1
|
Wellford SA, Moseman EA. Olfactory immune response to SARS-CoV-2. Cell Mol Immunol 2024; 21:134-143. [PMID: 38143247 PMCID: PMC10806031 DOI: 10.1038/s41423-023-01119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Clever S, Volz A. Mouse models in COVID-19 research: analyzing the adaptive immune response. Med Microbiol Immunol 2023; 212:165-183. [PMID: 35661253 PMCID: PMC9166226 DOI: 10.1007/s00430-022-00735-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
The emergence of SARS-CoV-2, the severe acute respiratory syndrome coronavirus type 2 causing the COVID-19 pandemic, resulted in a major necessity for scientific countermeasures. Investigations revealing the exact mechanisms of the SARS-CoV-2 pathogenesis provide the basis for the development of therapeutic measures and protective vaccines against COVID-19. Animal models are inevitable for infection and pre-clinical vaccination studies as well as therapeutic testing. A well-suited animal model, mimicking the pathology seen in human COVID-19 patients, is an important basis for these investigations. Several animal models were already used during SARS-CoV-2 studies with different clinical outcomes after SARS-CoV-2 infection. Here, we give an overview of different animal models used in SARS-CoV-2 infection studies with a focus on the mouse model. Mice provide a well-established animal model for laboratory use and several different mouse models have been generated and are being used in SARS-CoV-2 studies. Furthermore, the analysis of SARS-CoV-2-specific T cells during infection and in vaccination studies in mice is highlighted.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Yang S, Tian M, Dai Y, Feng S, Wang Y, Chhangani D, Ou T, Li W, Yang Z, McAdow J, Rincon-Limas DE, Yin X, Tai W, Cheng G, Johnson A. Infection and chronic disease activate a brain-muscle signaling axis that regulates muscle performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2020.12.20.423533. [PMID: 33398283 PMCID: PMC7781322 DOI: 10.1101/2020.12.20.423533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show a number of non-neural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood, so we developed three models to investigate the impact of neuroinflammation on muscle performance. We found that bacterial infection, COVID-like viral infection, and expression of a neurotoxic protein associated with Alzheimer' s disease promoted the accumulation of reactive oxygen species (ROS) in the brain. Excessive ROS induces the expression of the cytokine Unpaired 3 (Upd3) in insects, or its orthologue IL-6 in mammals, and CNS-derived Upd3/IL-6 activates the JAK/Stat pathway in skeletal muscle. In response to JAK/Stat signaling, mitochondrial function is impaired and muscle performance is reduced. Our work uncovers a brain-muscle signaling axis in which infections and chronic diseases induce cytokine-dependent changes in muscle performance, suggesting IL-6 could be a therapeutic target to treat muscle weakness caused by neuroinflammation.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Meijie Tian
- Genetics Branch, Oncogenomics Section, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yulong Dai
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Shengyong Feng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yunyun Wang
- Tongji Medical College of Huazhong University of Science and Technology, Department of Forensic Medicine, Wuhan, Hubei 430074, China
| | - Deepak Chhangani
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany Ou
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Ze Yang
- The Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Diego E. Rincon-Limas
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Wanbo Tai
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Aaron Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Lead corresponding author
| |
Collapse
|
4
|
Chen M, Pekosz A, Villano JS, Shen W, Zhou R, Kulaga H, Li Z, Beck SE, Witwer KW, Mankowski JL, Ramanathan M, Rowan NR, Lane AP. Evolution of nasal and olfactory infection characteristics of SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.12.487379. [PMID: 35441175 PMCID: PMC9016639 DOI: 10.1101/2022.04.12.487379] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 infection of the upper airway and the subsequent immune response are early, critical factors in COVID-19 pathogenesis. By studying infection of human biopsies in vitro and in a hamster model in vivo, we demonstrated a transition in tropism from olfactory to respiratory epithelium as the virus evolved. Analyzing each variants revealed that SARS-CoV-2 WA1 or Delta infects a proportion of olfactory neurons in addition to the primary target sustentacular cells. The Delta variant possesses broader cellular invasion capacity into the submucosa, while Omicron displays longer retention in the sinonasal epithelium. The olfactory neuronal infection by WA1 and the subsequent olfactory bulb transport via axon is more pronounced in younger hosts. In addition, the observed viral clearance delay and phagocytic dysfunction in aged olfactory mucosa is accompanied by a decline of phagocytosis related genes. Furthermore, robust basal stem cell activation contributes to neuroepithelial regeneration and restores ACE2 expression post-infection. Together, our study characterized the nasal tropism of SARS-CoV-2 strains, immune clearance, and regeneration post infection. The shifting characteristics of viral infection at the airway portal provides insight into the variability of COVID-19 clinical features and may suggest differing strategies for early local intervention.
Collapse
Affiliation(s)
- Mengfei Chen
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Baltimore, MD
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason S. Villano
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wenjuan Shen
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Ruifeng Zhou
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Baltimore, MD
| | - Heather Kulaga
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Zhexuan Li
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Sarah E. Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joseph L. Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Nicholas R. Rowan
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Andrew P. Lane
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
5
|
Kulkarni PG, Sakharkar A, Banerjee T. Understanding the role of nACE2 in neurogenic hypertension among COVID-19 patients. Hypertens Res 2022; 45:254-269. [PMID: 34848886 PMCID: PMC8630198 DOI: 10.1038/s41440-021-00800-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
Currently, the third and fourth waves of the coronavirus disease -19 (COVID-19) pandemic are creating havoc in many parts of the world. Although vaccination programs have been launched in most countries, emerging new strains of the virus along with geographical variations are leading to varying success rates of the available vaccines. The presence of comorbidities such as diabetes, cardiovascular diseases and hypertension is responsible for increasing the severity of COVID-19 and, thus, the COVID-19 mortality rate. Angiotensin-converting enzyme 2 (ACE2), which is utilized by SARS-CoV-2 for entry into host cells, is widely expressed in the lungs, kidneys, testes, gut, adipose tissue, and brain. Infection within host cells mediates RAS overactivation, which leads to a decrease in the ACE2/ACE ratio, AT2R/AT1R ratio, and MasR/AT1R ratio. Such imbalances lead to the development of heightened inflammatory responses, such as cytokine storms, leading to post-COVID-19 complications and mortality. As the association of SARS-CoV-2 infection and hypertension remains unclear, this report provides an overview of the effects of SARS-CoV-2 infection on patients with hypertension. We discuss here the interaction of ACE2 with SARS-CoV-2, focusing on neuronal ACE2 (nACE2), and further shed light on the possible involvement of nACE2 in hypertension. SARS-CoV-2 enters the brain through neuronal ACE2 and spreads in various regions of the brain. The effect of viral binding to neuronal ACE2 in areas of the brain that regulate salt/water balance and blood pressure is also discussed in light of the neural regulation of hypertension in COVID-19.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University Ganeshkhind Road, Pune, 411007, India
| | - Amul Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University Ganeshkhind Road, Pune, 411007, India.
| | - Tanushree Banerjee
- Molecular Neuroscience Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune, 411 033, India.
| |
Collapse
|
6
|
Bakhtazad A, Garmabi B, Joghataei MT. Neurological manifestations of coronavirus infections, before and after COVID-19: a review of animal studies. J Neurovirol 2021; 27:864-884. [PMID: 34727365 PMCID: PMC8561685 DOI: 10.1007/s13365-021-01014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus, which was first identified in December 2019 in China, has resulted in a yet ongoing viral pandemic. Coronaviridae could potentially cause several disorders in a wide range of hosts such as birds and mammals. Although infections caused by this family of viruses are predominantly limited to the respiratory tract, Betacoronaviruses are potentially able to invade the central nervous system (CNS) as well as many other organs, thereby inducing neurological damage ranging from mild to lethal in both animals and humans. Over the past two decades, three novel CoVs, SARS-CoV-1, MERS-CoV, and SARS-CoV-2, emerging from animal reservoirs have exhibited neurotropic properties causing severe and even fatal neurological diseases. The pathobiology of these neuroinvasive viruses has yet to be fully known. Both clinical features of the previous CoV epidemics (SARS-CoV-1 and MERS-CoV) and lessons from animal models used in studying neurotropic CoVs, especially SARS and MERS, constitute beneficial tools in comprehending the exact mechanisms of virus implantation and in illustrating pathogenesis and virus dissemination pathways in the CNS. Here, we review the animal research which assessed CNS infections with previous more studied neurotropic CoVs to demonstrate how experimental studies with appliable animal models can provide scientists with a roadmap in the CNS impacts of SARS-CoV-2. Indeed, animal studies can finally help us discover the underlying mechanisms of damage to the nervous system in COVID-19 patients and find novel therapeutic agents in order to reduce mortality and morbidity associated with neurological complications of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, 1449614535 Tehran, Iran
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Haft-Tir Sq, University Blv, 3614773947 Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, 1449614535 Tehran, Iran
| |
Collapse
|
7
|
Parker MFL, Blecha J, Rosenberg O, Ohliger M, Flavell RR, Wilson DM. Cyclic 68Ga-Labeled Peptides for Specific Detection of Human Angiotensin-Converting Enzyme 2. J Nucl Med 2021; 62:1631-1637. [PMID: 33637588 PMCID: PMC8612341 DOI: 10.2967/jnumed.120.261768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/11/2021] [Indexed: 01/30/2023] Open
Abstract
In this study, we developed angiotensin-converting enzyme 2 (ACE2)-specific, peptide-derived 68Ga-labeled radiotracers, motivated by the hypotheses that ACE2 is an important determinant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility and that modulation of ACE2 in coronavirus disease 2019 (COVID-19) drives severe organ injury. Methods: A series of NOTA-conjugated peptides derived from the known ACE2 inhibitor DX600 were synthesized, with variable linker identity. Since DX600 bears 2 cystine residues, both linear and cyclic peptides were studied. An ACE2 inhibition assay was used to identify lead compounds, which were labeled with 68Ga to generate peptide radiotracers (68Ga-NOTA-PEP). The aminocaproate-derived radiotracer 68Ga-NOTA-PEP4 was subsequently studied in a humanized ACE2 (hACE2) transgenic model. Results: Cyclic DX-600-derived peptides had markedly lower half-maximal inhibitory concentrations than their linear counterparts. The 3 cyclic peptides with triglycine, aminocaproate, and polyethylene glycol linkers had calculated half-maximal inhibitory concentrations similar to or lower than the parent DX600 molecule. Peptides were readily labeled with 68Ga, and the biodistribution of 68Ga-NOTA-PEP4 was determined in an hACE2 transgenic murine cohort. Pharmacologic concentrations of coadministered NOTA-PEP (blocking) showed a significant reduction of 68Ga-NOTA-PEP4 signals in the heart, liver, lungs, and small intestine. Ex vivo hACE2 activity in these organs was confirmed as a correlate to in vivo results. Conclusion: NOTA-conjugated cyclic peptides derived from the known ACE2 inhibitor DX600 retain their activity when N-conjugated for 68Ga chelation. In vivo studies in a transgenic hACE2 murine model using the lead tracer, 68Ga-NOTA-PEP4, showed specific binding in the heart, liver, lungs and intestine-organs known to be affected in SARS-CoV-2 infection. These results suggest that 68Ga-NOTA-PEP4 could be used to detect organ-specific suppression of ACE2 in SARS-CoV-2-infected murine models and COVID-19 patients.
Collapse
Affiliation(s)
- Matthew F L Parker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Oren Rosenberg
- Department of Medicine, University of California, San Francisco, San Francisco, California; and
| | - Michael Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
- Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California;
| |
Collapse
|
8
|
Jarnagin K, Alvarez O, Shresta S, Webb DR. Animal models for SARS-Cov2/Covid19 research-A commentary. Biochem Pharmacol 2021; 188:114543. [PMID: 33812856 PMCID: PMC8016548 DOI: 10.1016/j.bcp.2021.114543] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION There is an urgent need for new animal models of SARS CoV-2 infection to improve research and drug development. This brief commentary examines the deficits of current models and proposes several improved alternates. The existing single transgene mouse models poorly mimic the clinical features of COVID-19; those strains get a milder disease than human COVID-19 disease. Many of the current transgenic models utilize random integration of several copies of single ACE2 transgenes, resulting in unnatural gene expression and exhibit rapid lethality. We suggest preparing precision knock-in of selected human mini genes at the mouse initiation codon and knock-out of the mouse homolog as a better option. Three genes critical for infection are suggested targets, ACE2 (the viral cellular receptor), its co-infection protease TMRPSS2, and the primary antibody clearance receptor FcγRT. To offer the best platform for COVID 19 research, preparation of single, double, and triple humanized combinations offers the researcher the opportunity to better understand the contributions of these receptors, coreceptors to therapeutic efficacy. In addition, we propose to create the humanized strains in the C57BL/6J and BALB/c backgrounds. These two backgrounds are Th1 responders and Th2 responders, respectively, and allow modeling of the variability seen in human pathology including lung pathology and late sequelae of COVID-19 disease (BALB/c). We suggest the need to do a thorough characterization of both the short-term and long-term effects of SAR-CoV-2 infection at the clinical, virologic, histopathologic, hematologic, and immunologic levels. We expect the multiply humanized strains will be superior to the single-gene and multiple-gene-copy transgenic models available to date. These mouse models will represent state-of-the-art tools for investigating mechanisms of COVID-19 pathogenesis and immunity and developing vaccines and drugs.
Collapse
Affiliation(s)
- Kurt Jarnagin
- Synbal, Inc., 10210 Campus Point DR. #150, San Diego, CA 92121, United States.
| | - Oscar Alvarez
- Synbal, Inc., 10210 Campus Point DR. #150, San Diego, CA 92121, United States.
| | - Sujan Shresta
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037-1387, United States.
| | - David R Webb
- Synbal, Inc., 10210 Campus Point DR. #150, San Diego, CA 92121, United States.
| |
Collapse
|
9
|
Golden JW, Zeng X, Cline CR, Garrison AR, White LE, Fitzpatrick CJ, Kwilas SA, Bowling PA, Fiallos JO, Moore JL, Sifford WB, Ricks KM, Mucker EM, Smith JM, Hooper JW. Human convalescent plasma protects K18-hACE2 mice against severe respiratory disease. J Gen Virol 2021; 102. [PMID: 33961540 PMCID: PMC8295914 DOI: 10.1099/jgv.0.001599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and human infections have resulted in a global health emergency. Small animal models that reproduce key elements of SARS-CoV-2 human infections are needed to rigorously screen candidate drugs to mitigate severe disease and prevent the spread of SARS-CoV-2. We and others have reported that transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the Keratin 18 (K18) promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge. Here we report that some infected mice that survive challenge have residual pulmonary damages and persistent brain infection on day 28 post-infection despite the presence of anti-SARS-COV-2 neutralizing antibodies. Because of the hypersensitivity of K18-hACE2 mice to SARS-CoV-2 and the propensity of virus to infect the brain, we sought to determine if anti-infective biologics could protect against disease in this model system. We demonstrate that anti-SARS-CoV-2 human convalescent plasma protects K18-hACE2 against severe disease. All control mice succumbed to disease by day 7; however, all treated mice survived infection without observable signs of disease. In marked contrast to control mice, viral antigen and lesions were reduced or absent from lungs and absent in brains of antibody-treated mice. Our findings support the use of K18-hACE2 mice for protective efficacy studies of anti-SARS-CoV-2 medical countermeasures (MCMs). They also support the use of this system to study SARS-CoV-2 persistence and host recovery.
Collapse
MESH Headings
- Acute Lung Injury/prevention & control
- Acute Lung Injury/virology
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Brain/pathology
- Brain/virology
- COVID-19/immunology
- COVID-19/pathology
- COVID-19/therapy
- COVID-19/virology
- Disease Models, Animal
- Female
- Humans
- Immunization, Passive
- Lung/pathology
- Lung/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Coronavirus/genetics
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/isolation & purification
- SARS-CoV-2/physiology
- Severity of Illness Index
- Viral Load
- Virus Replication
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Joseph W Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Xiankun Zeng
- Pathology, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Curtis R Cline
- Pathology, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Aura R Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Lauren E White
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Collin J Fitzpatrick
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Philip A Bowling
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jimmy O Fiallos
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Joshua L Moore
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Willie B Sifford
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Keersten M Ricks
- Diagnostic Services Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Eric M Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jeffrey M Smith
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| |
Collapse
|
10
|
Wang EY, Mao T, Klein J, Dai Y, Huck JD, Liu F, Zheng NS, Zhou T, Israelow B, Wong P, Lucas C, Silva J, Oh JE, Song E, Perotti ES, Fischer S, Campbell M, Fournier JB, Wyllie AL, Vogels CBF, Ott IM, Kalinich CC, Petrone ME, Watkins AE, Cruz CD, Farhadian SF, Schulz WL, Grubaugh ND, Ko AI, Iwasaki A, Ring AM. Diverse Functional Autoantibodies in Patients with COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2020.12.10.20247205. [PMID: 33330894 PMCID: PMC7743105 DOI: 10.1101/2020.12.10.20247205] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses1-8. While pathological innate immune activation is well documented in severe disease1, the impact of autoantibodies on disease progression is less defined. Here, we used a high-throughput autoantibody discovery technique called Rapid Extracellular Antigen Profiling (REAP) to screen a cohort of 194 SARS-CoV-2 infected COVID-19 patients and healthcare workers for autoantibodies against 2,770 extracellular and secreted proteins (the "exoproteome"). We found that COVID-19 patients exhibit dramatic increases in autoantibody reactivities compared to uninfected controls, with a high prevalence of autoantibodies against immunomodulatory proteins including cytokines, chemokines, complement components, and cell surface proteins. We established that these autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signaling and by altering peripheral immune cell composition, and found that murine surrogates of these autoantibodies exacerbate disease severity in a mouse model of SARS-CoV-2 infection. Analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics and disease severity. In summary, these findings implicate a pathological role for exoproteome-directed autoantibodies in COVID-19 with diverse impacts on immune functionality and associations with clinical outcomes.
Collapse
Affiliation(s)
- Eric Y. Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - John D. Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Neil S. Zheng
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ting Zhou
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Patrick Wong
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Julio Silva
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ji Eun Oh
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Emily S. Perotti
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Suzanne Fischer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Melissa Campbell
- Department of Internal Medicine (Infectious Diseases), Yale School of Medicine, New Haven, CT, USA
| | - John B. Fournier
- Department of Internal Medicine (Infectious Diseases), Yale School of Medicine, New Haven, CT, USA
| | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Isabel M. Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chaney C. Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mary E. Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne E. Watkins
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Charles Dela Cruz
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Shelli F. Farhadian
- Department of Internal Medicine (Infectious Diseases), Yale School of Medicine, New Haven, CT, USA
| | - Wade L. Schulz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Internal Medicine (Infectious Diseases), Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Oladunni FS, Park JG, Pino PA, Gonzalez O, Akhter A, Allué-Guardia A, Olmo-Fontánez A, Gautam S, Garcia-Vilanova A, Ye C, Chiem K, Headley C, Dwivedi V, Parodi LM, Alfson KJ, Staples HM, Schami A, Garcia JI, Whigham A, Platt RN, Gazi M, Martinez J, Chuba C, Earley S, Rodriguez OH, Mdaki SD, Kavelish KN, Escalona R, Hallam CRA, Christie C, Patterson JL, Anderson TJC, Carrion R, Dick EJ, Hall-Ursone S, Schlesinger LS, Alvarez X, Kaushal D, Giavedoni LD, Turner J, Martinez-Sobrido L, Torrelles JB. Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat Commun 2020; 11:6122. [PMID: 33257679 PMCID: PMC7705712 DOI: 10.1038/s41467-020-19891-7] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease would benefit from validated small animal models. Here, we show that transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2 transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2 transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 6. K18 hACE2 transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.
Collapse
Affiliation(s)
- Fatai S Oladunni
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Paula A Pino
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Olga Gonzalez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Anwari Akhter
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | - Angélica Olmo-Fontánez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Shalini Gautam
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Colwyn Headley
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Varun Dwivedi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Laura M Parodi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Kendra J Alfson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Hilary M Staples
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Alyssa Schami
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Juan I Garcia
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Alison Whigham
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Roy Neal Platt
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Michal Gazi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jesse Martinez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Colin Chuba
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Stephanie Earley
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | | | | | - Renee Escalona
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Cory R A Hallam
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Corbett Christie
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jean L Patterson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Tim J C Anderson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Edward J Dick
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | | | - Xavier Alvarez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Luis D Giavedoni
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA.
| | | | | |
Collapse
|
12
|
Muñoz-Fontela C, Dowling WE, Funnell SGP, Gsell PS, Riveros-Balta AX, Albrecht RA, Andersen H, Baric RS, Carroll MW, Cavaleri M, Qin C, Crozier I, Dallmeier K, de Waal L, de Wit E, Delang L, Dohm E, Duprex WP, Falzarano D, Finch CL, Frieman MB, Graham BS, Gralinski LE, Guilfoyle K, Haagmans BL, Hamilton GA, Hartman AL, Herfst S, Kaptein SJF, Klimstra WB, Knezevic I, Krause PR, Kuhn JH, Le Grand R, Lewis MG, Liu WC, Maisonnasse P, McElroy AK, Munster V, Oreshkova N, Rasmussen AL, Rocha-Pereira J, Rockx B, Rodríguez E, Rogers TF, Salguero FJ, Schotsaert M, Stittelaar KJ, Thibaut HJ, Tseng CT, Vergara-Alert J, Beer M, Brasel T, Chan JFW, García-Sastre A, Neyts J, Perlman S, Reed DS, Richt JA, Roy CJ, Segalés J, Vasan SS, Henao-Restrepo AM, Barouch DH. Animal models for COVID-19. Nature 2020; 586:509-515. [PMID: 32967005 PMCID: PMC8136862 DOI: 10.1038/s41586-020-2787-6] [Citation(s) in RCA: 628] [Impact Index Per Article: 125.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - William E Dowling
- Centre for Epidemic Preparedness Innovations (CEPI), Washington, DC, USA
| | | | | | | | - Randy A Albrecht
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miles W Carroll
- National Infection Service, Public Health England, Salisbury, UK
| | | | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking, China
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Leen Delang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Erik Dohm
- Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Paul Duprex
- Department of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Darryl Falzarano
- VIDO-Intervac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Courtney L Finch
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Amy L Hartman
- Department of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - William B Klimstra
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Philip R Krause
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm, CEA, Université Paris-Saclay, Paris, France
| | | | - Wen-Chun Liu
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Maisonnasse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm, CEA, Université Paris-Saclay, Paris, France
| | - Anita K McElroy
- Division of Pediatric Infectious Diseases, Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vincent Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Nadia Oreshkova
- Wageningen Bioveterinary Research (WBVR), Wageningen University and Research, Lelystad, The Netherlands
| | - Angela L Rasmussen
- Center for Infection and Immunity, Columbia Mailman |School of Public Health, New York, NY, USA
| | - Joana Rocha-Pereira
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Estefanía Rodríguez
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas F Rogers
- Division of Infectious Diseases, University of California San Diego, San Diego, CA, USA
| | | | - Michael Schotsaert
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Chien-Te Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Júlia Vergara-Alert
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jasper F W Chan
- Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Adolfo García-Sastre
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Douglas S Reed
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juergen A Richt
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chad J Roy
- Tulane National Primate Research Center, Covington, LA, USA
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain
| | - Seshadri S Vasan
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
- Department of Health Sciences, University of York, York, UK
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|