1
|
Pfaltzgraff NG, Liu B, de Rooij DG, Page DC, Mikedis MM. Destabilization of mRNAs enhances competence to initiate meiosis in mouse spermatogenic cells. Development 2024; 151:dev202740. [PMID: 38884383 PMCID: PMC11273298 DOI: 10.1242/dev.202740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and to promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis. Here, we have used the enhanced resolution of scRNA-seq and bulk RNA-seq of developmentally synchronized spermatogenesis to define how MEIOC molecularly supports early meiosis in spermatogenic cells. We demonstrate that MEIOC mediates transcriptomic changes before meiotic initiation, earlier than previously appreciated. MEIOC, acting with YTHDC2 and RBM46, destabilizes its mRNA targets, including the transcriptional repressors E2f6 and Mga, in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate the transcriptional regulator STRA8-MEIOSIN, which is required for the meiotic G1/S phase transition and for meiotic gene expression. We conclude that, in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of spermatogenic cells to initiate meiosis.
Collapse
Affiliation(s)
- Natalie G. Pfaltzgraff
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bingrun Liu
- Whitehead Institute, Cambridge, MA 02142, USA
| | | | - David C. Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria M. Mikedis
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Pfaltzgraff NG, Liu B, de Rooij DG, Page DC, Mikedis MM. Destabilization of mRNAs enhances competence to initiate meiosis in mouse spermatogenic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.20.557439. [PMID: 37781613 PMCID: PMC10541148 DOI: 10.1101/2023.09.20.557439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis. Here, we used the enhanced resolution of scRNA-seq, and bulk RNA-seq of developmentally synchronized spermatogenesis, to define how MEIOC molecularly supports early meiosis in spermatogenic cells. We demonstrate that MEIOC mediates transcriptomic changes before meiotic initiation, earlier than previously appreciated. MEIOC, acting with YTHDC2 and RBM46, destabilizes its mRNA targets, including transcriptional repressors E2f6 and Mga , in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate transcriptional regulator STRA8-MEIOSIN, required for the meiotic G1/S phase transition and meiotic gene expression. We conclude that in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of spermatogenic cells to initiate meiosis. SUMMARY STATEMENT RNA-binding complex MEIOC-YTHDC2-RBM46 destabilizes its mRNA targets, including transcriptional repressors. This activity facilitates the retinoic acid-dependent activation of Meiosin gene expression and transition into meiosis.
Collapse
|
3
|
Suzuki A, Uranishi K, Nishimoto M, Mizuno Y, Mizuno S, Takahashi S, Eisenman RN, Okuda A. MAX controls meiotic entry in sexually undifferentiated germ cells. Sci Rep 2024; 14:5236. [PMID: 38433229 PMCID: PMC10909893 DOI: 10.1038/s41598-024-55506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
Meiosis is a specialized type of cell division that occurs physiologically only in germ cells. We previously demonstrated that MYC-associated factor X (MAX) blocks the ectopic onset of meiosis in embryonic and germline stem cells in culture systems. Here, we investigated the Max gene's role in mouse primordial germ cells. Although Max is generally ubiquitously expressed, we revealed that sexually undifferentiated male and female germ cells had abundant MAX protein because of their higher Max gene expression than somatic cells. Moreover, our data revealed that this high MAX protein level in female germ cells declined significantly around physiological meiotic onset. Max disruption in sexually undifferentiated germ cells led to ectopic and precocious expression of meiosis-related genes, including Meiosin, the gatekeeper of meiotic onset, in both male and female germ cells. However, Max-null male and female germ cells did not complete the entire meiotic process, but stalled during its early stages and were eventually eliminated by apoptosis. Additionally, our meta-analyses identified a regulatory region that supports the high Max expression in sexually undifferentiated male and female germ cells. These results indicate the strong connection between the Max gene and physiological onset of meiosis in vivo through dynamic alteration of its expression.
Collapse
Affiliation(s)
- Ayumu Suzuki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Masazumi Nishimoto
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Yosuke Mizuno
- Division of Morphological Science, Biomedical Research Center, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Akihiko Okuda
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan.
| |
Collapse
|
4
|
Abstract
Meiosis is critical for germ cell development in multicellular organisms. Initiation of meiosis coincides with pre-meiotic S phase, which is followed by meiotic prophase, a prolonged G2 phase that ensures numerous meiosis-specific chromosome events. Meiotic prophase is accompanied by robust alterations of gene expression. In mouse germ cells, MEIOSIN and STRA8 direct cell cycle switch from mitosis to meiosis. MEIOSIN and STRA8 coordinate meiotic initiation with cell cycle, by activating the meiotic genes to have meiotic prophase program installed at S phase. This review mainly focuses on the mechanism of meiotic initiation in mouse germ cells from the viewpoint of the transcription of meiotic genes. Furthermore, signaling pathways that regulate meiotic initiation will be discussed in the context of germ cell development, pointing out the sexual differences in the mode of meiotic initiation.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
5
|
Zhang Y, Tian GG, Wang X, Hou C, Hu X, Wu J. Retinoic acid induced meiosis initiation in female germline stem cells by remodelling three-dimensional chromatin structure. Cell Prolif 2022; 55:e13242. [PMID: 35633286 PMCID: PMC9251051 DOI: 10.1111/cpr.13242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
Objectives This study aimed to clarify the regulation and mechanism of meiotic initiation in FGSC development. Materials and Methods FGSCs were induced to differentiate into meiosis in differentiation medium. RNA sequencing was performed to analysis the difference of transcription level. High‐through chromosome conformation capture sequencing (Hi‐C) was performed to analysis changes of three‐dimensional chromatin structure. Chromosome conformation capture further confirmed a spatial chromatin loop. ChIP‐qPCR and dual luciferase reporter were used to test the interaction between Stimulated by retinoic acid gene 8 (STRA8) protein and Trip13 promoter. Results Compared with FGSCs, the average diameter of STRA8‐positive germ cells increased from 13 μm to 16.8 μm. Furthermore, there were 4788 differentially expressed genes between the two cell stages; Meiosis and chromatin structure‐associated terms were significantly enriched. Additionally, Hi‐C results showed that FGSCs underwent A/B compartment switching (switch rate was 29.81%), the number of topologically associating domains (TADs) increasing, the average size of TADs decreasing, and chromatin loop changes at genome region of Trip13 from undifferentiated stage to meiosis‐initiation stage. Furthermore, we validated that Trip13 promoter contacted distal enhancer to form spatial chromatin loop and STRA8 could bind Trip13 promoter to promote gene expression. Conclusion FGSCs underwent chromatin structure remodelling from undifferentiated stage to meiosis‐initiation stage, which facilitated STRA8 binding to Trip13 promoter and promoting its expression.
Collapse
Affiliation(s)
- Yabin Zhang
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Changliang Hou
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaopeng Hu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Ashraf M, Zeeshan M, Ahmad N, Javed K, Riaz A, Riaz H. Changes in the testicular histomorphometry and their association with genes expression pattern of testes from birth to puberty in Beetal goat kids. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Gavade JN, Puccia CM, Herod SG, Trinidad JC, Berchowitz LE, Lacefield S. Identification of 14-3-3 proteins, Polo kinase, and RNA-binding protein Pes4 as key regulators of meiotic commitment in budding yeast. Curr Biol 2022; 32:1534-1547.e9. [PMID: 35240051 PMCID: PMC9007917 DOI: 10.1016/j.cub.2022.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 01/25/2023]
Abstract
The initiation of the cell division process of meiosis requires exogenous signals that activate internal gene regulatory networks. Meiotic commitment ensures the irreversible continuation of meiosis, even upon withdrawal of the meiosis-inducing signals. A loss of meiotic commitment can cause highly abnormal polyploid cells and can ultimately lead to germ cell tumors. Despite the importance of meiotic commitment, only a few genes involved in commitment are known. In this study, we have discovered six new regulators of meiotic commitment in budding yeast: the Bcy1 protein involved in nutrient sensing, the meiosis-specific kinase Ime2, Polo kinase Cdc5, RNA-binding protein Pes4, and the 14-3-3 proteins Bmh1 and Bmh2. Decreased levels of these proteins cause a failure to establish or maintain meiotic commitment. Importantly, we found that Bmh1 and Bmh2 are involved in multiple processes throughout meiosis and in meiotic commitment. First, cells depleted of both Bmh1 and Bmh2 trigger the pachytene checkpoint, likely due to a role in DNA double-strand break repair. Second, Bmh1 interacts directly with the middle meiosis transcription factor Ndt80, and both Bmh1 and Bmh2 maintain Ndt80 levels. Third, Bmh1 and Bmh2 bind to Cdc5 and enhance its kinase activity. Finally, Bmh1 binds to Pes4, which regulates the timing of the translation of several mRNAs in meiosis II and is required to maintain meiotic commitment. Our results demonstrate that meiotic commitment is actively maintained throughout meiosis, with the 14-3-3 proteins and Polo kinase serving as key regulators of this developmental program.
Collapse
Affiliation(s)
| | - Chris M Puccia
- Indiana University, Department of Biology, Bloomington, IN, USA
| | - S Grace Herod
- Columbia University Irving Medical Center, Department of Genetics and Development, Hammer Health Sciences Center, New York, NY, USA
| | | | - Luke E Berchowitz
- Columbia University Irving Medical Center, Department of Genetics and Development, Hammer Health Sciences Center, New York, NY, USA
| | - Soni Lacefield
- Indiana University, Department of Biology, Bloomington, IN, USA.
| |
Collapse
|
8
|
Sun S, Jiang Y, Zhang Q, Pan H, Li X, Yang L, Huang M, Wei W, Wang X, Qiu M, Cao L, He H, Yu M, Liu H, Zhao B, Jiang N, Li R, Lin X. Znhit1 controls meiotic initiation in male germ cells by coordinating with Stra8 to activate meiotic gene expression. Dev Cell 2022; 57:901-913.e4. [PMID: 35413238 DOI: 10.1016/j.devcel.2022.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/25/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
The switch from mitosis to meiosis ensures the successive formation of gametes. However, it remains unclear how meiotic initiation occurs within the context of chromatin. Recent studies have shown that zinc finger HIT-type containing 1 (Znhit1), a subunit of the SRCAP chromatin remodeling complex, plays essential roles in modulating the chromatin structure. Herein, we report that the germline-conditional deletion of Znhit1 in male mice specifically blocks meiotic initiation. We show that Znhit1 is required for meiotic prophase events, including synapsis, DNA double-strand break formation, and meiotic DNA replication. Mechanistically, Znhit1 controls the histone variant H2A.Z deposition, which facilitates the expression of meiotic genes, such as Meiosin, but not the expression of Stra8. Interestingly, Znhit1 deficiency disrupts the transcription bubbles of meiotic genes. Thus, our findings identify the essential role of Znhit1-dependent H2A.Z deposition in allowing activation of meiotic gene expression, thereby controlling the initiation of meiosis.
Collapse
Affiliation(s)
- Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yamei Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Qiaoli Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hongjie Pan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Li Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Meina Huang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Wei Wei
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China
| | - Xiaoye Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Mengdi Qiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Lihuan Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Hua He
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China
| | - Miao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Hanmin Liu
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Runsheng Li
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China.
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Kumar S, Abatiyow BA, Haile MT, Oualim KMZ, Leeb AS, Vaughan AM, Kappe SH. A Putative Plasmodium RNA-Binding Protein Plays a Critical Role in Female Gamete Fertility and Parasite Transmission to the Mosquito Vector. Front Cell Dev Biol 2022; 10:825247. [PMID: 35465336 PMCID: PMC9022223 DOI: 10.3389/fcell.2022.825247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Plasmodium falciparum sexual stage gametocytes are critical for parasite transmission from the human host to the mosquito vector. Mature gametocytes generate fertile male (micro-) or female (macro-) gametes upon activation inside the mosquito midgut. While a number of parasite genes have been described that are critical for P. falciparum gametogenesis and fertility, no parasite gene has been shown to have a unique function in macrogametes. The genome of P. falciparum encodes numerous RNA-binding proteins. We identified a novel protein containing a putative RNA-binding domain, which we named Macrogamete-Contributed Factor Essential for Transmission (MaCFET). This protein is expressed in the asexual and sexual stages. Parasites that carry a deletion of MaCFET (Pfmacfet¯), developed normally as asexual stages, indicating that its function is not essential for the asexual proliferation of the parasite in vitro. Furthermore, Pfmacfet¯ male and female gametocytes developed normally and underwent activation to form microgametes and macrogametes. However, by utilizing genetic crosses, we demonstrate that Pfmacfet¯ parasites suffer a complete female-specific defect in successful fertilization. Therefore, PfMaCFET is a critical female-contributed factor for parasite transmission to the mosquito. Based on its putative RNA-binding properties, PfMaCFET might be in involved in the regulation of mRNAs that encode female-specific functions for fertilization or female-contributed factors needed post fertilization.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kenza M. Z. Oualim
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Amanda S. Leeb
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Spiller C, Bowles J. Instructing Mouse Germ Cells to Adopt a Female Fate. Sex Dev 2022:1-13. [PMID: 35320803 DOI: 10.1159/000523763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/20/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Germ cells are critical for the survival of our species. They are the only cells that undergo meiosis - the reductive form of cell division that is necessary for genetic reassortment of chromosomes and production of the haploid gametes, the sperm and eggs. Remarkably, the initial female/male fate decision in fetal germ cells does not depend on whether they are chromosomally XX or XY; rather, initial sexual fate is imposed by influences from the surrounding tissue. In mammals, the female germline is particularly precious: despite recent suggestions that germline stem cells exist in the ovary, it is still generally accepted that the ovarian reserve is finite, and its size is dependant on germ cells of the fetal ovary initiating meiosis in a timely manner. SUMMARY Prior to 2006, evidence suggested that gonadal germ cells initiate meiotic prophase I by default, but more recent data support a key role for the signalling molecule retinoic acid (RA) in instructing female germ cell fate. Newer findings also support a key meiosis-inducing role for another signalling molecule, bone morphogenic protein (BMP). Nonetheless, many questions remain. KEY MESSAGES Here, we review knowledge thus far regarding extrinsic and intrinsic determinants of a female germ cell fate, focusing on the mouse model.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Saito Y, Hawley BR, Puno MR, Sarathy SN, Lima CD, Jaffrey SR, Darnell RB, Keeney S, Jain D. YTHDC2 control of gametogenesis requires helicase activity but not m 6A binding. Genes Dev 2022; 36:180-194. [PMID: 35058317 PMCID: PMC8887132 DOI: 10.1101/gad.349190.121] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Mechanisms regulating meiotic progression in mammals are poorly understood. The N6-methyladenosine (m6A) reader and 3' → 5' RNA helicase YTHDC2 switches cells from mitotic to meiotic gene expression programs and is essential for meiotic entry, but how this critical cell fate change is accomplished is unknown. Here, we provide insight into its mechanism and implicate YTHDC2 in having a broad role in gene regulation during multiple meiotic stages. Unexpectedly, mutation of the m6A-binding pocket of YTHDC2 had no detectable effect on gametogenesis and mouse fertility, suggesting that YTHDC2 function is m6A-independent. Supporting this conclusion, CLIP data defined YTHDC2-binding sites on mRNA as U-rich and UG-rich motif-containing regions within 3' UTRs and coding sequences, distinct from the sites that contain m6A during spermatogenesis. Complete loss of YTHDC2 during meiotic entry did not substantially alter translation of its mRNA binding targets in whole-testis ribosome profiling assays but did modestly affect their steady-state levels. Mutation of the ATPase motif in the helicase domain of YTHDC2 did not affect meiotic entry, but it blocked meiotic prophase I progression, causing sterility. Our findings inform a model in which YTHDC2 binds transcripts independent of m6A status and regulates gene expression during multiple stages of meiosis by distinct mechanisms.
Collapse
Affiliation(s)
- Yuhki Saito
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10065, USA
| | - Ben R Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - M Rhyan Puno
- Structural Biology Program, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Shreya N Sarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Christopher D Lima
- Structural Biology Program, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Devanshi Jain
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
12
|
McCarthy A, Sarkar K, Martin ET, Upadhyay M, Jang S, Williams ND, Forni PE, Buszczak M, Rangan P. Msl3 promotes germline stem cell differentiation in female Drosophila. Development 2022; 149:dev199625. [PMID: 34878097 PMCID: PMC8783043 DOI: 10.1242/dev.199625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023]
Abstract
Gamete formation from germline stem cells (GSCs) is essential for sexual reproduction. However, the regulation of GSC differentiation is incompletely understood. Set2, which deposits H3K36me3 modifications, is required for GSC differentiation during Drosophila oogenesis. We discovered that the H3K36me3 reader Male-specific lethal 3 (Msl3) and histone acetyltransferase complex Ada2a-containing (ATAC) cooperate with Set2 to regulate GSC differentiation in female Drosophila. Msl3, acting independently of the rest of the male-specific lethal complex, promotes transcription of genes, including a germline-enriched ribosomal protein S19 paralog RpS19b. RpS19b upregulation is required for translation of RNA-binding Fox protein 1 (Rbfox1), a known meiotic cell cycle entry factor. Thus, Msl3 regulates GSC differentiation by modulating translation of a key factor that promotes transition to an oocyte fate.
Collapse
Affiliation(s)
- Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Kahini Sarkar
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Elliot T. Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nathan D. Williams
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Paolo E. Forni
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| |
Collapse
|
13
|
Hernandez-Lagana E, Mosca G, Mendocilla-Sato E, Pires N, Frey A, Giraldo-Fonseca A, Michaud C, Grossniklaus U, Hamant O, Godin C, Boudaoud A, Grimanelli D, Autran D, Baroux C. Organ geometry channels reproductive cell fate in the Arabidopsis ovule primordium. eLife 2021; 10:e66031. [PMID: 33960300 PMCID: PMC8219382 DOI: 10.7554/elife.66031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
In multicellular organisms, sexual reproduction requires the separation of the germline from the soma. In flowering plants, the female germline precursor differentiates as a single spore mother cell (SMC) as the ovule primordium forms. Here, we explored how organ growth contributes to SMC differentiation. We generated 92 annotated 3D images at cellular resolution in Arabidopsis. We identified the spatio-temporal pattern of cell division that acts in a domain-specific manner as the primordium forms. Tissue growth models uncovered plausible morphogenetic principles involving a spatially confined growth signal, differential mechanical properties, and cell growth anisotropy. Our analysis revealed that SMC characteristics first arise in more than one cell but SMC fate becomes progressively restricted to a single cell during organ growth. Altered primordium geometry coincided with a delay in the fate restriction process in katanin mutants. Altogether, our study suggests that tissue geometry channels reproductive cell fate in the Arabidopsis ovule primordium.
Collapse
Affiliation(s)
| | - Gabriella Mosca
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Ethel Mendocilla-Sato
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Nuno Pires
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Anja Frey
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Alejandro Giraldo-Fonseca
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | | | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIALyonFrance
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIALyonFrance
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIALyonFrance
| | | | - Daphné Autran
- DIADE, University of Montpellier, CIRAD, IRDMontpellierFrance
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIALyonFrance
| | - Célia Baroux
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| |
Collapse
|
14
|
Sênos Demarco R, Jones DL. Redox signaling as a modulator of germline stem cell behavior: Implications for regenerative medicine. Free Radic Biol Med 2021; 166:67-72. [PMID: 33592309 PMCID: PMC8021480 DOI: 10.1016/j.freeradbiomed.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Germline stem cells (GSCs) are crucial for the generation of gametes and propagation of the species. Both intrinsic signaling pathways and environmental cues are employed in order to tightly control GSC behavior, including mitotic divisions, the choice between self-renewal or onset of differentiation, and survival. Recently, oxidation-reduction (redox) signaling has emerged as an important regulator of GSC and gamete behavior across species. In this review, we will highlight the primary mechanisms through which redox signaling acts to influence GSC behavior in different model organisms (Caenorhabditis elegans, Drosophila melanogaster and Mus musculus). In addition, we will summarize the latest research on the use of antioxidants to support mammalian spermatogenesis and discuss potential strategies for regenerative medicine in humans to enhance reproductive fitness.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Mukherjee N, Mukherjee C. Germ cell ribonucleoprotein granules in different clades of life: From insects to mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1642. [PMID: 33555143 DOI: 10.1002/wrna.1642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Ribonucleoprotein (RNP) granules are no newcomers in biology. Found in all life forms, ranging across taxa, these membrane-less "organelles" have been classified into different categories based on their composition, structure, behavior, function, and localization. Broadly, they can be listed as stress granules (SGs), processing bodies (PBs), neuronal granules (NGs), and germ cell granules (GCGs). Keeping in line with the topic of this review, RNP granules present in the germ cells have been implicated in a wide range of cellular functions including cellular specification, differentiation, proliferation, and so forth. The mechanisms used by them can be diverse and many of them remain partly obscure and active areas of research. GCGs can be of different types in different organisms and at different stages of development, with multiple types coexisting in the same cell. In this review, the different known subcategories of GCGs have been studied with respect to five distinct model organisms, namely, Drosophila, Caenorhabditis elegans, Xenopus, Zebrafish, and mammals. Of them, the cytoplasmic polar granules in Drosophila, P granules in C. elegans, balbiani body in Xenopus and Zebrafish, and chromatoid bodies in mammals have been specifically emphasized upon. A descriptive account of the same has been provided along with insights into our current understanding of their functional significance with respect to cellular events relating to different developmental and reproductive processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease.
Collapse
|
16
|
Bline AP, Le Goff A, Allard P. What Is Lost in the Weismann Barrier? J Dev Biol 2020; 8:E35. [PMID: 33339122 PMCID: PMC7768413 DOI: 10.3390/jdb8040035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
The Weismann barrier has long been regarded as a basic tenet of biology. However, upon close examination of its historical origins and August Weismann's own writings, questions arise as to whether such a status is warranted. As scientific research has advanced, the persistence of the concept of the barrier has left us with the same dichotomies Weismann contended with over 100 years ago: germ or soma, gene or environment, hard or soft inheritance. These dichotomies distract from the more important questions we need to address going forward. In this review, we will examine the theories that have shaped Weismann's thinking, how the concept of the Weismann barrier emerged, and the limitations that it carries. We will contrast the principles underlying the barrier with recent and less recent findings in developmental biology and transgenerational epigenetic inheritance that have profoundly eroded the oppositional view of germline vs. soma. Discarding the barrier allows us to examine the interactive processes and their response to environmental context that generate germ cells in the first place, determine the entirety of what is inherited through them, and set the trajectory for the health status of the progeny they bear.
Collapse
Affiliation(s)
- Abigail P. Bline
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Anne Le Goff
- UCLA EpiCenter on Epigenetics, Reproduction & Society, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Institute for Society & Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA;
- UCLA EpiCenter on Epigenetics, Reproduction & Society, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Institute for Society & Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Hernandez-Lagana E, Autran D. H3.1 Eviction Marks Female Germline Precursors in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1322. [PMID: 33036297 PMCID: PMC7600056 DOI: 10.3390/plants9101322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022]
Abstract
In flowering plants, germline precursors are differentiated from somatic cells. The female germline precursor of Arabidopsis thaliana is located in the internal (nucellar) tissue of the ovule, and is known as the Megaspore Mother Cell (MMC). MMC differentiation in Arabidopsis occurs when a cell in the subepidermal layer of the nucellar apex enters the meiotic program. Increasing evidence has demonstrated that MMC specification is a plastic process where the number and developmental outcome of MMCs are variable. During its differentiation, the MMC displays specific chromatin hallmarks that distinguish it from other cells within the primordium. To date, these signatures have been only analyzed at developmental stages where the MMC is morphologically conspicuous, and their role in reproductive fate acquisition remains to be elucidated. Here, we show that the histone 3 variant H3.1 HISTONE THREE RELATED 13 (HTR13) can be evicted in multiple subepidermal cells of the nucellus, but that H3.1 eviction persists only in the MMC. This pattern is established very early in ovule development and is reminiscent of the specific eviction of H3.1 that marks cell cycle exit in other somatic cell types, such as the root quiescent center (QC) of Arabidopsis. Our findings suggest that cell cycle progression in the subepidermal region of the ovule apex is modified very early in development and is associated with plasticity of reproductive fate acquisition.
Collapse
Affiliation(s)
| | - Daphné Autran
- DIADE, IRD, CIRAD, University of Montpellier, 911 avenue Agropolis, 34000 Montpellier, France;
| |
Collapse
|
18
|
Demin SI, Bogolyubov DS, Granovitch AI, Mikhailova NA. New data on spermatogenic cyst formation and cellular composition of the testis in a marine gastropod, Littorina saxatilis. Int J Mol Sci 2020; 21:ijms21113792. [PMID: 32471172 PMCID: PMC7312181 DOI: 10.3390/ijms21113792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/29/2023] Open
Abstract
Knowledge of the testis structure is important for gastropod taxonomy and phylogeny, particularly for the comparative analysis of sympatric Littorina species. Observing fresh tissue and squashing fixed tissue with gradually increasing pressure, we have recently described a peculiar type of cystic spermatogenesis, rare in mollusks. It has not been documented in most mollusks until now. The testis of adult males consists of numerous lobules filled with multicellular cysts containing germline cells at different stages of differentiation. Each cyst is formed by one cyst cell of somatic origin. Here, we provide evidence for the existence of two ways of cyst formation in Littorina saxatilis. One of them begins with a goniablast cyst formation; it somewhat resembles cyst formation in Drosophila testes. The second way begins with capture of a free spermatogonium by the polyploid cyst cell which is capable to move along the gonad tissues. This way of cyst formation has not been described previously. Our data expand the understanding of the diversity of spermatogenesis types in invertebrates.
Collapse
Affiliation(s)
- Sergei Iu. Demin
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia;
- Correspondence: (S.I.D.); (D.S.B.)
| | - Dmitry S. Bogolyubov
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia;
- Correspondence: (S.I.D.); (D.S.B.)
| | - Andrey I. Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia;
| | - Natalia A. Mikhailova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia;
- Department of Invertebrate Zoology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia;
| |
Collapse
|
19
|
Gantchev J, Martínez Villarreal A, Gunn S, Zetka M, Ødum N, Litvinov IV. The ectopic expression of meiCT genes promotes meiomitosis and may facilitate carcinogenesis. Cell Cycle 2020; 19:837-854. [PMID: 32223693 DOI: 10.1080/15384101.2020.1743902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer meiomitosis is defined as the concurrent activation of both mitotic and meiotic machineries in neoplastic cells that confer a selective advantage together with increased genomic instability. MeiCT (meiosis-specific cancer/testis) genes that perform specialized functions in the germline events required for the first meiotic division are ectopically expressed in several cancers. Here we describe the expression profiles of meiCT genes and proteins across a number of cancers and review the proposed mechanisms that increase aneuploidy and elicit reduction division in polyploid cells. These mechanisms are centered on the overexpression and function of meiCT proteins in cancers under various conditions that includes a response to genotoxic stress. Since meiCT genes are transcriptionally repressed in somatic cells, their target offers a promising therapeutic approach with limited toxicity to healthy tissues. Throughout the review, we provide a detailed description of the roles for each gene in the context of meiosis and we discuss proposed functions and outcomes resulting from their ectopic reactivation in cancer.
Collapse
Affiliation(s)
- Jennifer Gantchev
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | | | - Scott Gunn
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Neils Ødum
- Department of Microbiology and Immunology, The University of Copenhagen, Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
20
|
Meiotic gatekeeper STRA8 suppresses autophagy by repressing Nr1d1 expression during spermatogenesis in mice. PLoS Genet 2019; 15:e1008084. [PMID: 31059511 PMCID: PMC6502318 DOI: 10.1371/journal.pgen.1008084] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
The transition from mitotic to meiotic cell cycles is essential for haploid gamete formation and fertility. Stimulated by retinoic acid gene 8 (Stra8) is an essential gatekeeper of meiotic initiation in vertebrates; yet, the molecular role of STRA8 remains principally unknown. Here we demonstrate that STRA8 functions as a suppressor of autophagy during spermatogenesis in mice. Stra8-deficient germ cells fail to enter meiosis and present aberrant upregulation of autophagy-lysosome genes, commensurate with autophagy activation. Biochemical assays show that ectopic expression of STRA8 alone is sufficient to inhibit both autophagy induction and maturation. Studies also revealed that, Nr1d1, a nuclear hormone receptor gene, is upregulated in Stra8-deficient testes and that STRA8 binds to the Nr1d1 promoter, indicating that Nr1d1 is a direct target of STRA8 transcriptional repression. In addition, it was found that NR1D1 binds to the promoter of Ulk1, a gene essential for autophagy initiation, and that Nr1d1 is required for the upregulated Ulk1 expression in Stra8-deficient testes. Furthermore, both genetic deletion of Nr1d1 and pharmacologic inhibition of NR1D1 by its synthetic antagonist SR8278 exhibit rescuing effects on the meiotic initiation defects observed in Stra8-deficient male germ cells. Together, the data suggest a novel link between STRA8-mediated autophagy suppression and meiotic initiation. Meiotic initiation is a key feature of sexual reproduction that launches an intricate chromosomal program involving DNA double strand breaks (DSBs), homolog pairing, cohesion, synapsis, and recombination. Vertebrate gene Stra8 is an essential gatekeeper of meiotic initiation. However, the molecular role of STRA8 and its target genes remain elusive. Using mouse spermatogenesis as a model, we report that STRA8 suppresses autophagy by repressing the transcription of a nuclear hormone receptor gene Nr1d1, and in turn, silencing the expression of Ulk1, a gene essential for autophagy initiation. Given that autophagy is critical for protein and cellular organelle recycling and for preventing genomic instability, our study suggests that this newly demonstrated function of STRA8, as a suppressor of autophagy, may be an important mechanistic feature of its role in meiotic initiation.
Collapse
|
21
|
Ballew O, Lacefield S. The DNA damage checkpoint and the spindle position checkpoint: guardians of meiotic commitment. Curr Genet 2019; 65:1135-1140. [PMID: 31028453 DOI: 10.1007/s00294-019-00981-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
Exogenous signals induce cells to enter the specialized cell division process of meiosis, which produces haploid gametes from diploid progenitor cells. Once cells initiate the meiotic divisions, it is imperative that they complete meiosis. Inappropriate exit from meiosis and entrance into mitosis can create polyploid cells and can lead to germline tumors. Saccharomyces cerevisiae cells enter meiosis when starved of nutrients but can return to mitosis if provided nutrient-rich medium before a defined commitment point. Once past the meiotic commitment point in prometaphase I, cells stay committed to meiosis even in the presence of a mitosis-inducing signal. Recent research investigated the maintenance of meiotic commitment in budding yeast and found that two checkpoints that do not normally function in meiosis I, the DNA damage checkpoint and the spindle position checkpoint, have crucial functions in maintaining meiotic commitment. Here, we review these findings and discuss how the mitosis-inducing signal of nutrient-rich medium could activate these two checkpoints in meiosis to prevent inappropriate meiotic exit.
Collapse
Affiliation(s)
- Olivia Ballew
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
22
|
Kojima ML, de Rooij DG, Page DC. Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice. eLife 2019; 8:43738. [PMID: 30810530 PMCID: PMC6392498 DOI: 10.7554/elife.43738] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/10/2019] [Indexed: 12/22/2022] Open
Abstract
The germ line provides the cellular link between generations of multicellular organisms, its cells entering the meiotic cell cycle only once each generation. However, the mechanisms governing this initiation of meiosis remain poorly understood. Here, we examined cells undergoing meiotic initiation in mice, and we found that initiation involves the dramatic upregulation of a transcriptional network of thousands of genes whose expression is not limited to meiosis. This broad gene expression program is directly upregulated by STRA8, encoded by a germ cell-specific gene required for meiotic initiation. STRA8 binds its own promoter and those of thousands of other genes, including meiotic prophase genes, factors mediating DNA replication and the G1-S cell-cycle transition, and genes that promote the lengthy prophase unique to meiosis I. We conclude that, in mice, the robust amplification of this extraordinarily broad transcription program by a common factor triggers initiation of meiosis.
Collapse
Affiliation(s)
- Mina L Kojima
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | | | - David C Page
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, United States
| |
Collapse
|
23
|
Spermatogenesis and lobular cyst type of testes organization in marine gastropod Littorina saxatilis (Olivi 1792). Cell Tissue Res 2019; 376:457-470. [PMID: 30778731 DOI: 10.1007/s00441-019-03004-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Although individual stages of spermatogenesis in Littorina saxatilis are well studied at the electron microscopic level, the gonad structure and the spatial localization of gametes at different stages of maturation remain unclear. Using differential-interference contrast (DIC) for observations of fresh tissue we show that the mature testis consists of numerous ovoid lobules forming larger lobes. The lobules of intact mature testes of L. saxatilis are filled with randomly arranged multicellular cysts containing gametes at different stages of maturation. Gametes within a cyst are highly synchronized in respect of the differentiation degree. At the same time, no spatial gradient in the arrangement of cysts according to the maturation degree of gametes in them was observed in any of the studied lobules. The male gonads contain cysts with early spermatids, mid, late spermatids, and spermatozoa. Using silver-staining, DAPI, and chromomycin A3 (CMA3) staining, we identify 20 main types of nucleus organization in differentiating sperm. Premature and mature male gonads contain cysts with a mosaic arrangement as well as rare solitary cyst cells, goniablast cysts, or separate spermatogonia in between them. Our data indicate that the testis structure in L. saxatilis cannot be attributed to the tubular type, as previously thought. It corresponds to the lobular cyst type but individual lobules contain cysts with gametes at the same stage of development. It is similar to the testis structure of several fishes, amphibians, and Drosophila melanogaster. This type of the gonad organization has never been described in gastropods before.
Collapse
|
24
|
The DNA Damage Checkpoint and the Spindle Position Checkpoint Maintain Meiotic Commitment in Saccharomyces cerevisiae. Curr Biol 2019; 29:449-460.e2. [PMID: 30686741 DOI: 10.1016/j.cub.2018.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/26/2018] [Accepted: 12/21/2018] [Indexed: 01/17/2023]
Abstract
During meiosis, diploid progenitor cells undergo one round of DNA replication followed by two rounds of chromosome segregation to form haploid gametes. Once cells initiate the meiotic divisions, it is imperative that they finish meiosis. A failure to maintain meiosis can result in highly aberrant polyploid cells, which could lead to oncogenesis in the germline. How cells stay committed to finishing meiosis, even in the presence of a mitosis-inducing signal, is poorly understood. We addressed this question in budding yeast, in which cells enter meiosis when starved. If nutrient-rich medium is added before a defined commitment point in mid-prometaphase I, they can return to mitosis. Cells in stages beyond the commitment point will finish meiosis, even with nutrient addition. Because checkpoints are signaling pathways known to couple cell-cycle processes with one another, we asked if checkpoints could ensure meiotic commitment. We find that two checkpoints with well-defined functions in mitosis, the DNA damage checkpoint and the spindle position checkpoint, have crucial roles in meiotic commitment. With nutrient-rich medium addition at stages beyond the commitment point, cells that are deficient in both checkpoints because they lack Rad53 and either Bub2, Bfa1, or Kin4 can return to mitotic growth and go on to form polyploid cells. The results demonstrate that the two checkpoints prevent cells from exiting meiosis in the presence of a mitosis-inducing signal. This study reveals a previously unknown function for the DNA damage checkpoint and the spindle position checkpoint in maintaining meiotic commitment.
Collapse
|
25
|
|
26
|
Świątek P, Urbisz AZ. Architecture and Life History of Female Germ-Line Cysts in Clitellate Annelids. Results Probl Cell Differ 2019; 68:515-551. [PMID: 31598870 DOI: 10.1007/978-3-030-23459-1_21] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animal female and male germ-line cells often form syncytial units termed cysts, clusters, or clones. Within these cysts, the cells remain interconnected by specific cell junctions known as intercellular bridges or ring canals, which enable cytoplasm to be shared and macromolecules and organelles to be exchanged between cells. Numerous analyses have shown that the spatial organization of cysts and their functioning may differ between the sexes and taxa. The vast majority of our knowledge about the formation and functioning of germ-line cysts comes from studies of model species (mainly Drosophila melanogaster); the other systems of the cyst organization and functioning are much less known and are sometimes overlooked. Here, we present the current state of the knowledge of female germ-line cysts in clitellate annelids (Clitellata), which is a monophyletic taxon of segmented worms (Annelida). The organization of germ-line cysts in clitellates differs markedly from that of the fruit fly and vertebrates. In Clitellata, germ cells are not directly connected one to another, but, as a rule, each cell has one ring canal that connects it to an anuclear central cytoplasmic core, a cytophore. Thus, this pattern of cell distribution is similar to the germ-line cysts of Caenorhabditis elegans. The last decade of studies has revealed that although clitellate female germ-line cysts have a strong morphological plasticity, e.g., cysts may contain from 16 to as many as 2500 cells, the oogenesis always shows a meroistic mode, i.e., the interconnected cells take on different fates; a few (sometimes only one) become oocytes, whereas the rest play the role of supporting (nurse) cells and do not continue oogenesis.This is the first comprehensive summary of the current knowledge on the organization and functioning of female germ-line cysts in clitellate annelids.
Collapse
Affiliation(s)
- Piotr Świątek
- Faculty of Biology and Environmental Protection, Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland.
| | - Anna Z Urbisz
- Faculty of Biology and Environmental Protection, Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
27
|
Tzur YB, Winter E, Gao J, Hashimshony T, Yanai I, Colaiácovo MP. Spatiotemporal Gene Expression Analysis of the Caenorhabditis elegans Germline Uncovers a Syncytial Expression Switch. Genetics 2018; 210:587-605. [PMID: 30093412 PMCID: PMC6216576 DOI: 10.1534/genetics.118.301315] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/03/2018] [Indexed: 11/18/2022] Open
Abstract
Developmental programs are executed by tightly controlled gene regulatory pathways. Here, we combined the unique sample retrieval capacity afforded by laser capture microscopy with analysis of mRNA abundance by CEL-Seq (cell expression by linear amplification and sequencing) to generate a spatiotemporal gene expression map of the Caenorhabditis elegans syncytial germline from adult hermaphrodites and males. We found that over 6000 genes exhibit spatiotemporally dynamic expression patterns throughout the hermaphrodite germline, with two dominant groups of genes exhibiting reciprocal shifts in expression at late pachytene during meiotic prophase I. We found a strong correlation between restricted spatiotemporal expression and known developmental and cellular processes, indicating that these gene expression changes may be an important driver of germ cell progression. Analysis of the male gonad revealed a shift in gene expression at early pachytene and upregulation of subsets of genes following the meiotic divisions, specifically in early and late spermatids, mostly transcribed from the X chromosome. We observed that while the X chromosome is silenced throughout the first half of the gonad, some genes escape this control and are highly expressed throughout the germline. Although we found a strong correlation between the expression of genes corresponding to CSR-1-interacting 22G-RNAs during germ cell progression, we also found that a large fraction of genes may bypass the need for CSR-1-mediated germline licensing. Taken together, these findings suggest the existence of mechanisms that enable a shift in gene expression during prophase I to promote germ cell progression.
Collapse
Affiliation(s)
- Yonatan B Tzur
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem 91904, Israel
| | - Eitan Winter
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Jinmin Gao
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Tamar Hashimshony
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Itai Yanai
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
28
|
Yuan TL, Huang WJ, He J, Zhang D, Tang WH. Stage-Specific Gene Profiling of Germinal Cells Helps Delineate the Mitosis/Meiosis Transition. PLANT PHYSIOLOGY 2018; 176:1610-1626. [PMID: 29187566 PMCID: PMC5813559 DOI: 10.1104/pp.17.01483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/26/2017] [Indexed: 05/11/2023]
Abstract
In flowering plants, germ lines are induced from somatic meristems within reproductive organs. Within anthers, germinal cell initials first undergo several rounds of mitotic proliferation before synchronously entering meiosis. Our understanding of the progression and the molecular basis of this mitosis to meiosis transition is still limited. Taking advantage of the correlation between anther length and premeiotic germinal cell development in maize (Zea mays), we studied the transcriptome dynamics of germinal cells at three sequential stages, mitotic archesporial cells, enlarging pollen mother cells at the premeiosis interphase, and pollen mother cells at the early prophase of meiosis, using laser microdissection-based expression profiling. Our analysis showed that cells undergoing the mitosis-meiosis switch exhibit robust transcriptional changes. The three stages are distinguished by the expression of genes encoding transcription factor subsets, meiotic chromosome recombination proteins, and distinct E3 ubiquitin ligases, respectively. The transcription level of genes encoding protein turnover machinery was significantly higher in these three stages of germinal cells than in mature pollen, parenchyma cells, or seedlings. Our experimental results further indicate that many meiotic genes are not only transcribed, but also translated prior to meiosis. We suggest that the enlarging pollen mother cells stage represents a crucial turning point from mitosis to meiosis for developing germinal cells.
Collapse
Affiliation(s)
- Ting-Lu Yuan
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei-Jie Huang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Juan He
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
29
|
West SM, Mecenas D, Gutwein M, Aristizábal-Corrales D, Piano F, Gunsalus KC. Developmental dynamics of gene expression and alternative polyadenylation in the Caenorhabditis elegans germline. Genome Biol 2018; 19:8. [PMID: 29368663 PMCID: PMC5784609 DOI: 10.1186/s13059-017-1369-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/03/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The 3' untranslated regions (UTRs) of mRNAs play a major role in post-transcriptional regulation of gene expression. Selection of transcript cleavage and polyadenylation sites is a dynamic process that produces multiple transcript isoforms for the same gene within and across different cell types. Using LITE-Seq, a new quantitative method to capture transcript 3' ends expressed in vivo, we have characterized sex- and cell type-specific transcriptome-wide changes in gene expression and 3'UTR diversity in Caenorhabditis elegans germline cells undergoing proliferation and differentiation. RESULTS We show that nearly half of germline transcripts are alternatively polyadenylated, that differential regulation of endogenous 3'UTR variants is common, and that alternative isoforms direct distinct spatiotemporal protein expression patterns in vivo. Dynamic expression profiling also reveals temporal regulation of X-linked gene expression, selective stabilization of transcripts, and strong evidence for a novel developmental program that promotes nucleolar dissolution in oocytes. We show that the RNA-binding protein NCL-1/Brat is a posttranscriptional regulator of numerous ribosome-related transcripts that acts through specific U-rich binding motifs to down-regulate mRNAs encoding ribosomal protein subunits, rRNA processing factors, and tRNA synthetases. CONCLUSIONS These results highlight the pervasive nature and functional potential of patterned gene and isoform expression during early animal development.
Collapse
Affiliation(s)
- Sean M West
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - Desirea Mecenas
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - Michelle Gutwein
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - David Aristizábal-Corrales
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - Fabio Piano
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA.
- Center for Genomics & Systems Biology, NYU Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| | - Kristin C Gunsalus
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA.
- Center for Genomics & Systems Biology, NYU Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
30
|
Bhola T, Kapuy O, Vinod PK. Computational modelling of meiotic entry and commitment. Sci Rep 2018; 8:180. [PMID: 29317645 PMCID: PMC5760542 DOI: 10.1038/s41598-017-17478-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/24/2017] [Indexed: 01/25/2023] Open
Abstract
In response to developmental and environmental conditions, cells exit the mitotic cell cycle and enter the meiosis program to generate haploid gametes from diploid germ cells. Once cells decide to enter the meiosis program they become irreversibly committed to the completion of meiosis irrespective of the presence of cue signals. How meiotic entry and commitment occur due to the dynamics of the regulatory network is not well understood. Therefore, we constructed a mathematical model of the regulatory network that controls the transition from mitosis to meiosis in Schizosaccharomyces pombe. Upon nitrogen starvation, yeast cells exit mitosis and undergo conjugation and meiotic entry. The model includes the regulation of Mei2, an RNA binding protein required for conjugation and meiotic entry, by multiple feedback loops involving Pat1, a kinase that keeps cells in mitosis, and Ste11, a transcription activator required for the sexual differentiation. The model accounts for various experimental observations and demonstrates that the activation of Mei2 is bistable, which ensures the irreversible commitment to meiosis. Further, we show by integrating the meiosis-specific regulation with a cell cycle model, the dynamics of cell cycle exit, G1 arrest and entry into meiosis under nitrogen starvation.
Collapse
Affiliation(s)
- Tanvi Bhola
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Orsolya Kapuy
- Semmelweis University, Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Budapest, Hungary
| | - P K Vinod
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
31
|
Bailey AS, Batista PJ, Gold RS, Chen YG, de Rooij DG, Chang HY, Fuller MT. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. eLife 2017; 6:e26116. [PMID: 29087293 PMCID: PMC5703642 DOI: 10.7554/elife.26116] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022] Open
Abstract
The switch from mitosis to meiosis is the key event marking onset of differentiation in the germline stem cell lineage. In Drosophila, the translational repressor Bgcn is required for spermatogonia to stop mitosis and transition to meiotic prophase and the spermatocyte state. Here we show that the mammalian Bgcn homolog YTHDC2 facilitates a clean switch from mitosis to meiosis in mouse germ cells, revealing a conserved role for YTHDC2 in this critical cell fate transition. YTHDC2-deficient male germ cells enter meiosis but have a mixed identity, maintaining expression of Cyclin A2 and failing to properly express many meiotic markers. Instead of continuing through meiotic prophase, the cells attempt an abnormal mitotic-like division and die. YTHDC2 binds multiple transcripts including Ccna2 and other mitotic transcripts, binds specific piRNA precursors, and interacts with RNA granule components, suggesting that proper progression of germ cells through meiosis is licensed by YTHDC2 through post-transcriptional regulation.
Collapse
Affiliation(s)
- Alexis S Bailey
- Department of Developmental BiologyStanford University School of MedicineStanfordUnited States
| | - Pedro J Batista
- Center for Personal Dynamic RegulomesStanford University School of MedicineStanfordUnited States
| | - Rebecca S Gold
- Department of Developmental BiologyStanford University School of MedicineStanfordUnited States
| | - Y Grace Chen
- Center for Personal Dynamic RegulomesStanford University School of MedicineStanfordUnited States
| | - Dirk G de Rooij
- Center for Reproductive MedicineAcademic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Howard Y Chang
- Center for Personal Dynamic RegulomesStanford University School of MedicineStanfordUnited States
| | - Margaret T Fuller
- Department of Developmental BiologyStanford University School of MedicineStanfordUnited States
| |
Collapse
|
32
|
McCaig CM, Lin X, Farrell M, Rehain-Bell K, Shakes DC. Germ cell cysts and simultaneous sperm and oocyte production in a hermaphroditic nematode. Dev Biol 2017; 430:362-373. [PMID: 28844904 DOI: 10.1016/j.ydbio.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Abstract
Studies of gamete development in the self-fertile hermaphrodites of Caenorhabditis elegans have significantly contributed to our understanding of fundamental developmental mechanisms. However, evolutionary transitions from outcrossing males and females to self-fertile hermaphrodites have convergently evolved within multiple nematode sub-lineages, and whether the C. elegans pattern of self-fertile hermaphroditism and gamete development is representative remains largely unexplored. Here we describe a pattern of sperm production in the trioecious (male/female/hermaphrodite) nematode Rhabditis sp. SB347 (recently named Auanema rhodensis) that differs from C. elegans in two striking ways. First, while C. elegans hermaphrodites make a one-time switch from sperm to oocyte production, R. sp. SB347 hermaphrodites continuously produce both sperm and oocytes. Secondly, while C. elegans germ cell proliferation is limited to germline stem cells (GSCs), sperm production in R. sp. SB347 includes an additional population of mitotically dividing cells that are a developmental intermediate between GSCs and fully differentiated spermatocytes. These cells are present in males and hermaphrodites but not females, and exhibit key characteristics of spermatogonia - the mitotic progenitors of spermatocytes in flies and vertebrates. Specifically, they exist outside the stem cell niche, increase germ cell numbers by transit-amplifying divisions, and synchronously proliferate within germ cell cysts. We also discovered spermatogonia in other trioecious Rhabditis species, but not in the male/female species Rhabditis axei or the more distant hermaphroditic Oscheius tipulae. The discovery of simultaneous hermaphroditism and spermatogonia in a lab-cultivatable nematode suggests R. sp. SB347 as a richly informative species for comparative studies of gametogenesis.
Collapse
Affiliation(s)
- Caitlin M McCaig
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Xiaoxue Lin
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Maureen Farrell
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Kathryn Rehain-Bell
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Diane C Shakes
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA.
| |
Collapse
|
33
|
Hinnant TD, Alvarez AA, Ables ET. Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline. Dev Biol 2017; 429:118-131. [PMID: 28711427 DOI: 10.1016/j.ydbio.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022]
Abstract
Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken together, these findings provide further insight into the regulation of cell proliferation and the acquisition of differentiated cell fate, with broad implications across developing tissues.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Arturo A Alvarez
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
34
|
Miao N, Wang X, Feng Y, Gong Y. Male-biased miR-92 from early chicken embryonic gonads directly targets ATRX and DDX3X. Gene 2017; 626:326-336. [PMID: 28554548 DOI: 10.1016/j.gene.2017.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/11/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
MiR-17-92 cluster consists of multifunctional miRNAs related to gonadal development in mammals. Our preliminary data showed that gga-miR-92 was male-biased in chicken embryonic gonads at E5.5 and E6.5. MiR-92(a-2) and two putative targets (ATRX and DDX3X) were highly conserved and located on mammalian Chromosome X but on autosomes in chicken. Here, we studied the expression and interaction of miR-92 and the targets (ATRX and DDX3X) in chicken embryonic gonads. What's more, male-biased miR-92 shows an opposite expression tendency with ATRX and DDX3X in eight embryonic stages and different tissues at E10.5 by qRT-PCR. To verify the regulation relationship between miR-92 and two targets, we performed dual-luciferase reporter assay in DF1, overexpression and inhibition of miR-92 in chicken embryonic fibroblasts (CEFs). The results show that miR-92 directly targets ATRX and DDX3X by binding the 3' un-translated region (3'-UTR), and the over-expression and inhibition of miR-92 negatively regulates ATRX and DDX3X. After the identification of the expression of their downstream genes (AMH and WNT4) in mRNA level, we found that there is no regulatory relationship between ATRX and DDX3X. The overall results indicate that miR-92 may perform roles in early chicken gonadogenesis by regulating the expressions of ATRX and DDX3X, respectively.
Collapse
Affiliation(s)
- Nan Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Institute of Genomics, College of Biomedical, Huaqiao University, 668 Jimei Road, Xiamen 361021, People's Republic of China
| | - Xin Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
35
|
Rouhana L, Tasaki J, Saberi A, Newmark PA. Genetic dissection of the planarian reproductive system through characterization of Schmidtea mediterranea CPEB homologs. Dev Biol 2017; 426:43-55. [PMID: 28434803 PMCID: PMC5544531 DOI: 10.1016/j.ydbio.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/30/2017] [Accepted: 04/18/2017] [Indexed: 01/30/2023]
Abstract
Cytoplasmic polyadenylation is a mechanism of mRNA regulation prevalent in metazoan germ cells; it is largely dependent on Cytoplasmic Polyadenylation Element Binding proteins (CPEBs). Two CPEB homologs were identified in the planarian Schmidtea mediterranea. Smed-CPEB1 is expressed in ovaries and yolk glands of sexually mature planarians, and required for oocyte and yolk gland development. In contrast, Smed-CPEB2 is expressed in the testes and the central nervous system; its function is required for spermatogenesis as well as non-autonomously for development of ovaries and accessory reproductive organs. Transcriptome analysis of CPEB knockdown animals uncovered a comprehensive collection of molecular markers for reproductive structures in S. mediterranea, including ovaries, testes, yolk glands, and the copulatory apparatus. Analysis by RNA interference revealed contributions for a dozen of these genes during oogenesis, spermatogenesis, or capsule formation. We also present evidence suggesting that Smed-CPEB2 promotes translation of Neuropeptide Y-8, a prohormone required for planarian sexual maturation. These findings provide mechanistic insight into potentially conserved processes of germ cell development, as well as events involved in capsule deposition by flatworms.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA; Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA.
| | - Junichi Tasaki
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Amir Saberi
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Phillip A Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
36
|
Suzuki A, Hirasaki M, Okuda A. Does MAX open up a new avenue for meiotic research? Dev Growth Differ 2017; 59:61-69. [PMID: 28220481 DOI: 10.1111/dgd.12344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
Abstract
Meiosis is a central event of sexual reproduction. Like somatic cells, germ cells conduct mitosis to increase their cell number, but unlike somatic cells, germ cells switch their cell division mode from mitosis to meiosis at a certain point in gametogenesis. However, the molecular basis of this switch remains elusive. In this review article, we give an overview of the onset of mammalian meiosis, including our recent finding that MYC Associated Factor X (MAX) prevents ectopic and precocious meiosis in embryonic stem cells (ESCs) and germ cells, respectively. We present a hypothetical model of a MAX-centered molecular network that regulates meiotic entry in mammals and propose that inducible Max knockout ESCs provide an excellent platform for exploring the molecular mechanisms of meiosis initiation, while excluding other aspects of gametogenesis.
Collapse
Affiliation(s)
- Ayumu Suzuki
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Masataka Hirasaki
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| |
Collapse
|
37
|
Pushpa K, Kumar GA, Subramaniam K. Translational Control of Germ Cell Decisions. Results Probl Cell Differ 2017; 59:175-200. [PMID: 28247049 DOI: 10.1007/978-3-319-44820-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline poses unique challenges to gene expression control at the transcriptional level. While the embryonic germline maintains a global hold on new mRNA transcription, the female adult germline produces transcripts that are not translated into proteins until embryogenesis of subsequent generation. As a consequence, translational control plays a central role in governing various germ cell decisions including the formation of primordial germ cells, self-renewal/differentiation decisions in the adult germline, onset of gametogenesis and oocyte maturation. Mechanistically, several common themes such as asymmetric localization of mRNAs, conserved RNA-binding proteins that control translation by 3' UTR binding, translational activation by the cytoplasmic elongation of the polyA tail and the assembly of mRNA-protein complexes called mRNPs have emerged from the studies on Caenorhabditis elegans, Xenopus and Drosophila. How mRNPs assemble, what influences their dynamics, and how a particular 3' UTR-binding protein turns on the translation of certain mRNAs while turning off other mRNAs at the same time and space are key challenges for future work.
Collapse
Affiliation(s)
- Kumari Pushpa
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ganga Anil Kumar
- Indian Institute of Technology-Kanpur, Kanpur, India.,Indian Institute of Technology-Madras, Chennai, India
| | | |
Collapse
|
38
|
Abstract
The Caenorhabditis elegans germline is an excellent model for studying the regulation of a pool of stem cells and progression of cells from a stem cell state to a differentiated state. At the tissue level, the germline is organized in an assembly line with the germline stem cell (GSC) pool at one end and differentiated cells at the other. A simple mesenchymal niche caps the GSC region of the germline and maintains GSCs in an undifferentiated state by signaling through the conserved Notch pathway. Downstream of Notch signaling, key regulators include novel LST-1 and SYGL-1 proteins and a network of RNA regulatory proteins. In this chapter we present methods for characterizing the C. elegans GSC pool and early germ cell differentiation. The methods include examination of the germline in living and fixed worms, cell cycle analysis, and analysis of markers. We also discuss assays to separate mutants that affect the stem cell vs. differentiation decision from those that affect germ cell processes more generally.
Collapse
Affiliation(s)
- Sarah L Crittenden
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA.
| | - Hannah S Seidel
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
| | - Judith Kimble
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
| |
Collapse
|
39
|
Sora D, Kron P, Husband BC. Genetic and environmental determinants of unreduced gamete production in Brassica napus, Sinapis arvensis and their hybrids. Heredity (Edinb) 2016; 117:440-448. [PMID: 27577694 PMCID: PMC5117845 DOI: 10.1038/hdy.2016.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 11/08/2022] Open
Abstract
Unreduced gametes, sperm or egg cells with the somatic chromosome number, are an important mechanism of polyploid formation and gene flow between heteroploid plants. The meiotic processes leading to unreduced gamete formation are well documented, but the relative influence of environmental and genetic factors on the frequency of unreduced gametes remain largely untested. Furthermore, direct estimates of unreduced gametes based on DNA content are technically challenging and, hence, uncommon. Here, we use flow cytometry to measure the contribution of genetic (hybridization) and environmental (nutrient limitation, wounding) changes to unreduced male gamete production in Brassica napus, Sinapis arvensis and two hybrid lines. Treatments were applied to greenhouse grown plants in a random factorial design, with pollen sampled at two time intervals. Overall, the frequency of unreduced gametes averaged 0.59% (range 0.06-2.17%), plus a single outlier with 27%. Backcrossed hybrids had 39 to 75% higher unreduced gamete production than parental genotypes, averaged across all treatments, although the statistical significance of these differences depended on sampling period and wounding treatment. Unreduced gamete frequencies were higher for the second sampling period than the first. There were no direct effects of wounding or nutrient regime. Our results indicate that both genetic and environmental factors can induce increased unreduced gametes, highlighting the potential importance of environmental heterogeneity and genetic composition of populations in driving polyploid evolution.
Collapse
Affiliation(s)
- D Sora
- Department of Biology, Bioscience Complex, Queen's University, Kingston, Ontario, Canada
| | - P Kron
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - B C Husband
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
40
|
Nielsen AY, Gjerstorff MF. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability. Int J Mol Sci 2016; 17:E890. [PMID: 27275820 PMCID: PMC4926424 DOI: 10.3390/ijms17060890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Aaraby Yoheswaran Nielsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark.
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark.
| |
Collapse
|
41
|
Germline Defects Caused by Smed-boule RNA-Interference Reveal That Egg Capsule Deposition Occurs Independently of Fertilization, Ovulation, Mating, or the Presence of Gametes in Planarian Flatworms. PLoS Genet 2016; 12:e1006030. [PMID: 27149082 PMCID: PMC4858218 DOI: 10.1371/journal.pgen.1006030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/15/2016] [Indexed: 12/03/2022] Open
Abstract
Few animals are known to lay eggs in the absence of ovulation or copulation, as it is presumably energetically wasteful and subjected to negative selection. Characterization of Smed-boule, a member of the DAZ family of germline RNA-binding proteins, revealed that egg capsule (or capsule) production and deposition occurs independently of the presence of gametes in the planarian flatworm Schmidtea mediterranea. Reduction of Smed-boule expression by RNA-interference (RNAi) causes ablation of spermatogonial stem cells and the inability of ovarian germline stem cells to undergo oogenesis. Although animals subjected to Smed-boule RNAi lose their gametes and become sterile, they continue to lay egg capsules. Production of sterile capsules is even observed in virgin Smed-boule(RNAi) and control planarians maintained in complete isolation, demonstrating that egg production in S. mediterranea occurs independently of ovulation, fertilization, or mating. Evidence suggests that this is a conserved feature amongst Platyhelminthes, and therefore relevant to the pathology and dissemination of parasitic flatworms. These findings demonstrate that Smed-boule functions at different stages during male and female germline stem cell development, and also demonstrate that egg capsule production by planarian flatworms occurs independently of signals produced by mating or ova. Our work shows that production and deposition of egg capsules by planarian flatworms does not require fertilization, mating, ovulation, or even the existence of gametes. We also uncovered evidence for the existence of gender-specific germline stem cells in Schmidtea mediterranea, a hermaphroditic species of flatworm that develops germ cells post-embryonically. These findings surfaced from the characterization of Smed-boule, a member of the Deleted in AZoospermia gene family of RNA-binding proteins required for germline development in a broad range of animals. These findings lead to a better appreciation of the evolutionary diversity in approaches to oviparity. Additionally, discovering that egg capsule production occurs independently of germline or mating activities may carry a potential applied aspect with regards to regulating the dissemination and pathology of parasitic flatworms (such as blood flukes and tapeworms), if conserved in these organisms.
Collapse
|
42
|
Hall BA, Piterman N, Hajnal A, Fisher J. Emergent stem cell homeostasis in the C. elegans germline is revealed by hybrid modeling. Biophys J 2016. [PMID: 26200879 PMCID: PMC4621618 DOI: 10.1016/j.bpj.2015.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The establishment of homeostasis among cell growth, differentiation, and apoptosis is of key importance for organogenesis. Stem cells respond to temporally and spatially regulated signals by switching from mitotic proliferation to asymmetric cell division and differentiation. Executable computer models of signaling pathways can accurately reproduce a wide range of biological phenomena by reducing detailed chemical kinetics to a discrete, finite form. Moreover, coordinated cell movements and physical cell-cell interactions are required for the formation of three-dimensional structures that are the building blocks of organs. To capture all these aspects, we have developed a hybrid executable/physical model describing stem cell proliferation, differentiation, and homeostasis in the Caenorhabditis elegans germline. Using this hybrid model, we are able to track cell lineages and dynamic cell movements during germ cell differentiation. We further show how apoptosis regulates germ cell homeostasis in the gonad, and propose a role for intercellular pressure in developmental control. Finally, we use the model to demonstrate how an executable model can be developed from the hybrid system, identifying a mechanism that ensures invariance in fate patterns in the presence of instability.
Collapse
Affiliation(s)
- Benjamin A Hall
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, United Kingdom; Microsoft Research Cambridge, Cambridge, UK.
| | - Nir Piterman
- Department of Computer Science, University of Leicester, Leicester, UK
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jasmin Fisher
- Microsoft Research Cambridge, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Liu Y, Li S, Liu Z, Wang R. Bifurcation-based approach reveals synergism and optimal combinatorial perturbation. J Biol Phys 2016; 42:399-414. [PMID: 27079194 DOI: 10.1007/s10867-016-9414-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 03/02/2016] [Indexed: 12/28/2022] Open
Abstract
Cells accomplish the process of fate decisions and form terminal lineages through a series of binary choices in which cells switch stable states from one branch to another as the interacting strengths of regulatory factors continuously vary. Various combinatorial effects may occur because almost all regulatory processes are managed in a combinatorial fashion. Combinatorial regulation is crucial for cell fate decisions because it may effectively integrate many different signaling pathways to meet the higher regulation demand during cell development. However, whether the contribution of combinatorial regulation to the state transition is better than that of a single one and if so, what the optimal combination strategy is, seem to be significant issue from the point of view of both biology and mathematics. Using the approaches of combinatorial perturbations and bifurcation analysis, we provide a general framework for the quantitative analysis of synergism in molecular networks. Different from the known methods, the bifurcation-based approach depends only on stable state responses to stimuli because the state transition induced by combinatorial perturbations occurs between stable states. More importantly, an optimal combinatorial perturbation strategy can be determined by investigating the relationship between the bifurcation curve of a synergistic perturbation pair and the level set of a specific objective function. The approach is applied to two models, i.e., a theoretical multistable decision model and a biologically realistic CREB model, to show its validity, although the approach holds for a general class of biological systems.
Collapse
Affiliation(s)
- Yanwei Liu
- Department of Mathematics, Shanghai University, Shanghai, China
| | - Shanshan Li
- Department of Mathematics, Shanghai University, Shanghai, China
| | - Zengrong Liu
- Department of Mathematics, Shanghai University, Shanghai, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, China.
| |
Collapse
|
44
|
Fuller MT. Differentiation in Stem Cell Lineages and in Life: Explorations in the Male Germ Line Stem Cell Lineage. Curr Top Dev Biol 2016; 116:375-90. [PMID: 26970629 DOI: 10.1016/bs.ctdb.2015.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
I have been privileged to work on cellular differentiation during a great surge of discovery that has revealed the molecular mechanisms and genetic regulatory circuitry that control embryonic development and adult tissue maintenance and repair. Studying the regulation of proliferation and differentiation in the male germ line stem cell lineage has allowed us investigate how the developmental program imposes layers of additional controls on fundamental cellular processes like cell cycle progression and gene expression to give rise to the huge variety of specialized cell types in our bodies. We are beginning to understand how local signals from somatic support cells specify self-renewal versus differentiation in the stem cell niche at the apical tip of the testis. We are discovering the molecular events that block cell proliferation and initiate terminal differentiation at the switch from mitosis to meiosis-a signature event of the germ cell program. Our work is beginning to reveal how the developmental program that sets up the dramatic new cell type-specific transcription program that prepares germ cells for meiotic division and spermatid differentiation is turned on when cells become spermatocytes. I have had the privilege of working with incredible students, postdocs, and colleagues who have discovered, brainstormed, challenged, and refined our science and our ideas of how developmental pathways and cellular mechanisms work together to drive differentiation.
Collapse
Affiliation(s)
- Margaret T Fuller
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
45
|
Tian R, Yang S, Zhu Y, Zou S, Li P, Wang J, Zhu Z, Huang Y, He Z, Li Z. VEGF/VEGFR2 Signaling Regulates Germ Cell Proliferation in vitro and Promotes Mouse Testicular Regeneration in vivo. Cells Tissues Organs 2016; 201:1-13. [DOI: 10.1159/000440949] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays fundamental roles in testicular development; however, its function on testicular regeneration remains unknown. The objective of this study was to explore the roles VEGF/VEGFR2 signaling plays in mouse germ cells and in mouse testicular regeneration. VEGF and the VEGFR2 antagonist SU5416 were added to culture medium to evaluate their effects on spermatogonial stem cell line (C18-4 cells) proliferation. Testicular cells obtained from newborn male ICR mice were grafted into the dorsal region of male BALB/c nude mice. VEGF and SU5416 were injected into the graft sites to assess the effects of the VEGF and VEGFR2 signaling pathways on testicular reconstitution. The grafts were analyzed after 8 weeks. We found that VEGF promoted C18-4 proliferation in vitro, indicating its role in germ cell survival. HE staining revealed that seminiferous tubules were reconstituted and male germ cells from spermatogonia to spermatids could be observed in testis-like tissues 8 weeks after grafting. A few advantaged male germ cells, including spermatocytes and spermatids, were found in SU5416-treated grafts. Moreover, VEGF enhanced the expression of genes specific for male germ cells and vascularization in 8-week grafts, whereas SU5416 decreased the expression of these genes. SU5416-treated grafts had a lower expression of MVH and CD31, indicating that blockade of VEGF/VEGFR2 signaling reduces the efficiency of seminiferous tubule reconstitution. Collectively, these data suggest that VEGF/VEGFR2 signaling regulates germ cell proliferation and promotes testicular regeneration via direct action on germ cells and the enhancement of vascularization.
Collapse
|
46
|
Noble DC, Aoki ST, Ortiz MA, Kim KW, Verheyden JM, Kimble J. Genomic Analyses of Sperm Fate Regulator Targets Reveal a Common Set of Oogenic mRNAs in Caenorhabditis elegans. Genetics 2016; 202:221-34. [PMID: 26564160 PMCID: PMC4701086 DOI: 10.1534/genetics.115.182592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
Germ cell specification as sperm or oocyte is an ancient cell fate decision, but its molecular regulation is poorly understood. In Caenorhabditis elegans, the FOG-1 and FOG-3 proteins behave genetically as terminal regulators of sperm fate specification. Both are homologous to well-established RNA regulators, suggesting that FOG-1 and FOG-3 specify the sperm fate post-transcriptionally. We predicted that FOG-1 and FOG-3, as terminal regulators of the sperm fate, might regulate a battery of gamete-specific differentiation genes. Here we test that prediction by exploring on a genomic scale the messenger RNAs (mRNAs) associated with FOG-1 and FOG-3. Immunoprecipitation of the proteins and their associated mRNAs from spermatogenic germlines identifies 81 FOG-1 and 722 FOG-3 putative targets. Importantly, almost all FOG-1 targets are also FOG-3 targets, and these common targets are strongly biased for oogenic mRNAs. The discovery of common target mRNAs suggested that FOG-1 and FOG-3 work together. Consistent with that idea, we find that FOG-1 and FOG-3 proteins co-immunoprecipitate from both intact nematodes and mammalian tissue culture cells and that they colocalize in germ cells. Taking our results together, we propose a model in which FOG-1 and FOG-3 work in a complex to repress oogenic transcripts and thereby promote the sperm fate.
Collapse
Affiliation(s)
- Daniel C Noble
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Scott T Aoki
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Marco A Ortiz
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Kyung Won Kim
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Jamie M Verheyden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
47
|
Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life. J Pregnancy 2015; 2015:715735. [PMID: 26697222 PMCID: PMC4678088 DOI: 10.1155/2015/715735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman's lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine-metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum. This review offers a summary of pivotal aspects concerning the physiologic course of female reproductive function.
Collapse
|
48
|
Mu H, Li N, Wu J, Zheng L, Zhai Y, Li B, Song W, Wang J, Zhu H, Li G, Hua J. PLZF-Induced Upregulation of CXCR4 Promotes Dairy Goat Male Germline Stem Cell Proliferation by Targeting Mir146a. J Cell Biochem 2015; 117:844-52. [PMID: 26365432 DOI: 10.1002/jcb.25371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023]
Abstract
Previous studies have shown that promyelocytic leukemia zinc finger (PLZF), chemokine (C-X-C motif) receptor 4 (CXCR4) and mir146a were associated with the self-renewal of mouse spermatogonial stem cells (SSCs); however, there is little information on their effects on the fate of livestock SSCs. Here, we have identified a regulatory pathway in dairy goat mGSCs, involving PLZF, mir146a and the SDF-1 receptor CXCR4. PLZF overexpression downregulated mir146a and simultaneously upregulated the expression of CXCR4 protein, whereas PLZF knockdown (siPLZF) induced the specifically opposite effects. The in vitro assays demonstrated that PLZF specifically interacts with and suppresses the mir146a promoter, and mir146a targets CXCR4 to impede its translation. The levels of ERK1/2 phosphorylation in the mGSCs overexpressed CXCR4 and PLZF were upregulated, respectively, whereas mir146a expression was decreased and CXCR4 protein was increased. Mir146a overexpression and siPLZF impaired mGSC proliferation and differentiation, however, Mir146a knockdown induced the opposite effects. The effects of PLZF and mir146a were mediated regulation by mir146a and CXCR4, respectively. Overexpression of CXCR4 or addition of CXCL12 in cultures of dairy goat mGSCs resulted in the upregulation of their signaling, and the phosphorylation of ERK1/2 was increased. Collectively, these findings indicate that PLZF is an important transcription factor in the regulation of the expression of CXCR4 to promote dairy goat mGSC proliferation by targeting mir146a.
Collapse
Affiliation(s)
- Hailong Mu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China.,College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Bo Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Wencong Song
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Jinglu Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China.,College of Life Science, Yulin University, Yulin, Shaanxi, 719000, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| |
Collapse
|
49
|
Fox PM, Schedl T. Analysis of Germline Stem Cell Differentiation Following Loss of GLP-1 Notch Activity in Caenorhabditis elegans. Genetics 2015; 201:167-84. [PMID: 26158953 PMCID: PMC4566261 DOI: 10.1534/genetics.115.178061] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
Stem cells generate the differentiated progeny cells of adult tissues. Stem cells in the Caenorhabditis elegans hermaphrodite germline are maintained within a proliferative zone of ∼230 cells, ∼20 cell diameters in length, through GLP-1 Notch signaling. The distal tip cell caps the germline and supplies GLP-1-activating ligand, and the distal-most germ cells that occupy this niche are likely self-renewing stem cells with active GLP-1 signaling. As germ cells are displaced from the niche, GLP-1 activity likely decreases, yet mitotically cycling germ cells are found throughout the proliferative zone prior to overt meiotic differentiation. Following loss of GLP-1 activity, it remains unclear whether stem cells undergo transit-amplifying (TA) divisions or more directly enter meiosis. To distinguish between these possibilities we employed a temperature-sensitive (ts) glp-1 mutant to manipulate GLP-1 activity. We characterized proliferative zone dynamics in glp-1(ts) mutants at permissive temperature and then analyzed the kinetics of meiotic entry of proliferative zone cells after loss of GLP-1. We found that entry of proliferative zone cells into meiosis following loss of GLP-1 activity is largely synchronous and independent of their distal-proximal position. Furthermore, the majority of cells complete only a single mitotic division before entering meiosis, independent of their distal-proximal position. We conclude that germ cells do not undergo TA divisions following loss of GLP-1 activity. We present a model for the dynamics of the proliferative zone that utilizes cell cycle rate and proliferative zone size and output and incorporates the more direct meiotic differentiation of germ cells following loss of GLP-1 activity.
Collapse
Affiliation(s)
- Paul M Fox
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
50
|
Gerhold AR, Ryan J, Vallée-Trudeau JN, Dorn JF, Labbé JC, Maddox PS. Investigating the regulation of stem and progenitor cell mitotic progression by in situ imaging. Curr Biol 2015; 25:1123-34. [PMID: 25819563 DOI: 10.1016/j.cub.2015.02.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/15/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
Genome stability relies upon efficacious chromosome congression and regulation by the spindle assembly checkpoint (SAC). The study of these fundamental mitotic processes in adult stem and progenitor cells has been limited by the technical challenge of imaging mitosis in these cells in situ. Notably, how broader physiological changes, such as dietary intake or age, affect mitotic progression in stem and/or progenitor cells is largely unknown. Using in situ imaging of C. elegans adult germlines, we describe the mitotic parameters of an adult stem and progenitor cell population in an intact animal. We find that SAC regulation in germline stem and progenitor cells is distinct from that found in early embryonic divisions and is more similar to that of classical tissue culture models. We further show that changes in organismal physiology affect mitotic progression in germline stem and progenitor cells. Reducing dietary intake produces a checkpoint-dependent delay in anaphase onset, and inducing dietary restriction when the checkpoint is impaired increases the incidence of segregation errors in mitotic and meiotic cells. Similarly, developmental aging of the germline stem and progenitor cell population correlates with a decline in the rate of several mitotic processes. These results provide the first in vivo validation of models for SAC regulation developed in tissue culture systems and demonstrate that several fundamental features of mitotic progression in adult stem and progenitor cells are highly sensitive to organismal physiological changes.
Collapse
Affiliation(s)
- Abigail R Gerhold
- Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Joël Ryan
- Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Julie-Nathalie Vallée-Trudeau
- Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jonas F Dorn
- Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jean-Claude Labbé
- Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
| | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|