecht
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miles W Carroll
- National Infection Service, Public Health England, Salisbury, UK
| | | | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking, China
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Leen Delang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Erik Dohm
- Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Paul Duprex
- Department of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Darryl Falzarano
- VIDO-Intervac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Courtney L Finch
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Amy L Hartman
- Department of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - William B Klimstra
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Philip R Krause
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm, CEA, Université Paris-Saclay, Paris, France
| | | | - Wen-Chun Liu
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Maisonnasse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm, CEA, Université Paris-Saclay, Paris, France
| | - Anita K McElroy
- Division of Pediatric Infectious Diseases, Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vincent Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Nadia Oreshkova
- Wageningen Bioveterinary Research (WBVR), Wageningen University and Research, Lelystad, The Netherlands
| | - Angela L Rasmussen
- Center for Infection and Immunity, Columbia Mailman |School of Public Health, New York, NY, USA
| | - Joana Rocha-Pereira
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Estefanía Rodríguez
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas F Rogers
- Division of Infectious Diseases, University of California San Diego, San Diego, CA, USA
| | | | - Michael Schotsaert
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Chien-Te Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Júlia Vergara-Alert
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jasper F W Chan
- Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Adolfo García-Sastre
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Douglas S Reed
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juergen A Richt
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chad J Roy
- Tulane National Primate Research Center, Covington, LA, USA
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain
| | - Seshadri S Vasan
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
- Department of Health Sciences, University of York, York, UK
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Krammer F. SARS-CoV-2 vaccines in development. Nature 2020; 586:516-527. [DOI: 10.1038/s41586-020-2798-3] [Citation(s) in RCA: 1225] [Impact Index Per Article: 245.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
|
15
|
Amanat F, Strohmeier S, Rathnasinghe R, Schotsaert M, Coughlan L, García-Sastre A, Krammer F. Introduction of two prolines and removal of the polybasic cleavage site leads to optimal efficacy of a recombinant spike based SARS-CoV-2 vaccine in the mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.16.300970. [PMID: 32995785 PMCID: PMC7523111 DOI: 10.1101/2020.09.16.300970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the prime target for vaccine development. The spike protein mediates both binding to host cells and membrane fusion and is also so far the only known viral target of neutralizing antibodies. Coronavirus spike proteins are large trimers that are relatively instable, a feature that might be enhanced by the presence of a polybasic cleavage site in the SARS-CoV-2 spike. Exchange of K986 and V987 to prolines has been shown to stabilize the trimers of SARS-CoV-1 and the Middle Eastern respiratory syndrome coronavirus spikes. Here, we test multiple versions of a soluble spike protein for their immunogenicity and protective effect against SARS-CoV-2 challenge in a mouse model that transiently expresses human angiotensin converting enzyme 2 via adenovirus transduction. Variants tested include spike protein with a deleted polybasic cleavage site, the proline mutations, a combination thereof, as well as the wild type protein. While all versions of the protein were able to induce neutralizing antibodies, only the antigen with both a deleted cleavage site and the PP mutations completely protected from challenge in this mouse model. IMPORTANCE A vaccine for SARS-CoV-2 is urgently needed. A better understanding of antigen design and attributes that vaccine candidates need to have to induce protective immunity is of high importance. The data presented here validates the choice of antigens that contain the PP mutation and suggests that deletion of the polybasic cleavage site could lead to a further optimized design.
Collapse
Affiliation(s)
- Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Melenotte C, Silvin A, Goubet AG, Lahmar I, Dubuisson A, Zumla A, Raoult D, Merad M, Gachot B, Hénon C, Solary E, Fontenay M, André F, Maeurer M, Ippolito G, Piacentini M, Wang FS, Ginhoux F, Marabelle A, Kroemer G, Derosa L, Zitvogel L. Immune responses during COVID-19 infection. Oncoimmunology 2020; 9:1807836. [PMID: 32939324 PMCID: PMC7480812 DOI: 10.1080/2162402x.2020.1807836] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/09/2023] Open
Abstract
Over the past 16 years, three coronaviruses (CoVs), severe acute respiratory syndrome CoV (SARS-CoV) in 2002, Middle East respiratory syndrome CoV (MERS-CoV) in 2012 and 2015, and SARS-CoV-2 in 2020, have been causing severe and fatal human epidemics. The unpredictability of coronavirus disease-19 (COVID-19) poses a major burden on health care and economic systems across the world. This is caused by the paucity of in-depth knowledge of the risk factors for severe COVID-19, insufficient diagnostic tools for the detection of SARS-CoV-2, as well as the absence of specific and effective drug treatments. While protective humoral and cellular immune responses are usually mounted against these betacoronaviruses, immune responses to SARS-CoV2 sometimes derail towards inflammatory tissue damage, leading to rapid admissions to intensive care units. The lack of knowledge on mechanisms that tilt the balance between these two opposite outcomes poses major threats to many ongoing clinical trials dealing with immunostimulatory or immunoregulatory therapeutics. This review will discuss innate and cognate immune responses underlying protective or deleterious immune reactions against these pathogenic coronaviruses.
Collapse
Affiliation(s)
- Cléa Melenotte
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
- Infectious Diseases, IHU-Méditerranée Infection, Marseille, France
| | | | - Anne-Gaëlle Goubet
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Imran Lahmar
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Agathe Dubuisson
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Didier Raoult
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
| | - Mansouria Merad
- Service de Urgences et de Permanence des Soins, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | | | | | - Eric Solary
- Immunology, Gustave Roussy, Villejuif, France
| | - Michaela Fontenay
- INSERM U1016, Centre National Recherche Scientifique (CNRS) UMR8104, Institut Cochin, Université de Paris, Paris, France
| | | | - Markus Maeurer
- Immunosurgery, Immunotherapy Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Med Clinic, University of Mainz, Mayence, Germany
| | - Giuseppe Ippolito
- Dipartimento di Epidemiologia Ricerca Pre-Clinica e Diagnostica Avanzata, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Infectious Diseases Department, National Institute for Infectious Disease IRCCS “Lazzaro Spallanzani”, Rome, Italy
| | - Fu-Sheng Wang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Aurélien Marabelle
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie,Pathologie – PUI – Hygiène, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Lisa Derosa
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Laurence Zitvogel
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
17
|
Hassert M, Geerling E, Stone ET, Steffen TL, Dickson A, Feldman MS, Class J, Richner JM, Brien JD, Pinto AK. mRNA induced expression of human angiotensin-converting enzyme 2 in mice for the study of the adaptive immune response to severe acute respiratory syndrome coronavirus 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32793909 DOI: 10.1101/2020.08.07.241877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic resulting in nearly 20 million infections across the globe, as of August 2020. Critical to the rapid evaluation of vaccines and antivirals is the development of tractable animal models of infection. The use of common laboratory strains of mice to this end is hindered by significant divergence of the angiotensin-converting enzyme 2 (ACE2), which is the receptor required for entry of SARS-CoV-2. In the current study, we designed and utilized an mRNA-based transfection system to induce expression of the hACE2 receptor in order to confer entry of SARS-CoV-2 in otherwise non-permissive cells. By employing this expression system in an in vivo setting, we were able to interrogate the adaptive immune response to SARS-CoV-2 in type 1 interferon receptor deficient mice. In doing so, we showed that the T cell response to SARS-CoV-2 is enhanced when hACE2 is expressed during infection. Moreover, we demonstrated that these responses are preserved in memory and are boosted upon secondary infection. Interestingly, we did not observe an enhancement of SARS-CoV-2 specific antibody responses with hACE2 induction. Importantly, using this system, we functionally identified the CD4+ and CD8+ peptide epitopes targeted during SARS-CoV-2 infection in H2b restricted mice. Antigen-specific CD8+ T cells in mice of this MHC haplotype primarily target peptides of the spike and membrane proteins, while the antigen-specific CD4+ T cells target peptides of the nucleocapsid, membrane, and spike proteins. The functional identification of these T cell epitopes will be critical for evaluation of vaccine efficacy in murine models of SARS-CoV-2. The use of this tractable expression system has the potential to be used in other instances of emerging infections in which the rapid development of an animal model is hindered by a lack of host susceptibility factors.
Collapse
|