1
|
Palermo V, Malacaria E, Semproni M, Camerini S, Casella M, Perdichizzi B, Valenzisi P, Sanchez M, Marini F, Pellicioli A, Franchitto A, Pichierri P. Switch-like phosphorylation of WRN integrates end-resection with RAD51 metabolism at collapsed replication forks. Nucleic Acids Res 2024; 52:12334-12350. [PMID: 39315694 PMCID: PMC11551760 DOI: 10.1093/nar/gkae807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Replication-dependent DNA double-strand breaks are harmful lesions preferentially repaired by homologous recombination (HR), a process that requires processing of DNA ends to allow RAD51-mediated strand invasion. End resection and subsequent repair are two intertwined processes, but the mechanism underlying their execution is still poorly appreciated. The WRN helicase is one of the crucial factors for end resection and is instrumental in selecting the proper repair pathway. Here, we reveal that ordered phosphorylation of WRN by the CDK1, ATM and ATR kinases defines a complex regulatory layer essential for correct long-range end resection, connecting it to repair by HR. We establish that long-range end resection requires an ATM-dependent phosphorylation of WRN at Ser1058 and that phosphorylation at Ser1141, together with dephosphorylation at the CDK1 site Ser1133, is needed for the proper metabolism of RAD51 foci and RAD51-dependent repair. Collectively, our findings suggest that regulation of WRN by multiple kinases functions as a molecular switch to allow timely execution of end resection and repair at replication-dependent DNA double-strand breaks.
Collapse
Affiliation(s)
- Valentina Palermo
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eva Malacaria
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maurizio Semproni
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Serena Camerini
- FAST, Core Facilities Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marialuisa Casella
- FAST, Core Facilities Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Benedetta Perdichizzi
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Pasquale Valenzisi
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Sanchez
- FAST, Core Facilities Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Federica Marini
- Department of Biosciences, Genomic Instability and Human Pathologies Section, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Achille Pellicioli
- Department of Biosciences, Genomic Instability and Human Pathologies Section, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Annapaola Franchitto
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Pietro Pichierri
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d’Oro 305, 00134 Rome, Italy
| |
Collapse
|
2
|
Koshkina DO, Maluchenko NV, Korovina AN, Lobanova AA, Feofanov AV, Studitsky VM. Resveratrol Inhibits Nucleosome Binding and Catalytic Activity of PARP1. Biomolecules 2024; 14:1398. [PMID: 39595575 PMCID: PMC11591765 DOI: 10.3390/biom14111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The natural polyphenol resveratrol is a biologically active compound that interacts with DNA and affects the activity of some nuclear enzymes. Its effect on the interaction between nucleosomes and poly(ADP-ribose) polymerase-1 (PARP1) and on the catalytic activity of PARP1 was studied using Western blotting, spectrophotometry, electrophoretic mobility shift assay, and single particle Förster resonance energy transfer microscopy. Resveratrol inhibited PARP1 activity at micro- and sub-micromolar concentrations, but the inhibitory effect decreased at higher concentrations due to the aggregation of the polyphenol. The inhibition of PARP1 by resveratrol was accompanied by its binding to the enzyme catalytic center and a subsequent decrease in PARP1 affinity to nucleosomal DNA. Concurrent binding of talazoparib to the substrate binding pocket of PARP1, which occurs in the presence of resveratrol, restores the interaction of PARP1 with nucleosomes, suggesting that the binding sites of resveratrol and talazoparib overlap. The data suggest that resveratrol can be classified as a natural inhibitor of PARP1.
Collapse
Affiliation(s)
- Darya O. Koshkina
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
| | - Natalya V. Maluchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
| | - Anna N. Korovina
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
| | - Angelina A. Lobanova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
| | - Alexey V. Feofanov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117437, Russia
| | - Vasily M. Studitsky
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 12, Leninskie Gory, Moscow 119234, Russia; (D.O.K.); (A.A.L.)
- Cancer Epigenetics Team, Fox Chase Cancer Center, Cottman Avenue 333, Philadelphia, PA 19111, USA
| |
Collapse
|
3
|
Iwasaki K, Tojo A, Kobayashi H, Shimizu K, Kamimura Y, Horikoshi Y, Fukuto A, Sun J, Yasui M, Honma M, Okabe A, Fujiki R, Nakajima NI, Kaneda A, Tashiro S, Sassa A, Ura K. Dose-dependent effects of histone methyltransferase NSD2 on site-specific double-strand break repair. Genes Cells 2024; 29:951-965. [PMID: 39245559 DOI: 10.1111/gtc.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/10/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Histone modifications are catalyzed and recognized by specific proteins to regulate dynamic DNA metabolism processes. NSD2 is a histone H3 lysine 36 (H3K36)-specific methyltransferase that is associated with both various transcription regulators and DNA repair factors. Specifically, it has been implicated in the repair of DNA double-strand breaks (DSBs); however, the role of NSD2 during DSB repair remains enigmatic. Here, we show that NSD2 does not accumulate at DSB sites and that it is not further mobilized by DSB formation. Using three different DSB repair reporter systems, which contained the endonuclease site in the active thymidine kinase gene (TK) locus, we demonstrated separate dose-dependent effects of NSD2 on homologous recombination (HR), canonical-non-homologous end joining (c-NHEJ), and non-canonical-NHEJ (non-c-NHEJ). Endogenous NSD2 has a role in repressing non-c-NHEJ, without affecting DSB repair efficiency by HR or total NHEJ. Furthermore, overexpression of NSD2 promotes c-NHEJ repair and suppresses HR repair. Therefore, we propose that NSD2 has functions in chromatin integrity at the active regions during DSB repair.
Collapse
Affiliation(s)
- Koh Iwasaki
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Akari Tojo
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Haruka Kobayashi
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Kai Shimizu
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Yoshitaka Kamimura
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Atsuhiko Fukuto
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu City, Chiba, Japan
| | - Nakako Izumi Nakajima
- Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Sciences and Technology (iQMS, QST), Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akira Sassa
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Kiyoe Ura
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Ezoe A, Seki M. Exploring the complexity of genome size reduction in angiosperms. PLANT MOLECULAR BIOLOGY 2024; 114:121. [PMID: 39485504 PMCID: PMC11530473 DOI: 10.1007/s11103-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
5
|
Yang K, Zhu L, Liu C, Zhou D, Zhu Z, Xu N, Li W. Current status and prospect of the DNA double-strand break repair pathway in colorectal cancer development and treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167438. [PMID: 39059591 DOI: 10.1016/j.bbadis.2024.167438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Double-strand break (DSB) is the most severe type of DNA damage. However, few reviews have thoroughly examined the involvement of DSB in CRC. Latest researches demonstrated that DSB repair plays an important role in CRC. For example, DSB-related genes such as BRCA1, Ku-70 and DNA polymerase theta (POLQ) are associated with the occurrence of CRC, and POLQ even showed to affect the prognosis and resistance for radiotherapy in CRC. This review comprehensively summarizes the DSB role in CRC, explores the mechanisms and discusses the association with CRC treatment. Four pathways for DSB have been demonstrated. 1. Nonhomologous end joining (NHEJ) is the major pathway. Its core genes including Ku70 and Ku80 bind to broken ends and recruit repair factors to form a complex that mediates the connection of DNA breaks. 2. Homologous recombination (HR) is another important pathway. Its key genes including BRCA1 and BRCA2 are involved in finding, pairing, and joining broken ends, and ensure the restoration of breaks in a normal double-stranded DNA structure. 3. Single-strand annealing (SSA) pathway, and 4. POLθ-mediated end-joining (alt-EJ) is a backup pathway. This paper elucidates roles of the DSB repair pathways in CRC, which could contribute to the development of potential new treatment approaches and provide new opportunities for CRC treatment and more individualized treatment options based on therapeutic strategies targeting these DNA repair pathways.
Collapse
Affiliation(s)
- Kexin Yang
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Kunming Medical University, Kunming 650500, China
| | - Lihua Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Kunming Medical University, Kunming 650500, China
| | - Chang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Dayang Zhou
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zhu Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ning Xu
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Kunming Medical University, Kunming 650500, China.
| | - Wenliang Li
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
6
|
Kannan A, Gangadharan Leela S, Branzei D, Gangwani L. Role of senataxin in R-loop-mediated neurodegeneration. Brain Commun 2024; 6:fcae239. [PMID: 39070547 PMCID: PMC11277865 DOI: 10.1093/braincomms/fcae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/14/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Senataxin is an RNA:DNA helicase that plays an important role in the resolution of RNA:DNA hybrids (R-loops) formed during transcription. R-loops are involved in the regulation of biological processes such as immunoglobulin class switching, gene expression and DNA repair. Excessive accumulation of R-loops results in DNA damage and loss of genomic integrity. Senataxin is critical for maintaining optimal levels of R-loops to prevent DNA damage and acts as a genome guardian. Within the nucleus, senataxin interacts with various RNA processing factors and DNA damage response and repair proteins. Senataxin interactors include survival motor neuron and zinc finger protein 1, with whom it co-localizes in sub-nuclear bodies. Despite its ubiquitous expression, mutations in senataxin specifically affect neurons and result in distinct neurodegenerative diseases such as amyotrophic lateral sclerosis type 4 and ataxia with oculomotor apraxia type 2, which are attributed to the gain-of-function and the loss-of-function mutations in senataxin, respectively. In addition, low levels of senataxin (loss-of-function) in spinal muscular atrophy result in the accumulation of R-loops causing DNA damage and motor neuron degeneration. Senataxin may play multiple functions in diverse cellular processes; however, its emerging role in R-loop resolution and maintenance of genomic integrity is gaining attention in the field of neurodegenerative diseases. In this review, we highlight the role of senataxin in R-loop resolution and its potential as a therapeutic target to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Shyni Gangadharan Leela
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Dana Branzei
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| | - Laxman Gangwani
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Wu J, Song L, Lu M, Gao Q, Xu S, Zhou P, Ma T. The multifaceted functions of DNA-PKcs: implications for the therapy of human diseases. MedComm (Beijing) 2024; 5:e613. [PMID: 38898995 PMCID: PMC11185949 DOI: 10.1002/mco2.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Liwei Song
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Mingjun Lu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Qing Gao
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Shaofa Xu
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Teng Ma
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
8
|
Zhang Y, Li X, Liu F, Bai X, Liu X, Sun H, Gao C, Lin Y, Xing P, Zhu J, Liu R, Wang Z, Dai J, Shi D. Design of Selective PARP-1 Inhibitors and Antitumor Studies. J Med Chem 2024; 67:8877-8901. [PMID: 38776379 DOI: 10.1021/acs.jmedchem.3c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Designing selective PARP-1 inhibitors has become a new strategy for anticancer drug development. By sequence comparison of PARP-1 and PARP-2, we identified a possible selective site (S site) consisting of several different amino acid residues of α-5 helix and D-loop. Targeting this S site, 140 compounds were designed, synthesized, and characterized for their anticancer activities and mechanisms. Compound I16 showed the highest PARP-1 enzyme inhibitory activity (IC50 = 12.38 ± 1.33 nM) and optimal selectivity index over PARP-2 (SI = 155.74). Oral administration of I16 (25 mg/kg) showed high inhibition rates of Hela and SK-OV-3 tumor cell xenograft models, both of which were higher than those of the oral positive drug Olaparib (50 mg/kg). In addition, I16 has an excellent safety profile, without significant toxicity at high oral doses. These findings provide a novel design strategy and chemotype for the development of safe, efficient, and highly selective PARP-1 inhibitors.
Collapse
Affiliation(s)
- Yiting Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaochun Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Hao Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chenxia Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuxi Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Pan Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiqiang Zhu
- Shandong Linghai Biotechnology Co.Ltd., Jinan 250299, Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiajia Dai
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Linghai Biotechnology Co.Ltd., Jinan 250299, Shandong, P. R. China
| |
Collapse
|
9
|
Chen R, Zhao MJ, Li YM, Liu AH, Wang RX, Mei YC, Chen X, Du HN. Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1089-1105. [PMID: 38842635 DOI: 10.1007/s11427-024-2543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 06/07/2024]
Abstract
Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.
Collapse
Affiliation(s)
- Runfa Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Meng-Jie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Yu-Min Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Ao-Hui Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Ru-Xin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Yu-Chao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
van Bueren MAE, Janssen A. The impact of chromatin on double-strand break repair: Imaging tools and discoveries. DNA Repair (Amst) 2024; 133:103592. [PMID: 37976899 DOI: 10.1016/j.dnarep.2023.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Eukaryotic nuclei are constantly being exposed to factors that break or chemically modify the DNA. Accurate repair of this DNA damage is crucial to prevent DNA mutations and maintain optimal cell function. To overcome the detrimental effects of DNA damage, a multitude of repair pathways has evolved. These pathways need to function properly within the different chromatin domains present in the nucleus. Each of these domains exhibit distinct molecular- and bio-physical characteristics that can influence the response to DNA damage. In particular, chromatin domains highly enriched for repetitive DNA sequences, such as nucleoli, centromeres and pericentromeric heterochromatin require tailored repair mechanisms to safeguard genome stability. Work from the past decades has led to the development of innovative imaging tools as well as inducible DNA damage techniques to gain new insights into the impact of these repetitive chromatin domains on the DNA repair process. Here we summarize these tools with a particular focus on Double-Strand Break (DSB) repair, and discuss the insights gained into our understanding of the influence of chromatin domains on DSB -dynamics and -repair pathway choice.
Collapse
Affiliation(s)
- Marit A E van Bueren
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
11
|
Sun F, Sutovsky P, Patterson AL, Balboula AZ. Mechanisms of DNA Damage Response in Mammalian Oocytes. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:47-68. [PMID: 39030354 DOI: 10.1007/978-3-031-55163-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
DNA damage poses a significant challenge to all eukaryotic cells, leading to mutagenesis, genome instability and senescence. In somatic cells, the failure to repair damaged DNA can lead to cancer development, whereas, in oocytes, it can lead to ovarian dysfunction and infertility. The response of the cell to DNA damage entails a series of sequential and orchestrated events including sensing the DNA damage, activating DNA damage checkpoint, chromatin-related conformational changes, activating the DNA damage repair machinery and/or initiating the apoptotic cascade. This chapter focuses on how somatic cells and mammalian oocytes respond to DNA damage. Specifically, we will discuss how and why fully grown mammalian oocytes differ drastically from somatic cells and growing oocytes in their response to DNA damage.
Collapse
Affiliation(s)
- Fei Sun
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Amanda L Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Ahmed Z Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
12
|
Wang Y, Yan S, Liu Y, Yan Z, Deng W, Geng J, Li Z, Xia R, Zeng W, Zhao T, Fang Y, Liu N, Yang L, Cheng Z, Xu J, Wu CL, Miao Y. Dynamic viral integration patterns actively participate in the progression of BK polyomavirus-associated diseases after renal transplantation. Am J Transplant 2023; 23:1694-1708. [PMID: 37507072 DOI: 10.1016/j.ajt.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The classical lytic infection theory along with large T antigen-mediated oncogenesis cannot explain the BK polyomavirus (BKPyV)-associated tumor secondary to BKPyV-associated nephropathy (BKVAN), viremia/DNAemia, and viruria after renal transplantation. This study performed virome capture sequencing and pathological examination on regularly collected urine sediment and peripheral blood samples, and BKVAN and tumor biopsy tissues of 20 patients with BKPyV-associated diseases of different stages. In the early noncancerous stages, well-amplified integration sites were visualized by in situ polymerase chain reaction, simultaneously with BKPyV inclusion bodies and capsid protein expression. The integration intensity, the proportion of microhomology-mediated end-joining integration, and host PARP-1 and POLQ gene expression levels increased with disease progression. Furthermore, multiomics analysis was performed on BKPyV-associated urothelial carcinoma tissues, identifying tandem-like structures of BKPyV integration using long-read genome sequencing. The carcinogenicity of BKPyV integration was proven to disturb host gene expression and increase viral oncoprotein expression. Fallible DNA double-strand break repair pathways were significantly activated in the parenchyma of BKPyV-associated tumors. Olaparib showed an antitumor activity dose-response effect in the tumor organoids without BRCA1/2 genes mutation. In conclusion, the dynamic viral integration patterns actively participate in the progression of BKPyV-associated diseases and thus could be a potential target for disease monitoring and intervention.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Susha Yan
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanna Liu
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ziyan Yan
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Deng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuolin Li
- KingMed Diagnostics Group Co, Ltd, Guangzhou, China
| | - Renfei Xia
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenli Zeng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Zhao
- Departments of Urology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yiling Fang
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Liu
- Mygenostics Co, Beijing, China
| | - Lingling Yang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab (Hangzhou) Co, Inc, Hangzhou, China
| | - Jian Xu
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chin-Lee Wu
- Departments of Urology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yun Miao
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Valadez-Barba V, Juárez-Navarro K, Padilla-Camberos E, Díaz NF, Guerra-Mora JR, Díaz-Martínez NE. Parkinson's disease: an update on preclinical studies of induced pluripotent stem cells. Neurologia 2023; 38:681-694. [PMID: 37858889 DOI: 10.1016/j.nrleng.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease among adults worldwide. It is characterised by the death of dopaminergic neurons in the substantia nigra pars compacta and, in some cases, presence of intracytoplasmic inclusions of α-synuclein, called Lewy bodies, a pathognomonic sign of the disease. Clinical diagnosis of PD is based on the presence of motor alterations. The treatments currently available have no neuroprotective effect. The exact causes of PD are poorly understood. Therefore, more precise preclinical models have been developed in recent years that use induced pluripotent stem cells (iPSC). In vitro studies can provide new information on PD pathogenesis and may help to identify new therapeutic targets or to develop new drugs.
Collapse
Affiliation(s)
- V Valadez-Barba
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - K Juárez-Navarro
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - E Padilla-Camberos
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - N F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - J R Guerra-Mora
- Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - N E Díaz-Martínez
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
14
|
Lavi ES, Lin ZP, Ratner ES. Gene expression of non-homologous end-joining pathways in the prognosis of ovarian cancer. iScience 2023; 26:107934. [PMID: 37810216 PMCID: PMC10558711 DOI: 10.1016/j.isci.2023.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/04/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Ovarian cancer is the deadliest gynecologic malignancy in women, with a 46% five-year overall survival rate. The objective of the study was to investigate the effects of non-homologous end-joining (NHEJ) genes on clinical outcomes of ovarian cancer patients. To determine if these genes act as prognostic biomarkers of mortality and disease progression, the expression profiles of 48 NHEJ-associated genes were analyzed using an array of statistical and machine learning techniques: logistic regression models, decision trees, naive-Bayes, two sample t-tests, support vector machines, hierarchical clustering, principal component analysis, and neural networks. In this process, the correlation of genes with patient survival and disease progression and recurrence was noted. Also, multiple features from the gene set were found to have significant predictive capabilities. APTX, BRCA1, PAXX, LIG1, and TP53 were identified as most important out of all the candidate genes for predicting clinical outcomes of ovarian cancer patients.
Collapse
Affiliation(s)
- Ethan S. Lavi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Z. Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Elena S. Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
15
|
Das PK, Siddika A, Rashel KM, Auwal A, Soha K, Rahman MA, Pillai S, Islam F. Roles of long noncoding RNA in triple-negative breast cancer. Cancer Med 2023; 12:20365-20379. [PMID: 37795578 PMCID: PMC10652353 DOI: 10.1002/cam4.6600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION Long noncoding RNAs (lncRNAs) play crucial roles in regulating various hallmarks in cancers. Triple-negative (Estrogen receptor, ER; Human epidermal growth factor receptor 2, HER2; Progesterone receptor, PR) breast cancer (TNBC) is the most aggressive form of breast cancers with a poor prognosis and no available molecular targeted therapy. METHODS We reviewed the current literature on the roles of lncRNAs in the pathogenesis, therapy resistance, and prognosis of patients with TBNC. RESULTS LncRNAs are associated with TNBC pathogenesis, therapy resistance, and prognosis. For example, lncRNAs such as small nucleolar RNA host gene 12 (SNHG12), highly upregulated in liver cancer (HULC) HOX transcript antisense intergenic RNA (HOTAIR), lincRNA-regulator of reprogramming (LincRNA-ROR), etc., are aberrantly expressed in TNBC and are involved in the pathogenesis of the disease. LncRNAs act as a decoy, scaffold, or sponge to regulate the expression of genes, miRNAs, and transcription factors associated with pathogenesis and progression of TNBC. Moreover, lncRNAs such as ferritin heavy chain 1 pseudogene 3 (FTH1P3), BMP/OP-responsive gene (BORG) contributes to the therapy resistance property of TNBC through activating ABCB1 (ATP-binding cassette subfamily B member 1) drug efflux pumps by increasing DNA repair capacity or by inducing signaling pathway involved in therapeutic resistance. CONCLUSION In this review, we outline the functions of various lncRNAs along with their molecular mechanisms involved in the pathogenesis, therapeutic resistance of TBNC. Also, the prognostic implications of lncRNAs in patients with TNBC is illustrated. Moreover, potential strategies targeting lncRNAs against highly aggressive TNBC is discussed in this review.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
- Institute for GlycomicsGriffith UniversityGold CoastAustralia
| | - Ayesha Siddika
- Institute of Tissue Banking & Biomaterial Research, Atomic Energy Research Establishment (AERE) SavarDhakaBangladesh
| | - Khan Mohammad Rashel
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Abdul Auwal
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Kazi Soha
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Md. Arifur Rahman
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Suja Pillai
- School of Biomedical SciencesUniversity of QueenslandSaint LuciaAustralia
| | - Farhadul Islam
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
- Institute for GlycomicsGriffith UniversityGold CoastAustralia
| |
Collapse
|
16
|
Roberts CM, Rojas-Alexandre M, Hanna RE, Lin ZP, Ratner ES. Transforming Growth Factor Beta and Epithelial to Mesenchymal Transition Alter Homologous Recombination Repair Gene Expression and Sensitize BRCA Wild-Type Ovarian Cancer Cells to Olaparib. Cancers (Basel) 2023; 15:3919. [PMID: 37568736 PMCID: PMC10417836 DOI: 10.3390/cancers15153919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy, largely due to metastasis and drug resistant recurrences. Fifteen percent of ovarian tumors carry mutations in BRCA1 or BRCA2, rendering them vulnerable to treatment with PARP inhibitors such as olaparib. Recent studies have shown that TGFβ can induce "BRCAness" in BRCA wild-type cancer cells. Given that TGFβ is a known driver of epithelial to mesenchymal transition (EMT), and the connection between EMT and metastatic spread in EOC and other cancers, we asked if TGFβ and EMT alter the susceptibility of EOC to PARP inhibition. Epithelial EOC cells were transiently treated with soluble TGFβ, and their clonogenic potential, expression, and function of EMT and DNA repair genes, and response to PARP inhibitors compared with untreated controls. A second epithelial cell line was compared to its mesenchymal derivative for EMT and DNA repair gene expression and drug responses. We found that TGFβ and EMT resulted in the downregulation of genes responsible for homologous recombination (HR) and sensitized cells to olaparib. HR efficiency was reduced in a dose-dependent manner. Furthermore, mesenchymal cells displayed sensitivity to olaparib, cisplatin, and the DNA-PK inhibitor Nu-7441. Therefore, the treatment of disseminated, mesenchymal tumors may represent an opportunity to expand the clinical utility of PARP inhibitors and similar agents.
Collapse
Affiliation(s)
- Cai M. Roberts
- Department of Pharmacology, Midwestern University, 555 31st St., Downers Grove, IL 60515, USA
| | - Mehida Rojas-Alexandre
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| | - Ruth E. Hanna
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| | - Z. Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| | - Elena S. Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| |
Collapse
|
17
|
Zhao Z, Shang P, Mohanraju P, Geijsen N. Prime editing: advances and therapeutic applications. Trends Biotechnol 2023; 41:1000-1012. [PMID: 37002157 DOI: 10.1016/j.tibtech.2023.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas)-mediated genome editing has revolutionized biomedical research and will likely change the therapeutic and diagnostic landscape. However, CRISPR-Cas9, which edits DNA by activating DNA double-strand break (DSB) repair pathways, is not always sufficient for gene therapy applications where precise mutation repair is required. Prime editing, the latest revolution in genome-editing technologies, can achieve any possible base substitution, insertion, or deletion without the requirement for DSBs. However, prime editing is still in its infancy, and further development is needed to improve editing efficiency and delivery strategies for therapeutic applications. We summarize latest developments in the optimization of prime editor (PE) variants with improved editing efficiency and precision. Moreover, we highlight some potential therapeutic applications.
Collapse
Affiliation(s)
- Zhihan Zhao
- Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, The Netherlands
| | - Peng Shang
- Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, The Netherlands
| | - Prarthana Mohanraju
- Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, The Netherlands.
| | - Niels Geijsen
- Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, The Netherlands.
| |
Collapse
|
18
|
Laufer VA, Glover TW, Wilson TE. Applications of advanced technologies for detecting genomic structural variation. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108475. [PMID: 37931775 PMCID: PMC10792551 DOI: 10.1016/j.mrrev.2023.108475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Zhou S, Lenk LJ, Gao Y, Wang Y, Zhao X, Pan M, Huang S, Sun K, Kalds P, Luo Q, Lillico S, Sonstegard T, Scholl UI, Ma B, Petersen B, Chen Y, Wang X. Generation of sheep with defined FecB B and TBXT mutations and porcine blastocysts with KCNJ5 G151R/+ mutation using prime editing. BMC Genomics 2023; 24:313. [PMID: 37308830 DOI: 10.1186/s12864-023-09409-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Rewriting the genomes of living organisms has been a long-standing aim in the biological sciences. The revelation of the CRISPR/Cas9 technology has revolutionized the entire biological field. Since its emergence, this technology has been widely applied to induce gene knockouts, insertions, deletions, and base substitutions. However, the classical version of this system was imperfect for inducing or correcting desired mutations. A subsequent development generated more advanced classes, including cytosine and adenine base editors, which can be used to achieve single nucleotide substitutions. Nevertheless, these advanced systems still suffer from several limitations, such as the inability to edit loci without a suitable PAM sequence and to induce base transversions. On the other hand, the recently emerged prime editors (PEs) can achieve all possible single nucleotide substitutions as well as targeted insertions and deletions, which show promising potential to alter and correct the genomes of various organisms. Of note, the application of PE to edit livestock genomes has not been reported yet. RESULTS In this study, using PE, we successfully generated sheep with two agriculturally significant mutations, including the fecundity-related FecBB p.Q249R and the tail length-related TBXT p.G112W. Additionally, we applied PE to generate porcine blastocysts with a biomedically relevant point mutation (KCNJ5 p.G151R) as a porcine model of human primary aldosteronism. CONCLUSIONS Our study demonstrates the potential of the PE system to edit the genomes of large animals for the induction of economically desired mutations and for modeling human diseases. Although prime-edited sheep and porcine blastocysts could be generated, the editing frequencies are still unsatisfactory, highlighting the need for optimizations in the PE system for efficient generation of large animals with customized traits.
Collapse
Affiliation(s)
- Shiwei Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Laura Johanna Lenk
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| | - Yawei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yuhui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Kexin Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511, Egypt
| | - Qi Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Simon Lillico
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | | | - Ute I Scholl
- Center of Functional Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10115, Berlin, Germany
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany.
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| |
Collapse
|
20
|
Friedman CE, Fayer S, Pendyala S, Chien WM, Loiben A, Tran L, Chao LS, Mckinstry A, Ahmed D, Karbassi E, Fenix AM, Murry CE, Starita LM, Fowler DM, Yang KC. CRaTER enrichment for on-target gene editing enables generation of variant libraries in hiPSCs. J Mol Cell Cardiol 2023; 179:60-71. [PMID: 37019277 PMCID: PMC10208587 DOI: 10.1016/j.yjmcc.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Standard transgenic cell line generation requires screening 100-1000s of colonies to isolate correctly edited cells. We describe CRISPRa On-Target Editing Retrieval (CRaTER) which enriches for cells with on-target knock-in of a cDNA-fluorescent reporter transgene by transient activation of the targeted locus followed by flow sorting to recover edited cells. We show CRaTER recovers rare cells with heterozygous, biallelic-editing of the transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSCs), enriching on average 25-fold compared to standard antibiotic selection. We leveraged CRaTER to enrich for heterozygous knock-in of a library of variants in MYH7, a gene in which missense mutations cause cardiomyopathies, and recovered hiPSCs with 113 different variants. We differentiated these hiPSCs to cardiomyocytes and show MHC-β fusion proteins can localize as expected. Additionally, single-cell contractility analyses revealed cardiomyocytes with a pathogenic, hypertrophic cardiomyopathy-associated MYH7 variant exhibit salient HCM physiology relative to isogenic controls. Thus, CRaTER substantially reduces screening required for isolation of gene-edited cells, enabling generation of functional transgenic cell lines at unprecedented scale.
Collapse
Affiliation(s)
- Clayton E Friedman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Shawn Fayer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sriram Pendyala
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Wei-Ming Chien
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Cardiology/Hospital Specialty Medicine, VA Puget Sound HCS, Seattle, WA 98108, USA
| | - Alexander Loiben
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Linda Tran
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Leslie S Chao
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Ashley Mckinstry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Dania Ahmed
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA
| | - Aidan M Fenix
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Kai-Chun Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Cardiology/Hospital Specialty Medicine, VA Puget Sound HCS, Seattle, WA 98108, USA.
| |
Collapse
|
21
|
Shi Y, Kopparapu N, Ohler L, Dickinson DJ. Efficient and rapid fluorescent protein knock-in with universal donors in mouse embryonic stem cells. Development 2023; 150:dev201367. [PMID: 37129004 PMCID: PMC10233722 DOI: 10.1242/dev.201367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Fluorescent protein (FP) tagging is a key method for observing protein distribution, dynamics and interaction with other proteins in living cells. However, the typical approach using overexpression of tagged proteins can perturb cell behavior and introduce localization artifacts. To preserve native expression, fluorescent proteins can be inserted directly into endogenous genes. This approach has been widely used in yeast for decades, and more recently in invertebrate model organisms with the advent of CRISPR/Cas9. However, endogenous FP tagging has not been widely used in mammalian cells due to inefficient homology-directed repair. Recently, the CRISPaint system used non-homologous end joining for efficient integration of FP tags into native loci, but it only allows C-terminal knock-ins. Here, we have enhanced the CRISPaint system by introducing new universal donors for N-terminal insertion and for multi-color tagging with orthogonal selection markers. We adapted the procedure for mouse embryonic stem cells, which can be differentiated into diverse cell types. Our protocol is rapid and efficient, enabling live imaging in less than 2 weeks post-transfection. These improvements increase the versatility and applicability of FP knock-in in mammalian cells.
Collapse
Affiliation(s)
- Yu Shi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nitya Kopparapu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren Ohler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
22
|
Gnügge R, Reginato G, Cejka P, Symington LS. Sequence and chromatin features guide DNA double-strand break resection initiation. Mol Cell 2023; 83:1237-1250.e15. [PMID: 36917982 PMCID: PMC10131398 DOI: 10.1016/j.molcel.2023.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023]
Abstract
DNA double-strand breaks (DSBs) are cytotoxic genome lesions that must be accurately and efficiently repaired to ensure genome integrity. In yeast, the Mre11-Rad50-Xrs2 (MRX) complex nicks 5'-terminated DSB ends to initiate nucleolytic processing of DSBs for repair by homologous recombination. How MRX-DNA interactions support 5' strand-specific nicking and how nicking is influenced by the chromatin context have remained elusive. Using a deep sequencing-based assay, we mapped MRX nicks at single-nucleotide resolution next to multiple DSBs in the yeast genome. We observed that the DNA end-binding Ku70-Ku80 complex directed DSB-proximal nicks and that repetitive MRX cleavage extended the length of resection tracts. We identified a sequence motif and a DNA meltability profile that is preferentially nicked by MRX. Furthermore, we found that nucleosomes as well as transcription impeded MRX incisions. Our findings suggest that local DNA sequence and chromatin features shape the activity of this central DSB repair complex.
Collapse
Affiliation(s)
- Robert Gnügge
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Giordano Reginato
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Petr Cejka
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
23
|
Karwowski B. How Clustered DNA Damage Can Change the Electronic Properties of ds-DNA—Differences between GAG, GAOXOG, and OXOGAOXOG. Biomolecules 2023; 13:biom13030517. [PMID: 36979452 PMCID: PMC10046028 DOI: 10.3390/biom13030517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Every 24 h, roughly 3 × 1017 incidences of DNA damage are generated in the human body as a result of intra- or extra-cellular factors. The structure of the formed lesions is identical to that formed during radio- or chemotherapy. Increases in the clustered DNA damage (CDL) level during anticancer treatment have been observed compared to those found in untreated normal tissues. 7,8-dihydro-8-oxo-2′-deoxyguanosine (OXOG) has been recognized as the most common lesion. In these studies, the influence of OXOG, as an isolated (oligo-OG) or clustered DNA lesion (oligo-OGOG), on charge transfer has been analyzed in comparison to native oligo-G. DNA lesion repair depends on the damage recognition step, probably via charge transfer. Here the electronic properties of short ds-oligonucleotides were calculated and analyzed at the M062x/6-31++G** level of theory in a non-equilibrated and equilibrated solvent state. The rate constant of hole and electron transfer according to Marcus’ theory was also discussed. These studies elucidated that OXOG constitutes the sink for migrated radical cations. However, in the case of oligo-OGOG containing a 5′-OXOGAXOXG-3′ sequence, the 3′-End OXOG becomes predisposed to electron-hole accumulation contrary to the undamaged GAG fragment. Moreover, it was found that the 5′-End OXOG present in an OXOGAOXOG fragment adopts a higher adiabatic ionization potential than the 2′-deoxyguanosine of an undamaged analog if both ds-oligos are present in a cationic form. Because increases in CDL formation have been observed during radio- or chemotherapy, understanding their role in the above processes can be crucial for the efficiency and safety of medical cancer treatment.
Collapse
Affiliation(s)
- Boleslaw Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
24
|
Friedman CE, Fayer S, Pendyala S, Chien WM, Tran L, Chao L, Mckinstry A, Karbassi E, Fenix AM, Loiben A, Murry CE, Starita LM, Fowler DM, Yang KC. CRaTER enrichment for on-target gene-editing enables generation of variant libraries in hiPSCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525582. [PMID: 36747685 PMCID: PMC9900876 DOI: 10.1101/2023.01.25.525582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Standard transgenic cell line generation requires screening 100-1000s of colonies to isolate correctly edited cells. We describe CR ISPR a On- T arget E diting R etrieval (CRaTER) which enriches for cells with on-target knock-in of a cDNA-fluorescent reporter transgene by transient activation of the targeted locus followed by flow sorting to recover edited cells. We show CRaTER recovers rare cells with heterozygous, biallelic-editing of the transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSCs), enriching on average 25-fold compared to standard antibiotic selection. We leveraged CRaTER to enrich for heterozygous knock-in of a library of single nucleotide variants (SNVs) in MYH7 , a gene in which missense mutations cause cardiomyopathies, and recovered hiPSCs with 113 different MYH7 SNVs. We differentiated these hiPSCs to cardiomyocytes and show MYH7 fusion proteins can localize as expected. Thus, CRaTER substantially reduces screening required for isolation of gene-edited cells, enabling generation of transgenic cell lines at unprecedented scale.
Collapse
|
25
|
Li C, Zhu H, Jin S, Maksoud LM, Jain N, Sun J, Gao Y. Structural basis of DNA polymerase θ mediated DNA end joining. Nucleic Acids Res 2023; 51:463-474. [PMID: 36583344 PMCID: PMC9841435 DOI: 10.1093/nar/gkac1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
DNA polymerase θ (Pol θ) plays an essential role in the microhomology-mediated end joining (MMEJ) pathway for repairing DNA double-strand breaks. However, the mechanisms by which Pol θ recognizes microhomologous DNA ends and performs low-fidelity DNA synthesis remain unclear. Here, we present cryo-electron microscope structures of the polymerase domain of Lates calcarifer Pol θ with long and short duplex DNA at up to 2.4 Å resolution. Interestingly, Pol θ binds to long and short DNA substrates similarly, with extensive interactions around the active site. Moreover, Pol θ shares a similar active site as high-fidelity A-family polymerases with its finger domain well-closed but differs in having hydrophilic residues surrounding the nascent base pair. Computational simulations and mutagenesis studies suggest that the unique insertion loops of Pol θ help to stabilize short DNA binding and assemble the active site for MMEJ repair. Taken together, our results illustrate the structural basis of Pol θ-mediated MMEJ.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shikai Jin
- Department of Biosciences, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Leora M Maksoud
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Nikhil Jain
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ji Sun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
26
|
Song B, Bae S. Introduction and Perspectives of DNA Base Editors. Methods Mol Biol 2023; 2606:3-11. [PMID: 36592303 DOI: 10.1007/978-1-0716-2879-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA base editors, one of the CRISPR-based genome editing tools, can induce targeted point mutations at desired sites. Their superiority is based on the fact that they can perform efficient and precise gene editing without generating a DNA double-strand break (DSB) or requiring a donor DNA template. Since they were first developed, significant efforts have been made to improve DNA base editors in order to overcome problems such as off-target edits on DNA/RNA and bystander mutations in editing windows. Here, we provide an overview of DNA base editors with a summary about the history of development of DNA base editors and report on efforts to improve them.
Collapse
Affiliation(s)
- Beomjong Song
- Medical Research Center Organization: Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sangsu Bae
- Medical Research Center Organization: Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Katheeja MN, Das SP, Das R, Laha S. BRCA1 interactors, RAD50 and BRIP1, as prognostic markers for triple-negative breast cancer severity. Front Genet 2023; 14:1035052. [PMID: 36873936 PMCID: PMC9978165 DOI: 10.3389/fgene.2023.1035052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction: BRIP1 (BRCA1-interacting protein 1) is one of the major interacting partners of BRCA1, which plays an important role in repair by homologous recombination (HR). This gene is mutated in around 4% of cases of breast cancer; however, its mechanism of action is unclear. In this study, we presented the fundamental role of BRCA1 interactors BRIP1 and RAD50 in the development of differential severity in triple-negative breast cancer (TNBC) among various affected individuals. Methods: We have analyzed the expression of DNA repair-related genes in different BC cells using Real-time PCR and western blotting analysis and assessed changes in stemness property and proliferation through Immunophenotyping. We have performed cell cycle analysis to see the defect in checkpoints and also immunofluorescence assay to confirm the accumulation of gamma-H2AX and BRCA1 foci and subsequent incidence. We have performed a severity analysis using TCGA data sets for comparing the expression in MDA-MB-468 MDA-MB-231 and MCF7 cell line. Results: We showed that in some TNBC cell lines such as MDA-MB-231, the functioning of both BRCA1/TP53 is compromised. Furthermore, the sensing of DNA damage is affected. Due to less damage-sensing capability and low availability of BRCA1 at the damage sites, the repair by HR becomes inefficient, leading to more damage. Accumulation of damage sends a signal for over activation of NHEJ repair pathways. Over expressed NHEJ molecules with compromised HR and checkpoint conditions lead to higher proliferation and error-prone repair, which increases the mutation rate and corresponding tumour severity. The in-silico analysis of the TCGA datasets with gene expression in the deceased population showed a significant correlation of BRCA1 expression with overall survival (OS) in TNBCs (0.0272). The association of BRCA1 with OS became stronger with the addition of BRIP1 expression (0.000876**). Conclusion: The severity phenotypes were more in cells having compromised BRCA1-BRIP1 functioning. Since the OS is directly proportional to the extent of severity, the data analysis hints at the role of BRIP1 in controlling the severity of TNBC.
Collapse
Affiliation(s)
- Muhseena N Katheeja
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| |
Collapse
|
28
|
Mechanisms of Drug Resistance in Ovarian Cancer and Associated Gene Targets. Cancers (Basel) 2022; 14:cancers14246246. [PMID: 36551731 PMCID: PMC9777152 DOI: 10.3390/cancers14246246] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
In the United States, over 100,000 women are diagnosed with a gynecologic malignancy every year, with ovarian cancer being the most lethal. One of the hallmark characteristics of ovarian cancer is the development of resistance to chemotherapeutics. While the exact mechanisms of chemoresistance are poorly understood, it is known that changes at the cellular and molecular level make chemoresistance challenging to treat. Improved therapeutic options are needed to target these changes at the molecular level. Using a precision medicine approach, such as gene therapy, genes can be specifically exploited to resensitize tumors to therapeutics. This review highlights traditional and novel gene targets that can be used to develop new and improved targeted therapies, from drug efflux proteins to ovarian cancer stem cells. The review also addresses the clinical relevance and landscape of the discussed gene targets.
Collapse
|
29
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
30
|
Jiang Y. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress. Int J Mol Sci 2022; 23:12937. [PMID: 36361724 PMCID: PMC9657218 DOI: 10.3390/ijms232112937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2023] Open
Abstract
Microhomology-mediated end joining (MMEJ) is a highly mutagenic pathway to repair double-strand breaks (DSBs). MMEJ was thought to be a backup pathway of homologous recombination (HR) and canonical nonhomologous end joining (C-NHEJ). However, it attracts more attention in cancer research due to its special function of microhomology in many different aspects of cancer. In particular, it is initiated with DNA end resection and upregulated in homologous recombination-deficient cancers. In this review, I summarize the following: (1) the recent findings and contributions of MMEJ to genome instability, including phenotypes relevant to MMEJ; (2) the interaction between MMEJ and other DNA repair pathways; (3) the proposed mechanistic model of MMEJ in DNA DSB repair and a new connection with microhomology-mediated break-induced replication (MMBIR); and (4) the potential clinical application by targeting MMEJ based on synthetic lethality for cancer therapy.
Collapse
Affiliation(s)
- Yuning Jiang
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
31
|
Lee J, Lim JW, Kim H. Astaxanthin Inhibits Oxidative Stress-Induced Ku Protein Degradation and Apoptosis in Gastric Epithelial Cells. Nutrients 2022; 14:nu14193939. [PMID: 36235593 PMCID: PMC9570747 DOI: 10.3390/nu14193939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress induces DNA damage which can be repaired by DNA repair proteins, such as Ku70/80. Excess reactive oxygen species (ROS) stimulate the activation of caspase-3, which degrades Ku 70/80. Cells with decreased Ku protein levels undergo apoptosis. Astaxanthin exerts antioxidant activity by inducing the expression of catalase, an antioxidant enzyme, in gastric epithelial cells. Therefore, astaxanthin may inhibit oxidative stress-induced DNA damage by preventing Ku protein degradation and thereby suppressing apoptosis. Ku proteins can be degraded via ubiquitination and neddylation which adds ubiquitin-like protein to substrate proteins. We aimed to determine whether oxidative stress decreases Ku70/80 expression through the ubiquitin–proteasome pathway to induce apoptosis and whether astaxanthin inhibits oxidative stress-induced changes in gastric epithelial AGS cells. We induced oxidative stress caused by the treatment of β-D-glucose (G) and glucose oxidase (GO) in the cells. As a result, the G/GO treatment increased ROS levels, decreased nuclear Ku protein levels and Ku-DNA-binding activity, and induced the ubiquitination of Ku80. G/GO increased the DNA damage marker levels (γ-H2AX; DNA fragmentation) and apoptosis marker annexin V-positive cells and cell death. Astaxanthin inhibited G/GO-induced alterations, including Ku degradation in AGS cells. MLN4924, a neddylation inhibitor, and MG132, a proteasome inhibitor, suppressed G/GO-mediated DNA fragmentation and decreased cell viability. These results indicated that G/GO-induced oxidative stress causes Ku protein loss through the ubiquitin–proteasome pathway, resulting in DNA fragmentation and apoptotic cell death. Astaxanthin inhibited oxidative stress-mediated apoptosis via the reduction of ROS levels and inhibition of Ku protein degradation. In conclusion, dietary astaxanthin supplementation or astaxanthin-rich food consumption may be effective for preventing or delaying oxidative stress-mediated cell damage by suppressing Ku protein loss and apoptosis in gastric epithelial cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
32
|
De Angeli P, Reuter P, Hauser S, Schöls L, Stingl K, Wissinger B, Kohl S. Effective splicing restoration of a deep-intronic ABCA4 variant in cone photoreceptor precursor cells by CRISPR/SpCas9 approaches. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:511-524. [PMID: 35991315 PMCID: PMC9375153 DOI: 10.1016/j.omtn.2022.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/20/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Pietro De Angeli
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
- Corresponding author Pietro De Angeli, Institute for Ophthalmic Research, Centre for Ophthalmology, Elfriede-Aulhorn-Strasse 5–7, 72076 Tübingen, Germany.
| | - Peggy Reuter
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Katarina Stingl
- Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
33
|
Přibylová A, Fischer L, Pyott DE, Bassett A, Molnar A. DNA methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in a target-specific manner. THE NEW PHYTOLOGIST 2022; 235:2285-2299. [PMID: 35524464 PMCID: PMC9545110 DOI: 10.1111/nph.18212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 05/31/2023]
Abstract
The impact of epigenetic modifications on the efficacy of CRISPR/Cas9-mediated double-stranded DNA breaks and subsequent DNA repair is poorly understood, especially in plants. In this study, we investigated the effect of the level of cytosine methylation on the outcome of CRISPR/Cas9-induced mutations at multiple Cas9 target sites in Nicotiana benthamiana leaf cells using next-generation sequencing. We found that high levels of promoter methylation, but not gene-body methylation, decreased the frequency of Cas9-mediated mutations. DNA methylation also influenced the ratio of insertions and deletions and potentially the type of Cas9 cleavage in a target-specific manner. In addition, we detected an over-representation of deletion events governed by a single 5'-terminal nucleotide at Cas9-induced DNA breaks. Our findings suggest that DNA methylation can indirectly impair Cas9 activity and subsequent DNA repair, probably through changes in the local chromatin structure. In addition to the well described Cas9-induced blunt-end double-stranded DNA breaks, we provide evidence for Cas9-mediated staggered DNA cuts in plant cells. Both types of cut may direct microhomology-mediated DNA repair by a novel, as yet undescribed, mechanism.
Collapse
Affiliation(s)
- Adéla Přibylová
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Lukáš Fischer
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Douglas E. Pyott
- The Wellcome Trust Center for Cell BiologyInstitute of Cell BiologyThe University of EdinburghEdinburghEH9 3BFUK
| | - Andrew Bassett
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonCB10 1SAUK
| | - Attila Molnar
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
| |
Collapse
|
34
|
Yang K, Liang X, Wen K. Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncol Rep 2022; 48:175. [PMID: 36004472 PMCID: PMC9478986 DOI: 10.3892/or.2022.8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Genomic instability, a feature of most cancers, contributes to malignant cell transformation and cancer progression due to the accumulation of genetic alterations. Genomic instability is reflected at numerous levels, from single nucleotide to the chromosome levels. However, the exact molecular mechanisms and regulators of genomic instability in cancer remain unclear. Growing evidence indicates that the binding of long non-coding RNAs (lncRNAs) to protein chaperones confers a variety of regulatory functions, including managing of genomic instability. The aim of the present review was to examine the roles of mitosis, telomeres, DNA repair, and epigenetics in genomic instability, and the mechanisms by which lncRNAs regulate them by binding proteins in cancer cells. This review contributes to our understanding of the role of lncRNAs and genomic instability in cancer and can potentially provide entry points and molecular targets for cancer therapies.
Collapse
Affiliation(s)
- Kai Yang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoxiang Liang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
35
|
α-Lipoic Acid Inhibits Apoptosis by Suppressing the Loss of Ku Proteins in Helicobacter pylori-Infected Human Gastric Epithelial Cells. Nutrients 2022; 14:nu14153206. [PMID: 35956382 PMCID: PMC9370604 DOI: 10.3390/nu14153206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the gastric mucosa and triggers various stomach diseases. H. pylori induces reactive oxygen species (ROS) production and DNA damage. The heterodimeric Ku70/Ku80 protein plays an essential role in the repair of DNA double-strand breaks (DSB). Oxidative stress stimulate apoptosis and DNA damage that can be repaired by Ku70/80. However, excessive reactive oxygen species (ROS) can cause Ku protein degradation, resulting in DNA fragmentation and apoptosis. α-lipoic acid (α-LA), which is found in organ meats such as liver and heart, spinach, broccoli, and potatoes, quenches free radicals, chelates metal ions, and reduces intracellular DNA damage induced by oxidative stress. Here, we investigated whether H. pylori decreases Ku70/80 and induces apoptosis, and whether α-LA inhibits changes induced by H. pylori. We analyzed ROS, DNA damage markers (γ-H2AX, DNA fragmentation), levels of Ku70/80, Ku-DNA binding activity, Ku80 ubiquitination, apoptosis indices (Bcl-2, Bax, apoptosis-inducing factor (AIF), and caspase-3), and viability in a human gastric epithelial adenocarcinoma cell line (AGS). H. pylori increased ROS, DNA damage markers, Ku80 ubiquitination, and consequently induced apoptosis. It also decreased nuclear Ku70/80 levels and Ku-DNA-binding activity; increased Bax expression, caspase-3 cleavage, and truncated AIF; but decreased Bcl-2 expression. These H. pylori-induced alterations were inhibited by α-LA. The antioxidant N-acetylcysteine and proteasome inhibitor MG-132 suppressed H. pylori-induced cell death and decreased nuclear Ku70/80 levels. The results show that oxidative stress induced Ku70/80 degradation via the ubiquitin-proteasome system, leading to its nuclear loss and apoptosis in H. pylori-infected cells. In conclusion, α-LA inhibited apoptosis induced by H. pylori by reducing ROS levels and suppressing the loss of Ku70/80 proteins in AGS cells.
Collapse
|
36
|
Talibova G, Bilmez Y, Ozturk S. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair (Amst) 2022; 118:103386. [DOI: 10.1016/j.dnarep.2022.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
|
37
|
Sadeghi A, Dervey R, Gligorovski V, Labagnara M, Rahi SJ. The optimal strategy balancing risk and speed predicts DNA damage checkpoint override times. NATURE PHYSICS 2022; 18:832-839. [PMID: 36281344 PMCID: PMC7613727 DOI: 10.1038/s41567-022-01601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/29/2022] [Indexed: 05/15/2023]
Abstract
Checkpoints arrest biological processes allowing time for error correction. The phenomenon of checkpoint override (also known as checkpoint adaptation, slippage, or leakage), during cellular self-replication is biologically critical but currently lacks a quantitative, functional, or system-level understanding. To uncover fundamental laws governing error-correction systems, we derived a general theory of optimal checkpoint strategies, balancing the trade-off between risk and self-replication speed. Mathematically, the problem maps onto the optimization of an absorbing boundary for a random walk. We applied the theory to the DNA damage checkpoint (DDC) in budding yeast, an intensively researched model checkpoint. Using novel reporters for double-strand DNA breaks (DSBs), we first quantified the probability distribution of DSB repair in time including rare events and, secondly, the survival probability after override. With these inputs, the optimal theory predicted remarkably accurately override times as a function of DSB numbers, which we measured precisely for the first time. Thus, a first-principles calculation revealed undiscovered patterns underlying highly noisy override processes. Our multi-DSB measurements revise well-known past results and show that override is more general than previously thought.
Collapse
Affiliation(s)
- Ahmad Sadeghi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Roxane Dervey
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vojislav Gligorovski
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marco Labagnara
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sahand Jamal Rahi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
38
|
Shams F, Bayat H, Mohammadian O, Mahboudi S, Vahidnezhad H, Soosanabadi M, Rahimpour A. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. BIOIMPACTS 2022; 12:371-391. [PMID: 35975201 PMCID: PMC9376165 DOI: 10.34172/bi.2022.23871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022]
Abstract
![]()
Introduction: Clustered regularly interspaced short palindromic repeat and its associated protein (CRISPR-Cas)-based technologies generate targeted modifications in host genome by inducing site-specific double-strand breaks (DSBs) that can serve as a substrate for homology-directed repair (HDR) in both in vitro and in vivo models. HDR pathway could enhance incorporation of exogenous DNA templates into the CRISPR-Cas9-mediated DSB site. Owing to low rate of HDR pathway, the efficiency of accurate genome editing is diminished. Enhancing the efficiency of HDR can provide fast, easy, and accurate technologies based on CRISPR-Cas9 technologies.
Methods: The current study presents an overview of attempts conducted on the precise genome editing strategies based on small molecules and modified CRISPR-Cas9 systems.
Results: In order to increase HDR rate in targeted cells, several logical strategies have been introduced such as generating CRISPR effector chimeric proteins, anti-CRISPR proteins, modified Cas9 with donor template, and using validated synthetic or natural small molecules for either inhibiting non-homologous end joining (NHEJ), stimulating HDR, or synchronizing cell cycle. Recently, high-throughput screening methods have been applied for identification of small molecules which along with the CRISPR system can regulate precise genome editing through HDR.
Conclusion: The stimulation of HDR components or inhibiting NHEJ can increase the accuracy of CRISPR-Cas-mediated engineering systems. Generating chimeric programmable endonucleases provide this opportunity to direct DNA template close proximity of CRISPR-Cas-mediated DSB. Small molecules and their derivatives can also proficiently block or activate certain DNA repair pathways and bring up novel perspectives for increasing HDR efficiency, especially in human cells. Further, high throughput screening of small molecule libraries could result in more discoveries of promising chemicals that improve HDR efficiency and CRISPR-Cas9 systems.
Collapse
Affiliation(s)
- Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Bayat
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mohammadian
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mahboudi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohsen Soosanabadi
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Azam Rahimpour
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
The Role of DNA Repair in Genomic Instability of Multiple Myeloma. Int J Mol Sci 2022; 23:ijms23105688. [PMID: 35628498 PMCID: PMC9144728 DOI: 10.3390/ijms23105688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple Myeloma (MM) is a B cell malignancy marked by genomic instability that arises both through pathogenesis and during disease progression. Despite recent advances in therapy, MM remains incurable. Recently, it has been reported that DNA repair can influence genomic changes and drug resistance in MM. The dysregulation of DNA repair function may provide an alternative explanation for genomic instability observed in MM cells and in cells derived from MM patients. This review provides an overview of DNA repair pathways with a special focus on their involvement in MM and discusses the role they play in MM progression and drug resistance. This review highlights how unrepaired DNA damage due to aberrant DNA repair response in MM exacerbates genomic instability and chromosomal abnormalities, enabling MM progression and drug resistance.
Collapse
|
40
|
Tang J, Li Z, Wu Q, Irfan M, Li W, Liu X. Role of Paralogue of XRCC4 and XLF in DNA Damage Repair and Cancer Development. Front Immunol 2022; 13:852453. [PMID: 35309348 PMCID: PMC8926060 DOI: 10.3389/fimmu.2022.852453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
Non-homologous end joining (cNHEJ) is a major pathway to repair double-strand breaks (DSBs) in DNA. Several core cNHEJ are involved in the progress of the repair such as KU70 and 80, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Artemis, X-ray repair cross-complementing protein 4 (XRCC4), DNA ligase IV, and XRCC4-like factor (XLF). Recent studies have added a number of new proteins during cNHEJ. One of the newly identified proteins is Paralogue of XRCC4 and XLF (PAXX), which acts as a scaffold that is required to stabilize the KU70/80 heterodimer at DSBs sites and promotes the assembly and/or stability of the cNHEJ machinery. PAXX plays an essential role in lymphocyte development in XLF-deficient background, while XLF/PAXX double-deficient mouse embryo died before birth. Emerging evidence also shows a connection between the expression levels of PAXX and cancer development in human patients, indicating a prognosis role of the protein. This review will summarize and discuss the function of PAXX in DSBs repair and its potential role in cancer development.
Collapse
Affiliation(s)
- Jialin Tang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhongxia Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qiong Wu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Muhammad Irfan
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weili Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiangyu Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Hematology, The Second People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
41
|
Essential Role for an Isoform of Escherichia coli Translation Initiation Factor IF2 in Repair of Two-Ended DNA Double-Strand Breaks. J Bacteriol 2022; 204:e0057121. [PMID: 35343794 DOI: 10.1128/jb.00571-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In Escherichia coli, three isoforms of the essential translation initiation factor IF2 (IF2-1, IF2-2, and IF2-3) are generated from separate in-frame initiation codons in infB. The isoforms have earlier been suggested to additionally participate in DNA damage repair and replication restart. It is also known that the proteins RecA and RecBCD are needed for repair of DNA double-strand breaks (DSBs) in E. coli. Here, we show that strains lacking IF2-1 are profoundly sensitive to two-ended DSBs in DNA generated by radiomimetic agents phleomycin or bleomycin, or by endonuclease I-SceI. However, these strains remained tolerant to other DSB-generating genotoxic agents or perturbations to which recA and recBC mutants remained sensitive, such as to mitomycin C, type-2 DNA topoisomerase inhibitors, or DSB caused by palindrome cleavage behind a replication fork. Data from genome-wide copy number analyses following I-SceI cleavage at a single chromosomal locus suggested that, in a strain lacking IF2-1, the magnitude of recombination-dependent replication through replication restart mechanisms is largely preserved but the extent of DNA resection around the DSB site is reduced. We propose that in the absence of IF2-1 it is the synapsis of a RecA nucleoprotein filament to its homologous target that is weakened, which in turn leads to a specific failure in assembly of Ter-to-oriC directed replisomes needed for consummation of two-ended DSB repair. IMPORTANCE Double-strand breaks (DSBs) in DNA are major threats to genome integrity. In Escherichia coli, DSBs are repaired by RecA- and RecBCD-mediated homologous recombination (HR). This study demonstrates a critical role for an isoform (IF2-1) of the translation initiation factor IF2 in the repair of two-ended DSBs in E. coli (that can be generated by ionizing radiation, certain DNA-damaging chemicals, or endonuclease action). It is proposed that IF2-1 acts to facilitate the function of RecA in the synapsis between a pair of DNA molecules during HR.
Collapse
|
42
|
Interactions between miRNAs and Double-Strand Breaks DNA Repair Genes, Pursuing a Fine-Tuning of Repair. Int J Mol Sci 2022; 23:ijms23063231. [PMID: 35328651 PMCID: PMC8954595 DOI: 10.3390/ijms23063231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The repair of DNA damage is a crucial process for the correct maintenance of genetic information, thus, allowing the proper functioning of cells. Among the different types of lesions occurring in DNA, double-strand breaks (DSBs) are considered the most harmful type of lesion, which can result in significant loss of genetic information, leading to diseases, such as cancer. DSB repair occurs through two main mechanisms, called non-homologous end joining (NHEJ) and homologous recombination repair (HRR). There is evidence showing that miRNAs play an important role in the regulation of genes acting in NHEJ and HRR mechanisms, either through direct complementary binding to mRNA targets, thus, repressing translation, or by targeting other genes involved in the transcription and activity of DSB repair genes. Therefore, alteration of miRNA expression has an impact on the ability of cells to repair DSBs, which, in turn, affects cancer therapy sensitivity. This latter gives account of the importance of miRNAs as regulators of NHEJ and HRR and places them as a promising target to improve cancer therapy. Here, we review recent reports demonstrating an association between miRNAs and genes involved in NHEJ and HRR. We employed the Web of Science search query TS (“gene official symbol/gene aliases*” AND “miRNA/microRNA/miR-”) and focused on articles published in the last decade, between 2010 and 2021. We also performed a data analysis to represent miRNA–mRNA validated interactions from TarBase v.8, in order to offer an updated overview about the role of miRNAs as regulators of DSB repair.
Collapse
|
43
|
Xu L, Zhang L, Sun J, Hu X, Kalvakolanu DV, Ren H, Guo B. Roles for the methyltransferase SETD8 in DNA damage repair. Clin Epigenetics 2022; 14:34. [PMID: 35246238 PMCID: PMC8897848 DOI: 10.1186/s13148-022-01251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/20/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetic posttranslational modifications are critical for fine-tuning gene expression in various biological processes. SETD8 is so far the only known lysyl methyltransferase in mammalian cells to produce mono-methylation of histone H4 at lysine 20 (H4K20me1), a prerequisite for di- and tri-methylation. Importantly, SETD8 is related to a number of cellular activities, impinging upon tissue development, senescence and tumorigenesis. The double-strand breaks (DSBs) are cytotoxic DNA damages with deleterious consequences, such as genomic instability and cancer origin, if unrepaired. The homology-directed repair and canonical nonhomologous end-joining are two most prominent DSB repair pathways evolved to eliminate such aberrations. Emerging evidence implies that SETD8 and its corresponding H4K20 methylation are relevant to establishment of DSB repair pathway choice. Understanding how SETD8 functions in DSB repair pathway choice will shed light on the molecular basis of SETD8-deficiency related disorders and will be valuable for the development of new treatments. In this review, we discuss the progress made to date in roles for the lysine mono-methyltransferase SETD8 in DNA damage repair and its therapeutic relevance, in particular illuminating its involvement in establishment of DSB repair pathway choice, which is crucial for the timely elimination of DSBs.
Collapse
Affiliation(s)
- Libo Xu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ling Zhang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Jicheng Sun
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xindan Hu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Hui Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
44
|
Rezazade Bazaz M, Dehghani H. From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Life Sci 2022; 295:120409. [PMID: 35182556 DOI: 10.1016/j.lfs.2022.120409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Various DNA breaks created via programmable CRISPR/Cas9 nuclease activity results in different intracellular DNA break repair pathways. Based on the cellular repair pathways, CRISPR-based gene knock-in methods can be categorized into two major strategies: 1) Homology-independent strategies which are targeted insertion events based on non-homologous end joining, and 2) Homology-dependent strategies which are targeted insertion events based on the homology-directed repair. This review elaborates on various gene knock-in methods in mammalian cells using the CRISPR/Cas9 system and in sync with DNA-break repair pathways. Gene knock-in methods are applied in functional genomics and gene therapy. To compensate or correct genetic defects, different CRISPR-based gene knock-in strategies can be used. Thus, researchers need to make a conscious decision about the most suitable knock-in method. For a successful gene-targeted insertion, some determinant factors should be considered like cell cycle, dominant DNA repair pathway, size of insertions, and donor properties. In this review, different aspects of each gene knock-in strategy are discussed to provide a framework for choosing the most appropriate gene knock-in method in different applications.
Collapse
Affiliation(s)
- Mahere Rezazade Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
45
|
Sun W, Liu H, Yin W, Qiao J, Zhao X, Liu Y. Strategies for Enhancing the Homology-directed Repair Efficiency of CRISPR-Cas Systems. CRISPR J 2022; 5:7-18. [PMID: 35076280 DOI: 10.1089/crispr.2021.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The CRISPR-Cas nuclease has emerged as a powerful genome-editing tool in recent years. The CRISPR-Cas system induces double-strand breaks that can be repaired via the non-homologous end joining or homology-directed repair (HDR) pathway. Compared to non-homologous end joining, HDR can be used for the treatment of incurable monogenetic diseases. Therefore, remarkable efforts have been dedicated to enhancing the efficacy of HDR. In this review, we summarize the currently used strategies for enhancing the HDR efficiency of CRISPR-Cas systems based on three factors: (1) regulation of the key factors in the DNA repair pathways, (2) modulation of the components in the CRISPR machinery, and (3) alteration of the intracellular environment around double-strand breaks. Representative cases and potential solutions for further improving HDR efficiency are also discussed, facilitating the development of new CRISPR technologies to achieve highly precise genetic manipulation in the future.
Collapse
Affiliation(s)
- Wenli Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Hui Liu
- Department of Hematology, Renmin Hospital of Wuhan University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Wenhao Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Jie Qiao
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Henan, People's Republic of China; and Ltd., Hubei, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,BravoVax Co., Ltd., Hubei, People's Republic of China
| |
Collapse
|
46
|
Oh JM, Myung K. Crosstalk between different DNA repair pathways for DNA double strand break repairs. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503438. [PMID: 35094810 DOI: 10.1016/j.mrgentox.2021.503438] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
DNA double strand breaks (DSBs) are the most threatening type of DNA lesions and must be repaired properly in order to inhibit severe diseases and cell death. There are four major repair pathways for DSBs: non-homologous end joining (NHEJ), homologous recombination (HR), single strand annealing (SSA) and alternative end joining (alt-EJ). Cells choose repair pathway depending on the cell cycle phase and the length of 3' end of the DNA when DSBs are generated. Blunt and short regions of the 5' or 3' overhang DNA are repaired by NHEJ, which uses direct ligation or limited resection processing of the broken DNA end. In contrast, HR, SSA and alt-EJ use the resected DNA generated by the MRN (MRE11-RAD50-NBS1) complex and C-terminal binding protein interacting protein (CtIP) activated during the S and G2 phases. Here, we review recent findings on each repair pathway and the choice of repair mechanism and highlight the role of mismatch repair (MMR) protein in HR.
Collapse
Affiliation(s)
- Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
47
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
48
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
49
|
Feng W, Smith CM, Simpson DA, Gupta GP. Targeting Non-homologous and Alternative End Joining Repair to Enhance Cancer Radiosensitivity. Semin Radiat Oncol 2021; 32:29-41. [PMID: 34861993 DOI: 10.1016/j.semradonc.2021.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many cancer therapies, including radiotherapy, induce DSBs as the major driving mechanism for inducing cancer cell death. Thus, modulating DSB repair has immense potential for radiosensitization, although such interventions must be carefully designed to be tumor selective to ensure that normal tissue toxicities are not also increased. Here, we review mechanisms of error-prone DSB repair through a highly efficient process called end joining. There are two major pathways of end-joining repair: non-homologous end joining (NHEJ) and alternative end joining (a-EJ), both of which can be selectively upregulated in cancer and thus represent attractive therapeutic targets for radiosensitization. These EJ pathways each have therapeutically targetable pioneer factors - DNA-dependent protein kinase catalytic subunit (DNA-PKcs) for NHEJ and DNA Polymerase Theta (Pol θ) for a-EJ. We summarize the current status of therapeutic targeting of NHEJ and a-EJ to enhance the effects of radiotherapy - focusing on challenges that must be overcome and opportunities that require further exploration. By leveraging preclinical insights into mechanisms of altered DSB repair programs in cancer, selective radiosensitization through NHEJ and/or a-EJ targeting remains a highly attractive avenue for ongoing and future clinical investigation.
Collapse
Affiliation(s)
| | - Chelsea M Smith
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program
| | | | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program; Department of Radiation Oncology; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC.
| |
Collapse
|
50
|
Mehta P, Bothra SJ. PARP inhibitors in hereditary breast and ovarian cancer and other cancers: A review. ADVANCES IN GENETICS 2021; 108:35-80. [PMID: 34844716 DOI: 10.1016/bs.adgen.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There has been a paradigm shift in the management of cancer, with the immense progress in cancer genomics. More and more targeted therapies are becoming available by the day and personalized medicine is becoming popular with specific drugs being designed for selected subgroups of patients. One such new class of targeted drugs in the armamentarium is Poly ADP Ribose Polymerase (PARP) inhibitors (PARPi), which inhibit the enzyme PARP, thus interfering with DNA repair. This strategy utilizes a pre-existing genomic lesion in tumors with homologous recombination repair defects (including BRCA mutations), weakening tumor cells further by blocking the alternate pathway of DNA repair. In this review, we discuss in detail, the evolution, genetics, mechanism of action, mechanism of resistance, indications of use of PARP inhibitors, as well as combination with other agents and future directions.
Collapse
Affiliation(s)
- Prashant Mehta
- Department of Medical Oncology, Hematology and BMT, Asian Institute of Medical Sciences, Faridabad, India.
| | - Sneha J Bothra
- Department of Medical Oncology, Action Cancer Institute, New Delhi, India
| |
Collapse
|