1
|
Wu M, Pokreisz P, Claus P, Casazza A, Gillijns H, Caluwé E, De Petrini M, Belmans A, Reyns G, Collen D, Janssens SP. Recombinant human placental growth factor-2 in post-infarction left ventricular dysfunction: a randomized, placebo-controlled, preclinical study. Basic Res Cardiol 2024; 119:795-806. [PMID: 39090343 DOI: 10.1007/s00395-024-01069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Placental growth factor (PlGF)-2 induces angio- and arteriogenesis in rodents but its therapeutic potential in a clinically representative post-infarction left ventricular (LV) dysfunction model remains unclear. We, therefore, investigated the safety and efficacy of recombinant human (rh)PlGF-2 in the infarcted porcine heart in a randomized, placebo-controlled blinded study. We induced myocardial infarction (MI) in pigs using 75 min mid-LAD balloon occlusion followed by reperfusion. After 4 w, we randomized pigs with marked LV dysfunction (LVEF < 40%) to receive continuous intravenous infusion of 5, 15, 45 µg/kg/day rhPlGF-2 or PBS (CON) for 2 w using osmotic pumps. We evaluated the treatment effect at 8 w using comprehensive MRI and immunohistochemistry and measured myocardial PlGF-2 receptor transcript levels. At 4 w after MI, infarct size was 16-18 ± 4% of LV mass, resulting in significantly impaired systolic function (LVEF 34 ± 4%). In the pilot study (3 pigs/dose), PIGF administration showed sustained dose-dependent increases in plasma concentrations for 14 days without systemic toxicity and was associated with favorable post-infarct remodeling. In the second phase (n = 42), we detected no significant differences at 8 w between CON and PlGF-treated pigs in infarct size, capillary or arteriolar density, global LV function and regional myocardial blood flow at rest or during stress. Molecular analysis showed significant downregulation of the main PlGF-2 receptor, pVEGFR-1, in dysfunctional myocardium. Chronic rhPIGF-2 infusion was safe but failed to induce therapeutic neovascularization and improve global cardiac function after myocardial infarction in pigs. Our data emphasize the critical need for properly designed trials in representative large animal models before translating presumed promising therapies to patients.
Collapse
Affiliation(s)
- Ming Wu
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
| | - Peter Pokreisz
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
- CoBioRes NV, Leuven, Belgium
| | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
| | | | - Hilde Gillijns
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
| | - Ellen Caluwé
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
| | | | - Ann Belmans
- Leuven Biostatistics and Statistical Bioinformatics Center, KU Leuven, Leuven, Belgium
| | | | - Desire Collen
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium
- CoBioRes NV, Leuven, Belgium
| | - Stefan P Janssens
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, O&N1, 49 Herestraat, 3000, Leuven, Belgium.
- Department of Cardiology, University Hospital Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Scimeca M, Giacobbi E, Servadei F, Palumbo V, Palumbo C, Finazzi-Agrò E, Albisinni S, Mauriello A, Albonici L. Prognostic Value of PlGF Upregulation in Prostate Cancer. Biomedicines 2024; 12:2194. [PMID: 39457506 PMCID: PMC11505493 DOI: 10.3390/biomedicines12102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second most commonly diagnosed cancer in men worldwide, with metastasis, particularly to bone, being the primary cause of mortality. Currently, prognostic markers like PSA levels and Gleason classification are limited in predicting metastasis, emphasizing the need for novel clinical biomarkers. New molecules predicting tumor progression have been identified over time. Some, such as the immune checkpoint inhibitors (ICIs) PD-1/PD-L1, have become valid markers as theranostic tools essential for prognosis and drug target therapy. However, despite the success of ICIs as an anti-cancer therapy for solid tumors, their efficacy in treating bone metastases has mainly proven ineffective, suggesting intrinsic resistance to this therapy in the bone microenvironment. This study explores the potential of immunological intratumoral biomarkers, focusing on placental growth factor (PlGF), Vascular Endothelial Growth Factor Receptor 1 (VEGFR1), and Programmed Cell Death Protein 1 (PD-1), in predicting bone metastasis formation. METHODS we analyzed PCa samples from patients with and without metastasis by immunohistochemical analysis. RESULTS Results revealed that PlGF expression is significantly higher in primary tumors of patients that developed metastasis within five years from the histological diagnosis. Additionally, PlGF expression correlates with increased VEGFR1 and PD-1 levels, as well as the presence of intratumoral M2 macrophages. CONCLUSIONS These findings suggest that PlGF contributes to an immunosuppressive environment, thus favoring tumor progression and metastatic process. Results here highlight the potential of integrating these molecular markers with existing prognostic tools to enhance the accuracy of metastasis prediction in PCa. By identifying patients at risk for metastasis, clinicians can tailor treatment strategies more effectively, potentially improving survival outcomes and quality of life. This study underscores the importance of further research into the role of intratumoral biomarkers in PCa management.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Enrico Finazzi-Agrò
- Unit of Urology, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (E.F.-A.); (S.A.)
| | - Simone Albisinni
- Unit of Urology, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (E.F.-A.); (S.A.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Department of Biomedical Sciences, “Our Lady of Good Counsel” University, Rruga Dritan Hoxha, 1000 Tirana, Albania
| |
Collapse
|
3
|
Raja Xavier JP, Okumura T, Apweiler M, Chacko NA, Singh Y, Brucker SY, Takeda S, Lang F, Salker MS. Placental growth factor mediates pathological uterine angiogenesis by activating the NFAT5-SGK1 signaling axis in the endometrium: implications for preeclampsia development. Biol Res 2024; 57:55. [PMID: 39152497 PMCID: PMC11330076 DOI: 10.1186/s40659-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024] Open
Abstract
After menstruation the uterine spiral arteries are repaired through angiogenesis. This process is tightly regulated by the paracrine communication between endometrial stromal cells (EnSCs) and endothelial cells. Any molecular aberration in these processes can lead to complications in pregnancy including miscarriage or preeclampsia (PE). Placental growth factor (PlGF) is a known contributing factor for pathological angiogenesis but the mechanisms remain poorly understood. In this study, we investigated whether PlGF contributes to pathological uterine angiogenesis by disrupting EnSCs and endothelial paracrine communication. We observed that PlGF mediates a tonicity-independent activation of nuclear factor of activated T cells 5 (NFAT5) in EnSCs. NFAT5 activated downstream targets including SGK1, HIF-1α and VEGF-A. In depth characterization of PlGF - conditioned medium (CM) from EnSCs using mass spectrometry and ELISA methods revealed low VEGF-A and an abundance of extracellular matrix organization associated proteins. Secreted factors in PlGF-CM impeded normal angiogenic cues in endothelial cells (HUVECs) by downregulating Notch-VEGF signaling. Interestingly, PlGF-CM failed to support human placental (BeWo) cell invasion through HUVEC monolayer. Inhibition of SGK1 in EnSCs improved angiogenic effects in HUVECs and promoted BeWo invasion, revealing SGK1 as a key intermediate player modulating PlGF mediated anti-angiogenic signaling. Taken together, perturbed PlGF-NFAT5-SGK1 signaling in the endometrium can contribute to pathological uterine angiogenesis by negatively regulating EnSCs-endothelial crosstalk resulting in poor quality vessels in the uterine microenvironment. Taken together the signaling may impact on normal trophoblast invasion and thus placentation and, may be associated with an increased risk of complications such as PE.
Collapse
Affiliation(s)
- Janet P Raja Xavier
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Toshiyuki Okumura
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Melina Apweiler
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Nirzari A Chacko
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Yogesh Singh
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sara Y Brucker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Madhuri S Salker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany.
| |
Collapse
|
4
|
Graupner O, Verlohren S, Groten T, Schlembach D, Stepan H, Kuschel B, Karge A, Pecks U. Significance of the sFlt-1/PlGF Ratio in Certain Cohorts - What Needs to be Considered? Geburtshilfe Frauenheilkd 2024; 84:629-634. [PMID: 38993800 PMCID: PMC11233204 DOI: 10.1055/a-2320-5843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/05/2024] [Indexed: 07/13/2024] Open
Abstract
The sFlt-1/PlGF ratio is an established tool in clinical practice, where it is part of a diagnostic algorithm and informs the prognosis of preeclampsia (PE). Maternal and gestational comorbidities can affect the performance of the sFlt-1/PlGF ratio and its constituent elements, and a good understanding of the potential pitfalls is required. The objective of this paper was to provide a current narrative review of the literature on the diagnostic and predictive performance of the sFlt-1/PlGF ratio in specific patient cohorts. Potential factors which can negatively affect the clinical interpretability and applicability of the sFlt-1/PlGF ratio include chronic kidney disease, twin pregnancy, and maternal obesity. Pathophysiological mechanisms related to these factors and disorders can result in different concentrations of sFlt-1 and/or PlGF in maternal blood, meaning that the use of standard cut-off values in specific cohorts can lead to errors. To what extent the cut-off values should be adapted in certain patient cohorts can only be clarified in large prospective cohort studies. This applies to the use of the ratio both for diagnosis and prognosis.
Collapse
Affiliation(s)
- Oliver Graupner
- Klinik und Poliklinik für Frauenheilkunde, Universitätsklinikum rechts der Isar, Technische Universität München, München, Germany
| | - Stefan Verlohren
- Klinik für Geburtsmedizin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Groten
- Klinik für Geburtsmedizin, Universitätsklinikum Jena, Jena, Germany
| | - Dietmar Schlembach
- Klinik für Geburtsmedizin, Klinikum Neukölln, Vivantes Netzwerk für Gesundheit GmbH, Berlin, Germany
| | - Holger Stepan
- Klinik für Geburtsmedizin, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Bettina Kuschel
- Klinik und Poliklinik für Frauenheilkunde, Universitätsklinikum rechts der Isar, Technische Universität München, München, Germany
| | - Anne Karge
- Klinik und Poliklinik für Frauenheilkunde, Universitätsklinikum rechts der Isar, Technische Universität München, München, Germany
| | - Ulrich Pecks
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Revert-Ros F, Ventura I, Prieto-Ruiz JA, Hernández-Andreu JM, Revert F. The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen. Int J Mol Sci 2024; 25:6523. [PMID: 38928229 PMCID: PMC11203716 DOI: 10.3390/ijms25126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Collagen, a versatile family of proteins with 28 members and 44 genes, is pivotal in maintaining tissue integrity and function. It plays a crucial role in physiological processes like wound healing, hemostasis, and pathological conditions such as fibrosis and cancer. Collagen is a target in these processes. Direct methods for collagen modulation include enzymatic breakdown and molecular binding approaches. For instance, Clostridium histolyticum collagenase is effective in treating localized fibrosis. Polypeptides like collagen-binding domains offer promising avenues for tumor-specific immunotherapy and drug delivery. Indirect targeting of collagen involves regulating cellular processes essential for its synthesis and maturation, such as translation regulation and microRNA activity. Enzymes involved in collagen modification, such as prolyl-hydroxylases or lysyl-oxidases, are also indirect therapeutic targets. From another perspective, collagen is also a natural source of drugs. Enzymatic degradation of collagen generates bioactive fragments known as matrikines and matricryptins, which exhibit diverse pharmacological activities. Overall, collagen-derived peptides present significant therapeutic potential beyond tissue repair, offering various strategies for treating fibrosis, cancer, and genetic disorders. Continued research into specific collagen targeting and the application of collagen and its derivatives may lead to the development of novel treatments for a range of pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Revert
- Mitochondrial and Molecular Medicine Research Group, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.R.-R.); (I.V.); (J.A.P.-R.); (J.M.H.-A.)
| |
Collapse
|
6
|
Janes PW, Parslow AC, Cao D, Rigopoulos A, Lee FT, Gong SJ, Cartwright GA, Burvenich IJG, Eriksson U, Johns TG, Scott FE, Scott AM. An Anti-VEGF-B Antibody Reduces Abnormal Tumor Vasculature and Enhances the Effects of Chemotherapy. Cancers (Basel) 2024; 16:1902. [PMID: 38791979 PMCID: PMC11119922 DOI: 10.3390/cancers16101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key regulators of blood vessel formation, including in tumors, where their deregulated function can promote the production of aberrant, leaky blood vessels, supporting tumor development. Here we investigated the VEGFR1 ligand VEGF-B, which we demonstrate to be expressed in tumor cells and in tumor stroma and vasculature across a range of tumor types. We examined the anti-VEGF-B-specific monoclonal antibody 2H10 in preclinical xenograft models of breast and colorectal cancer, in comparison with the anti-VEGF-A antibody bevacizumab. Similar to bevacizumab, 2H10 therapy was associated with changes in tumor blood vessels and intra-tumoral diffusion consistent with normalization of the tumor vasculature. Accordingly, treatment resulted in partial inhibition of tumor growth, and significantly improved the response to chemotherapy. Our studies indicate the importance of VEGF-B in tumor growth, and the potential of specific anti-VEGF-B treatment to inhibit tumor development, alone or in combination with established chemotherapies.
Collapse
Affiliation(s)
- Peter W. Janes
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3083, Australia
| | - Adam C. Parslow
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Diana Cao
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Angela Rigopoulos
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Fook-Thean Lee
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Sylvia J. Gong
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC 3083, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
| | - Glenn A. Cartwright
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Ingrid J. G. Burvenich
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3083, Australia
| | - Ulf Eriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| | - Terrance G. Johns
- Oncogenic Signalling Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Fiona E. Scott
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Andrew M. Scott
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3083, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
7
|
Raja Xavier JP, Rianna C, Hellwich E, Nikolou I, Lankapalli AK, Brucker SY, Singh Y, Lang F, Schäffer TE, Salker MS. Excessive endometrial PlGF- Rac1 signalling underlies endometrial cell stiffness linked to pre-eclampsia. Commun Biol 2024; 7:530. [PMID: 38704457 PMCID: PMC11069541 DOI: 10.1038/s42003-024-06220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
Cell stiffness is regulated by dynamic interaction between ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1) proteins, besides other biochemical and molecular regulators. In this study, we investigated how the Placental Growth Factor (PlGF) changes endometrial mechanics by modifying the actin cytoskeleton at the maternal interface. We explored the global effects of PlGF in endometrial stromal cells (EnSCs) using the concerted approach of proteomics, atomic force microscopy (AFM), and electrical impedance spectroscopy (EIS). Proteomic analysis shows PlGF upregulated RhoGTPases activating proteins and extracellular matrix organization-associated proteins in EnSCs. Rac1 and PAK1 transcript levels, activity, and actin polymerization were significantly increased with PlGF treatment. AFM further revealed an increase in cell stiffness with PlGF treatment. The additive effect of PlGF on actin polymerization was suppressed with siRNA-mediated inhibition of Rac1, PAK1, and WAVE2. Interestingly, the increase in cell stiffness by PlGF treatment was pharmacologically reversed with pravastatin, resulting in improved trophoblast cell invasion. Taken together, aberrant PlGF levels in the endometrium can contribute to an altered pre-pregnancy maternal microenvironment and offer a unifying explanation for the pathological changes observed in conditions such as pre-eclampsia (PE).
Collapse
Affiliation(s)
| | - Carmela Rianna
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Emily Hellwich
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Iliana Nikolou
- Department of Women's Health, University of Tübingen, Tübingen, Germany
| | | | - Sara Y Brucker
- Department of Women's Health, University of Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Department of Women's Health, University of Tübingen, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Madhuri S Salker
- Department of Women's Health, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Mäenpää N, Tiainen L, Hämäläinen M, Luukkaala T, Tanner M, Lahdenperä O, Vihinen P, Karihtala P, Kellokumpu-Lehtinen PL, Moilanen E, Jukkola A. Neuropilin-1 and placental growth factor as prognostic factors in metastatic breast cancer. BMC Cancer 2024; 24:331. [PMID: 38468231 DOI: 10.1186/s12885-024-12070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Angiogenesis is crucial for tumor development, progression, and metastasizing. The most important regulator of angiogenesis is the vascular endothelial growth factor (VEGF) family, which is involved in multiple pathways in tumor microenvironment. The objective of this study was to investigate the prognostic value of the VEGF family in patients treated for metastatic breast cancer. The emphasis was on neuropilin-1 (NRP-1) and placental growth factor (PlGF). MATERIALS AND METHODS An analysis of eight members of the VEGF family was performed using baseline plasma samples of 65 patients treated for metastatic HER2 negative breast cancer in a phase II first-line bevacizumab plus chemotherapy trial. The patients were divided into two groups, high or low, according to the median for each VEGF family member. Progression-free survival (PFS) and overall survival (OS) were determined for each VEGF family member. RESULTS The patients with low plasma levels of NRP-1 and PlGF had a longer OS than those with high plasma levels [multivariable adjusted hazard ratios (HRs) 2.54 (95% confidence interval (CI) 1.11-5.82, p = 0.02) and 3.11 (95% CI 1.30-7.47, p = 0.01), respectively]. The patients with low levels of both NRP-1 and PlGF had a remarkably long OS with HR of 6.24, (95% CI 1.97-19.76, p = 0.002). In addition, high baseline NRP-1 level was associated with a significantly shorter PFS [multivariable adjusted HR 2.90 (95% CI 1.02-8.28, p = 0.04)] than that in the low-level group, and a high baseline vascular endothelial growth factor receptor-2 level was associated with a longer PFS [multivariable adjusted HR 0.43 (95% CI 0.19-0.98, p = 0.04)]. CONCLUSION Especially NRP-1 and PlGF have prognostic potential in metastatic breast cancer patients treated with a bevacizumab-taxane combination. Patients with low plasma levels of NRP-1 or PlGF have longer OS than patients with high levels. Patients with both low NRP-1 and PlGF levels appear to have excellent long-term survival. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00979641, registration date 18/09/2009. The regional Ethics Committee: R08142M, registration date 18/11/2008.
Collapse
Affiliation(s)
- Niina Mäenpää
- Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland.
- Department of Oncology, Tays Cancer Centre, Tampere University Hospital, FICAN Mid, Teiskontie 35, FI-33521, Tampere, Finland.
| | - Leena Tiainen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
- Department of Oncology, Tays Cancer Centre, Tampere University Hospital, FICAN Mid, Teiskontie 35, FI-33521, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere University, 33014, Tampere, P.O. Box 100, Finland
| | - Tiina Luukkaala
- Research, Development and Innovation Center, Tampere University Hospital, Teiskontie 35, FI-33521, Tampere, Finland
- Health Sciences, Faculty of Social Sciences, Tampere University, FI-33521, Tampere, P.O. Box 2000, Finland
| | - Minna Tanner
- Department of Oncology, Tays Cancer Centre, Tampere University Hospital, FICAN Mid, Teiskontie 35, FI-33521, Tampere, Finland
| | - Outi Lahdenperä
- FICAN West Cancer Centre, Turku University Hospital, 20521, Turku, P.O. Box 52, Finland
| | - Pia Vihinen
- FICAN West Cancer Centre, Turku University Hospital, 20521, Turku, P.O. Box 52, Finland
| | - Peeter Karihtala
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Centre, University of Helsinki, FI-00029, Helsinki, P.O. Box 180, Finland
| | - Pirkko-Liisa Kellokumpu-Lehtinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Teiskontie 35, FI-33521, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere University, 33014, Tampere, P.O. Box 100, Finland
| | - Arja Jukkola
- Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
- Department of Oncology, Tays Cancer Centre, Tampere University Hospital, FICAN Mid, Teiskontie 35, FI-33521, Tampere, Finland
| |
Collapse
|
9
|
Mesquita J, Santos FM, Sousa JP, Vaz-Pereira S, Tavares-Ratado P, Neves A, Mesquita R, Tomaz CT. Serum and Vitreous Levels of Placenta Growth Factor in Diabetic Retinopathy Patients: Correlation With Disease Severity and Optical Coherence Tomographic Parameters. Cureus 2024; 16:e54862. [PMID: 38533176 PMCID: PMC10964121 DOI: 10.7759/cureus.54862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2024] [Indexed: 03/28/2024] Open
Abstract
Purpose The primary objective of this study was to compare placenta growth factor (PlGF) levels in the serum and vitreous of diabetic retinopathy (DR) patients to non-diabetic controls. Additionally, the study aimed to establish associations between serum and vitreous PlGF concentrations and to examine the correlation between vitreous PlGF in DR patients and morphological parameters. Methods This study included serum and vitreous samples from 38 patients, including 21 patients with DR and 17 non-diabetic controls. The control group included non-diabetic patients with rhegmatogenous retinal detachment with retinal tears secondary to posterior vitreous detachment or trauma. PlGF levels were quantified in vitreous and serum samples using an enzyme-linked immunosorbent assay (ELISA). Optical coherence tomography (OCT) scans from DR patients were evaluated to measure the central retinal thickness (CRT) and macular volume (MV). Results DR patients had significantly higher mean vitreous PlGF levels compared to non-DR patients (70.0±39.2 vs. 46.47±9.7 pg/mL, p-value=0.004). However, no significant increase in mean serum PlGF levels was observed in DR patients (p-value=0.232). Within the DR group, proliferative DR (PDR) patients presented significantly higher vitreous PlGF levels than non-PDR (NPDR) patients (76.5±41.0 vs. 42.5±5.0 pg/mL, p-value=0.009). There was no association between serum and vitreous PlGF levels. The correlation between vitreous PlGF levels and morphological parameters was rsp=0.175, p-value=0.488 for CRT, and rsp=0.288, p-value=0.262 for MV. Conclusion This study emphasizes the important role of PlGF in neovascularization, specifically highlighting its overexpression exclusively in vitreous from PDR patients. The observed increase in PlGF levels may be indicative of disease severity. The lack of correlation between vitreous and serum PlGF levels suggests a potential dissociation between intravitreal and systemic PlGF synthesis. Consequently, targeting PlGF in therapeutic approaches may offer an additional strategy for ocular pathologies with a neovascular component.
Collapse
Affiliation(s)
- Joana Mesquita
- Pharmacy, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, PRT
| | - Fátima Milhano Santos
- Biochemistry, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, ESP
| | | | | | - Paulo Tavares-Ratado
- Clinical Research, Medical Sciences, Universidade da Beira Interior, Covilhã, PRT
| | - Arminda Neves
- Ophthalmology, Centro Hospitalar de Leiria, Leiria, PRT
| | - Rita Mesquita
- Medicine, Faculty of Medicine, Universidade de Lisboa, Lisbon, PRT
| | - Cândida Teixeira Tomaz
- Pharmacology and Therapeutics, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, PRT
| |
Collapse
|
10
|
Aleynik DY, Bokov AE, Charykova IN, Rubtsova YP, Linkova DD, Farafontova EA, Egorikhina MN. Functionalization of Osteoplastic Material with Human Placental Growth Factor and Assessment of Biocompatibility of the Resulting Material In Vitro. Pharmaceutics 2024; 16:85. [PMID: 38258096 PMCID: PMC10819287 DOI: 10.3390/pharmaceutics16010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This article provides the results of a study of the interaction of placental growth factor with adipose-derived stem cells (ASCs) of various origins, as well as the possibility of generating osteoplastic material based on xenogeneic matrix functionalization with human placental growth factor (PLGF). It is demonstrated that the greatest release of this factor from the functionalized material into the medium occurs during the first 3 h of contact with the model medium, but then the levels of the factor being released fall sharply, although release did continue throughout the 7 days of observation. The modified material was not cytotoxic, and its surface provided good cell adhesion. During 3 days of cultivation, the ASCs proliferated and migrated more actively on the surfaces of the modified material than on the surfaces of the control material. This study can serve as the basis for the development of original methods to functionalize such osteoplastic material by increasing PLGF immobilization by creating stronger bonds in order to regulate both factor dosage and the dynamics of the factor release into the environment. Further studies in experimental animals should facilitate assessment of the effectiveness of the functionalized materials. Such studies will be useful in the development of osteoplastic materials with new properties resulting from the inclusion of growth factors and in research on their biological activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Minin and Pozharsky Square, 603005 Nizhny Novgorod, Russia; (D.Y.A.); (A.E.B.); (I.N.C.); (Y.P.R.); (D.D.L.); (E.A.F.)
| |
Collapse
|
11
|
Wu LY, Chong JR, Chong JPC, Hilal S, Venketasubramanian N, Tan BY, Richards AM, Chen CP, Lai MKP. Serum Placental Growth Factor as a Marker of Cerebrovascular Disease Burden in Alzheimer's Disease. J Alzheimers Dis 2024; 97:1289-1298. [PMID: 38217598 DOI: 10.3233/jad-230811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
BACKGROUND Concomitant cerebrovascular diseases (CeVD) have been identified as an important determinant of Alzheimer's disease (AD) progression. Development of robust blood-based biomarkers will provide critical tools to evaluate prognosis and potential interventional strategies for AD with CeVD. OBJECTIVE This study investigated circulating placental growth factor (PlGF), a potent pro-angiogenic factor related to endothelial dysfunction and vascular inflammation, in an Asian memory clinic cohort of non-demented individuals as well as AD, including its associations with neuroimaging markers of CeVD. METHODS 109 patients with AD, 76 cognitively impaired with no dementia (CIND), and 56 non-cognitively impaired (NCI) were included in this cross-sectional study. All subjects underwent 3T brain magnetic resonance imaging to assess white matter hyperintensities (WMH), lacunes, cortical infarcts, and cerebral microbleeds (CMBs). Serum PlGF concentrations were measured by electrochemiluminescence immunoassays. RESULTS Serum PlGF was elevated in AD, but not CIND, compared to the NCI controls. Adjusted concentrations of PlGF were associated with AD only in the presence of significant CeVD. Elevated PlGF was significantly associated with higher burden of WMH and with CMBs in AD patients. CONCLUSIONS Serum PlGF has potential utility as a biomarker for the presence of CeVD, specifically WMH and CMBs, in AD. Further studies are needed to elucidate the underlying pathophysiological mechanisms linking PlGF to CeVD, as well as to further assess PlGF's clinical utility.
Collapse
Affiliation(s)
- Liu-Yun Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Jenny P C Chong
- Cardiovascular Research Institute, National University Heart Centre, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | | | | | - Arthur Mark Richards
- Cardiovascular Research Institute, National University Heart Centre, Singapore
- Department of Medicine, National University Health System, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| |
Collapse
|
12
|
Li H, He Z, Deng B, Yang C, Wang L, Xiao J, Wu W, Li X, Zhang L, Wei Y, Zhu S, Yang H, Hai H, Hu J, Li L, Shi Y, Yu M, Shuai P, Liu Y, Ju X, Wu G, Zhou Y, Zhu J, Gong B. Cytokines and chemokines involved in HLA-B27-positive ankylosing spondylitis-associated acute anterior uveitis. Mol Vis 2023; 29:378-385. [PMID: 38577559 PMCID: PMC10994677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/28/2023] [Indexed: 04/06/2024] Open
Abstract
Purpose Acute anterior uveitis (AAU) is the most common extra-articular symptom of ankylosing spondylitis (AS). This study aims to reveal the cytokines and chemokines involved in the immunopathogenesis of human leucocyte antigen (HLA)-B27+ AS-associated AAU. Methods Twenty-one HLA-B27+ AS-associated AAU patients and 21 healthy controls (HCs) were recruited for this study. Serum cytokine concentrations in all 42 subjects were determined by the Meso Scale Discovery (MSD) electrochemiluminescence method. In each sample, 34 cytokines, 10 chemokines, eight angiogenesis mediators, and four vascular injury mediators were measured. The differences in cytokine and chemokine concentrations were compared between the two groups. Results Concentrations of serum IL-3, TNF-α, IL-6, IL-17D, IL-22, IP10/CXCL10, MIP-3α/CCL20, sFlt-1/VEGFR-1, CRP, and MCP-4/CCL13 were significantly higher in patients with HL-B27+ AS-associated AAU than in HCs (p < 0.05). In contrast, concentrations of serum IL-4, IL-8, MIP-1α/CCL3, Eotaxin-3/CCL26, PlGF, VEGF-C, and VEGF-D were significantly lower in patients with HL-B27+ AS-associated AAU than in HCs (p < 0.05). Conclusions Significant differences were detected in the levels of several cytokines and chemokines in the serum of HLA-B27+ AS-associated AAU compared with HCs. Some novel differential cytokines and chemokines that have not been reported in other kinds of uveitis were also identified. These results reveal the underlying pathogenesis of HLA-B27+ AS-associated AAU and could potentially aid in clinical diagnosis.
Collapse
Affiliation(s)
- Huan Li
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhaoxia He
- Department of Health Management, Sichuan Academy of Medical Sciences & The People's Hospital of Wenjiang, Chengdu, Sichuan, China
| | - Bolin Deng
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chen Yang
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liang Wang
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jialing Xiao
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Weijia Wu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiangmei Li
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lixin Zhang
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yutong Wei
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyu Zhu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huining Yang
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huanyue Hai
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiarui Hu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lin Li
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Shi
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ping Shuai
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuping Liu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xueming Ju
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Gang Wu
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yu Zhou
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bo Gong
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Stangret A, Dykacz W, Jabłoński K, Wesołowska A, Klimczak-Tomaniak D, Kochman J, Tomaniak M. The cytokine trio - visfatin, placental growth factor and fractalkine - and their role in myocardial infarction with non-obstructive coronary arteries (MINOCA). Cytokine Growth Factor Rev 2023; 74:76-85. [PMID: 37679252 DOI: 10.1016/j.cytogfr.2023.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Myocardial infarction with nonobstructive coronary arteries (MINOCA) remains a puzzling clinical entity. It is characterized by clinical evidence of myocardial infarction (MI) with normal or near-normal coronary arteries in angiography. Given the complex etiology including multiple possible scenarios with varied pathogenetic mechanisms, profound investigation of the plausible biomarkers of MINOCA may bring further pathophysiological insights and novel diagnostic opportunities. Cytokines have a great diagnostic potential and are used as biomarkers for many diseases. An unusual trio of visfatin, placental growth factor (PlGF) and fractalkine (CX3CL1) can directly promote vascular dysfunction, inflammation and angiogenesis through the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. They are redundant in physiological processes and become overexpressed in the pathomechanisms underlying MINOCA. The knowledge about their concentration might serve as a valuable diagnostic and/or therapeutic tool for assessing vascular endothelial function. Here we analyze the current knowledge on visfatin, PlGF and CX3CL1 in the context of MINOCA and present the novel clinical implications of their combined expression as predictors or indicators of this condition.
Collapse
Affiliation(s)
- Aleksandra Stangret
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland; College of Medical Sciences, Nicolaus Copernicus Superior School, Nowogrodzka 47a, 00-695 Warsaw, Poland
| | - Weronika Dykacz
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Konrad Jabłoński
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Aleksandra Wesołowska
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Dominika Klimczak-Tomaniak
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Kochman
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Mariusz Tomaniak
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| |
Collapse
|
14
|
Svyatova G, Mirzakhmetova D, Berezina G, Murtazaliyeva A. Candidate genes related to acute cerebral circulatory disorders in Preeclampsia in the Kazakh Population. J Stroke Cerebrovasc Dis 2023; 32:107392. [PMID: 37776726 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND The purpose of this study is to conduct a comparative analysis of the population frequencies of alleles and genotypes of polymorphic variants of coagulation and fibrinolysis genes SERPINE1 rs1799889, ITGA2 rs1126643, THBD rs1042580, FII rs1799963, FV rs6025, FVII rs6046, angiogenesis and endothelial dysfunction PGF rs12411, FLT1 rs4769612, KDR rs2071559, ACE rs4340, GWAS associated with the development of acute cerebral circulatory disorders in preeclampsia, in an ethnically homogeneous population of Kazakhs with previously studied populations of the world. METHODS The genomic database was analysed based on the results of genotyping of 1800 conditionally healthy individuals of Kazakh nationality ∼2.5 million SNPs using OmniChip 2.5 M Illumina chips at the DECODE Iceland Genomic Center as part of the joint implementation of the project "Genetic Studies of Preeclampsia in Populations of Central Asia and Europe" (InterPregGen) within the 7th Framework Programme of the European Commission under Grant Agreement No. 282540. RESULT The study discovered a significantly higher population frequency of carrying the unfavorable rs1126643 allele of the ITGA2 gene polymorphism when compared with European populations. The population frequencies of carrying minor alleles of the SERPINE1 (rs179988) and KDR (rs2071559) genes in the Kazakh population were significantly lower when compared with the previously studied populations of Europe and Asia. An intermediate frequency of unfavorable minor alleles between European and Asian populations was found in Kazakhs for gene polymorphisms: FV rs6025, PGF rs12411, and ACE rs4340. The genomic analysis determined the choice of polymorphisms for their further replicative genotyping in patients with ACCD in PE in the Kazakh population. CONCLUSION The obtained results will serve as a basis for the development of effective methods of early diagnosis and treatment of PE in pregnant women, carriers of unfavorable genotypes.
Collapse
Affiliation(s)
- Gulnara Svyatova
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan
| | - Dinara Mirzakhmetova
- Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan.
| | - Galina Berezina
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan
| | - Alexandra Murtazaliyeva
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan
| |
Collapse
|
15
|
Nutter CA, Kidd BM, Carter HA, Hamel JI, Mackie PM, Kumbkarni N, Davenport ML, Tuyn DM, Gopinath A, Creigh PD, Sznajder ŁJ, Wang ET, Ranum LPW, Khoshbouei H, Day JW, Sampson JB, Prokop S, Swanson MS. Choroid plexus mis-splicing and altered cerebrospinal fluid composition in myotonic dystrophy type 1. Brain 2023; 146:4217-4232. [PMID: 37143315 PMCID: PMC10545633 DOI: 10.1093/brain/awad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.
Collapse
Affiliation(s)
- Curtis A Nutter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Benjamin M Kidd
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Helmut A Carter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Johanna I Hamel
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Philip M Mackie
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nayha Kumbkarni
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Mackenzie L Davenport
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Dana M Tuyn
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Adithya Gopinath
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peter D Creigh
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, McKnight Brain Institute and the Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jacinda B Sampson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute and the Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
16
|
Zuo B, Zhu S, Zhong G, Bu H, Chen H. Causal association between placental growth factor and coronary heart disease: a Mendelian randomization study. Aging (Albany NY) 2023; 15:10117-10132. [PMID: 37787982 PMCID: PMC10599727 DOI: 10.18632/aging.205061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE Placental growth factor (PlGF), an important polypeptide hormone, plays an important regulatory role in various physiological processes. Observational studies have shown that PlGF is associated with the risk of coronary heart disease (CHD). However, the causal association between PlGF and CHD is unclear at present. This study aimed to investigate the causal association between genetically predicted PlGF levels and CHD. METHODS Single nucleotide polymorphisms (SNPs) associated with PlGF were selected as instrumental variables (IVs) to evaluate the causal association between genetically predicted circulating PlGF levels and CHD risk by two-sample Mendelian randomization (MR). RESULTS Inverse variance weighted (IVW) analysis showed that there was a suggestive causal association between genetically predicted PlGF level and the risk of CHD (OR = 0.79, 95% CI: 0.66-0.95, P = 0.011) overall. In addition, PlGF levels had a significant negative causal association with the risk of myocardial infarction (OR = 0.83, 95% CI: 0.72-0.95, P = 0.007). A negative correlation trend was found between PlGF level and the risk of angina pectoris (OR = 0.89, 95% CI: 0.79-1.01, P = 0.067). In addition, PlGF levels had a significant negative association with the risk of unstable angina pectoris (OR = 0.78, 95% CI: 0.64-0.94, P = 0.008). PlGF levels were negatively correlated with CHD events with suggestive significance (OR = 0.89, 95% CI: 0.80-0.99, P = 0.046). CONCLUSION Genetically predicted circulating PlGF levels are causally associated with the risk of CHD, especially acute coronary syndrome, and PlGF is a potential therapeutic target for CHD.
Collapse
Affiliation(s)
- Bo Zuo
- Department of Cardiology, Cardiovascular Centre, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Sha Zhu
- Department of Neurology, Peking University International Hospital, Beijing 102206, China
| | - Guoting Zhong
- Department of Neurology, Peking University International Hospital, Beijing 102206, China
| | - Haoyang Bu
- Department of Neurology, The First Hospital of Handan, Handan, China
| | - Hui Chen
- Department of Cardiology, Cardiovascular Centre, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
17
|
Tüfekci KK, Tatar M. Oleuropein Mitigates Acrylamide-Induced Nephrotoxicity by Affecting Placental Growth Factor Immunoactivity in the Rat Kidney. Eurasian J Med 2023; 55:228-233. [PMID: 37909193 PMCID: PMC10724718 DOI: 10.5152/eurasianjmed.2023.23043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/12/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE Oleuropein is one of the main components of the antioxidant properties of olive leaves. Placental growth factor is an important regulator in angiogenesis and inflammation, its levels being variable in pathological conditions. In this study, we aimed to examine changes in placental growth factor expression and the effect of oleuropein, found in olive leaves, in rats exposed to acrylamide nephrotoxicity. MATERIAL AND METHODS Twenty-four male Wistar albino rats were allocated into 4 groups. The control group received saline solution only. The oleuropein group received oleuropein (4.2 mg/kg), the acrylamide group received acrylamide (5 mg/kg), and the acrylamide and oleuropein group received acrylamide (5 mg/kg) and oleuropein (4.2 mg/kg). All substances were administered via gastric gavage for 21 days. Kidney tissues were removed at the end of the study and subjected to histopathological, stereological, and immunohistochemical procedures. RESULTS Histopathological examination revealed dilatation, vacuolization, and degeneration in the proximal and distal tubules and increased placental growth factor immunoreactivity in the acrylamide group. Cavalieri volume analysis revealed increased cortex, distal, and proximal tubule volumes (P < .01). CONCLUSION Oleuropein significantly attenuated acrylamide-induced kidney injury by altering placental growth factor immunoreactivity. Placental growth factor immunoreactivity can be used as a marker of acrylamide nephrotoxicity, and oleuropein may counteract acrylamide-induced kidney injury.
Collapse
Affiliation(s)
- Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Kastamonu University Faculty of Medicine, Kastamonu Türkiye
| | - Musa Tatar
- Department of Histology and Embryology, Kastamonu University Faculty of Veterinary Medicine, Kastamonu Türkiye
| |
Collapse
|
18
|
Mauroux A, Joncour P, Brassard-Jollive N, Bacar H, Gillet B, Hughes S, Ardidie-Robouant C, Marchand L, Liabotis A, Mailly P, Monnot C, Germain S, Bordes S, Closs B, Ruggiero F, Muller L. Papillary and reticular fibroblasts generate distinct microenvironments that differentially impact angiogenesis. Acta Biomater 2023; 168:210-222. [PMID: 37406716 DOI: 10.1016/j.actbio.2023.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Papillary and reticular dermis show distinct extracellular matrix (ECM) and vascularization corresponding to their specific functions. These characteristics are associated with gene expression patterns of fibroblasts freshly isolated from their native microenvironment. In order to assess the relevance of these fibroblast subpopulations in a tissue engineering context, we investigated their contribution to matrix production and vascularization using cell sheet culture conditions. We first performed RNA-seq differential expression analysis to determine whether several rounds of cell amplification and high-density culture affected their gene expression profile. Bioinformatics analysis revealed that expression of angiogenesis-related and matrisome gene signatures were maintained, resulting in papillary and reticular ECMs that differ in composition and structure. The impact of secreted or ECM-associated factors was then assessed using two independent 3D angiogenesis assays: -1/ a fibrin hydrogel-based assay allowing investigation of diffusible secreted factors, -2/ a scaffold-free cell-sheet based assay for investigation of fibroblast-produced microenvironment. These analyses revealed that papillary fibroblasts secrete highly angiogenic factors and produce a microenvironment characterised by ECM remodelling capacity and dense and branched microvascular network, whereas reticular fibroblasts produced more structural core components of the ECM associated with less branched and larger vessels. These features mimick the characteristics of both the ECM and the vasculature of dermis subcompartments. In addition to showing that skin fibroblast populations differentially regulate angiogenesis via both secreted and ECM factors, our work emphasizes the importance of papillary and reticular fibroblasts for engineering and modelling dermis microenvironment and vascularization. STATEMENT OF SIGNIFICANCE: Recent advances have brought to the forefront the central role of microenvironment and vascularization in tissue engineering for regenerative medicine and microtissue modelling. We have investigated the role of papillary and reticular fibroblast subpopulations using scaffold-free cell sheet culture. This approach provides differentiated cells conditions allowing the production of their own microenvironment. Analysis of gene expression profiles and characterisation of the matrix produced revealed strong and specific angiogenic properties that we functionally characterized using 3D angiogenesis models targeting the respective role of either secreted or matrix-bound factors. This study demonstrates the importance of cell-generated extracellular matrix and questions the importance of cell source and the relevance of hydrogels for developing physio-pathologically relevant tissue engineered substitutes.
Collapse
Affiliation(s)
- Adèle Mauroux
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France; Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France; R&D Department, SILAB, ZI de la Nau, Saint Viance 19240, France; Sorbonne Université, Collège Doctoral, 15 rue de l'Ecole de Médecine, Paris 75006, France
| | - Pauline Joncour
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Noémie Brassard-Jollive
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France; Sorbonne Université, Collège Doctoral, 15 rue de l'Ecole de Médecine, Paris 75006, France
| | - Hisoilat Bacar
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Corinne Ardidie-Robouant
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | | | - Athanasia Liabotis
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France; Sorbonne Université, Collège Doctoral, 15 rue de l'Ecole de Médecine, Paris 75006, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | - Catherine Monnot
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | - Sylvie Bordes
- R&D Department, SILAB, ZI de la Nau, Saint Viance 19240, France
| | - Brigitte Closs
- R&D Department, SILAB, ZI de la Nau, Saint Viance 19240, France
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France.
| | - Laurent Muller
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France.
| |
Collapse
|
19
|
Liu J, Pan D, Huang X, Wang S, Chen H, Zhu YZ, Ye L. Targeting collagen in tumor extracellular matrix as a novel targeted strategy in cancer immunotherapy. Front Oncol 2023; 13:1225483. [PMID: 37692860 PMCID: PMC10484796 DOI: 10.3389/fonc.2023.1225483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Collagen, the most abundant protein in mammal, is widely expressed in tissues and organs, as well as tumor extracellular matrix. Tumor collagen mainly accumulates in tumor stroma or beneath tumor blood vessel endothelium, and is exposed due to the fragmentary structure of tumor blood vessels. Through the blood vessels with enhanced permeability and retention (EPR) effect, collagen-binding macromolecules could easily bind to tumor collagen and accumulate within tumor, supporting tumor collagen to be a potential tumor-specific target. Recently, numerous studies have verified that targeting collagen within tumor extracellular matrix (TEM) would enhance the accumulation and retention of immunotherapy drugs at tumor, significantly improving their anti-tumor efficacy, as well as avoiding severe adverse effects. In this review, we would summarize the known collagen-binding domains (CBD) or proteins (CBP), their mechanism and application in tumor-targeting immunotherapy, and look forward to future development.
Collapse
Affiliation(s)
- Jiayang Liu
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Danjie Pan
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Xuan Huang
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Songna Wang
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Huaning Chen
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Li Ye
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| |
Collapse
|
20
|
Hsu HH, Ko PL, Peng CC, Cheng YJ, Wu HM, Tung YC. Studying sprouting angiogenesis under combination of oxygen gradients and co-culture of fibroblasts using microfluidic cell culture model. Mater Today Bio 2023; 21:100703. [PMID: 37483382 PMCID: PMC10359940 DOI: 10.1016/j.mtbio.2023.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Sprouting angiogenesis is an essential process for expanding vascular systems under various physiological and pathological conditions. In this paper, a microfluidic device capable of integrating a hydrogel matrix for cell culture and generating stable oxygen gradients is developed to study the sprouting angiogenesis of endothelial cells under combinations of oxygen gradients and co-culture of fibroblast cells. The endothelial cells can be cultured as a monolayer endothelium inside the device to mimic an existing blood vessel, and the hydrogel without or with fibroblast cells cultured in it provides a matrix next to the formed endothelium for three-dimensional sprouting of the endothelial cells. Oxygen gradients can be stably established inside the device for cell culture using the spatially-confined chemical reaction method. Using the device, the sprouting angiogenesis under combinations of oxygen gradients and co-culture of fibroblast cells is systematically studied. The results show that the oxygen gradient and the co-culture of fibroblast cells in the hydrogel can promote sprouting of the endothelial cells into the hydrogel matrix by altering cytokines in the culture medium and the physical properties of the hydrogel. The developed device provides a powerful in vitro model to investigate sprouting angiogenesis under various in vivo-like microenvironments.
Collapse
Affiliation(s)
- Heng-Hua Hsu
- Research Center of Applied Sciences, Academia Sinica, Taipei, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ping-Liang Ko
- Research Center of Applied Sciences, Academia Sinica, Taipei, Taiwan
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chien-Chung Peng
- Research Center of Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Jen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Mei Wu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Chung Tung
- Research Center of Applied Sciences, Academia Sinica, Taipei, Taiwan
- College of Engineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
21
|
Tsompanidis A, Blanken L, Broere-Brown ZA, van Rijn BB, Baron-Cohen S, Tiemeier H. Sex differences in placenta-derived markers and later autistic traits in children. Transl Psychiatry 2023; 13:256. [PMID: 37443170 DOI: 10.1038/s41398-023-02552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Autism is more prevalent in males and males on average score higher on measures of autistic traits. Placental function is affected significantly by the sex of the fetus. It is unclear if sex differences in placental function are associated with sex differences in the occurrence of autistic traits postnatally. To assess this, concentrations of angiogenesis-related markers, placental growth factor (PlGF) and soluble fms-like tyrosine kinase (sFlt-1) were assessed in maternal plasma of expectant women in the late 1st (mean= 13.5 [SD = 2.0] weeks gestation) and 2nd trimesters (mean=20.6 [SD = 1.2] weeks gestation), as part of the Generation R Study, Rotterdam, the Netherlands. Subsequent assessment of autistic traits in the offspring at age 6 was performed with the 18-item version of the Social Responsiveness Scale (SRS). Associations of placental protein concentrations with autistic traits were tested in sex-stratified and cohort-wide regression models. Cases with pregnancy complications or a later autism diagnosis (n = 64) were also assessed for differences in placenta-derived markers. sFlt-1 levels were significantly lower in males in both trimesters but showed no association with autistic traits. PlGF was significantly lower in male pregnancies in the 1st trimester, and significantly higher in the 2nd trimester, compared to female pregnancies. Higher PlGF levels in the 2nd trimester and the rate of PlGF increase were both associated with the occurrence of higher autistic traits (PlGF-2nd: n = 3469,b = 0.24 [SE = 0.11], p = 0.03) in both unadjusted and adjusted linear regression models that controlled for age, sex, placental weight and maternal characteristics. Mediation analyses showed that higher autistic traits in males compared to females were partly explained by higher PlGF or a faster rate of PlGF increase in the second trimester (PlGF-2nd: n = 3469, ACME: b = 0.005, [SE = 0.002], p = 0.004). In conclusion, higher PlGF levels in the 2nd trimester and a higher rate of PlGF increase are associated with both being male, and with a higher number of autistic traits in the general population.
Collapse
Affiliation(s)
- A Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | - L Blanken
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Z A Broere-Brown
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - B B van Rijn
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - S Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - H Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| |
Collapse
|
22
|
Rekowska AK, Obuchowska K, Bartosik M, Kimber-Trojnar Ż, Słodzińska M, Wierzchowska-Opoka M, Leszczyńska-Gorzelak B. Biomolecules Involved in Both Metastasis and Placenta Accreta Spectrum-Does the Common Pathophysiological Pathway Exist? Cancers (Basel) 2023; 15:cancers15092618. [PMID: 37174083 PMCID: PMC10177254 DOI: 10.3390/cancers15092618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The process of epithelial-to-mesenchymal transition (EMT) is crucial in the implantation of the blastocyst and subsequent placental development. The trophoblast, consisting of villous and extravillous zones, plays different roles in these processes. Pathological states, such as placenta accreta spectrum (PAS), can arise due to dysfunction of the trophoblast or defective decidualization, leading to maternal and fetal morbidity and mortality. Studies have drawn parallels between placentation and carcinogenesis, with both processes involving EMT and the establishment of a microenvironment that facilitates invasion and infiltration. This article presents a review of molecular biomarkers involved in both the microenvironment of tumors and placental cells, including placental growth factor (PlGF), vascular endothelial growth factor (VEGF), E-cadherin (CDH1), laminin γ2 (LAMC2), the zinc finger E-box-binding homeobox (ZEB) proteins, αVβ3 integrin, transforming growth factor β (TGF-β), β-catenin, cofilin-1 (CFL-1), and interleukin-35 (IL-35). Understanding the similarities and differences in these processes may provide insights into the development of therapeutic options for both PAS and metastatic cancer.
Collapse
Affiliation(s)
- Anna K Rekowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Karolina Obuchowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Bartosik
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Słodzińska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | | | | |
Collapse
|
23
|
Karpova NS, Dmitrenko OP, Budykina TS. Literature Review: The sFlt1/PlGF Ratio and Pregestational Maternal Comorbidities: New Risk Factors to Predict Pre-Eclampsia. Int J Mol Sci 2023; 24:ijms24076744. [PMID: 37047717 PMCID: PMC10095124 DOI: 10.3390/ijms24076744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
One of the main causes of maternal and neonatal morbidity and mortality is pre-eclampsia. It is characterized by a high sFlt1/PlGF ratio, according to prior research. Pregestational diseases in mothers may increase the risk of developing pre-eclampsia. Only a few studies have looked at the connection between maternal comorbidities before conception and the sFlt1/PlGF ratio. The most recent information regarding the association between maternal pregestational diseases and the ratio of sFlt1/PlGF is described in this review. The paper also examines current research suggesting that changes in pregnancy hormones and metabolites are related to a high sFlt1/PlGF ratio. Certain maternal disorders have been found to dramatically raise sFlt-1 and sFlt1/PlGF levels, according to an analysis of the literature. There is still debate about the data on the association between the sFlt1/PlGF ratio and maternal disorders such as HIV, acute coronary syndromes, cardiovascular function in the mother between 19 and 23 weeks of pregnancy, thyroid hormones, diabetes, and cancer. Additional research is needed to confirm these findings.
Collapse
Affiliation(s)
- Nataliia Sergeevna Karpova
- Federal State Budgetary Institution “Research Institute of Pathology and Pathophysiology”, St. Baltiyskaya, House 8, Moscow 125315, Russia
| | - Olga Pavlovna Dmitrenko
- Federal State Budgetary Institution “Research Institute of Pathology and Pathophysiology”, St. Baltiyskaya, House 8, Moscow 125315, Russia
| | - Tatyana Sergeevna Budykina
- State Budgetary Health Institution of the Moscow Region “Moscow Regional Research Institute of Obstetrics and Gynecology”, St. Pokrovka, d.22a, Moscow 101000, Russia
| |
Collapse
|
24
|
Gbotosho OT, Gollamudi J, Hyacinth HI. The Role of Inflammation in The Cellular and Molecular Mechanisms of Cardiopulmonary Complications of Sickle Cell Disease. Biomolecules 2023; 13:381. [PMID: 36830749 PMCID: PMC9953727 DOI: 10.3390/biom13020381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Cardiopulmonary complications remain the major cause of mortality despite newer therapies and improvements in the lifespan of patients with sickle cell disease (SCD). Inflammation has been identified as a major risk modifier in the pathogenesis of SCD-associated cardiopulmonary complications in recent mechanistic and observational studies. In this review, we discuss recent cellular and molecular mechanisms of cardiopulmonary complications in SCD and summarize the most recent evidence from clinical and laboratory studies. We emphasize the role of inflammation in the onset and progression of these complications to better understand the underlying pathobiological processes. We also discuss future basic and translational research in addressing questions about the complex role of inflammation in the development of SCD cardiopulmonary complications, which may lead to promising therapies and reduce morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267-0525, USA
| | - Jahnavi Gollamudi
- Division of Hematology & Oncology, Department of Internal Medicine, 3125 Eden Avenue, ML 0562, Cincinnati, OH 45219-0562, USA
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267-0525, USA
| |
Collapse
|
25
|
Bieńko K, Leszcz M, Więckowska M, Białek J, Petniak A, Szymanowski R, Wilińska A, Piszcz B, Krzyżanowski A, Kwaśniewska A, Płachno BJ, Gil-Kulik P, Kocki J. VEGF Expression in Umbilical Cord MSC Depends on the Patient's Health, the Week of Pregnancy in Which the Delivery Took Place, and the Body Weight of the Newborn - Preliminary Report. Stem Cells Cloning 2023; 16:5-18. [PMID: 37139466 PMCID: PMC10150760 DOI: 10.2147/sccaa.s399303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/15/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Cells collected from Wharton's jelly are a rich source of mesenchymal stem cells. They can be easily obtained and grown using the adhesive method. They produce many types of proteins, including VEGF. Their role is to participate in angiogenesis, vasodilation, stimulation of cells to migrate, and chemotactic activity. The aim of this study was to evaluate expression of genes from the vascular endothelial growth factor family: VEGFA, VEGFB and VEGFC in MSC and the analysis of dependence of the expression of the studied genes on clinical factors related to the course of pregnancy and childbirth, and health of mother and child. Material and Methods The research material was an umbilical cord obtained from 40 patients hospitalized in the Department of Obstetrics and Pathology of Pregnancy of the Independent Public Clinical Hospital No.1 in Lublin. The age of the women was 21-46, all gave birth by cesarean section. Some of the patients suffered from hypertension and hypothyroidism. Material collected from patients immediately after delivery was subjected to enzymatic digestion with type I collagenase. The isolated cells were then cultured in adherent conditions, and then gene expression was assessed using qPCR and the immunophenotype of the cells was assessed cytometrically. Results Conducted studies have shown significant differences in expression of VEGF family genes depending on clinical condition of mother and child. Significant differences in VEGF-family gene expression level in umbilical cord MSC collected from women with hypothyroidism, hypertension, time of labor and birth weight of the baby were shown. Conclusion Probably due to hypoxia (caused, for example, by hypothyroidism or hypertension), the MSCs found in the umbilical cord may react with an increased expression of VEGF and a compensatory increase in the amount of secreted factor, the aim of which is, i.a., vasodilation and increase of blood supply to the fetus through the umbilical vessels.
Collapse
Affiliation(s)
- Karolina Bieńko
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Monika Leszcz
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Marta Więckowska
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Justyna Białek
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Rafał Szymanowski
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Wilińska
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Bartosz Piszcz
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Lublin, Poland
- Doctoral School, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Krzyżanowski
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Lublin, Poland
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Lublin, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
- Correspondence: Paulina Gil-Kulik, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., Lublin, 20-080, Poland, Email
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
26
|
Winder Z, Sudduth TL, Anderson S, Patel E, Neltner J, Martin BJ, Snyder KE, Abner EL, Jicha GA, Nelson PT, Wilcock DM. Examining the association between blood-based biomarkers and human post mortem neuropathology in the University of Kentucky Alzheimer's Disease Research Center autopsy cohort. Alzheimers Dement 2023; 19:67-78. [PMID: 35266629 PMCID: PMC9463400 DOI: 10.1002/alz.12639] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Clinically, detection of disease-causing pathology associated with Alzheimer's disease (AD) and vascular contributions to cognitive impairment and dementia (VCID) is limited to magnetic resonance imaging and positron emission tomography scans, which are expensive and not widely accessible. Here, we assess angiogenic, inflammatory, and AD-related plasma biomarkers to determine their relationships with human post mortem neuropathology. METHOD Plasma samples were analyzed using a digital immunoassay and pathological evaluation was performed by University of Kentucky Alzheimer's Disease Research Center neuropathologists. The association of plasma markers with neuropathology was estimated via proportional odds and logistic regressions adjusted for age. RESULTS Included cases (N = 90) showed increased tau/amyloid beta (Aβ)42 ratio, glial fibrillary acidic protein (GFAP), vascular endothelial growth factor A (VEGF-A), and placental growth factor (PlGF) were positively associated with higher level of AD neuropathological change, while higher Aβ42/Aβ40 ratio was inversely associated. Higher PlGF, VEGF-A, and interleukin 6 were inversely associated with chronic cerebrovascular disease, while Aβ42/Aβ40 ratio was positively associated. DISCUSSION Our results provide support for the continued study of plasma biomarkers as a clinical screening tool for AD and VCID pathology.
Collapse
Affiliation(s)
- Zachary Winder
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Departments of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Tiffany L Sudduth
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Sonya Anderson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Ela Patel
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Janna Neltner
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Barbara J Martin
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Katherine E Snyder
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Erin L Abner
- Department of Epidemiology, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Neurology, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Departments of Physiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
27
|
The Anti-Vascular Endothelial Growth Factor Receptor 1 (VEGFR-1) D16F7 Monoclonal Antibody Inhibits Melanoma Adhesion to Soluble VEGFR-1 and Tissue Invasion in Response to Placenta Growth Factor. Cancers (Basel) 2022; 14:cancers14225578. [PMID: 36428669 PMCID: PMC9688925 DOI: 10.3390/cancers14225578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Placenta growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family involved in tumor-associated angiogenesis and melanoma invasion of the extra-cellular matrix (ECM) through activation of membrane VEGF receptor 1 (VEGFR-1). A soluble VEGFR-1 (sVEGFR-1) form is released in the ECM, where it sequesters proangiogenic factors and stimulates endothelial or tumor cell adhesion and chemotaxis through interaction with α5β1 integrin. The anti-VEGFR-1 monoclonal antibody (D16F7 mAb) inhibits VEGF-A or PlGF-mediated signal transduction without affecting ligand interaction, thus preserving sVEGFR-1 decoy function. The aim of this study was to investigate whether D16F7 mAb hampers melanoma spread by in vitro analysis of cell adhesion to sVEGFR-1, ECM invasion, transmigration through an endothelial cell monolayer and in vivo evaluation of tumor infiltrative potential in a syngeneic murine model. Results indicate that D16F7 mAb significantly inhibits melanoma adhesion to sVEGFR-1 and ECM invasion, as well as transmigration in response to PlGF. Moreover, treatment of melanoma-bearing mice with the anti-VEGFR-1 mAb not only inhibits tumor growth but also induces a significant reduction in bone infiltration associated with a decrease in PlGF-positive melanoma cells. Furthermore, D16F7 mAb reduces PlGF production by melanoma cells. Therefore, blockade of PLGF/VEGFR-1 signaling represents a suitable strategy to counteract the metastatic potential of melanoma.
Collapse
|
28
|
Saulnier-Sholler G, Duda DG, Bergendahl G, Ebb D, Snuderl M, Laetsch TW, Michlitsch J, Hanson D, Isakoff MS, Bielamowicz K, Kraveka JM, Ferguson W, Carmeliet P, De Deene A, Gijsen L, Jain RK. A Phase I Trial of TB-403 in Relapsed Medulloblastoma, Neuroblastoma, Ewing Sarcoma, and Alveolar Rhabdomyosarcoma. Clin Cancer Res 2022; 28:3950-3957. [PMID: 35833850 PMCID: PMC9481695 DOI: 10.1158/1078-0432.ccr-22-1169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Placental growth factor (PlGF) and its receptor neuropilin 1 are elevated in malignant embryonal tumors and mediate tumor progression by promoting cell proliferation, survival, and metastasis. TB-403 is a blocking monoclonal antibody against PlGF that inhibits tumor growth and increases survival in orthotopic medulloblastoma models. PATIENTS AND METHODS We conducted a phase I, open-label, multicenter, dose-escalation study of TB-403 in pediatric subjects with relapsed or refractory cancers. The study involved four dose levels (20 mg/kg, 50 mg/kg, 100 mg/kg, 175 mg/kg) using a 3 + 3 dose-escalation scheme. Subjects received two doses of TB-403 (days 1 and 15) per cycle. After cycle 1, temozolomide or etoposide could be added. The primary objective was to determine the maximum tolerated dose (MTD) of TB-403 monotherapy during a dose-limiting toxicity assessment period. The secondary and exploratory objectives included efficacy, drug pharmacokinetics, and detection of pharmacodynamic biomarkers. RESULTS Fifteen subjects were treated in four dose levels. All subjects received two doses of TB-403 in cycle 1. Five serious treatment-emergent adverse events were reported in 3 subjects, but MTD was not reached. While no complete nor partial responses were observed, 7 of 11 relapsed subjects with medulloblastoma experienced stable disease, which persisted for more than 100 days in 4 of 7 subjects. CONCLUSIONS TB-403 was safe and well tolerated at all dose levels. No MTD was reached. The results look encouraging and therefore warrant further evaluation of efficacy in pediatric subjects with medulloblastoma.
Collapse
Affiliation(s)
| | - Dan G Duda
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - David Ebb
- Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Theodore W Laetsch
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Department of Pediatrics and Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer Michlitsch
- University of California, San Francisco Benioff Children's Hospital, Oakland, California
| | - Derek Hanson
- Hackensack University Medical Center, Hackensack, New Jersey
| | | | | | | | - William Ferguson
- Cardinal Glennon Children's Medical Center, St. Louis University School of Medicine, St. Louis, Missouri
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | | | | | - Rakesh K Jain
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Hu L, Kimura S, Haga M, Kashiwagi S, Takagi K, Shimizu T, Ishii T, Ohyama M. Vitamins and Their Derivatives Synergistically Promote Hair Shaft Elongation ex vivo via PlGF/VEGFR-1 Signalling Activation. J Dermatol Sci 2022; 108:2-11. [DOI: 10.1016/j.jdermsci.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
30
|
Tseng HY, Chen YW, Lee BS, Chang PC, Wang YP, Lin CP, Cheng SJ, Kuo MYP, Hou HH. The neutrophil elastase-upregulated placenta growth factor promotes the pathogenesis and progression of periodontal disease. J Periodontol 2022; 93:1401-1410. [PMID: 34967007 DOI: 10.1002/jper.21-0587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Periodontal disease is a chronic inflammatory disease. Given its high prevalence, especially in aging population, the detailed mechanisms about pathogenesis of periodontal disease are important issues for study. Neutrophil firstly infiltrates to periodontal disease-associated pathogen loci and amplifies the inflammatory response for host defense. However, excessive neutrophil-secreted neutrophil elastase (NE) damages the affected gingival. In lung and esophageal epithelium, NE had been proved to upregulate several growth factors including placenta growth factor (PGF). PGF is an angiogenic factor with proinflammatory properties, which mediates the progression of inflammatory disease. Therefore, we hypothesize excessive NE upregulates PGF and participates in the pathogenesis and progression of periodontal disease. METHODS In gingival epithelial cells (GEC), growth factors array demonstrated NE-increased growth factors and further be corroborated by Western blot assay and ELISA. The GEC inflammation was evaluated by ELISA. In mice, the immunohistochemistry results demonstrated ligature implantation-induced neutrophil infiltration and growth factor upregulation. By multiplex assay, the ligature-induced proinflammatory cytokines level in gingival crevicular fluid (GCF) were evaluated. Finally, alveolar bone absorption was analyzed by micro-CT images and H & E staining. RESULTS NE upregulated PGF expression and secretion in GEC. PGF promoted GEC to secret IL-1β, IL-6, and TNF-α in GCF In periodontal disease animal model, ligature implantation triggered NE infiltration and PGF expression. Blockade of PGF attenuated the ligature implantation-induced IL-1β, IL-6, TNF-α and MIP-2 secretion and ameliorated the alveolar bone loss in mice. CONCLUSION In conclusion, the NE-induced PGF triggers gingival epithelium inflammation and promotes the pathogenesis and progression of periodontal disease.
Collapse
Affiliation(s)
- Hsiu-Yang Tseng
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Shiunn Lee
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ping Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Jung Cheng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mark Yen-Ping Kuo
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Han Hou
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
VEGF-A promotes the motility of human melanoma cells through the VEGFR1-PI3K/Akt signaling pathway. In Vitro Cell Dev Biol Anim 2022; 58:758-770. [PMID: 35997849 PMCID: PMC9550759 DOI: 10.1007/s11626-022-00717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Vascular endothelial growth factor A (VEGF-A) and its receptors (VEGFR1 and R2) play important roles in the progression of malignant melanoma through tumor angiogenesis. However, it is not clear whether the VEGF-A/VEGFR1 signaling pathway is involved in the proliferation and migration of melanoma cells. Thus, the effect of VEGF-A on cell migration was investigated in human melanoma cell lines. Of several splicing variants of VEGF-A, VEGF165 is the most abundant and responsible for VEGF-A biological potency. VEGF165 facilitated the migration of melanoma cells in both a chemotactic and chemokinetic manner, but cell proliferation was not affected by VEGF165. VEGF165 also induced the phosphorylation of Akt. In addition, VEGF165-induced cell migration was inhibited significantly by VEGFR1/2 or a VEGFR1-neutralizing antibody. Furthermore, the downregulation of VEGFR1 via the transfection of VEGFR1-targeting antisense oligonucleotides suppressed VEGF165-induced cell migration. Moreover, wortmannin, an inhibitor of phosphatidylinositol-3 kinase (PI3K) in the PI3K/Akt pathway, suppressed VEGF165-induced Akt phosphorylation and VEGF165-induced cell migration. These findings suggest that the motility of melanoma cells is regulated by signals mediated through the PI3K/Akt kinase pathway with the activation of VEGFR1 tyrosine kinase by VEGF165. Thus, the downregulation of signaling via VEGF-A/VEGFR1 might be an effective therapeutic approach that could prevent the progression of malignant melanoma.
Collapse
|
32
|
Dehlke K, Krause L, Tyufekchieva S, Murtha-Lemekhova A, Mayer P, Vlasov A, Klingmüller U, Mueller NS, Hoffmann K. Predicting liver regeneration following major resection. Sci Rep 2022; 12:13396. [PMID: 35927556 PMCID: PMC9352754 DOI: 10.1038/s41598-022-16968-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Breakdown of synthesis, excretion and detoxification defines liver failure. Post-hepatectomy liver failure (PHLF) is specific for liver resection and a rightfully feared complication due to high lethality and limited therapeutic success. Individual cytokine and growth factor profiles may represent potent predictive markers for recovery of liver function. We aimed to investigate these profiles in post-hepatectomy regeneration. This study combined a time-dependent cytokine and growth factor profiling dataset of a training (30 patients) and a validation (14 patients) cohorts undergoing major liver resection with statistical and predictive models identifying individual pathway signatures. 2319 associations were tested. Primary hepatocytes isolated from patient tissue samples were stimulated and their proliferation was analysed through DNA content assay. Common expression trajectories of cytokines and growth factors with strong correlation to PHLF, morbidity and mortality were identified despite highly individual perioperative dynamics. Especially, dynamics of EGF, HGF, and PLGF were associated with mortality. PLGF was additionally associated with PHLF and complications. A global association-network was calculated and validated to investigate interdependence of cytokines and growth factors with clinical attributes. Preoperative cytokine and growth factor signatures were identified allowing prediction of mortality following major liver resection by regression modelling. Proliferation analysis of corresponding primary human hepatocytes showed associations of individual regenerative potential with clinical outcome. Prediction of PHLF was possible on as early as first postoperative day (POD1) with AUC above 0.75. Prediction of PHLF and mortality is possible on POD1 with liquid-biopsy based risk profiling. Further utilization of these models would allow tailoring of interventional strategies according to individual profiles.
Collapse
Affiliation(s)
- Karolin Dehlke
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Silvana Tyufekchieva
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Anastasia Murtha-Lemekhova
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Philipp Mayer
- Department of Diagnostic and Interventional Radiology, Ruprecht Karls University, 69120, Heidelberg, Germany
| | - Artyom Vlasov
- Division of Systems Biology of Signal Transduction, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Nikola S Mueller
- Institute of Computational Biology, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Katrin Hoffmann
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
33
|
le Noble F, Kupatt C. Interdependence of Angiogenesis and Arteriogenesis in Development and Disease. Int J Mol Sci 2022; 23:ijms23073879. [PMID: 35409246 PMCID: PMC8999596 DOI: 10.3390/ijms23073879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
The structure of arterial networks is optimized to allow efficient flow delivery to metabolically active tissues. Optimization of flow delivery is a continuous process involving synchronization of the structure and function of the microcirculation with the upstream arterial network. Risk factors for ischemic cardiovascular diseases, such as diabetes mellitus and hyperlipidemia, adversely affect endothelial function, induce capillary regression, and disrupt the micro- to macrocirculation cross-talk. We provide evidence showing that this loss of synchronization reduces arterial collateral network recruitment upon arterial stenosis, and the long-term clinical outcome of current revascularization strategies in these patient cohorts. We describe mechanisms and signals contributing to synchronized growth of micro- and macrocirculation in development and upon ischemic challenges in the adult organism and identify potential therapeutic targets. We conclude that a long-term successful revascularization strategy should aim at both removing obstructions in the proximal part of the arterial tree and restoring “bottom-up” vascular communication.
Collapse
Affiliation(s)
- Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131 Karlsruhe, Germany
- Institute for Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
- Institute of Experimental Cardiology, Heidelberg Germany and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69117 Heidelberg, Germany
- Correspondence: (F.l.N.); (C.K.)
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- DZHK (German Center for Cardiovascular Research), Munich Heart Alliance, 80802 Munich, Germany
- Correspondence: (F.l.N.); (C.K.)
| |
Collapse
|
34
|
Yu L, Shi Q, Zhang B, Xu J. Genetically modified mesenchymal stem cells promote spinal fusion through polarized macrophages. J Transl Med 2022; 102:312-319. [PMID: 34764437 PMCID: PMC8860744 DOI: 10.1038/s41374-021-00693-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
Spinal fusion is an effective treatment for low back pain and typically applied with prosthetic fixation devices. Spinal fusion can be improved by transplantation of mesenchymal stem cells (MSCs) into the paraspinal muscle. However, in contrast to the direct contribution of MSCs to spinal fusion, the indirect effects of MSCs on spinal infusion have not been studied and were thus addressed here. The correlation between the outcome of spinal fusion and the local macrophage number, polarization and the levels of placental growth factor (PlGF) in patients was analyzed. MSCs were genetically modified to overexpress PlGF, and its effects on macrophage proliferation and polarization were analyzed in vitro in a transwell co-culture system, as well as in vivo in a mouse model for spinal fusion, for which the cells were bilaterally injected into paravertebral muscles of the mouse lumbar spine. The effects on spinal fusion were assessed by microcomputed tomography and a custom four-point bending apparatus for structural bending stiffness. Local macrophages were analyzed by flow cytometry. We found that posterior spinal fusion could be improved by PlGF-expressing MSCs, compared to the control MSCs, evident by significant improvement of bone bridging of the targeted vertebrae. Mechanistically, PlGF-expressing MSCs appeared to attract macrophages and induce their M2 polarization, which in turn promotes the bone formation. Together, our data suggest that PlGF-expressing MSCs may improve spinal fusion through macrophage recruitment and polarization.
Collapse
Affiliation(s)
- Luchao Yu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Department of Orthopedic Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Qiang Shi
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Baokun Zhang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jianguang Xu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
35
|
Chen CL, Kao CC, Yang MH, Fan GY, Cherng JH, Tsao CW, Wu ST, Cha TL, Meng E. A Novel Intravesical Dextrose Injection Improves Lower Urinary Tract Symptoms on Interstitial Cystitis/Bladder Pain Syndrome. Front Pharmacol 2022; 12:755615. [PMID: 34975473 PMCID: PMC8715092 DOI: 10.3389/fphar.2021.755615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a painful recurrent condition characterized by the discomfort of the bladder, and current treatment options have limited effectiveness. Prolotherapy is a well-known treatment that involves the injection of non-biologic solutions to reduce pain and/or promote proliferation of soft tissue, and dextrose is the most common injectate. This study investigated the effects of dextrose prolotherapy in a rat model of IC/BPS and patients with IC/BPS. We used cyclophosphamide to induce IC/BPS in rats, and intravesical instillation of 10% dextrose solution was performed. After 1 week, we conducted a urodynamic test, bladder staining, and ECM-related gene expression analysis to examine the treatment’s efficacy. We found that dextrose treatment could recover the instability of the bladder, reduce frequent urination, and improve the glycosaminoglycan layer regeneration and the bladder wall thickness along with a significant intense expression of CD44 receptors. Furthermore, we enrolled 29 IC/BPS patients with previous hyaluronic acid/Botox treatment for more than 6 months with remained unchanged condition. In this study, they received intravesical injections of 10% dextrose solution followed by assessments for up to 12 weeks. Patient characteristics and a 3-day voiding diary before treatment were recorded. Patient responses were examined using IC/BPS-related questionnaires. Moreover, expressions of growth factors and cytokines were analyzed. The results demonstrated that dextrose prolotherapy in patients with IC/BPS reduced the frequency of treatment over time, with the mean number of treatments being 3.03 ± 1.52, and significantly reduced the incidence of nocturia and questionnaire scores associated with symptoms. Dextrose prolotherapy significantly enhanced EGF level and, in contrast, reduced the level of HGF, PIGF-1, and VEGF-D after several weeks following treatment. The cytokine analysis showed that the expressions of IL-12p70 and IL-10 were significantly up-regulated after dextrose prolotherapy in IC/BPS patients. The levels of most growth factors and cytokines in IC/BPS patients had no significant difference and showed a similar tendency as time progressed when compared to healthy controls. Overall, the alteration of growth factors and cytokines exhibited safe treatment and potential stimulation of tissue remodeling. In summary, our study demonstrated that dextrose prolotherapy is a promising treatment strategy for IC/BPS disease management.
Collapse
Affiliation(s)
- Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Chang Kao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Hsin Yang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Gang-Yi Fan
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Juin-Hong Cherng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Lung Cha
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - En Meng
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
36
|
Becker-Greene D, Li H, Perez-Cremades D, Wu W, Bestepe F, Ozdemir D, Niosi CE, Aydogan C, Orgill DP, Feinberg MW, Icli B. MiR-409-3p targets a MAP4K3-ZEB1-PLGF signaling axis and controls brown adipose tissue angiogenesis and insulin resistance. Cell Mol Life Sci 2021; 78:7663-7679. [PMID: 34698882 PMCID: PMC8655847 DOI: 10.1007/s00018-021-03960-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Endothelial cells (ECs) within the microvasculature of brown adipose tissue (BAT) are important in regulating the plasticity of adipocytes in response to increased metabolic demand by modulating the angiogenic response. However, the mechanism of EC-adipocyte crosstalk during this process is not completely understood. We used RNA sequencing to profile microRNAs derived from BAT ECs of obese mice and identified an anti-angiogenic microRNA, miR-409-3p. MiR-409-3p overexpression inhibited EC angiogenic properties; whereas, its inhibition had the opposite effects. Mechanistic studies revealed that miR-409-3p targets ZEB1 and MAP4K3. Knockdown of ZEB1/MAP4K3 phenocopied the angiogenic effects of miR-409-3p. Adipocytes co-cultured with conditioned media from ECs deficient in miR-409-3p showed increased expression of BAT markers, UCP1 and CIDEA. We identified a pro-angiogenic growth factor, placental growth factor (PLGF), released from ECs in response to miR-409-3p inhibition. Deficiency of ZEB1 or MAP4K3 blocked the release of PLGF from ECs and PLGF stimulation of 3T3-L1 adipocytes increased UCP1 expression in a miR-409-3p dependent manner. MiR-409-3p neutralization improved BAT angiogenesis, glucose and insulin tolerance, and energy expenditure in mice with diet-induced obesity. These findings establish miR-409-3p as a critical regulator of EC-BAT crosstalk by modulating a ZEB1-MAP4K3-PLGF signaling axis, providing new insights for therapeutic intervention in obesity.
Collapse
Affiliation(s)
- Dakota Becker-Greene
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Daniel Perez-Cremades
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Department of Physiology, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Furkan Bestepe
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Carolyn E Niosi
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA
| | - Ceren Aydogan
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA.
| | - Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA.
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
37
|
Ye X, Gaucher JF, Vidal M, Broussy S. A Structural Overview of Vascular Endothelial Growth Factors Pharmacological Ligands: From Macromolecules to Designed Peptidomimetics. Molecules 2021; 26:6759. [PMID: 34833851 PMCID: PMC8625919 DOI: 10.3390/molecules26226759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) family of cytokines plays a key role in vasculogenesis, angiogenesis, and lymphangiogenesis. VEGF-A is the main member of this family, alongside placental growth factor (PlGF), VEGF-B/C/D in mammals, and VEGF-E/F in other organisms. To study the activities of these growth factors under physiological and pathological conditions, resulting in therapeutic applications in cancer and age-related macular degeneration, blocking ligands have been developed. These have mostly been large biomolecules like antibodies. Ligands with high affinities, at least in the nanomolar range, and accurate structural data from X-ray crystallography and NMR spectroscopy have been described. They constitute the main focus of this overview, which evidences similarities and differences in their binding modes. For VEGF-A ligands, and to a limited extent also for PlGF, a transition is now observed towards developing smaller ligands like nanobodies and peptides. These include unnatural amino acids and chemical modifications for designed and improved properties, such as serum stability and greater affinity. However, this review also highlights the scarcity of such small molecular entities and the striking lack of small organic molecule ligands. It also shows the gap between the rather large array of ligands targeting VEGF-A and the general absence of ligands binding other VEGF members, besides some antibodies. Future developments in these directions are expected in the upcoming years, and the study of these growth factors and their promising therapeutic applications will be welcomed.
Collapse
Affiliation(s)
- Xiaoqing Ye
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
| | - Jean-François Gaucher
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, 75006 Paris, France;
| | - Michel Vidal
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
- Service Biologie du Médicament, Toxicologie, AP-HP, Hôpital Cochin, 75014 Paris, France
| | - Sylvain Broussy
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
| |
Collapse
|
38
|
Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ. Vascular Dysfunction in Preeclampsia. Cells 2021; 10:3055. [PMID: 34831277 PMCID: PMC8616535 DOI: 10.3390/cells10113055] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
Preeclampsia is a life-threatening pregnancy-associated cardiovascular disorder characterized by hypertension and proteinuria at 20 weeks of gestation. Though its exact underlying cause is not precisely defined and likely heterogenous, a plethora of research indicates that in some women with preeclampsia, both maternal and placental vascular dysfunction plays a role in the pathogenesis and can persist into the postpartum period. Potential abnormalities include impaired placentation, incomplete spiral artery remodeling, and endothelial damage, which are further propagated by immune factors, mitochondrial stress, and an imbalance of pro- and antiangiogenic substances. While the field has progressed, current gaps in knowledge include detailed initial molecular mechanisms and effective treatment options. Newfound evidence indicates that vasopressin is an early mediator and biomarker of the disorder, and promising future therapeutic avenues include mitigating mitochondrial dysfunction, excess oxidative stress, and the resulting inflammatory state. In this review, we provide a detailed overview of vascular defects present during preeclampsia and connect well-established notions to newer discoveries at the molecular, cellular, and whole-organism levels.
Collapse
Affiliation(s)
- Megan A. Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
| | - Matthew W. Rappelt
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - David D. Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer J. McIntosh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
39
|
Vittoros V, Kyriazopoulou E, Lada M, Tsangaris I, Koutelidakis IM, Giamarellos-Bourboulis EJ. Soluble fms-like tyrosine kinase 1, placental growth factor and procalcitonin as biomarkers of gram-negative sepsis: Analysis through a derivation and a validation cohort. Medicine (Baltimore) 2021; 100:e27662. [PMID: 34871241 PMCID: PMC8568432 DOI: 10.1097/md.0000000000027662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023] Open
Abstract
Further improvement of the diagnostic and prognostic performance of biomarkers for the critically ill is needed. Procalcitonin (PCT), placental growth factor (PlGF) and soluble fms-like tyrosine kinase-1 raise interest for sepsis diagnosis and prognosis.Serum samples from 2 cohorts of 172 patients (derivation cohort) and of 164 patients (validation cohort) comprising only patients with microbiologically confirmed gram-negative infections were analyzed. PlGF, s-Flt-1 and procalcitonin (PCT) were measured in serum within 24 hours from sepsis onset and repeated on days 3 and 7.PCT and s-Flt-1 baseline levels were higher in sepsis and septic shock compared to non-sepsis; this was not the case for PlGF. s-Flt-1 at concentrations greater than 60 pg/ml diagnosed sepsis with sensitivity 72.3% and specificity 54.9% whereas at concentrations greater than 70 pg/ml predicted unfavorable outcome with specificity 73.0% and sensitivity 63.7%. At least 80% decrease of PCT and/or PCT less than 0.5 ng/ml on day 7 was protective from sepsis-associated death.Both s-Flt-1 and PCT should be measured in the critically ill since they provide additive information for sepsis diagnosis and prognosis.ClinicalTrials.gov numbers NCT01223690 and NCT00297674.
Collapse
Affiliation(s)
- Vasileios Vittoros
- 1st Department of Internal Medicine, Thriasio General Hospital of Elefsis, G. Gennimatas Avenue, Athens, Greece
| | - Evdoxia Kyriazopoulou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 1 Rimini Street, Athens, Greece
| | - Malvina Lada
- 2nd Department of Internal Medicine, Sismanogleion General Hospital of Athens, 37 Sismanogleiou Street, Athens, Greece
| | - Iraklis Tsangaris
- 2nd Department of Critical Care Medicine, National and Kapodistrian University of Athens, Medical School, 1 Rimini Street, Athens, Greece
| | - Ioannis M. Koutelidakis
- 2nd Department of Surgery, Aristotle University of Thessaloniki, 41 Ethnikis Amynis street, Thessaloniki, Greece
| | | |
Collapse
|
40
|
Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 2021; 84:100954. [PMID: 33640465 PMCID: PMC8385046 DOI: 10.1016/j.preteyeres.2021.100954] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, -C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research.
Collapse
Affiliation(s)
- Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Sandro De Falco
- Angiogenesis Laboratory, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy; ANBITION S.r.l., Via Manzoni 1, 80123, Naples, Italy.
| | - Antonia M Joussen
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, and Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| | - Lynne R Brunck
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kristian T Johnson
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - George N Lambrou
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kay D Rittenhouse
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| |
Collapse
|
41
|
Kazimova T, Tschanz F, Sharma A, Telarovic I, Wachtel M, Pedot G, Schäfer B, Pruschy M. Paracrine Placental Growth Factor Signaling in Response to Ionizing Radiation Is p53-Dependent and Contributes to Radioresistance. Mol Cancer Res 2021; 19:1051-1062. [PMID: 33619227 DOI: 10.1158/1541-7786.mcr-20-0403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
Placental growth factor (PlGF) is a pro-angiogenic, N-glycosylated growth factor, which is secreted under pathologic situations. Here, we investigated the regulation of PlGF in response to ionizing radiation (IR) and its role for tumor angiogenesis and radiosensitivity. Secretion and expression of PlGF was induced in multiple tumor cell lines (medulloblastoma, colon and lung adenocarcinoma) in response to irradiation in a dose- and time-dependent manner. Early upregulation of PlGF expression and secretion in response to irradiation was primarily observed in p53 wild-type tumor cells, whereas tumor cells with mutated p53 only showed a minimal or delayed response. Mechanistic investigations with genetic and pharmacologic targeting of p53 corroborated regulation of PlGF by the tumor suppressor p53 in response to irradiation under normoxic and hypoxic conditions, but with so far unresolved mechanisms relevant for its minimal and delayed expression in tumor cells with a p53-mutated genetic background. Probing a paracrine role of IR-induced PlGF secretion in vitro, migration of endothelial cells was specifically increased towards irradiated PlGF wild type but not towards irradiated PlGF-knockout (PIGF-ko) medulloblastoma cells. Tumors derived from these PlGF-ko cells displayed a reduced growth rate, but similar tumor vasculature formation as in their wild-type counterparts. Interestingly though, high-dose irradiation strongly reduced microvessel density with a concomitant high rate of complete tumor regression only in the PlGF-ko tumors. IMPLICATIONS: Our study shows a strong paracrine vasculature-protective role of PlGF as part of a p53-regulated IR-induced resistance mechanism and suggest PlGF as a promising target for a combined treatment modality with RT.
Collapse
Affiliation(s)
- Tamara Kazimova
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fabienne Tschanz
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ashish Sharma
- Clinical Science Oncology, Medical & Scientific Affairs, Roche Diagnostics International Ltd., Rotkreuz Switzerland
| | - Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Gloria Pedot
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Beat Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Christensen M, Petersen JL, Sivanandam P, Kronborg CS, Knudsen UB, Martensen PM. Reduction of serum-induced endothelial STAT3(Y705) activation is associated with preeclampsia. Pregnancy Hypertens 2021; 25:103-109. [PMID: 34098522 DOI: 10.1016/j.preghy.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Preeclampsia is associated with maternal morbidity and mortality during pregnancy, and also an increased cardiovascular disease (CVD) risk later in life. During preeclampsia, alterations in secreted placental factors leading to systemic maternal endothelial dysfunction are evident. However, little is known about the associated endothelial intracellular signaling. STAT3 is a latent cytoplasmic transcription factor involved in endothelial cell differentiation, survival, and angiogenesis. We aimed to test if preeclampsia and preeclampsia-related placental factors could alter serum-induced STAT3(Y705) activation in endothelial cells. Furthermore, if altered serum-induced endothelial STAT3 (Y705) activation is related to post-preeclamptic CVD risk. STUDY DESIGN HUVECs were used as a model of maternal endothelium. Experiments entailed addition of 20% human pregnancy serum as well as addition of recombinant PlGF, sFLT1 and VEGF-A165a to the cells. MAIN OUTCOME MEASURES Levels of pSTAT3(Y705) related to STAT3 levels were evaluated by immunoblotting analysis. RESULTS Our results show that preeclamptic serum induces significantly lower STAT3(Y705) phosphorylation compared with uncomplicated pregnancy serum (P = 0.0089) in endothelial cells. Furthermore, STAT3(Y705) phosphorylation was not changed upon addition of PlGF, sFLT1, or VEGF-A165a together with pregnancy sera compared with sera alone. Finally, sera from women with previous preeclampsia and current hypertension and carotid atherosclerotic plaques show significantly lower STAT3(Y705) phosphorylation capabilities compared with healthy women with previous uncomplicated pregnancies 8-18 years after deliveries (P = 0.029). CONCLUSIONS Reduction in serum-induced endothelial STAT3(Y705) activation may play an important role in the preeclampsia-associated endothelial dysfunction. Additionally, reduced endothelial STAT3(Y705) phosphorylation may contribute to increased post-preeclamptic CVD risk 8-18 years after delivery.
Collapse
Affiliation(s)
- M Christensen
- Clinical Research Unit, Randers Regional Hospital, 8930 Randers NOE, Denmark; Institute of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - J L Petersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - P Sivanandam
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - C S Kronborg
- Department of Oncology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - U B Knudsen
- Institute of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Gynaecology and Obstetrics, Horsens Regional Hospital, 8700 Horsens, Denmark
| | - P M Martensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
43
|
Cheng QN, Yang X, Wu JF, Ai WB, Ni YR. Interaction of non‑parenchymal hepatocytes in the process of hepatic fibrosis (Review). Mol Med Rep 2021; 23:364. [PMID: 33760176 PMCID: PMC7986015 DOI: 10.3892/mmr.2021.12003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic fibrosis (HF) is the process of fibrous scar formation caused by chronic liver injury of different etiologies. Previous studies have hypothesized that the activation of hepatic stellate cells (HSCs) is the central process in HF. The interaction between HSCs and surrounding cells is also crucial. Additionally, hepatic sinusoids capillarization, inflammation, angiogenesis and fibrosis develop during HF. The process involves multiple cell types that are highly connected and work in unison to maintain the homeostasis of the hepatic microenvironment, which serves a key role in the initiation and progression of HF. The current review provides novel insight into the intercellular interaction among liver sinusoidal endothelial cells, HSCs and Kupffer cells, as well as the hepatic microenvironment in the development of HF.
Collapse
Affiliation(s)
- Qi-Ni Cheng
- Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, Hubei 443002, P.R. China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Xue Yang
- Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, Hubei 443002, P.R. China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Jiang-Feng Wu
- Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, Hubei 443002, P.R. China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, P.R. China
- The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Wen-Bing Ai
- The Yiling Hospital of Yichang, Yichang, Hubei 443100, P.R. China
| | - Yi-Ran Ni
- Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
44
|
Ranjan P, Kumari R, Goswami SK, Li J, Pal H, Suleiman Z, Cheng Z, Krishnamurthy P, Kishore R, Verma SK. Myofibroblast-Derived Exosome Induce Cardiac Endothelial Cell Dysfunction. Front Cardiovasc Med 2021; 8:676267. [PMID: 33969024 PMCID: PMC8102743 DOI: 10.3389/fcvm.2021.676267] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Endothelial cells (ECs) play a critical role in the maintenance of vascular homeostasis and in heart function. It was shown that activated fibroblast-derived exosomes impair cardiomyocyte function in hypertrophic heart, but their effect on ECs is not yet clear. Thus, we hypothesized that activated cardiac fibroblast-derived exosomes (FB-Exo) mediate EC dysfunction, and therefore modulation of FB-exosomal contents may improve endothelial function. Methods and Results: Exosomes were isolated from cardiac fibroblast (FB)-conditioned media and characterized by nanoparticle tracking analysis and electron microscopy. ECs were isolated from mouse heart. ECs were treated with exosomes isolated from FB-conditioned media, following FB culture with TGF-β1 (TGF-β1-FB-Exo) or PBS (control) treatment. TGF-β1 significantly activated fibroblasts as shown by increase in collagen type1 α1 (COL1α1), periostin (POSTN), and fibronectin (FN1) gene expression and increase in Smad2/3 and p38 phosphorylation. Impaired endothelial cell function (as characterized by a decrease in tube formation and cell migration along with reduced VEGF-A, Hif1α, CD31, and angiopoietin1 gene expression) was observed in TGF-β1-FB-Exo treated cells. Furthermore, TGF-β1-FB-Exo treated ECs showed reduced cell proliferation and increased apoptosis as compared to control cells. TGF-β1-FB-Exo cargo analysis revealed an alteration in fibrosis-associated miRNAs, including a significant increase in miR-200a-3p level. Interestingly, miR-200a-3p inhibition in activated FBs, alleviated TGF-β1-FB-Exo-mediated endothelial dysfunction. Conclusions: Taken together, this study demonstrates an important role of miR-200a-3p enriched within activated fibroblast-derived exosomes on endothelial cell biology and function.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rajesh Kumari
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sumanta Kumar Goswami
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Li
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harish Pal
- Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zainab Suleiman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhongjian Cheng
- Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Raj Kishore
- Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
45
|
Kreps LM, Addison CL. Targeting Intercellular Communication in the Bone Microenvironment to Prevent Disseminated Tumor Cell Escape from Dormancy and Bone Metastatic Tumor Growth. Int J Mol Sci 2021; 22:ijms22062911. [PMID: 33805598 PMCID: PMC7998601 DOI: 10.3390/ijms22062911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Metastasis to the bone is a common feature of many cancers including those of the breast, prostate, lung, thyroid and kidney. Once tumors metastasize to the bone, they are essentially incurable. Bone metastasis is a complex process involving not only intravasation of tumor cells from the primary tumor into circulation, but extravasation from circulation into the bone where they meet an environment that is generally suppressive of their growth. The bone microenvironment can inhibit the growth of disseminated tumor cells (DTC) by inducing dormancy of the DTC directly and later on following formation of a micrometastatic tumour mass by inhibiting metastatic processes including angiogenesis, bone remodeling and immunosuppressive cell functions. In this review we will highlight some of the mechanisms mediating DTC dormancy and the complex relationships which occur between tumor cells and bone resident cells in the bone metastatic microenvironment. These inter-cellular interactions may be important targets to consider for development of novel effective therapies for the prevention or treatment of bone metastases.
Collapse
Affiliation(s)
- Lauren M. Kreps
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Christina L. Addison
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-737-7700
| |
Collapse
|
46
|
Gbotosho OT, Taylor M, Malik P. Cardiac pathophysiology in sickle cell disease. J Thromb Thrombolysis 2021; 52:248-259. [PMID: 33677791 DOI: 10.1007/s11239-021-02414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Oluwabukola Temitope Gbotosho
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Michael Taylor
- Division of Cardiology, Heart Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA. .,Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
| |
Collapse
|
47
|
Karska-Basta I, Pociej-Marciak W, Chrząszcz M, Kubicka-Trząska A, Dębicka-Kumela M, Gawęcki M, Romanowska-Dixon B, Sanak M. Imbalance in the Levels of Angiogenic Factors in Patients with Acute and Chronic Central Serous Chorioretinopathy. J Clin Med 2021; 10:1087. [PMID: 33807809 PMCID: PMC7961803 DOI: 10.3390/jcm10051087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The pathogenesis of central serous chorioretinopathy (CSC) remains a subject of intensive research. We aimed to determine correlations between plasma levels of selected angiogenic factors and different forms of CSC. METHODS Eighty patients were enrolled in the study including 30 with a chronic form of CSC, 30 with acute CSC, and 20 controls. Presence of active CSC was determined by fluorescein angiography (FA), indocyanine green angiography (ICGA), and swept-source optical coherence tomography (SS-OCT). Plasma concentrations of angiopoietin-1, endostatin, fibroblast growth factor, placental growth factor (PlGF), platelet-derived growth factor (PDGF-AA), thrombospondin-2, vascular endothelial growth factor (VEGF), VEGF-D, and pigment epithelium-derived factor were measured, and the results were compared between groups. Additionally, mean choroidal thickness (CT) was measured in all patients. RESULTS Levels of angiopoietin-1 (p = 0.008), PlGF (p = 0.045), and PDGF-AA (p = 0.033) differed significantly between the three groups. Compared with the controls, VEGF (p = 0.024), PlGF (p = 0.013), and PDGF-AA (p = 0.012) were downregulated in the whole CSC group, specifically PDGF-AA (p = 0.002) in acute CSC and angiopoietin-1 (p = 0.007) in chronic CSC. An inverse correlation between mean CT and VEGF levels was noted in CSC patients (rho = -0.27, p = 0.044). CONCLUSIONS Downregulated angiopoietin-1, VEGF, PDGF-AA, and PlGF levels may highlight the previously unknown role of the imbalanced levels of proangiogenic and antiangiogenic factors in the pathogenesis of CSC. Moreover, downregulated VEGF levels may suggest that choroidal neovascularization in CSC is associated with arteriogenesis rather than angiogenesis.
Collapse
Affiliation(s)
- Izabella Karska-Basta
- Department of Ophthalmology, Faculty of Medicine, Clinic of Ophthalmology and Ocular Oncology, Jagiellonian University Medical College, 31-070 Krakow, Poland; (W.P.-M.); (M.C.); (A.K.-T.); (M.D.-K.); (B.R.-D.)
| | - Weronika Pociej-Marciak
- Department of Ophthalmology, Faculty of Medicine, Clinic of Ophthalmology and Ocular Oncology, Jagiellonian University Medical College, 31-070 Krakow, Poland; (W.P.-M.); (M.C.); (A.K.-T.); (M.D.-K.); (B.R.-D.)
| | - Michał Chrząszcz
- Department of Ophthalmology, Faculty of Medicine, Clinic of Ophthalmology and Ocular Oncology, Jagiellonian University Medical College, 31-070 Krakow, Poland; (W.P.-M.); (M.C.); (A.K.-T.); (M.D.-K.); (B.R.-D.)
| | - Agnieszka Kubicka-Trząska
- Department of Ophthalmology, Faculty of Medicine, Clinic of Ophthalmology and Ocular Oncology, Jagiellonian University Medical College, 31-070 Krakow, Poland; (W.P.-M.); (M.C.); (A.K.-T.); (M.D.-K.); (B.R.-D.)
| | - Magdalena Dębicka-Kumela
- Department of Ophthalmology, Faculty of Medicine, Clinic of Ophthalmology and Ocular Oncology, Jagiellonian University Medical College, 31-070 Krakow, Poland; (W.P.-M.); (M.C.); (A.K.-T.); (M.D.-K.); (B.R.-D.)
| | - Maciej Gawęcki
- Dobry Wzrok Ophthalmological Clinic, 80-402 Gdansk, Poland;
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology, Faculty of Medicine, Clinic of Ophthalmology and Ocular Oncology, Jagiellonian University Medical College, 31-070 Krakow, Poland; (W.P.-M.); (M.C.); (A.K.-T.); (M.D.-K.); (B.R.-D.)
| | - Marek Sanak
- Molecular Biology and Clinical Genetics Unit, Department of Internal Medicine, Jagiellonian University Medical College Faculty of Medicine, 31-066 Krakow, Poland;
| |
Collapse
|
48
|
Arias A, Schander JA, Bariani MV, Correa F, Domínguez Rubio AP, Cella M, Cymeryng CB, Wolfson ML, Franchi AM, Aisemberg J. Dexamethasone-induced intrauterine growth restriction modulates expression of placental vascular growth factors and fetal and placental growth. Mol Hum Reprod 2021; 27:gaab006. [PMID: 33528567 DOI: 10.1093/molehr/gaab006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/20/2021] [Indexed: 02/02/2023] Open
Abstract
Prenatal exposure to glucocorticoids (GC) is a central topic of interest in medicine since GCs are essential for the maturation of fetal organs and intrauterine growth. Synthetic glucocorticoids, which are used in obstetric practice, exert beneficial effects on the fetus, but have also been reported to lead to intrauterine growth retardation (IUGR). In this study, a model of growth restriction in mice was established through maternal administration of dexamethasone during late gestation. We hypothesised that GC overexposure may adversely affect placental angiogenesis and fetal and placental growth. Female BALB/c mice were randomly assigned to control or dexamethasone treatment, either left to give birth or euthanised on days 15, 16, 17 and 18 of gestation followed by collection of maternal and fetal tissue. The IUGR rate increased to 100% in the dexamethasone group (8 mg/kg body weight on gestational days 14 and 15) and pups had clinical features of symmetrical IUGR at birth. Dexamethasone administration significantly decreased maternal body weight gain and serum corticosterone levels. Moreover, prenatal dexamethasone treatment not only induced fetal growth retardation but also decreased placental weight. In IUGR placentas, VEGFA protein levels and mRNA expression of VEGF receptors were reduced and NOS activity was lower. Maternal dexamethasone administration also reduced placental expression of the GC receptor, αGR. We demonstrated that maternal dexamethasone administration causes fetal and placental growth restriction. Furthermore, we propose that the growth retardation induced by prenatal GC overexposure may be caused, at least partially, by an altered placental angiogenic profile.
Collapse
Affiliation(s)
- A Arias
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J A Schander
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M V Bariani
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - F Correa
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A P Domínguez Rubio
- Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN-UBA-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Cella
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C B Cymeryng
- Laboratorio de Endocrinología Molecular, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M L Wolfson
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A M Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J Aisemberg
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
49
|
Heeran AB, Dunne MR, Morrissey ME, Buckley CE, Clarke N, Cannon A, Donlon NE, Nugent TS, Durand M, Dunne C, Larkin JO, Mehigan B, McCormick P, Lynam-Lennon N, O’Sullivan J. The Protein Secretome Is Altered in Rectal Cancer Tissue Compared to Normal Rectal Tissue, and Alterations in the Secretome Induce Enhanced Innate Immune Responses. Cancers (Basel) 2021; 13:cancers13030571. [PMID: 33540635 PMCID: PMC7867296 DOI: 10.3390/cancers13030571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Rectal cancer occurs in the lower part of the bowel, and approximately half of all rectal cancer patients receive chemoradiotherapy before surgery. In ~22% of cases the tumour is eradicated, but the reasons for different response rates between patients are largely unknown. Inflammation and the immune system are important players in the response to cancer treatment, but we do not fully understand the role they play in this clinical setting. We examined the levels of 54 inflammatory markers in normal (non-cancerous) rectal tissue and rectal cancer tissue, and we found that rectal cancer tissue was more inflammatory, and the levels of inflammatory markers correlated with obesity status. We found that irradiating rectal cancer tissue enhanced the ability of immune cells to induce an anti-tumour immune response. Abstract Locally advanced rectal cancer is treated with neoadjuvant-chemoradiotherapy; however, only ~22% of patients achieve a complete response, and resistance mechanisms are poorly understood. The role of inflammation and immune cell biology in this setting is under-investigated. In this study, we profiled the inflammatory protein secretome of normal (non-cancer) (n = 8) and malignant rectal tissue (n = 12) pre- and post-radiation in human ex vivo explant models and examined the influence of these untreated and treated secretomes on dendritic cell biology (n = 8 for cancer and normal). These resultant profiles were correlated with patient clinical characteristics. Nineteen factors were secreted at significantly higher levels from the rectal cancer secretome when compared to the normal rectal secretome; Flt-1, P1GF, IFN-γ, IL-6, IL-10, CCL20, CCL26, CCL22, CCL3, CCL4, CCL17, GM-CSF, IL-12/IL-23p40, IL-17A, IL-1α, IL-17A/F, IL-1RA, TSLP and CXCL10 (p < 0.05). Radiation was found to have differential effects on normal rectal tissue and rectal cancer tissue with increased IL-15 and CCL22 secretion following radiation from normal rectal tissue explants (p < 0.05), while no significant alterations were observed in the irradiated rectal cancer tissue. Interestingly, however, the irradiated rectal cancer secretome induced the most potent effect on dendritic cell maturation via upregulation of CD80 and PD-L1. Patient’s visceral fat area correlated with secreted factors including CCL20, suggesting that obesity status may alter the tumour microenvironment (TME). These results suggest that radiation does not have a negative effect on the ability of the rectal cancer TME to induce an immune response. Understanding these responses may unveil potential therapeutic targets to enhance radiation response and mitigate normal tissue injury. Tumour irradiation in this cohort enhances innate immune responses, which may be harnessed to improve patient treatment outcome.
Collapse
Affiliation(s)
- Aisling B. Heeran
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Margaret R. Dunne
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Maria E. Morrissey
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Croí E. Buckley
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Niamh Clarke
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Aoife Cannon
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Noel E. Donlon
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Timothy S. Nugent
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Michael Durand
- GEMS, St. James’s Hospital, D08 NHY1 Dublin 8, Ireland; (M.D.); (C.D.); (J.O.L.); (B.M.); (P.M.)
| | - Cara Dunne
- GEMS, St. James’s Hospital, D08 NHY1 Dublin 8, Ireland; (M.D.); (C.D.); (J.O.L.); (B.M.); (P.M.)
| | - John O. Larkin
- GEMS, St. James’s Hospital, D08 NHY1 Dublin 8, Ireland; (M.D.); (C.D.); (J.O.L.); (B.M.); (P.M.)
| | - Brian Mehigan
- GEMS, St. James’s Hospital, D08 NHY1 Dublin 8, Ireland; (M.D.); (C.D.); (J.O.L.); (B.M.); (P.M.)
| | - Paul McCormick
- GEMS, St. James’s Hospital, D08 NHY1 Dublin 8, Ireland; (M.D.); (C.D.); (J.O.L.); (B.M.); (P.M.)
| | - Niamh Lynam-Lennon
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Jacintha O’Sullivan
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
- Correspondence: ; Fax: +353-(0)18964122
| |
Collapse
|
50
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|