1
|
Rivera-Flores I, Wang E, Murphy K. Mycobacterium smegmatis NucS-promoted DNA mismatch repair involves limited resection by a 5'-3' exonuclease and is independent of homologous recombination and NHEJ. Nucleic Acids Res 2024; 52:12308-12323. [PMID: 39417425 PMCID: PMC11551767 DOI: 10.1093/nar/gkae895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/07/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The MutSL mismatch repair (MMR) systems in bacteria and eukaryotes correct mismatches made at the replication fork to maintain genome stability. A novel MMR system is represented by the EndoMS/NucS endonuclease from Actinobacterium Corynebacterium glutamicum, which recognizes mismatched substrates in vitro and creates dsDNA breaks at the mismatch. In this report, a genetic analysis shows that an M. smegmatis ΔnucS strain could be complemented by expression of wild type NucS protein, but not by one deleted of its last five amino acids, a region predicted to be critical for binding to the β-clamp at the replication fork. Oligo-recombineering was then leveraged to deliver defined mismatches to a defective hygromycin resistance gene on the M. smegmatis chromosome. We find that NucS recognizes and repairs G-G, G-T, and T-T mismatches in vivo, consistent with the recognition of these same mismatches in C. glutamicum in vitro, as well as mutation accumulation studies done in M. smegmatis. Finally, an assay that employs an oligo that promotes the generation of two mismatches in close proximity on the chromosome shows that a NucS-promoted cut is processed by a 5'-3' exonuclease (or 5'-Flap endonuclease) and that NucS-promoted MMR is independent of both homologous recombination and non-homologous end-joining.
Collapse
Affiliation(s)
- Iris V Rivera-Flores
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emily X Wang
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kenan C Murphy
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Lyu W, Zhu J, Huang X, Chinappi M, Garoli D, Gui C, Yang T, Wang J. Localization and discrimination of GG mismatch in duplex DNA by synthetic ligand-enhanced protein nanopore analysis. Nucleic Acids Res 2024; 52:12191-12200. [PMID: 39413157 PMCID: PMC11551735 DOI: 10.1093/nar/gkae884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024] Open
Abstract
Mismatched base pairs in DNA are the basis of single-nucleotide polymorphism, one of the major issues in genetic diseases. However, the changes of physical and chemical properties of DNA caused by single-site mismatches are often influenced by the sequence and the structural flexibility of the whole duplex, resulting in a challenge of direct detection of the types and location of mismatches sensitively. In this work, we proposed a synthetic ligand-enhanced protein nanopore analysis of GG mismatch on DNA fragment, inspired by in silico investigation of the specific binding of naphthyridine dimer (ND) on GG mismatch. We demonstrated that both the importing and unzipping processes of the ligand-bound DNA duplex can be efficiently slowed down in α-hemolysin nanopore. This ligand-binding induced slow-down effect of DNA in nanopore is also sensitive to the relative location of the mismatch on DNA duplex. Especially, the GG mismatch close to the end of a DNA fragment, which is hard to be detected by either routine nanopore analysis or tedious nanopore sequencing, can be well differentiated by our ND-enhanced nanopore experiment. These findings provide a promising strategy to localize and discriminate base mismatches in duplex form directly at the single-molecule level.
Collapse
Affiliation(s)
- Wenping Lyu
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
- Department of Physics, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Jianji Zhu
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - XiaoQin Huang
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Mauro Chinappi
- Univ Roma Tor Vergata, Dept Ind Engn, Via Politecn 1, I-00133 Rome, Italy
| | - Denis Garoli
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy
- Dipartimento di Scienze e Metodi dell’Ingegneria, Università di Modena e Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Cenglin Gui
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Tao Yang
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Jiahai Wang
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| |
Collapse
|
3
|
Bazan Russo TD, Mujacic C, Di Giovanni E, Vitale MC, Ferrante Bannera C, Randazzo U, Contino S, Bono M, Gristina V, Galvano A, Perez A, Badalamenti G, Russo A, Bazan V, Incorvaia L. Polθ: emerging synthetic lethal partner in homologous recombination-deficient tumors. Cancer Gene Ther 2024; 31:1619-1631. [PMID: 39122831 PMCID: PMC11567890 DOI: 10.1038/s41417-024-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The most remarkable finding in synthetic lethality (SL) is the hypersensitivity to PARP inhibitors (PARPis) of the tumors harboring defects in genes involved in homologous repair (HR) such as BRCA1/2. Despite initial responsiveness to PARPi, the penetrance of the synthetic lethal interactions between BRCA1/2 genes and PARPi is incomplete. Thus, a significant proportion of HR-defective tumors experience intrinsic or acquired resistance, representing a key challenge of clinical research. An expanded concept of SL is opening new ways and includes novel forms of genetic interactions, investigating not only traditional SL of pairs genes but also SL between biological pathways that regulate the same essential survival cell function. In this context, recent research showed that HR and theta-mediated end-joining (TMEJ) pathways exhibit SL. DNA polymerase theta (Polθ) is encoded by the POLQ gene and is a key component of the TMEJ, an essential backup pathway, intrinsically mutagenic, to repair resected double-strand breaks (DSBs) when the non-homologous end joining (NHEJ) and HR are impaired. Polθ is broadly expressed in normal tissues, overexpressed in several cancers, and typically associated with poor outcomes and shorter relapse-free survival. Notably, HR-deficient tumor cells present the characteristic mutational signatures of the error-prone TMEJ pathway. According to this observation, the loss of HR proteins, such as BRCA1 or BRCA2, contributes to increasing the TMEJ-specific genomic profile, suggesting synthetic lethal interactions between loss of the POLQ and HR genes, and resulting in the emerging interest for Polθ as a potential therapeutic target in BRCA1/2-associated tumors.This review summarizes the converging roles of the POLQ and HR genes in DNA DSB repair, the early-stage clinical trials using Polθ inhibitor to treat HR-defective tumors and to overcome BRCA-reversion mutations responsible for therapeutic resistance, and the novel pleiotropic effects of Polθ, paving the way for the development of unexplored synthetic lethality strategies.
Collapse
Affiliation(s)
- Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Ugo Randazzo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| |
Collapse
|
4
|
Hao Q, Li J, Yeap LS. Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2344-2353. [PMID: 39048716 DOI: 10.1007/s11427-024-2615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Antibody diversification is essential for an effective immune response, with somatic hypermutation (SHM) serving as a key molecular process in this adaptation. Activation-induced cytidine deaminase (AID) initiates SHM by inducing DNA lesions, which are ultimately resolved into point mutations, as well as small insertions and deletions (indels). These mutational outcomes contribute to antibody affinity maturation. The mechanisms responsible for generating point mutations and indels involve the base excision repair (BER) and mismatch repair (MMR) pathways, which are well coordinated to maintain genomic integrity while allowing for beneficial mutations to occur. In this regard, translesion synthesis (TLS) polymerases contribute to the diversity of mutational outcomes in antibody genes by enabling the bypass of DNA lesions. This review summarizes our current understanding of the distinct molecular mechanisms that generate point mutations and indels during SHM. Understanding these mechanisms is critical for elucidating the development of broadly neutralizing antibodies (bnAbs) and autoantibodies, and has implications for vaccine design and therapeutics.
Collapse
Affiliation(s)
- Qian Hao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinfeng Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Yang C, Liu Y, Wang X, Jia Q, Fan Y, Lu Z, Shi J, Liu Z, Chen G, Li J, Lu W, Zhou W, Lv D, Zou H, Xu J, Li Y, Jiang Q, Wang T, Shao T. stSNV: a comprehensive resource of SNVs in spatial transcriptome. Nucleic Acids Res 2024:gkae945. [PMID: 39470702 DOI: 10.1093/nar/gkae945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Single nucleotide variants (SNVs), as important components of genetic variation, affect gene expression, function and phenotype. Mining and summarizing the spatial distribution of SNVs in diseased and normal tissues for a better understanding of their characteristics and potential roles in cell-lineage determination, aging, or disease occurrence is significant. Herein, we have developed a comprehensive spatial mutation resource stSNV (http://bio-bigdata.hrbmu.edu.cn/stSNV/index.jsp), which provides an atlas of spatial SNVs in major diseased and normal tissues of human and mouse. stSNV documents 42 202 spatial mutated genes involving 898 908 SNVs called from 730 067 spots within 450 slices from 19 diseased and 28 normal tissues. Importantly, potential characteristics of SNVs are explored and provided by analyzing the perturbation of the SNVs to gene expression, spatial communication, biological function, region-specific mutated genes, spatial mutant signatures, SNV-cell co-localization and mutation core region. All these spatial mutation data and in-depth analyses have been integrated into a user-friendly interface, visualized through intuitive tables and various image formats. Flexible tools are developed to explore co-localization among clusters, genes, cell types and SNVs in the same slice. In summary, stSNV as a valuable resource helps to dissect intra-tissue genetic heterogeneity and lays the groundwork for understanding the SNVs' biological regulatory mechanisms.
Collapse
Affiliation(s)
- Changbo Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Yujie Liu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Xiaohua Wang
- Department of Nephrology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Centre for Geriatric Diseases, No.21 Fengze Road, Beijing 100853, China
| | - Qing Jia
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Yuqi Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Zhenglin Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Jingyi Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Zhaoxin Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Gengdong Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Jianing Li
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Weijian Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Dezhong Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Haozhe Zou
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Qinghua Jiang
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Tao Wang
- School of Computer Science, Northwestern Polytechnical University, No.127 West Avenue, Xi'an, Shaanxi 710072, China
| | - Tingting Shao
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang 150081, China
| |
Collapse
|
6
|
Colicino-Murbach E, Hathaway C, Dungrawala H. Replication fork stalling in late S-phase elicits nascent strand degradation by DNA mismatch repair. Nucleic Acids Res 2024; 52:10999-11013. [PMID: 39180395 PMCID: PMC11472054 DOI: 10.1093/nar/gkae721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Eukaryotic chromosomal replication occurs in a segmented, temporal manner wherein open euchromatin and compact heterochromatin replicate during early and late S-phase respectively. Using single molecule DNA fiber analyses coupled with cell synchronization, we find that newly synthesized strands remain stable at perturbed forks in early S-phase. Unexpectedly, stalled forks are susceptible to nucleolytic digestion during late replication resulting in defective fork restart. This inherent vulnerability to nascent strand degradation is dependent on fork reversal enzymes and resection nucleases MRE11, DNA2 and EXO1. Inducing chromatin compaction elicits digestion of nascent DNA in response to fork stalling due to reduced association of RAD51 with nascent DNA. Furthermore, RAD51 occupancy at stalled forks in late S-phase is diminished indicating that densely packed chromatin limits RAD51 accessibility to mediate replication fork protection. Genetic analyses reveal that susceptibility of late replicating forks to nascent DNA digestion is dependent on EXO1 via DNA mismatch repair (MMR) and that the BRCA2-mediated replication fork protection blocks MMR from degrading nascent DNA. Overall, our findings illustrate differential regulation of fork protection between early and late replication and demonstrate nascent strand degradation as a critical determinant of heterochromatin instability in response to replication stress.
Collapse
Affiliation(s)
| | - Caitlin Hathaway
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
7
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Williams JS, Lujan SA, Arana ME, Burkholder AB, Tumbale PP, Williams RS, Kunkel TA. High fidelity DNA ligation prevents single base insertions in the yeast genome. Nat Commun 2024; 15:8730. [PMID: 39379399 PMCID: PMC11461686 DOI: 10.1038/s41467-024-53063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Finalization of eukaryotic nuclear DNA replication relies on DNA ligase 1 (LIG1) to seal DNA nicks generated during Okazaki Fragment Maturation (OFM). Using a mutational reporter in Saccharomyces cerevisiae, we previously showed that mutation of the high-fidelity magnesium binding site of LIG1Cdc9 strongly increases the rate of single-base insertions. Here we show that this rate is increased across the nuclear genome, that it is synergistically increased by concomitant loss of DNA mismatch repair (MMR), and that the additions occur in highly specific sequence contexts. These discoveries are all consistent with incorporation of an extra base into the nascent lagging DNA strand that can be corrected by MMR following mutagenic ligation by the Cdc9-EEAA variant. There is a strong preference for insertion of either dGTP or dTTP into 3-5 base pair mononucleotide sequences with stringent flanking nucleotide requirements. The results reveal unique LIG1Cdc9-dependent mutational motifs where high fidelity DNA ligation of a subset of OFs is critical for preventing mutagenesis across the genome.
Collapse
Affiliation(s)
- Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Mercedes E Arana
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Adam B Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Percy P Tumbale
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
9
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Tejwani V, Carroll T, Macartney T, Bandau S, Alabert C, Saredi G, Toth R, Rouse J. PROTAC-mediated conditional degradation of the WRN helicase as a potential strategy for selective killing of cancer cells with microsatellite instability. Sci Rep 2024; 14:20824. [PMID: 39242638 PMCID: PMC11379953 DOI: 10.1038/s41598-024-71160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple studies have demonstrated that cancer cells with microsatellite instability (MSI) are intolerant to loss of the Werner syndrome helicase (WRN), whereas microsatellite-stable (MSS) cancer cells are not. Therefore, WRN represents a promising new synthetic lethal target for developing drugs to treat cancers with MSI. Given the uncertainty of how effective inhibitors of WRN activity will prove in clinical trials, and the likelihood of tumours developing resistance to WRN inhibitors, alternative strategies for impeding WRN function are needed. Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules that target specific proteins for degradation. Here, we engineered the WRN locus so that the gene product is fused to a bromodomain (Bd)-tag, enabling conditional WRN degradation with the AGB-1 PROTAC specific for the Bd-tag. Our data revealed that WRN degradation is highly toxic in MSI but not MSS cell lines. In MSI cells, WRN degradation caused G2/M arrest, chromosome breakage and ATM kinase activation. We also describe a multi-colour cell-based platform for facile testing of selective toxicity in MSI versus MSS cell lines. Together, our data show that a degrader approach is a potentially powerful way of targeting WRN in MSI cancers and paves the way for the development of WRN-specific PROTAC compounds.
Collapse
Affiliation(s)
- Vikram Tejwani
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Susanne Bandau
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK
| | - Constance Alabert
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK
| | - Giulia Saredi
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
11
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
12
|
Mao C, Li S, Che J, Liu D, Mao X, Rao H. The ubiquitin ligase UBR4 and the deubiquitylase USP5 modulate the stability of DNA mismatch repair protein MLH1. J Biol Chem 2024; 300:107592. [PMID: 39032648 PMCID: PMC11375253 DOI: 10.1016/j.jbc.2024.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
MLH1 plays a critical role in DNA mismatch repair and genome maintenance. MLH1 deficiency promotes cancer development and progression, but the mechanism underlying MLH1 regulation remains enigmatic. In this study, we demonstrated that MLH1 protein is degraded by the ubiquitin-proteasome system and have identified vital cis-elements and trans-factors involved in MLH1 turnover. We found that the region encompassing the amino acids 516 to 650 is crucial for MLH1 degradation. The mismatch repair protein PMS2 may shield MLH1 from degradation as it binds to the MLH1 segment key to its turnover. Furthermore, we have identified the E3 ubiquitin ligase UBR4 and the deubiquitylase USP5, which oppositely modulate MLH1 stability. In consistence, UBR4 or USP5 deficiency affects the cellular response to nucleotide analog 6-TG, supporting their roles in regulating mismatch repair. Our study has revealed important insights into the regulatory mechanisms underlying MLH1 proteolysis, critical to DNA mismatch repair related diseases.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Siqi Li
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun Che
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, Guangdong, China; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinliang Mao
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
13
|
Hu X, Wang S, Zhao H, Wei Y, Duan R, Jiang R, Wu W, Zhao Q, Gong S, Wang L, Liu J, Yuan P. CircPMS1 promotes proliferation of pulmonary artery smooth muscle cells, pulmonary microvascular endothelial cells, and pericytes under hypoxia. Animal Model Exp Med 2024; 7:310-323. [PMID: 37317637 PMCID: PMC11228088 DOI: 10.1002/ame2.12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/07/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been recognized as significant regulators of pulmonary hypertension (PH); however, the differential expression and function of circRNAs in different vascular cells under hypoxia remain unknown. Here, we identified co-differentially expressed circRNAs and determined their putative roles in the proliferation of pulmonary artery smooth muscle cells (PASMCs), pulmonary microvascular endothelial cells (PMECs), and pericytes (PCs) under hypoxia. METHODS Whole transcriptome sequencing was performed to analyze the differential expression of circRNAs in three different vascular cell types. Bioinformatic analysis was used to predict their putative biological function. Quantitative real-time polymerase chain reaction, Cell Counting Kit-8, and EdU Cell Proliferation assays were carried out to determine the role of circular postmeiotic segregation 1 (circPMS1) as well as its potential sponge mechanism in PASMCs, PMECs, and PCs. RESULTS PASMCs, PMECs, and PCs exhibited 16, 99, and 31 differentially expressed circRNAs under hypoxia, respectively. CircPMS1 was upregulated in PASMCs, PMECs, and PCs under hypoxia and enhanced the proliferation of vascular cells. CircPMS1 may upregulate DEP domain containing 1 (DEPDC1) and RNA polymerase II subunit D expression by targeting microRNA-432-5p (miR-432-5p) in PASMCs, upregulate MAX interactor 1 (MXI1) expression by targeting miR-433-3p in PMECs, and upregulate zinc finger AN1-type containing 5 (ZFAND5) expression by targeting miR-3613-5p in PCs. CONCLUSIONS Our results suggest that circPMS1 promotes cell proliferation through the miR-432-5p/DEPDC1 or miR-432-5p/POL2D axis in PASMCs, through the miR-433-3p/MXI1 axis in PMECs, and through the miR-3613-5p/ZFAND5 axis in PCs, which provides putative targets for the early diagnosis and treatment of PH.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shang Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqin Wei
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| | - Ruowang Duan
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Porrazzo A, Cassandri M, D'Alessandro A, Morciano P, Rota R, Marampon F, Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell Oncol (Dordr) 2024; 47:717-732. [PMID: 38095764 DOI: 10.1007/s13402-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Radiation therapy (RT) is a key anti-cancer treatment that involves using ionizing radiation to kill tumor cells. However, this therapy can lead to short- and long-term adverse effects due to radiation exposure of surrounding normal tissue. The type of DNA damage inflicted by radiation therapy determines its effectiveness. High levels of genotoxic damage can lead to cell cycle arrest, senescence, and cell death, but many tumors can cope with this damage by activating protective mechanisms. Intrinsic and acquired radioresistance are major causes of tumor recurrence, and understanding these mechanisms is crucial for cancer therapy. The mechanisms behind radioresistance involve processes like hypoxia response, cell proliferation, DNA repair, apoptosis inhibition, and autophagy. CONCLUSION Here we briefly review the role of genetic and epigenetic factors involved in the modulation of DNA repair and DNA damage response that promote radioresistance. In addition, leveraging our recent results on the effects of low dose rate (LDR) of ionizing radiation on Drosophila melanogaster we discuss how this model organism can be instrumental in the identification of conserved factors involved in the tumor resistance to RT.
Collapse
Affiliation(s)
- Antonella Porrazzo
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Andrea D'Alessandro
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Patrizia Morciano
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università Degli Studi dell'Aquila, 67100, L'Aquila, Italy
- Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi, 67100, L'Aquila, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
15
|
Ma JY, Xia TJ, Li S, Yin S, Luo SM, Li G. Germline cell de novo mutations and potential effects of inflammation on germline cell genome stability. Semin Cell Dev Biol 2024; 154:316-327. [PMID: 36376195 DOI: 10.1016/j.semcdb.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Uncontrolled pathogenic genome mutations in germline cells might impair adult fertility, lead to birth defects or even affect the adaptability of a species. Understanding the sources of DNA damage, as well as the features of damage response in germline cells are the overarching tasks to reduce the mutations in germline cells. With the accumulation of human genome data and genetic reports, genome variants formed in germline cells are being extensively explored. However, the sources of DNA damage, the damage repair mechanisms, and the effects of DNA damage or mutations on the development of germline cells are still unclear. Besides exogenous triggers of DNA damage such as irradiation and genotoxic chemicals, endogenous exposure to inflammation may also contribute to the genome instability of germline cells. In this review, we summarized the features of de novo mutations and the specific DNA damage responses in germline cells and explored the possible roles of inflammation on the genome stability of germline cells.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Tian-Jin Xia
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Shi-Ming Luo
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
16
|
Tire B, Talibova G, Ozturk S. The crosstalk between telomeres and DNA repair mechanisms: an overview to mammalian somatic cells, germ cells, and preimplantation embryos. J Assist Reprod Genet 2024; 41:277-291. [PMID: 38165506 PMCID: PMC10894803 DOI: 10.1007/s10815-023-03008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Telomeres are located at the ends of linear chromosomes and play a critical role in maintaining genomic stability by preventing premature activation of DNA repair mechanisms. Because of exposure to various genotoxic agents, telomeres can undergo shortening and genetic changes. In mammalian cells, the basic DNA repair mechanisms, including base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair, function in repairing potential damages in telomeres. If these damages are not repaired correctly in time, the unfavorable results such as apoptosis, cell cycle arrest, and cancerous transition may occur. During lifespan, mammalian somatic cells, male and female germ cells, and preimplantation embryos experience a number of telomeric damages. Herein, we comprehensively reviewed the crosstalk between telomeres and the DNA repair mechanisms in the somatic cells, germ cells, and embryos. Infertility development resulting from possible defects in this crosstalk is also discussed in the light of existing studies.
Collapse
Affiliation(s)
- Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
17
|
Zhou Y, Mouw KW. DNA repair deficiency and the immune microenvironment: A pathways perspective. DNA Repair (Amst) 2024; 133:103594. [PMID: 37980867 PMCID: PMC10841828 DOI: 10.1016/j.dnarep.2023.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Timely and accurate repair of DNA damage is required for genomic stability, but DNA repair pathways are often lost or altered in tumors. In addition to directly impacting tumor cell response to DNA damage, DNA repair deficiency can also alter the immune microenvironment via changes in innate and adaptive immune signaling. In some settings, these changes can lead to increased sensitivity to immune checkpoint inhibitors (ICIs). In this review, we discuss the impact of specific DNA repair pathway dysfunction on immune contexture and ICI response in solid tumors.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Brigham & Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
Wang X, Qu Y, Xing R, Zhou J, Liu Y, Zhang H, Zhu J, Ma J, Cui X, Song T, Xing S, Ji G, Liu P, Sun W, Fu S, Meng X. Novel insights into the ecDNA formation mechanism involving MSH3 in methotrexate‑resistant human colorectal cancer cells. Int J Oncol 2023; 63:134. [PMID: 37888748 PMCID: PMC10631765 DOI: 10.3892/ijo.2023.5582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Extrachromosomal DNAs (ecDNAs), also known as double minutes (DMs), can induce a fast increase in gene copy numbers and promote the development of cancer, including drug resistance. MutS homolog 3 (MSH3), a key protein in mismatch repair, has been indicated to participate in the regulation of DNA double‑strand break (DSB) repair, which has been reported to be associated with the formation of ecDNAs. However, it remains unclear whether MSH3 can influence drug resistance via ecDNAs in cancer. In the present study, high MSH3 expression was observed in methotrexate (MTX)‑resistant HT29 cells [DM‑ and homogeneously staining region (HSR)‑containing cells] compared with parental HT29 cells. Additionally, decreased amounts of ecDNAs, HSRs and amplified genes locating on ecDNAs and HSRs were detected following depletion of MSH3 and this could be reversed by overexpressing MSH3 in DM‑containing cells. No corresponding changes were found in HSR‑containing cells. The present study further verified the involvement of MSH3‑regulated DNA DSB repair pathways in the formation of ecDNAs by detecting the expression of core proteins and pathway activity. Furthermore, expulsion of ecDNAs/HSRs was detected and increased frequencies of micronuclei/nuclear buds with dihydrofolate reductase (DHFR) signals were observed in MSH3‑depleted DM‑containing cells. Finally, changes in MSH3 expression could affect DHFR amplification‑derived DHFR expression and cell sensitivity to MTX, suggesting that MSH3 may influence cancer drug resistance by altering the amount of ecDNAs. In conclusion, the present study revealed a novel mechanism involving MSH3 in the regulation of ecDNAs by DSB repair, which will have clinical value in the treatment of ecDNA‑based drug resistance in cancer.
Collapse
Affiliation(s)
- Xu Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanan Qu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ruonan Xing
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Zhou
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanghe Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Huishu Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Biotechnology Experimental Teaching Center, Basic Medical College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Zhu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jinfa Ma
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaobo Cui
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Tiantian Song
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shukai Xing
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Guohua Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
19
|
Fukui K, Yamamoto T, Murakawa T, Baba S, Kumasaka T, Yano T. Catalytic mechanism of the zinc-dependent MutL endonuclease reaction. Life Sci Alliance 2023; 6:e202302001. [PMID: 37487639 PMCID: PMC10366529 DOI: 10.26508/lsa.202302001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
DNA mismatch repair endonuclease MutL binds two zinc ions. However, the endonuclease activity of MutL is drastically enhanced by other divalent metals such as manganese, implying that MutL binds another catalytic metal at some site other than the zinc-binding sites. Here, we solved the crystal structure of the endonuclease domain of Aquifex aeolicus MutL in the manganese- or cadmium-bound form, revealing that these metals compete with zinc at the same sites. Mass spectrometry revealed that the MutL yielded 5'-phosphate and 3'-OH products, which is characteristic of the two-metal-ion mechanism. Crystallographic analyses also showed that the position and flexibility of a highly conserved Arg of A. aeolicus MutL altered depending on the presence of zinc/manganese or the specific inhibitor cadmium. Site-directed mutagenesis revealed that the Arg was critical for the catalysis. We propose that zinc ion and its binding sites are physiologically of catalytic importance and that the two-metal-ion mechanism works in the reaction, where the Arg plays a catalytic role. Our results also provide a mechanistic insight into the inhibitory effect of a mutagen/carcinogen, cadmium, on MutL.
Collapse
Affiliation(s)
- Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Takeshi Murakawa
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Seiki Baba
- Structural Biology Division, Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Takashi Kumasaka
- Structural Biology Division, Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
20
|
Bugoye FC, Torrorey-Sawe R, Biegon R, Dharsee N, Mafumiko FMS, Patel K, Mining SK. Mutational spectrum of DNA damage and mismatch repair genes in prostate cancer. Front Genet 2023; 14:1231536. [PMID: 37732318 PMCID: PMC10507418 DOI: 10.3389/fgene.2023.1231536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Over the past few years, a number of studies have revealed that a significant number of men with prostate cancer had genetic defects in the DNA damage repair gene response and mismatch repair genes. Certain of these modifications, notably gene alterations known as homologous recombination (HRR) genes; PALB2, CHEK2 BRCA1, BRCA2, ATM, and genes for DNA mismatch repair (MMR); MLH1, MSH2, MSH6, and PMS2 are connected to a higher risk of prostate cancer and more severe types of the disease. The DNA damage repair (DDR) is essential for constructing and diversifying the antigen receptor genes required for T and B cell development. But this DDR imbalance results in stress on DNA replication and transcription, accumulation of mutations, and even cell death, which compromises tissue homeostasis. Due to these impacts of DDR anomalies, tumor immunity may be impacted, which may encourage the growth of tumors, the release of inflammatory cytokines, and aberrant immune reactions. In a similar vein, people who have altered MMR gene may benefit greatly from immunotherapy. Therefore, for these treatments, mutational genetic testing is indicated. Mismatch repair gene (MMR) defects are also more prevalent than previously thought, especially in patients with metastatic disease, high Gleason scores, and diverse histologies. This review summarizes the current information on the mutation spectrum and clinical significance of DDR mechanisms, such as HRR and MMR abnormalities in prostate cancer, and explains how patient management is evolving as a result of this understanding.
Collapse
Affiliation(s)
- Fidelis Charles Bugoye
- Government Chemist Laboratory Authority, Directorate of Forensic Science and DNA Services, Dar es Salaam, Tanzania
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | - Rispah Torrorey-Sawe
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | - Richard Biegon
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | | | - Fidelice M. S. Mafumiko
- Government Chemist Laboratory Authority, Directorate of Forensic Science and DNA Services, Dar es Salaam, Tanzania
| | - Kirtika Patel
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | - Simeon K. Mining
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| |
Collapse
|
21
|
Cupples C. Order out of disorder: Regulation of endonuclease activity during eukaryotic mismatch repair. Bioessays 2023; 45:e2300124. [PMID: 37480168 DOI: 10.1002/bies.202300124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Affiliation(s)
- Claire Cupples
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
22
|
Jayaraj A, Thayer KM, Beveridge DL, Hingorani MM. Molecular dynamics of mismatch detection-How MutS uses indirect readout to find errors in DNA. Biophys J 2023; 122:3031-3043. [PMID: 37329136 PMCID: PMC10432192 DOI: 10.1016/j.bpj.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/30/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
The mismatch repair protein MutS safeguards genomic integrity by finding and initiating repair of basepairing errors in DNA. Single-molecule studies show MutS diffusing on DNA, presumably scanning for mispaired/unpaired bases, and crystal structures show a characteristic "mismatch-recognition" complex with DNA enclosed within MutS and kinked at the site of error. But how MutS goes from scanning thousands of Watson-Crick basepairs to recognizing rare mismatches remains unanswered, largely because atomic-resolution data on the search process are lacking. Here, 10 μs all-atom molecular dynamics simulations of Thermus aquaticus MutS bound to homoduplex DNA and T-bulge DNA illuminate the structural dynamics underlying the search mechanism. MutS-DNA interactions constitute a multistep mechanism to check DNA over two helical turns for its 1) shape, through contacts with the sugar-phosphate backbone, 2) conformational flexibility, through bending/unbending engineered by large-scale motions of the clamp domain, and 3) local deformability, through basepair destabilizing contacts. Thus, MutS can localize a potential target by indirect readout due to lower energetic costs of bending mismatched DNA and identify a site that distorts easily due to weaker base stacking and pairing as a mismatch. The MutS signature Phe-X-Glu motif can then lock in the mismatch-recognition complex to initiate repair.
Collapse
Affiliation(s)
- Abhilash Jayaraj
- Chemistry Department, Wesleyan University, Middletown, Connecticut.
| | - Kelly M Thayer
- Chemistry Department, Wesleyan University, Middletown, Connecticut
| | | | - Manju M Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut.
| |
Collapse
|
23
|
Ye T, Lin A, Qiu Z, Hu S, Zhou C, Liu Z, Cheng Q, Zhang J, Luo P. Microsatellite instability states serve as predictive biomarkers for tumors chemotherapy sensitivity. iScience 2023; 26:107045. [PMID: 37448561 PMCID: PMC10336167 DOI: 10.1016/j.isci.2023.107045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is an urgent need for markers to predict the efficacy of different chemotherapy drugs. Herein, we examined whether microsatellite instability (MSI) status can predict tumor multidrug sensitivity and explored the underlying mechanisms. We downloaded data from several public databases. Drug sensitivity was compared between the high microsatellite instability (MSI-H) and microsatellite-stable/low microsatellite instability (MSS/MSI-L) groups. In addition, we performed pathway enrichment analysis and cellular chemosensitivity assays to explore the mechanisms by which MSI status may affect drug sensitivity and assessed the differences between drug-treated and control cell lines. We found that multiple MSI-H tumors were more sensitive to a variety of chemotherapy drugs than MSS/MSI-L tumors, and especially for CRC, chemosensitivity is enhanced through the downregulation of DDR pathways such as NHEJ. Additional DNA damage caused by chemotherapeutic drugs results in further downregulation of DDR pathways and enhances drug sensitivity, forming a cycle of increasing drug sensitivity.
Collapse
Affiliation(s)
- Taojun Ye
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Qiu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shulu Hu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Xu P, Huang S, Zhai X, Fan Y, Li X, Yang H, Cao Y, Fan G. N6-methyladenosine modification changes during the recovery processes for Paulownia witches' broom disease under the methyl methanesulfonate treatment. PLANT DIRECT 2023; 7:e508. [PMID: 37426893 PMCID: PMC10325887 DOI: 10.1002/pld3.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/05/2023] [Accepted: 06/04/2023] [Indexed: 07/11/2023]
Abstract
Phytoplasmas induce diseases in more than 1000 plant species and cause substantial ecological damage and economic losses, but the specific pathogenesis of phytoplasma has not yet been clarified. N 6-methyladenosine (m6A) is the most common internal modification of the eukaryotic Messenger RNA (mRNA). As one of the species susceptible to phytoplasma infection, the pathogenesis and mechanism of Paulownia has been extensively studied by scholars, but the m6A transcriptome map of Paulownia fortunei (P. fortunei) has not been reported. Therefore, this study aimed to explore the effect of phytoplasma infection on m6A modification of P. fortunei and obtained the whole transcriptome m6A map in P. fortunei by m6A-seq. The m6A-seq results of Paulownia witches' broom (PaWB) disease and healthy samples indicate that PaWB infection increased the degree of m6A modification of P. fortunei. The correlation analysis between the RNA-seq and m6A-seq data detected that a total of 315 differentially methylated genes were predicted to be significantly differentially expressed at the transcriptome level. Moreover, the functions of PaWB-related genes were predicted by functional enrichment analysis, and two genes related to maintenance of the basic mechanism of stem cells in shoot apical meristem were discovered. One of the genes encodes the receptor protein kinase CLV2 (Paulownia_LG2G000076), and the other gene encodes the homeobox transcription factor STM (Paulownia_LG15G000976). In addition, genes F-box (Paulownia_LG17G000760) and MSH5 (Paulownia_LG8G001160) had exon skipping and mutually exclusive exon types of alternative splicing in PaWB-infected seedling treated with methyl methanesulfonate, and m6A modification was found in m6A-seq results. Moreover, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) verified that the alternative splicing of these two genes was associated with m6A modification. This comprehensive map provides a solid foundation for revealing the potential function of the mRNA m6A modification in the process of PaWB. In future studies, we plan to verify genes directly related to PaWB and methylation-related enzymes in Paulownia to elucidate the pathogenic mechanism of PaWB caused by phytoplasma invasion.
Collapse
Affiliation(s)
- Pingluo Xu
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Shunmou Huang
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Xiaoqiao Zhai
- Key Laboratory of Forest Germplasm Resources Protection and Improved Variety Selection in Henan ProvinceHenan Province Academy of ForestryZhengzhouP. R. China
| | - Yujie Fan
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
- College of ForestryHenan Agricultural UniversityZhengzhouP. R. China
| | - Xiaofan Li
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Haibo Yang
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Yabing Cao
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Guoqiang Fan
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
- College of ForestryHenan Agricultural UniversityZhengzhouP. R. China
| |
Collapse
|
25
|
Miteva D, Kitanova M, Batselova H, Lazova S, Chervenkov L, Peshevska-Sekulovska M, Sekulovski M, Gulinac M, Vasilev GV, Tomov L, Velikova T. The End or a New Era of Development of SARS-CoV-2 Virus: Genetic Variants Responsible for Severe COVID-19 and Clinical Efficacy of the Most Commonly Used Vaccines in Clinical Practice. Vaccines (Basel) 2023; 11:1181. [PMID: 37514997 PMCID: PMC10385722 DOI: 10.3390/vaccines11071181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Although the chief of the World Health Organization (WHO) has declared the end of the coronavirus disease 2019 (COVID-19) as a global health emergency, the disease is still a global threat. To be able to manage such pandemics in the future, it is necessary to develop proper strategies and opportunities to protect human life. The data on the SARS-CoV-2 virus must be continuously analyzed, and the possibilities of mutation and the emergence of new, more infectious variants must be anticipated, as well as the options of using different preventive and therapeutic techniques. This is because the fast development of severe acute coronavirus 2 syndrome (SARS-CoV-2) variants of concern have posed a significant problem for COVID-19 pandemic control using the presently available vaccinations. This review summarizes data on the SARS-CoV-2 variants that are responsible for severe COVID-19 and the clinical efficacy of the most commonly used vaccines in clinical practice. The consequences after the disease (long COVID or post-COVID conditions) continue to be the subject of studies and research, and affect social and economic life worldwide.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov str., 1164 Sofia, Bulgaria
| | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov str., 1164 Sofia, Bulgaria
| | - Hristiana Batselova
- Department of Epidemiology and Disaster Medicine, University Hospital "Saint George", Medical University, 6000 Plovdiv, Bulgaria
| | - Snezhina Lazova
- Pediatric Department, University Hospital "N. I. Pirogov," 21 "General Eduard I. Totleben" Blvd, 1606 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health "Prof. Tsekomir Vodenicharov, MD, DSc", Medical University of Sofia, Bialo More 8 str., 1527 Sofia, Bulgaria
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, 1407 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, 1 Kozyak str., 1407 Sofia, Bulgaria
| | - Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Georgi V Vasilev
- Clinic of Endocrinology and Metabolic Disorders, UMHAT "Sv. Georgi", 4000 Plovdiv, Bulgaria
| | - Luchesar Tomov
- Department of Informatics, New Bulgarian University, Montevideo 21 str., 1618 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| |
Collapse
|
26
|
Ahadova A, Witt J, Haupt S, Gallon R, Hüneburg R, Nattermann J, Ten Broeke S, Bohaumilitzky L, Hernandez-Sanchez A, Santibanez-Koref M, Jackson MS, Ahtiainen M, Pylvänäinen K, Andini K, Grolmusz VK, Möslein G, Dominguez-Valentin M, Møller P, Fürst D, Sijmons R, Borthwick GM, Burn J, Mecklin JP, Heuveline V, von Knebel Doeberitz M, Seppälä T, Kloor M. Is HLA type a possible cancer risk modifier in Lynch syndrome? Int J Cancer 2023; 152:2024-2031. [PMID: 36214792 DOI: 10.1002/ijc.34312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
Lynch syndrome (LS) is the most common inherited cancer syndrome. It is inherited via a monoallelic germline variant in one of the DNA mismatch repair (MMR) genes. LS carriers have a broad 30% to 80% risk of developing various malignancies, and more precise, individual risk estimations would be of high clinical value, allowing tailored cancer prevention and surveillance. Due to MMR deficiency, LS cancers are characterized by the accumulation of frameshift mutations leading to highly immunogenic frameshift peptides (FSPs). Thus, immune surveillance is proposed to inhibit the outgrowth of MMR-deficient cell clones. Recent studies have shown that immunoediting during the evolution of MMR-deficient cancers leads to a counter-selection of highly immunogenic antigens. The immunogenicity of FSPs is dependent on the antigen presentation. One crucial factor determining antigen presentation is the HLA genotype. Hence, a LS carrier's HLA genotype plays an important role in the presentation of FSP antigens to the immune system, and may influence the likelihood of progression from precancerous lesions to cancer. To address the challenge of clarifying this possibility including diverse populations with different HLA types, we have established the INDICATE initiative (Individual cancer risk by HLA type, http://indicate-lynch.org/), an international network aiming at a systematic evaluation of the HLA genotype as a possible cancer risk modifier in LS. Here we summarize the current knowledge on the role of HLA type in cancer risk and outline future research directions to delineate possible association in the scenario of LS with genetically defined risk population and highly immunogenic tumors.
Collapse
Affiliation(s)
- Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Johannes Witt
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Saskia Haupt
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Richard Gallon
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Robert Hüneburg
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany.,National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany.,National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Sanne Ten Broeke
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Lena Bohaumilitzky
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Alejandro Hernandez-Sanchez
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Mauro Santibanez-Koref
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Michael S Jackson
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | | | - Kirsi Pylvänäinen
- Department of Education and science, Nova Hospital, Jyväskylä, Finland
| | - Katarina Andini
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Vince Kornel Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
| | - Gabriela Möslein
- Department of Surgery, Ev. Krankenhaus Bethesda Hospital, Duisburg, Germany
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Pål Møller
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Rolf Sijmons
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Gillian M Borthwick
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - John Burn
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Jukka-Pekka Mecklin
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Surgery, Nova Hospital, Jyväskylä, Finland
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Toni Seppälä
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Department of Gastrointestinal Surgery, Helsinki University Central Hospital, Helsinki, Finland.,Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Jaworski D, Brzoszczyk B, Szylberg Ł. Recent Research Advances in Double-Strand Break and Mismatch Repair Defects in Prostate Cancer and Potential Clinical Applications. Cells 2023; 12:1375. [PMID: 37408208 DOI: 10.3390/cells12101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
Prostate cancer remains a leading cause of cancer-related death in men worldwide. Recent research advances have emphasized the critical roles of mismatch repair (MMR) and double-strand break (DSB) in prostate cancer development and progression. Here, we provide a comprehensive review of the molecular mechanisms underlying DSB and MMR defects in prostate cancer, as well as their clinical implications. Furthermore, we discuss the promising therapeutic potential of immune checkpoint inhibitors and PARP inhibitors in targeting these defects, particularly in the context of personalized medicine and further perspectives. Recent clinical trials have demonstrated the efficacy of these novel treatments, including Food and Drugs Association (FDA) drug approvals, offering hope for improved patient outcomes. Overall, this review emphasizes the importance of understanding the interplay between MMR and DSB defects in prostate cancer to develop innovative and effective therapeutic strategies for patients.
Collapse
Affiliation(s)
- Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Division of Ophthalmology and Optometry, Department of Ophthalmology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
| | - Bartosz Brzoszczyk
- Department of Urology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
| |
Collapse
|
28
|
Kavun A, Veselovsky E, Lebedeva A, Belova E, Kuznetsova O, Yakushina V, Grigoreva T, Mileyko V, Fedyanin M, Ivanov M. Microsatellite Instability: A Review of Molecular Epidemiology and Implications for Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2023; 15:cancers15082288. [PMID: 37190216 DOI: 10.3390/cancers15082288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Microsatellite instability (MSI) is one of the most important molecular characteristics of a tumor, which occurs among various tumor types. In this review article, we examine the molecular characteristics of MSI tumors, both sporadic and Lynch-associated. We also overview the risks of developing hereditary forms of cancer and potential mechanisms of tumor development in patients with Lynch syndrome. Additionally, we summarize the results of major clinical studies on the efficacy of immune checkpoint inhibitors for MSI tumors and discuss the predictive role of MSI in the context of chemotherapy and checkpoint inhibitors. Finally, we briefly discuss some of the underlying mechanisms causing therapy resistance in patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Egor Veselovsky
- OncoAtlas LLC, 119049 Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, 119049 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olesya Kuznetsova
- OncoAtlas LLC, 119049 Moscow, Russia
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
| | - Valentina Yakushina
- OncoAtlas LLC, 119049 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, 119049 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Mikhail Fedyanin
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
- State Budgetary Institution of Health Care of the City of Moscow "Moscow Multidisciplinary Clinical Center" "Kommunarka" of the Department of Health of the City of Moscow, 142770 Moscow, Russia
- Federal State Budgetary Institution "National Medical and Surgical Center named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, 105203 Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, 119049 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
29
|
Xu Y, Nowsheen S, Deng M. DNA Repair Deficiency Regulates Immunity Response in Cancers: Molecular Mechanism and Approaches for Combining Immunotherapy. Cancers (Basel) 2023; 15:cancers15051619. [PMID: 36900418 PMCID: PMC10000854 DOI: 10.3390/cancers15051619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Defects in DNA repair pathways can lead to genomic instability in multiple tumor types, which contributes to tumor immunogenicity. Inhibition of DNA damage response (DDR) has been reported to increase tumor susceptibility to anticancer immunotherapy. However, the interplay between DDR and the immune signaling pathways remains unclear. In this review, we will discuss how a deficiency in DDR affects anti-tumor immunity, highlighting the cGAS-STING axis as an important link. We will also review the clinical trials that combine DDR inhibition and immune-oncology treatments. A better understanding of these pathways will help exploit cancer immunotherapy and DDR pathways to improve treatment outcomes for various cancers.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, San Diego, CA 92122, USA
- Correspondence: (S.N.); (M.D.)
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.N.); (M.D.)
| |
Collapse
|
30
|
Kansikas M, Vähätalo L, Kantelinen J, Kasela M, Putula J, Døhlen A, Paloviita P, Kärkkäinen E, Lahti N, Arnez P, Kilpinen S, Alcala-Repo B, Pylvänäinen K, Pöyhönen M, Peltomäki P, Järvinen HJ, Seppälä TT, Renkonen-Sinisalo L, Lepistö A, Mecklin JP, Nyström M. Tumor-independent Detection of Inherited Mismatch Repair Deficiency for the Diagnosis of Lynch Syndrome with High Specificity and Sensitivity. CANCER RESEARCH COMMUNICATIONS 2023; 3:361-370. [PMID: 36875157 PMCID: PMC9979712 DOI: 10.1158/2767-9764.crc-22-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Lynch syndrome (LS) is the most common hereditary cancer syndrome. Early diagnosis improves prognosis and reduces health care costs, through existing cancer surveillance methods. The problem is finding and diagnosing the cancer predisposing genetic condition. The current workup involves a complex array of tests that combines family cancer history and clinical phenotypes with tumor characteristics and sequencing data, followed by a challenging task to interpret the found variant(s). On the basis of the knowledge that an inherited mismatch repair (MMR) deficiency is a hallmark of LS, we have developed and validated a functional MMR test, DiagMMR, that detects inherited MMR deficiency directly from healthy tissue without need of tumor and variant information. The validation included 119 skin biopsies collected from clinically pathogenic MMR variant carriers (MSH2, MSH6) and controls, and was followed by a small clinical pilot study. The repair reaction was performed on proteins extracted from primary fibroblasts and the interpretation was based on the MMR capability of the sample in relation to cutoff, which distinguishes MMR proficient (non-LS) from MMR deficient (LS) function. The results were compared with the reference standard (germline NGS). The test was shown to have exceptional specificity (100%) with high sensitivity (89%) and accuracy (97%). The ability to efficiently distinguish LS carriers from controls was further shown with a high area under the receiving operating characteristic (AUROC) value (0.97). This test offers an excellent tool for detecting inherited MMR deficiency linked to MSH2 or MSH6 and can be used alone or with conventional tests to recognize genetically predisposed individuals. SIGNIFICANCE Clinical validation of DiagMMR shows high accuracy in distinguishing individuals with hereditary MSH2 or MSH6 MMR deficiency (i.e., LS). The method presented overcomes challenges faced by the complexity of current methods and can be used alone or with conventional tests to improve the ability to recognize genetically predisposed individuals.
Collapse
Affiliation(s)
- Minttu Kansikas
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Laura Vähätalo
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka Kantelinen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mariann Kasela
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jaana Putula
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anni Døhlen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pauliina Paloviita
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Emmi Kärkkäinen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Niklas Lahti
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Philippe Arnez
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sami Kilpinen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Kirsi Pylvänäinen
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland
| | - Minna Pöyhönen
- Department of Genetics, HUSLAB, Helsinki University Hospital Diagnostic Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Toni T. Seppälä
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Medical Technology, University of Tampere, Tampere, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Anna Lepistö
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Minna Nyström
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Copur MS, Tun SM, Vargas L, Merani S, Wedel W, Duckert R, Horn A, Lintel N, Herold D, Lavudi S. Unusual dMMR Phenotype Locally Advanced Pancreatic Ductal Adenocarcinoma with Germline and Somatic BRCA2 Mutation in a Jehovah Witness Patient. Clin Colorectal Cancer 2023; 22:160-165. [PMID: 36404245 DOI: 10.1016/j.clcc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Mehmet Sitki Copur
- Mary Lanning Healthcare, Morrison Cancer Center, Hastings, NE; University of Nebraska Medical Center, Omaha, NE.
| | - Soe Min Tun
- Mary Lanning Healthcare, Morrison Cancer Center, Hastings, NE
| | | | | | | | - Randy Duckert
- Mary Lanning Healthcare, Morrison Cancer Center, Hastings, NE
| | - Adam Horn
- Mary Lanning Healthcare Pathology, Hastings, NE
| | | | | | - Swathi Lavudi
- Prairie Center Internal Medicine & Nephrology, Green Island, NE
| |
Collapse
|
32
|
Abildgaard AB, Nielsen SV, Bernstein I, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Lynch syndrome, molecular mechanisms and variant classification. Br J Cancer 2023; 128:726-734. [PMID: 36434153 PMCID: PMC9978028 DOI: 10.1038/s41416-022-02059-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Patients with the heritable cancer disease, Lynch syndrome, carry germline variants in the MLH1, MSH2, MSH6 and PMS2 genes, encoding the central components of the DNA mismatch repair system. Loss-of-function variants disrupt the DNA mismatch repair system and give rise to a detrimental increase in the cellular mutational burden and cancer development. The treatment prospects for Lynch syndrome rely heavily on early diagnosis; however, accurate diagnosis is inextricably linked to correct clinical interpretation of individual variants. Protein variant classification traditionally relies on cumulative information from occurrence in patients, as well as experimental testing of the individual variants. The complexity of variant classification is due to (1) that variants of unknown significance are rare in the population and phenotypic information on the specific variants is missing, and (2) that individual variant testing is challenging, costly and slow. Here, we summarise recent developments in high-throughput technologies and computational prediction tools for the assessment of variants of unknown significance in Lynch syndrome. These approaches may vastly increase the number of interpretable variants and could also provide important mechanistic insights into the disease. These insights may in turn pave the road towards developing personalised treatment approaches for Lynch syndrome.
Collapse
Affiliation(s)
- Amanda B Abildgaard
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie V Nielsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Inge Bernstein
- Department of Surgical Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
- Institute of Clinical Medicine, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023; 23:78-94. [PMID: 36471053 DOI: 10.1038/s41568-022-00535-5] [Citation(s) in RCA: 267] [Impact Index Per Article: 133.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
34
|
Bruekner SR, Pieters W, Fish A, Liaci AM, Scheffers S, Rayner E, Kaldenbach D, Drost L, Dekker M, van Hees-Stuivenberg S, Delzenne-Goette E, de Konink C, Houlleberghs H, Dubbink H, AlSaegh A, de Wind N, Förster F, te Riele H, Sixma T. Unexpected moves: a conformational change in MutSα enables high-affinity DNA mismatch binding. Nucleic Acids Res 2023; 51:1173-1188. [PMID: 36715327 PMCID: PMC9943660 DOI: 10.1093/nar/gkad015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The DNA mismatch repair protein MutSα recognizes wrongly incorporated DNA bases and initiates their correction during DNA replication. Dysfunctions in mismatch repair lead to a predisposition to cancer. Here, we study the homozygous mutation V63E in MSH2 that was found in the germline of a patient with suspected constitutional mismatch repair deficiency syndrome who developed colorectal cancer before the age of 30. Characterization of the mutant in mouse models, as well as slippage and repair assays, shows a mildly pathogenic phenotype. Using cryogenic electron microscopy and surface plasmon resonance, we explored the mechanistic effect of this mutation on MutSα function. We discovered that V63E disrupts a previously unappreciated interface between the mismatch binding domains (MBDs) of MSH2 and MSH6 and leads to reduced DNA binding. Our research identifies this interface as a 'safety lock' that ensures high-affinity DNA binding to increase replication fidelity. Our mechanistic model explains the hypomorphic phenotype of the V63E patient mutation and other variants in the MBD interface.
Collapse
Affiliation(s)
| | | | - Alexander Fish
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, The Netherlands
| | - A Manuel Liaci
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Serge Scheffers
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, The Netherlands
| | - Emily Rayner
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600 2300RC Leiden, The Netherlands
| | - Daphne Kaldenbach
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Lisa Drost
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Marleen Dekker
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | | | - Elly Delzenne-Goette
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Charlotte de Konink
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Hellen Houlleberghs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Hendrikus Jan Dubbink
- Department of Pathology, Erasmus Medical Center, PO Box 2040 3000CA Rotterdam, The Netherlands
| | - Abeer AlSaegh
- Sultan Qaboos Comprehensive Cancer Care and Research Center, PO Box 787, 117 Muscat, Oman
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600 2300RC Leiden, The Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Hein te Riele
- Correspondence may also be addressed to Hein te Riele. Tel: +31 20 512 2084;
| | - Titia K Sixma
- To whom correspondence should be addressed: Tel: +31 20 512 1959;
| |
Collapse
|
35
|
Peltomäki P, Nyström M, Mecklin JP, Seppälä TT. Lynch Syndrome Genetics and Clinical Implications. Gastroenterology 2023; 164:783-799. [PMID: 36706841 DOI: 10.1053/j.gastro.2022.08.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Lynch syndrome (LS) is one of the most prevalent hereditary cancer syndromes in humans and accounts for some 3% of unselected patients with colorectal or endometrial cancer and 10%-15% of those with DNA mismatch repair-deficient tumors. Previous studies have established the genetic basis of LS predisposition, but there have been significant advances recently in the understanding of the molecular pathogenesis of LS tumors, which has important implications in clinical management. At the same time, immunotherapy has revolutionized the treatment of advanced cancers with DNA mismatch repair defects. We aim to review the recent progress in the LS field and discuss how the accumulating epidemiologic, clinical, and molecular information has contributed to a more accurate and complete picture of LS, resulting in genotype- and immunologic subtype-specific strategies for surveillance, cancer prevention, and treatment.
Collapse
Affiliation(s)
- Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Minna Nyström
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland; Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Toni T Seppälä
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumor Genomics Research Programs Unit, University of Helsinki, Helsinki, Finland; Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
36
|
Sobol RW. WRN suppresses p53/PUMA-induced apoptosis in colorectal cancer with microsatellite instability/mismatch repair deficiency. Proc Natl Acad Sci U S A 2023; 120:e2219963120. [PMID: 36598947 PMCID: PMC9926267 DOI: 10.1073/pnas.2219963120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI02912
- Legorreta Cancer Center, Brown University, Providence, RI02912
| |
Collapse
|
37
|
Park YS, Kook MC, Kim BH, Lee HS, Kang DW, Gu MJ, Shin OR, Choi Y, Lee W, Kim H, Song IH, Kim KM, Kim HS, Kang G, Park DY, Jin SY, Kim JM, Choi YJ, Chang HK, Ahn S, Chang MS, Han SH, Kwak Y, Seo AN, Lee SH, Cho MY. A Standardized Pathology Report for Gastric Cancer: 2nd Edition. J Gastric Cancer 2023; 23:107-145. [PMID: 36750994 PMCID: PMC9911618 DOI: 10.5230/jgc.2023.23.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/27/2023] Open
Abstract
The first edition of 'A Standardized Pathology Report for Gastric Cancer' was initiated by the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists and published 17 years ago. Since then, significant advances have been made in the pathologic diagnosis, molecular genetics, and management of gastric cancer (GC). To reflect those changes, a committee for publishing a second edition of the report was formed within the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists. This second edition consists of two parts: standard data elements and conditional data elements. The standard data elements contain the basic pathologic findings and items necessary to predict the prognosis of GC patients, and they are adequate for routine surgical pathology service. Other diagnostic and prognostic factors relevant to adjuvant therapy, including molecular biomarkers, are classified as conditional data elements to allow each pathologist to selectively choose items appropriate to the environment in their institution. We trust that the standardized pathology report will be helpful for GC diagnosis and facilitate large-scale multidisciplinary collaborative studies.
Collapse
Affiliation(s)
- Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Baek-Hui Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Wook Kang
- Department of Pathology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| | - Mi-Jin Gu
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Ok Ran Shin
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Younghee Choi
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Wonae Lee
- Department of Pathology, Dankook University College of Medicine, Cheonan, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - In Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Sung Kim
- Department of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Guhyun Kang
- LabGenomics Clinical Laboratories, Seongnam, Korea
| | | | - So-Young Jin
- Department of Pathology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Joon Mee Kim
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
| | - Yoon Jung Choi
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hee Kyung Chang
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Song-Hee Han
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Mee-Yon Cho
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
38
|
Park YS, Kook MC, Kim BH, Lee HS, Kang DW, Gu MJ, Shin OR, Choi Y, Lee W, Kim H, Song IH, Kim KM, Kim HS, Kang G, Park DY, Jin SY, Kim JM, Choi YJ, Chang HK, Ahn S, Chang MS, Han SH, Kwak Y, Seo AN, Lee SH, Cho MY. A standardized pathology report for gastric cancer: 2nd edition. J Pathol Transl Med 2023; 57:1-27. [PMID: 36647283 PMCID: PMC9846007 DOI: 10.4132/jptm.2022.12.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
The first edition of 'A Standardized Pathology Report for Gastric Cancer' was initiated by the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists and published 17 years ago. Since then, significant advances have been made in the pathologic diagnosis, molecular genetics, and management of gastric cancer (GC). To reflect those changes, a committee for publishing a second edition of the report was formed within the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists. This second edition consists of two parts: standard data elements and conditional data elements. The standard data elements contain the basic pathologic findings and items necessary to predict the prognosis of GC patients, and they are adequate for routine surgical pathology service. Other diagnostic and prognostic factors relevant to adjuvant therapy, including molecular biomarkers, are classified as conditional data elements to allow each pathologist to selectively choose items appropriate to the environment in their institution. We trust that the standardized pathology report will be helpful for GC diagnosis and facilitate large-scale multidisciplinary collaborative studies.
Collapse
Affiliation(s)
- Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Baek-hui Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Wook Kang
- Department of Pathology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| | - Mi-Jin Gu
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Ok Ran Shin
- Department of Hospital Pathology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Younghee Choi
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Wonae Lee
- Department of Pathology, Dankook University College of Medicine, Cheonan, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - In Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Sung Kim
- Department of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Guhyun Kang
- LabGenomics Clinical Laboratories, Seongnam, Korea
| | | | - So-Young Jin
- Department of Pathology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Joon Mee Kim
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
| | - Yoon Jung Choi
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hee Kyung Chang
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Song-Hee Han
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mee-Yon Cho
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - The Gastrointestinal Pathology Study Group of the Korean Society of Pathologists
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Center for Gastric Cancer, National Cancer Center, Goyang, Korea
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
- Department of Hospital Pathology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
- Department of Pathology, Dankook University College of Medicine, Cheonan, Korea
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
- LabGenomics Clinical Laboratories, Seongnam, Korea
- St. Maria Pathology Laboratory, Busan, Korea
- Department of Pathology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
39
|
Mai RT, Chao CH, Chang YW, Kao YC, Cheng Y, Hsu HY, Su YY, Wang CY, Lai BY. Sumoylation participates in the regulation of YB-1-mediated mismatch repair deficiency and alkylator tolerance. Am J Cancer Res 2022; 12:5462-5483. [PMID: 36628281 PMCID: PMC9827092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/27/2022] [Indexed: 01/12/2023] Open
Abstract
Numerous reports indicate that enhanced expression of Y-box binding protein-1 (YB-1) in tumor cells is strongly associated with tumorigenesis, aggressiveness, drug resistance, as well as poor prognosis in several types of cancers, and YB-1 is considered to be an oncogene. The molecular mechanism contributing to the regulation of the biological activities of YB-1 remains obscure. Sumoylation, a post-translational modification involving the covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to a target protein, plays key roles in the modulation of protein functions. In this study, our results revealed that YB-1 is sumoylated and that Lys26 is a critical residue for YB-1 sumoylation. Moreover, YB-1 was found to directly interact with SUMO proteins, and disruption of the SUMO-interacting motif (SIM) of YB-1 not only interfered with this interaction but also diminished YB-1 sumoylation. The subcellular localization, protein stability, and transcriptional regulatory activity of YB-1 were not significantly affected by sumoylation. However, decreased sumoylation disrupted the interaction between YB-1 and PCNA as well as YB-1-mediated inhibition of the MutSα/PCNA interaction and MutSα mismatch binding activity, indicating a functional role of YB-1 sumoylation in inducing DNA mismatch repair (MMR) deficiency and spontaneous mutations. The MMR machinery also recognizes alkylator-modified DNA adducts to signal for cell death. We further demonstrated that YB-1 sumoylation is crucial for the inhibition of SN1-type alkylator MNNG-induced cytotoxicity, G2/M-phase arrest, apoptosis, and the MMR-dependent DNA damage response. Collectively, these results provide molecular explanations for the impact of YB-1 sumoylation on MMR deficiency and alkylator tolerance, which may provide insight for designing therapeutic strategies for malignancies and alkylator-resistant cancers associated with YB-1 overexpression.
Collapse
Affiliation(s)
- Ru-Tsun Mai
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan
| | - Chi-Hong Chao
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan,Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan
| | - Yao-Wen Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang Ming Chiao Tung UniversityTaipei 112, Taiwan
| | - Yu-Ching Kao
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan
| | - Yi Cheng
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan
| | - Hsiang-Yu Hsu
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan
| | - Yi-Yuan Su
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan
| | - Chen-Yun Wang
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung UniversityHsinchu 300, Taiwan
| | - Bo-Ying Lai
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang Ming Chiao Tung UniversityTaipei 112, Taiwan
| |
Collapse
|
40
|
Rath A, Radecki AA, Rahman K, Gilmore RB, Hudson JR, Cenci M, Tavtigian SV, Grady JP, Heinen CD. A calibrated cell-based functional assay to aid classification of MLH1 DNA mismatch repair gene variants. Hum Mutat 2022; 43:2295-2307. [PMID: 36054288 PMCID: PMC9772141 DOI: 10.1002/humu.24462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023]
Abstract
Functional assays provide important evidence for classifying the disease significance of germline variants in DNA mismatch repair genes. Numerous laboratories, including our own, have developed functional assays to study mismatch repair gene variants. However, previous assays are limited due to the model system employed, the manner of gene expression, or the environment in which function is assessed. Here, we developed a human cell-based approach for testing the function of variants of uncertain significance (VUS) in the MLH1 gene. Using clustered regularly interspaced short palindromic repeats gene editing, we knocked in MLH1 VUS into the endogenous MLH1 loci in human embryonic stem cells. We examined their impact on RNA and protein, including their ability to prevent microsatellite instability and instigate a DNA damage response. A statistical clustering analysis determined the range of functions associated with known pathogenic or benign variants, and linear regression was performed using existing odds in favor of pathogenicity scores for these control variants to calibrate our functional assay results. By converting the functional outputs into a single odds in favor of pathogenicity score, variant classification expert panels can use these results to readily reassess these VUS. Ultimately, this information will guide proper diagnosis and disease management for suspected Lynch syndrome patients.
Collapse
Affiliation(s)
- Abhijit Rath
- Center for Molecular Oncology, UConn Health, Farmington, CT
| | | | - Kaussar Rahman
- Center for Molecular Oncology, UConn Health, Farmington, CT
| | - Rachel B. Gilmore
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| | - Jonathan R. Hudson
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| | - Matthew Cenci
- Center for Molecular Oncology, UConn Health, Farmington, CT
| | - Sean V. Tavtigian
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - James P. Grady
- Connecticut Institute for Clinical and Translational Science, UConn Health, Farmington, CT
| | | |
Collapse
|
41
|
Aditi, McKinnon PJ. Genome integrity and inflammation in the nervous system. DNA Repair (Amst) 2022; 119:103406. [PMID: 36148701 PMCID: PMC9844216 DOI: 10.1016/j.dnarep.2022.103406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Preservation of genomic integrity is crucial for nervous system development and function. DNA repair deficiency results in several human diseases that are characterized by both neurodegeneration and neuroinflammation. Recent research has highlighted a role for compromised genomic integrity as a key factor driving neuropathology and triggering innate immune signaling to cause inflammation. Here we review the mechanisms by which DNA damage engages innate immune signaling and how this may promote neurological disease. We also consider the contributions of different neural cell types towards DNA damage-driven neuroinflammation. A deeper knowledge of genome maintenance mechanisms that prevent aberrant immune activation in neural cells will guide future therapies to ameliorate neurological disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
42
|
Boussios S, Rassy E, Moschetta M, Ghose A, Adeleke S, Sanchez E, Sheriff M, Chargari C, Pavlidis N. BRCA Mutations in Ovarian and Prostate Cancer: Bench to Bedside. Cancers (Basel) 2022; 14:cancers14163888. [PMID: 36010882 PMCID: PMC9405840 DOI: 10.3390/cancers14163888] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary DNA damage is one of the hallmarks of cancer. Epithelial ovarian cancer (EOC) —especially the high-grade serous subtype—harbors a defect in at least one DNA damage response (DDR) pathway. Defective DDR results from a variety of lesions affecting homologous recombination (HR) and nonhomologous end joining (NHEJ) for double strand breaks, base excision repair (BER), and nucleotide excision repair (NER) for single strand breaks and mismatch repair (MMR). Apart from the EOC, mutations in the DDR genes, such as BRCA1 and BRCA2, are common in prostate cancer as well. Among them, BRCA2 lesions are found in 12% of metastatic castration-resistant prostate cancers, but very rarely in primary prostate cancer. Better understanding of the DDR pathways is essential in order to optimize the therapeutic choices, and has led to the design of biomarker-driven clinical trials. Poly(ADP-ribose) polymerase (PARP) inhibitors are now a standard therapy for EOC patients, and more recently have been approved for the metastatic castration-resistant prostate cancer with alterations in DDR genes. They are particularly effective in tumours with HR deficiency. Abstract DNA damage repair (DDR) defects are common in different cancer types, and these alterations can be exploited therapeutically. Epithelial ovarian cancer (EOC) is among the tumours with the highest percentage of hereditary cases. BRCA1 and BRCA2 predisposing pathogenic variants (PVs) were the first to be associated with EOC, whereas additional genes comprising the homologous recombination (HR) pathway have been discovered with DNA sequencing technologies. The incidence of DDR alterations among patients with metastatic prostate cancer is much higher compared to those with localized disease. Genetic testing is playing an increasingly important role in the treatment of patients with ovarian and prostate cancer. The development of poly (ADP-ribose) polymerase (PARP) inhibitors offers a therapeutic strategy for patients with EOC. One of the mechanisms of PARP inhibitors exploits the concept of synthetic lethality. Tumours with BRCA1 or BRCA2 mutations are highly sensitive to PARP inhibitors. Moreover, the synthetic lethal interaction may be exploited beyond germline BRCA mutations in the context of HR deficiency, and this is an area of ongoing research. PARP inhibitors are in advanced stages of development as a treatment for metastatic castration-resistant prostate cancer. However, there is a major concern regarding the need to identify reliable biomarkers predictive of treatment response. In this review, we explore the mechanisms of DDR, the potential for genomic analysis of ovarian and prostate cancer, and therapeutics of PARP inhibitors, along with predictive biomarkers.
Collapse
Affiliation(s)
- Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence:
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France
| | - Michele Moschetta
- Novartis Institutes for BioMedical Research, CH 4033 Basel, Switzerland
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, London E1 1BB, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London KT1 2EE, UK
- Centre for Education, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | - Sola Adeleke
- High Dimensional Neurology Group, UCL Queen’s Square Institute of Neurology, London WC1N 3BG, UK
- Department of Oncology, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Cyrus Chargari
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France
| | - Nicholas Pavlidis
- Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110 Ioannina, Greece
| |
Collapse
|
43
|
Lin K, Gueble SE, Sundaram RK, Huseman ED, Bindra RS, Herzon SB. Mechanism-based design of agents that selectively target drug-resistant glioma. Science 2022; 377:502-511. [PMID: 35901163 PMCID: PMC9502022 DOI: 10.1126/science.abn7570] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O6-methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects.
Collapse
Affiliation(s)
- Kingson Lin
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan E. Gueble
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ranjini K. Sundaram
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eric D. Huseman
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Corresponding author. (S.B.H.); (R.S.B.)
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
- Corresponding author. (S.B.H.); (R.S.B.)
| |
Collapse
|
44
|
Borsellini A, Lebbink JHG, Lamers MH. MutL binds to 3' resected DNA ends and blocks DNA polymerase access. Nucleic Acids Res 2022; 50:6224-6234. [PMID: 35670670 PMCID: PMC9226502 DOI: 10.1093/nar/gkac432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
DNA mismatch repair removes mis-incorporated bases after DNA replication and reduces the error rate a 100–1000-fold. After recognition of a mismatch, a large section of up to a thousand nucleotides is removed from the daughter strand followed by re-synthesis. How these opposite activities are coordinated is poorly understood. Here we show that the Escherichia coli MutL protein binds to the 3′ end of the resected strand and blocks access of Pol I and Pol III. The cryo-EM structure of an 85-kDa MutL-DNA complex, determined to 3.7 Å resolution, reveals a unique DNA binding mode that positions MutL at the 3′ end of a primer-template, but not at a 5′ resected DNA end or a blunt DNA end. Hence, our work reveals a novel role for MutL in the final stages of mismatch repair by preventing premature DNA synthesis during removal of the mismatched strand.
Collapse
Affiliation(s)
- Alessandro Borsellini
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
Hernandez-Sanchez A, Grossman M, Yeung K, Sei SS, Lipkin S, Kloor M. Vaccines for immunoprevention of DNA mismatch repair deficient cancers. J Immunother Cancer 2022; 10:e004416. [PMID: 35732349 PMCID: PMC9226910 DOI: 10.1136/jitc-2021-004416] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
The development of cancer vaccines to induce tumor-antigen specific immune responses was sparked by the identification of antigens specific to or overexpressed in cancer cells. However, weak immunogenicity and the mutational heterogeneity in many cancers have dampened cancer vaccine successes. With increasing information about mutational landscapes of cancers, mutational neoantigens can be predicted computationally to elicit strong immune responses by CD8 +cytotoxic T cells as major mediators of anticancer immune response. Neoantigens are potentially more robust immunogens and have revived interest in cancer vaccines. Cancers with deficiency in DNA mismatch repair have an exceptionally high mutational burden, including predictable neoantigens. Lynch syndrome is the most common inherited cancer syndrome and is caused by DNA mismatch repair gene mutations. Insertion and deletion mutations in coding microsatellites that occur during DNA replication include tumorigenesis drivers. The induced shift of protein reading frame generates neoantigens that are foreign to the immune system. Mismatch repair-deficient cancers and Lynch syndrome represent a paradigm population for the development of a preventive cancer vaccine, as the mutations induced by mismatch repair deficiency are predictable, resulting in a defined set of frameshift peptide neoantigens. Furthermore, Lynch syndrome mutation carriers constitute an identifiable high-risk population. We discuss the pathogenesis of DNA mismatch repair deficient cancers, in both Lynch syndrome and sporadic microsatellite-unstable cancers. We review evidence for pre-existing immune surveillance, the three mechanisms of immune evasion that occur in cancers and assess the implications of a preventive frameshift peptide neoantigen-based vaccine. We consider both preclinical and clinical experience to date. We discuss the feasibility of a cancer preventive vaccine for Lynch syndrome carriers and review current antigen selection and delivery strategies. Finally, we propose RNA vaccines as having robust potential for immunoprevention of Lynch syndrome cancers.
Collapse
Affiliation(s)
- Alejandro Hernandez-Sanchez
- Department of Applied Tumor Biology, University Hospital Heidelberg Institute of Pathology, Heidelberg, Germany
| | - Mark Grossman
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kevin Yeung
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Shizuko S Sei
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven Lipkin
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Matthias Kloor
- University Hospital Heidelberg, Institute of Pathology, Department of Applied Tumor Biology, Heidelberg, Germany
| |
Collapse
|
46
|
The nuclease activity of DNA2 promotes exonuclease 1-independent mismatch repair. J Biol Chem 2022; 298:101831. [PMID: 35300981 PMCID: PMC9036127 DOI: 10.1016/j.jbc.2022.101831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
The DNA mismatch repair (MMR) system is a major DNA repair system that corrects DNA replication errors. In eukaryotes, the MMR system functions via mechanisms both dependent on and independent of exonuclease 1 (EXO1), an enzyme that has multiple roles in DNA metabolism. Although the mechanism of EXO1-dependent MMR is well understood, less is known about EXO1-independent MMR. Here, we provide genetic and biochemical evidence that the DNA2 nuclease/helicase has a role in EXO1-independent MMR. Biochemical reactions reconstituted with purified human proteins demonstrated that the nuclease activity of DNA2 promotes an EXO1-independent MMR reaction via a mismatch excision-independent mechanism that involves DNA polymerase δ. We show that DNA polymerase ε is not able to replace DNA polymerase δ in the DNA2-promoted MMR reaction. Unlike its nuclease activity, the helicase activity of DNA2 is dispensable for the ability of the protein to enhance the MMR reaction. Further examination established that DNA2 acts in the EXO1-independent MMR reaction by increasing the strand-displacement activity of DNA polymerase δ. These data reveal a mechanism for EXO1-independent mismatch repair.
Collapse
|
47
|
Lerner LK, Bonte D, Le Guillou M, Mohammad MM, Kasraian Z, Sarasin A, Despras E, Aoufouchi S. Expression of Constitutive Fusion of Ubiquitin to PCNA Restores the Level of Immunoglobulin A/T Mutations During Somatic Hypermutation in the Ramos Cell Line. Front Immunol 2022; 13:871766. [PMID: 35432321 PMCID: PMC9010874 DOI: 10.3389/fimmu.2022.871766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is a B cell specific process required for the generation of specific and high affinity antibodies during the maturation of the immune response against foreign antigens. This process depends on the activity of both activation-induced cytidine deaminase (AID) and several DNA repair factors. AID-dependent SHM creates the full spectrum of mutations in Ig variable (V) regions equally distributed at G/C and A/T bases. In most mammalian cells, deamination of deoxycytidine into uracil during S phase induces targeted G/C mutagenesis using either direct replication of uracils or TLS mediated bypass, however only the machinery of activated B lymphocytes can generate A/T mutagenesis around AID-created uracils. The molecular mechanism behind the latter remains incompletely understood to date. However, the lack of a cellular model that reproduces both G/C and A/T mutation spectra constitutes the major hurdle to elucidating it. The few available B cell lines used thus far to study Ig SHM indeed undergo mainly G/C mutations, that make them inappropriate or of limited use. In this report, we show that in the Ramos cell line that undergoes constitutive G/C-biased SHM in culture, the low rate of A/T mutations is due to an imbalance in the ubiquitination/deubiquitination reaction of PCNA, with the deubiquitination reaction being predominant. The inhibition of the deubiquitinase complex USP1-UAF1 or the expression of constitutive fusion of ubiquitin to PCNA provides the missing clue required for DNA polymerase η recruitment and thereafter the introduction of A/T base pair (bp) mutations during the process of IgV gene diversification. This study reports the establishment of the first modified human B cell line that recapitulates the mechanism of SHM of Ig genes in vitro.
Collapse
Affiliation(s)
- Leticia K. Lerner
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dorine Bonte
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
| | - Morwenna Le Guillou
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
| | - Mahwish Mian Mohammad
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
- Sorbonne Université, Paris, France
| | - Zeinab Kasraian
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
| | - Alain Sarasin
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
| | - Emmanuelle Despras
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
| | - Said Aoufouchi
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
- Sorbonne Université, Paris, France
| |
Collapse
|
48
|
Fukui K, Inoue M, Murakawa T, Baba S, Kumasaka T, Yano T. Structural and functional insights into the mechanism by which MutS2 recognizes a DNA junction. Structure 2022; 30:973-982.e4. [DOI: 10.1016/j.str.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
|
49
|
Abstract
DNA repair and DNA damage signaling pathways are critical for the maintenance of genomic stability. Defects of DNA repair and damage signaling contribute to tumorigenesis, but also render cancer cells vulnerable to DNA damage and reliant on remaining repair and signaling activities. Here, we review the major classes of DNA repair and damage signaling defects in cancer, the genomic instability that they give rise to, and therapeutic strategies to exploit the resulting vulnerabilities. Furthermore, we discuss the impacts of DNA repair defects on both targeted therapy and immunotherapy, and highlight emerging principles for targeting DNA repair defects in cancer therapy.
Collapse
Affiliation(s)
- Jessica L Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
50
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|