1
|
Bond C, Hugelier S, Xing J, Sorokina EM, Lakadamyali M. Heterogeneity of late endosome/lysosomes shown by multiplexed DNA-PAINT imaging. J Cell Biol 2025; 224:e202403116. [PMID: 39485275 PMCID: PMC11533445 DOI: 10.1083/jcb.202403116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Late endosomes/lysosomes (LELs) are crucial for numerous physiological processes and their dysfunction is linked to many diseases. Proteomic analyses have identified hundreds of LEL proteins; however, whether these proteins are uniformly present on each LEL, or if there are cell-type-dependent LEL subpopulations with unique protein compositions is unclear. We employed quantitative, multiplexed DNA-PAINT super-resolution imaging to examine the distribution of seven key LEL proteins (LAMP1, LAMP2, CD63, Cathepsin D, TMEM192, NPC1, and LAMTOR4). While LAMP1, LAMP2, and Cathepsin D were abundant across LELs, marking a common population, most analyzed proteins were associated with specific LEL subpopulations. Our multiplexed imaging approach identified up to eight different LEL subpopulations based on their unique membrane protein composition. Additionally, our analysis of the spatial relationships between these subpopulations and mitochondria revealed a cell-type-specific tendency for NPC1-positive LELs to be closely positioned to mitochondria. Our approach will be broadly applicable to determining organelle heterogeneity with single organelle resolution in many biological contexts.
Collapse
Affiliation(s)
- Charles Bond
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Siewert Hugelier
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiazheng Xing
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elena M. Sorokina
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Alhenaky A, Alhazmi S, Alamri SH, Alkhatabi HA, Alharthi A, Alsaleem MA, Abdelnour SA, Hassan SM. Exosomal MicroRNAs in Alzheimer's Disease: Unveiling Their Role and Pioneering Tools for Diagnosis and Treatment. J Clin Med 2024; 13:6960. [PMID: 39598105 PMCID: PMC11594708 DOI: 10.3390/jcm13226960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents a significant health concern, often leading to substantial cognitive decline among older adults. A prominent feature of AD is progressive dementia, which eventually disrupts daily functioning and the ability to live independently. A major challenge in addressing AD is its prolonged pre-symptomatic phase, which makes early detection difficult. Moreover, the disease's complexity and the inefficiency of current diagnostic methods impede the development of targeted therapies. Therefore, there is an urgent need to enhance diagnostic methodologies for detection and treating AD even before clinical symptoms appear. Exosomes are nanoscale biovesicles secreted by cells, including nerve cells, into biofluids. These exosomes play essential roles in the central nervous system (CNS) by facilitating neuronal communication and thus influencing major physiological and pathological processes. Exosomal cargo, particularly microRNAs (miRNAs), are critical mediators in this cellular communication, and their dysregulation affects various pathological pathways related to neurodegenerative diseases, including AD. This review discusses the significant roles of exosomal miRNAs in the pathological mechanisms related to AD, focusing on the promising use of exosomal miRNAs as diagnostic biomarkers and targeted therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Alhanof Alhenaky
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Sultan H. Alamri
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mansour A. Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Sabah M. Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Princess Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11517, Egypt
| |
Collapse
|
3
|
Szentgyörgyi V, Lueck LM, Overwijn D, Ritz D, Zoeller N, Schmidt A, Hondele M, Spang A, Bakhtiar S. Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis. J Cell Biol 2024; 223:e202401167. [PMID: 39325073 PMCID: PMC11449124 DOI: 10.1083/jcb.202401167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024] Open
Abstract
Deleterious mutations in the lipopolysaccharide responsive beige-like anchor protein (LRBA) gene cause severe childhood immune dysregulation. The complexity of the symptoms involving multiple organs and the broad range of unpredictable clinical manifestations of LRBA deficiency complicate the choice of therapeutic interventions. Although LRBA has been linked to Rab11-dependent trafficking of the immune checkpoint protein CTLA-4, its precise cellular role remains elusive. We show that LRBA, however, only slightly colocalizes with Rab11. Instead, LRBA is recruited by members of the small GTPase Arf protein family to the TGN and to Rab4+ endosomes, where it controls intracellular traffic. In patient-derived fibroblasts, loss of LRBA led to defects in the endosomal pathway promoting the accumulation of enlarged endolysosomes and lysosome secretion. Thus, LRBA appears to regulate flow through the endosomal system on Rab4+ endosomes. Our data strongly suggest functions of LRBA beyond CTLA-4 trafficking and provide a conceptual framework to develop new therapies for LRBA deficiency.
Collapse
Affiliation(s)
| | | | | | - Danilo Ritz
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nadja Zoeller
- Dermatology, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Shahrzad Bakhtiar
- Department of Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Stockhammer A, Adarska P, Natalia V, Heuhsen A, Klemt A, Bregu G, Harel S, Rodilla-Ramirez C, Spalt C, Özsoy E, Leupold P, Grindel A, Fox E, Mejedo JO, Zehtabian A, Ewers H, Puchkov D, Haucke V, Bottanelli F. ARF1 compartments direct cargo flow via maturation into recycling endosomes. Nat Cell Biol 2024; 26:1845-1859. [PMID: 39367144 PMCID: PMC11567898 DOI: 10.1038/s41556-024-01518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Cellular membrane homoeostasis is maintained via a tightly regulated membrane and cargo flow between organelles of the endocytic and secretory pathways. Adaptor protein complexes (APs), which are recruited to membranes by the small GTPase ARF1, facilitate cargo selection and incorporation into trafficking intermediates. According to the classical model, small vesicles would facilitate bi-directional long-range transport between the Golgi, endosomes and plasma membrane. Here we revisit the intracellular organization of the vesicular transport machinery using a combination of CRISPR-Cas9 gene editing, live-cell high temporal (fast confocal) or spatial (stimulated emission depletion) microscopy as well as correlative light and electron microscopy. We characterize tubulo-vesicular ARF1 compartments that harbour clathrin and different APs. Our findings reveal two functionally different classes of ARF1 compartments, each decorated by a different combination of APs. Perinuclear ARF1 compartments facilitate Golgi export of secretory cargo, while peripheral ARF1 compartments are involved in endocytic recycling downstream of early endosomes. Contrary to the classical model of long-range vesicle shuttling, we observe that ARF1 compartments shed ARF1 and mature into recycling endosomes. This maturation process is impaired in the absence of AP-1 and results in trafficking defects. Collectively, these data highlight a crucial role for ARF1 compartments in post-Golgi sorting.
Collapse
Affiliation(s)
| | - Petia Adarska
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Vini Natalia
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anja Heuhsen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Antonia Klemt
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Gresy Bregu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Shelly Harel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Carissa Spalt
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ece Özsoy
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Paula Leupold
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Alica Grindel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Eleanor Fox
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Joy Orezimena Mejedo
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Amin Zehtabian
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Helge Ewers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Dmytro Puchkov
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Francesca Bottanelli
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Endo A, Komada M, Yoshida Y. Ubiquitin-mediated endosomal stress: A novel organelle stress of early endosomes that initiates cellular signaling pathways: USP8 serves as a gatekeeper of ubiquitin-mediated endosomal stress to counteract the activation of cellular signaling pathways. Bioessays 2024; 46:e2400127. [PMID: 39194376 DOI: 10.1002/bies.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Cells utilize diverse organelles to maintain homeostasis and to respond to extracellular stimuli. Recently, multifaceted aspects of organelle stress caused by various factors have been emerging. The endosome is an essential organelle, functioning as the central hub for membrane trafficking in cooperation with the ubiquitin system. However, knowledge regarding endosomal stress, which refers to organelle stress of the endosome, is currently limited. We recently revealed ubiquitin-mediated endosomal stress of early endosomes (EEs) and its responsive signaling pathways. These findings shed light on the relevance of ubiquitin-mediated endosomal stress to physiological and pathological processes. Here, we present a hypothesis that ubiquitin-mediated endosomal stress may have significant roles in biological contexts and that ubiquitin-specific protease 8 is a key regulator of ubiquitin clearance from EEs.
Collapse
Affiliation(s)
- Akinori Endo
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Masayuki Komada
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yukiko Yoshida
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
6
|
Zhang S, Yang Y, Lv X, Zhou X, Zhao W, Meng L, Zhu S, Zhang Z, Wang Y. Exosome Cargo in Neurodegenerative Diseases: Leveraging Their Intercellular Communication Capabilities for Biomarker Discovery and Therapeutic Delivery. Brain Sci 2024; 14:1049. [PMID: 39595812 PMCID: PMC11591915 DOI: 10.3390/brainsci14111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The inexorable progression of neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis, is closely related to irreversible brain decline. Accurately characterizing pathophysiological features and identifying reliable biomarkers for early diagnosis and optimized treatment are critical. Hindered by the blood-brain barrier (BBB), obtaining sensitive monitoring indicators for disease progression and achieving efficient drug delivery remain significant challenges. Exosomes, endogenous nanoscale vesicles that carry key bioactive substances, reflect the intracellular environment and play an important role in cell signaling. They have shown promise in traversing the BBB, serving dual roles as potential biomarkers for NDs and vehicles for targeted drug delivery. However, the specific mechanisms by which exosome influence NDs are not fully understood, necessitating further investigation into their attributes and functionalities in the context of NDs. This review explores how exosomes mediate multifaceted interactions, particularly in exacerbating pathogenic processes such as oxidative stress, neuronal dysfunction, and apoptosis integral to NDs. It provides a comprehensive analysis of the profound impact of exosomes under stress and disease states, assessing their prospective utility as biomarkers and drug delivery vectors, offering new perspectives for tackling these challenging diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.)
| |
Collapse
|
7
|
Xu J, Liang Y, Li N, Dang S, Jiang A, Liu Y, Guo Y, Yang X, Yuan Y, Zhang X, Yang Y, Du Y, Shi A, Liu X, Li D, He K. Clathrin-associated carriers enable recycling through a kiss-and-run mechanism. Nat Cell Biol 2024; 26:1652-1668. [PMID: 39300312 DOI: 10.1038/s41556-024-01499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/06/2024] [Indexed: 09/22/2024]
Abstract
Endocytosis and recycling control the uptake and retrieval of various materials, including membrane proteins and lipids, in all eukaryotic cells. These processes are crucial for cell growth, organization, function and environmental communication. However, the mechanisms underlying efficient, fast endocytic recycling remain poorly understood. Here, by utilizing a biosensor and imaging-based screening, we uncover a recycling mechanism that couples endocytosis and fast recycling, which we name the clathrin-associated fast endosomal recycling pathway (CARP). Clathrin-associated tubulovesicular carriers containing clathrin, AP1, Arf1, Rab1 and Rab11, while lacking the multimeric retrieval complexes, are generated at subdomains of early endosomes and then transported along actin to cell surfaces. Unexpectedly, the clathrin-associated recycling carriers undergo partial fusion with the plasma membrane. Subsequently, they are released from the membrane by dynamin and re-enter cells. Multiple receptors utilize and modulate CARP for fast recycling following endocytosis. Thus, CARP represents a previously unrecognized endocytic recycling mechanism with kiss-and-run membrane fusion.
Collapse
Affiliation(s)
- Jiachao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yiqun Liu
- National Center for Protein Sciences and Core Facilities of Life Sciences at Peking University, College of Life Sciences, Peking University, Beijing, China
| | - Yuting Guo
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Yang
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaran Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Dong Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Néel E, Chiritoiu-Butnaru M, Fargues W, Denus M, Colladant M, Filaquier A, Stewart SE, Lehmann S, Zurzolo C, Rubinsztein DC, Marin P, Parmentier ML, Villeneuve J. The endolysosomal system in conventional and unconventional protein secretion. J Cell Biol 2024; 223:e202404152. [PMID: 39133205 PMCID: PMC11318669 DOI: 10.1083/jcb.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Most secreted proteins are transported through the "conventional" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or "unconventional" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.
Collapse
Affiliation(s)
- Eloïse Néel
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | | | - William Fargues
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Morgane Denus
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Maëlle Colladant
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Sarah E Stewart
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique-Plateforme de Protéomique Clinique, Université de Montpellier, Institute for Regenerative Medicine and Biotherapy Centre Hospitalier Universitaire de Montpellier, Institute for Neurosciences of Montpellier INSERM , Montpellier, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, UMR3691 CNRS , Paris, France
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute , Cambridge, UK
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| |
Collapse
|
9
|
Wang W, Hassan MM, Kapoor-Kaushik N, Livni L, Musrie B, Tang J, Mahmud Z, Lai S, Wich PR, Ananthanarayanan V, Moalem-Taylor G, Mao G. Neural Tracing Protein-Functionalized Nanoparticles Capable of Fast Retrograde Axonal Transport in Live Neurons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311921. [PMID: 38647340 PMCID: PMC11427170 DOI: 10.1002/smll.202311921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/29/2024] [Indexed: 04/25/2024]
Abstract
Neural tracing proteins like horseradish peroxidase-conjugated wheat germ agglutinin (WGA-HRP) can target the central nervous system (CNS) through anatomic retrograde transport without crossing the blood-brain barrier (BBB). Conjugating WGA-HRP to nanoparticles may enable the creation of BBB-bypassing nanomedicine. Microfluidics and two-photon confocal microscopy is applied to screen nanocarriers for transport efficacy and gain mechanistic insights into their interactions with neurons. Protein modification of gold nanoparticles alters their cellular uptake at the axonal terminal and activates fast retrograde transport. Trajectory analysis of individual endosomes carrying the nanoparticles reveals a run-and-pause pattern along the axon with endosomes carrying WGA-HRP-conjugated gold nanoparticles exhibiting longer run duration and faster instantaneous velocity than those carrying nonconjugated nanoparticles. The results offer a mechanistic explanation of the different axonal transport dynamics as well as a cell-based functional assay of neuron-targeted nanoparticles with the goal of developing BBB-bypassing nanomedicine for the treatment of nervous system disorders.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Md Musfizur Hassan
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Natasha Kapoor-Kaushik
- Electron Microscopy Unit, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Lital Livni
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Benjamin Musrie
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Zaheri Mahmud
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Saluo Lai
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Peter Richard Wich
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Gila Moalem-Taylor
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Güleç Taşkıran AE, Hüsnügil HH, Soltani ZE, Oral G, Menemenli NS, Hampel C, Huebner K, Erlenbach-Wuensch K, Sheraj I, Schneider-Stock R, Akyol A, Liv N, Banerjee S. Post-Transcriptional Regulation of Rab7a in Lysosomal Positioning and Drug Resistance in Nutrient-Limited Cancer Cells. Traffic 2024; 25:e12956. [PMID: 39313937 DOI: 10.1111/tra.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Limited nutrient availability in the tumor microenvironment can cause the rewiring of signaling and metabolic networks to confer cancer cells with survival advantages. We show here that the limitation of glucose, glutamine and serum from the culture medium resulted in the survival of a population of cancer cells with high viability and capacity to form tumors in vivo. These cells also displayed a remarkable increase in the abundance and size of lysosomes. Moreover, lysosomes were located mainly in the perinuclear region in nutrient-limited cells; this translocation was mediated by a rapid post-transcriptional increase in the key endolysosomal trafficking protein Rab7a. The acidic lysosomes in nutrient-limited cells could trap weakly basic drugs such as doxorubicin, mediating resistance of the cells to the drug, which could be partially reversed with the lysosomal inhibitor bafilomycin A1. An in vivo chorioallantoic membrane (CAM) assay indicated a remarkable decrease in microtumor volume when nutrient-limited cells were treated with 5-Fluorouracil (5-FU) and bafilomycin A1 compared to cells treated with either agent alone. Overall, our data indicate the activation of complementary pathways with nutrient limitation that can enable cancer cells to survive, proliferate and acquire drug resistance.
Collapse
Affiliation(s)
- Aliye Ezgi Güleç Taşkıran
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
- Department of Molecular Biology and Genetics, Başkent University, Ankara, Turkiye
| | - Hepşen H Hüsnügil
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Zahra E Soltani
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Göksu Oral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Nazlı S Menemenli
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Chuanpit Hampel
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Huebner
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Erlenbach-Wuensch
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Aytekin Akyol
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
- Cancer Systems Biology Laboratory (CanSyL), Orta Dogu Teknik Universitesi, Ankara, Turkiye
| |
Collapse
|
11
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Pha K, Mirrashidi K, Sherry J, Tran CJ, Herrera CM, McMahon E, Elwell CA, Engel JN. The Chlamydia effector IncE employs two short linear motifs to reprogram host vesicle trafficking. Cell Rep 2024; 43:114624. [PMID: 39154341 DOI: 10.1016/j.celrep.2024.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
Chlamydia trachomatis, a leading cause of bacterial sexually transmitted infections, creates a specialized intracellular replicative niche by translocation and insertion of a diverse array of effectors (Incs [inclusion membrane proteins]) into the inclusion membrane. Here, we characterize IncE, a multifunctional Inc that encodes two non-overlapping short linear motifs (SLiMs) within its short cytosolic C terminus. The proximal SLiM, by mimicking just a small portion of an R-N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE) motif, binds and recruits syntaxin (STX)7- and STX12-containing vesicles to the inclusion. The distal SLiM mimics the sorting nexin (SNX)5 and SNX6 cargo binding site to recruit SNX6-containing vesicles to the inclusion. By simultaneously binding two distinct vesicle classes, IncE brings these vesicles in close apposition with each other at the inclusion to facilitate C. trachomatis intracellular development. Our work suggests that Incs may have evolved SLiMs to enable rapid evolution in a limited protein space to disrupt host cell processes.
Collapse
Affiliation(s)
- Khavong Pha
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kathleen Mirrashidi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Sherry
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cuong Joseph Tran
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clara M Herrera
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eleanor McMahon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
14
|
Leng K, Rooney B, McCarthy F, Xia W, Rose IVL, Bax S, Chin M, Fathi S, Herrington KA, Leonetti M, Kao A, Fancy SPJ, Elias JE, Kampmann M. mTOR activation induces endolysosomal remodeling and nonclassical secretion of IL-32 via exosomes in inflammatory reactive astrocytes. J Neuroinflammation 2024; 21:198. [PMID: 39118084 PMCID: PMC11312292 DOI: 10.1186/s12974-024-03165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Astrocytes respond and contribute to neuroinflammation by adopting inflammatory reactive states. Although recent efforts have characterized the gene expression signatures associated with these reactive states, the cell biology underlying inflammatory reactive astrocyte phenotypes remains under-explored. Here, we used CRISPR-based screening in human iPSC-derived astrocytes to identify mTOR activation a driver of cytokine-induced endolysosomal system remodeling, manifesting as alkalinization of endolysosomal compartments, decreased autophagic flux, and increased exocytosis of certain endolysosomal cargos. Through endolysosomal proteomics, we identified and focused on one such cargo-IL-32, a disease-associated pro-inflammatory cytokine not present in rodents, whose secretion mechanism is not well understood. We found that IL-32 was partially secreted in extracellular vesicles likely to be exosomes. Furthermore, we found that IL-32 was involved in the polarization of inflammatory reactive astrocyte states and was upregulated in astrocytes in multiple sclerosis lesions. We believe that our results advance our understanding of cell biological pathways underlying inflammatory reactive astrocyte phenotypes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Brendan Rooney
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | | | - Wenlong Xia
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, CA, USA
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sophie Bax
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Marcus Chin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Saeed Fathi
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kari A Herrington
- Center for Advanced Microscopy, University of California, San Francisco, San Francisco, CA, USA
| | | | - Aimee Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen P J Fancy
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, CA, USA
| | | | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Robinson BP, Bass NR, Bhakt P, Spiliotis ET. Septin-coated microtubules promote maturation of multivesicular bodies by inhibiting their motility. J Cell Biol 2024; 223:e202308049. [PMID: 38668767 PMCID: PMC11046855 DOI: 10.1083/jcb.202308049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.
Collapse
Affiliation(s)
| | - Naomi R. Bass
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Elias T. Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
16
|
Mahanty S, Bergam P, Belapurkar V, Eluvathingal L, Gupta N, Goud B, Nair D, Raposo G, Setty SRG. Biogenesis of specialized lysosomes in differentiated keratinocytes relies on close apposition with the Golgi apparatus. Cell Death Dis 2024; 15:496. [PMID: 38992005 PMCID: PMC11239851 DOI: 10.1038/s41419-024-06710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 07/13/2024]
Abstract
Intracellular organelles support cellular physiology in diverse conditions. In the skin, epidermal keratinocytes undergo differentiation with gradual changes in cellular physiology, accompanying remodeling of lysosomes and the Golgi apparatus. However, it was not known whether changes in Golgi and lysosome morphology and their redistribution were linked. Here, we show that disassembled Golgi is distributed in close physical apposition to lysosomes in differentiated keratinocytes. This atypical localization requires the Golgi tethering protein GRASP65, which is associated with both the Golgi and lysosome membranes. Depletion of GRASP65 results in the loss of Golgi-lysosome apposition and the malformation of lysosomes, defined by their aberrant morphology, size, and function. Surprisingly, a trans-Golgi enzyme and secretory Golgi cargoes are extensively localized to the lysosome lumen and secreted to the cell surface, contributing to total protein secretion of differentiated keratinocytes but not in proliferative precursors, indicating that lysosomes acquire specialization during differentiation. We further demonstrate that the secretory function of the Golgi apparatus is critical to maintain keratinocyte lysosomes. Our study uncovers a novel form of Golgi-lysosome cross-talk and its role in maintaining specialized secretory lysosomes in differentiated keratinocytes.
Collapse
Affiliation(s)
- Sarmistha Mahanty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| | - Ptissam Bergam
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France
| | - Vivek Belapurkar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | | | - Nikita Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
17
|
Zanirati G, Dos Santos PG, Alcará AM, Bruzzo F, Ghilardi IM, Wietholter V, Xavier FAC, Gonçalves JIB, Marinowic D, Shetty AK, da Costa JC. Extracellular Vesicles: The Next Generation of Biomarkers and Treatment for Central Nervous System Diseases. Int J Mol Sci 2024; 25:7371. [PMID: 39000479 PMCID: PMC11242541 DOI: 10.3390/ijms25137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings.
Collapse
Affiliation(s)
- Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Paula Gabrielli Dos Santos
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Fernanda Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Vinicius Wietholter
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX 77807, USA
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| |
Collapse
|
18
|
Payet T, Gabinaud E, Landrier JF, Mounien L. Role of micro-RNAs associated with adipose-derived extracellular vesicles in metabolic disorders. Obes Rev 2024; 25:e13755. [PMID: 38622087 DOI: 10.1111/obr.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Micro-RNAs have emerged as important actors in the onset of metabolic disorders including obesity or type 2 diabetes. Particularly, several micro-RNAs are known to be key modulators of lipid metabolism, glucose homeostasis, or feeding behavior. Interestingly, the role of extracellular vesicles containing micro-RNAs, especially adipose-derived extracellular vesicles, are well-documented endocrine signals and disease biomarkers. However, the role of adipose-derived extracellular vesicles on the different tissues is different and highly related to the micro-RNA content. This review provides recent data about the potential involvement of adipose-derived extracellular vesicle-containing micro-RNAs in metabolic diseases.
Collapse
Affiliation(s)
- Thomas Payet
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Elisa Gabinaud
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Jean-François Landrier
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| | - Lourdes Mounien
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| |
Collapse
|
19
|
Cerda‐Troncoso C, Grünenwald F, Arias‐Muñoz E, Cavieres VA, Caceres‐Verschae A, Hernández S, Gaete‐Ramírez B, Álvarez‐Astudillo F, Acuña RA, Ostrowski M, Burgos PV, Varas‐Godoy M. Chemo-small extracellular vesicles released in cisplatin-resistance ovarian cancer cells are regulated by the lysosomal function. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e157. [PMID: 38947172 PMCID: PMC11212338 DOI: 10.1002/jex2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 07/02/2024]
Abstract
Chemoresistance is a common problem in ovarian cancer (OvCa) treatment, where resistant cells, in response to chemotherapy, secrete small extracellular vesicles (sEVs), known as chemo-sEVs, that transfer resistance to recipient cells. sEVs are formed as intraluminal vesicles (ILVs) within multivesicular endosomes (MVEs), whose trafficking is regulated by Ras-associated binding (RAB) GTPases that mediate sEVs secretion or lysosomal degradation. A decrease in lysosomal function can promote sEVs secretion, but the relationship between MVEs trafficking pathways and sEVs secretion in OvCa chemoresistance is unclear. Here, we show that A2780cis cisplatin (CCDP) resistant OvCa cells had an increased number of MVEs and ILVs structures, higher levels of Endosomal Sorting Complex Required for Transport (ESCRTs) machinery components, and RAB27A compared to A2780 CDDP-sensitive OvCa cells. CDDP promoted the secretion of chemo-sEVs in A2780cis cells, enriched in DNA damage response proteins. A2780cis cells exhibited poor lysosomal function with reduced levels of RAB7, essential in MVEs-Lysosomal trafficking. The silencing of RAB27A in A2780cis cells prevents the Chemo-EVs secretion, reduces its chemoresistance and restores lysosomal function and levels of RAB7, switching them into an A2780-like cellular phenotype. Enhancing lysosomal function with rapamycin reduced chemo-sEVs secretion. Our results suggest that adjusting the balance between secretory MVEs and lysosomal MVEs trafficking could be a promising strategy for overcoming CDDP chemoresistance in OvCa.
Collapse
Affiliation(s)
- Cristóbal Cerda‐Troncoso
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Centro Ciencia & VidaFundación Ciencia & VidaSantiagoChile
| | - Felipe Grünenwald
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Eloísa Arias‐Muñoz
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Albano Caceres‐Verschae
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Sergio Hernández
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | - Belén Gaete‐Ramírez
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
| | | | - Rodrigo A. Acuña
- Centro de Medicina Regenerativa, Facultad de MedicinaClínica Alemana Universidad del DesarrolloSantiagoChile
| | - Matias Ostrowski
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Universidad de Buenos Aires (UBA)Buenos AiresArgentina
| | - Patricia V. Burgos
- Organelle Phagy Lab, CEBICEMFacultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Centro Ciencia & VidaFundación Ciencia & VidaSantiagoChile
| | - Manuel Varas‐Godoy
- Cancer Cell Biology Lab, CEBICEM, Facultad de Medicina y CienciaUniversidad San SebastiánSantiagoChile
- Centro Ciencia & VidaFundación Ciencia & VidaSantiagoChile
- Advanced Center for Chronic DiseasesSantiagoChile
| |
Collapse
|
20
|
Schott MB, Rozeveld CN, Bhatt S, Crossman B, Krueger EW, Weller SG, Rasineni K, Casey CA, McNiven MA. Ethanol disrupts hepatocellular lipophagy by altering Rab5-centric LD-lysosome trafficking. Hepatol Commun 2024; 8:e0446. [PMID: 38780316 PMCID: PMC11124685 DOI: 10.1097/hc9.0000000000000446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Previous reports suggest that lipid droplets (LDs) in the hepatocyte can be catabolized by a direct engulfment from nearby endolysosomes (microlipophagy). Further, it is likely that this process is compromised by chronic ethanol (EtOH) exposure leading to hepatic steatosis. This study investigates the hepatocellular machinery supporting microlipophagy and EtOH-induced alterations in this process with a focus on the small, endosome-associated, GTPase Rab5. METHODS AND RESULTS Here we report that this small Ras-related GTPase is a resident component of LDs, and its activity is important for hepatocellular LD-lysosome proximity and physical interactions. We find that Rab5 siRNA knockdown causes an accumulation of LDs in hepatocytes by inhibiting lysosome dependent LD catabolism. Importantly, Rab5 appears to support this process by mediating the recruitment of early endosomal and or multivesicular body compartments to the LD surface before lysosome fusion. Interestingly, while wild-type or a constituently active GTPase form (Q79L) of Rab5 supports LD-lysosome transport, this process is markedly reduced in cells expressing a GTPase dead (S34N) Rab5 protein or in hepatocytes exposed to chronic EtOH. CONCLUSIONS These findings support the novel premise of an early endosomal/multivesicular body intermediate compartment on the LD surface that provides a "docking" site for lysosomal trafficking, not unlike the process that occurs during the hepatocellular degradation of endocytosed ligands that is also known to be compromised by EtOH exposure.
Collapse
Affiliation(s)
- Micah B. Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Cody N. Rozeveld
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Saumya Bhatt
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bridget Crossman
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eugene W. Krueger
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shaun G. Weller
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Veterans’ Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Carol A. Casey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Veterans’ Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Da Graça J, Delevoye C, Morel E. Morphodynamical adaptation of the endolysosomal system to stress. FEBS J 2024. [PMID: 38706230 DOI: 10.1111/febs.17154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/28/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
In eukaryotes, the spatiotemporal control of endolysosomal organelles is central to the maintenance of homeostasis. By providing an interface between the cytoplasm and external environment, the endolysosomal system is placed at the forefront of the response to a wide range of stresses faced by cells. Endosomes are equipped with a dedicated set of membrane-associated proteins that ensure endosomal functions as well as crosstalk with the secretory or the autophagy pathways. Morphodynamical processes operate through local spatialization of subdomains, enabling specific remodeling and membrane contact capabilities. Consequently, the plasticity of endolysosomal organelles can be considered a robust and flexible tool exploited by cells to cope with homeostatic deviations. In this review, we provide insights into how the cellular responses to various stresses (osmotic, UV, nutrient deprivation, or pathogen infections) rely on the adaptation of the endolysosomal system morphodynamics.
Collapse
Affiliation(s)
- Juliane Da Graça
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, France
| | - Cédric Delevoye
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, France
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
| | - Etienne Morel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, France
| |
Collapse
|
22
|
Liu T, Sun L, Ji Y, Zhu W. Extracellular vesicles in cancer therapy: Roles, potential application, and challenges. Biochim Biophys Acta Rev Cancer 2024; 1879:189101. [PMID: 38608963 DOI: 10.1016/j.bbcan.2024.189101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Extracellular vesicles (EVs) have emerged as a novel cell-free strategy for the treatment of many diseases including cancer as they play important roles in cancer development and progression. Considering their natural capacity to facilitate cell-to-cell communication as well as their high physiochemical stability and biocompatibility, EVs serve as superior delivery systems for a wide range of therapeutic agents, including medicines, nanomaterials, nucleic acids, and proteins. Therefore, EVs-based cancer therapy is of greater interest to researchers. Mounting studies indicate that EVs can be improved in efficiency, specificity, and safety for cancer therapy. However, their heterogeneity of physicochemical properties and functions is not fully understood, hindering the achievement of bioactive EVs with high yield and purity. Herein, we paid more attention to the EVs applications and their significance in cancer therapy.
Collapse
Affiliation(s)
- Ting Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, China.
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
23
|
Yu P, Han Y, Meng L, Tang Z, Jin Z, Zhang Z, Zhou Y, Luo J, Luo J, Han C, Zhang C, Kong L. The incorporation of acetylated LAP-TGF-β1 proteins into exosomes promotes TNBC cell dissemination in lung micro-metastasis. Mol Cancer 2024; 23:82. [PMID: 38664722 PMCID: PMC11044330 DOI: 10.1186/s12943-024-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) stands as the breast cancer subtype with the highest recurrence and mortality rates, with the lungs being the common site of metastasis. The pulmonary microenvironment plays a pivotal role in the colonization of disseminated tumor cells. Herein, this study highlights the crucial role of exosomal LAP-TGF-β1, the principal form of exosomal TGF-β1, in reshaping the pulmonary vascular niche, thereby facilitating TNBC lung metastasis. Although various strategies have been developed to block TGF-β signaling and have advanced clinically, their significant side effects have limited their therapeutic application. This study demonstrates that in lung metastatic sites, LAP-TGF-β1 within exosomes can remarkably reconfigure the pulmonary vascular niche at lower doses, bolstering the extravasation and colonization of TNBC cells in the lungs. Mechanistically, under the aegis of the acetyltransferase TIP60, a non-canonical KFERQ-like sequence in LAP-TGF-β1 undergoes acetylation at the K304 site, promoting its interaction with HSP90A and subsequent transport into exosomes. Concurrent inhibition of both HSP90A and TIP60 significantly diminishes the exosomal burden of LAP-TGF-β1, presenting a promising therapeutic avenue for TNBC lung metastasis. This study not only offers fresh insights into the molecular underpinnings of TNBC lung metastasis but also lays a foundation for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Pei Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yubao Han
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lulu Meng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zengying Tang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhiwei Jin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhenzhen Zhang
- Institute of Veterinary Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yunjiang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chao Han
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
24
|
Bond C, Hugelier S, Xing J, Sorokina EM, Lakadamyali M. Multiplexed DNA-PAINT Imaging of the Heterogeneity of Late Endosome/Lysosome Protein Composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585634. [PMID: 38562776 PMCID: PMC10983937 DOI: 10.1101/2024.03.18.585634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Late endosomes/lysosomes (LELs) are crucial for numerous physiological processes and their dysfunction is linked to many diseases. Proteomic analyses have identified hundreds of LEL proteins, however, whether these proteins are uniformly present on each LEL, or if there are cell-type dependent LEL sub-populations with unique protein compositions is unclear. We employed a quantitative, multiplexed DNA-PAINT super-resolution approach to examine the distribution of six key LEL proteins (LAMP1, LAMP2, CD63, TMEM192, NPC1 and LAMTOR4) on individual LELs. While LAMP1 and LAMP2 were abundant across LELs, marking a common population, most analyzed proteins were associated with specific LEL subpopulations. Our multiplexed imaging approach identified up to eight different LEL subpopulations based on their unique membrane protein composition. Additionally, our analysis of the spatial relationships between these subpopulations and mitochondria revealed a cell-type specific tendency for NPC1-positive LELs to be closely positioned to mitochondria. Our approach will be broadly applicable to determining organelle heterogeneity with single organelle resolution in many biological contexts. Summary This study develops a multiplexed and quantitative DNA-PAINT super-resolution imaging pipeline to investigate the distribution of late endosomal/lysosomal (LEL) proteins across individual LELs, revealing cell-type specific LEL sub-populations with unique protein compositions, offering insights into organelle heterogeneity at single-organelle resolution.
Collapse
|
25
|
Macher M, Obermeier A, Fabritz S, Kube M, Kempf H, Dietz H, Platzman I, Spatz JP. An Efficient Method for the Production of High-Purity Bioinspired Large Unilamellar Vesicles. ACS Synth Biol 2024; 13:781-791. [PMID: 38423534 PMCID: PMC10949243 DOI: 10.1021/acssynbio.3c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
In order to recapitulate complex eukaryotic compartmentalization, synthetic biology aims to recreate cellular membrane-lined compartments from the bottom-up. Many important cellular organelles and cell-produced extracellular vesicles are in the size range of several hundreds of nanometers. Although attaining a fundamental characterization and mimicry of their cellular functions is a compelling goal, the lack of methods for controlled vesicle formation in this size range has hindered full understanding. Here, we show the optimization of a simple and efficient protocol for the production of large unilamellar vesicles (LUVs) with a median diameter in the range of 450-550 nm with high purity. Importantly, we rely on commercial reagents and common laboratory equipment. We thoroughly characterize the influence of different experimental parameters on the concentration and size of the resulting vesicles and assess changes in their lipid composition and surface charge. We provide guidance for researchers to optimize LUV production further to suit specific applications.
Collapse
Affiliation(s)
- Meline Macher
- Max
Planck Institute for Medical Research, Jahnstraße 29, Heidelberg 69121, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, Heidelberg 69121, Germany
- Institute
of Molecular Systems Engineering and Advanced Materials, Im Neuenheimer Feld 225, Heidelberg 69120, Germany
| | - Amelie Obermeier
- Max
Planck Institute for Medical Research, Jahnstraße 29, Heidelberg 69121, Germany
| | - Sebastian Fabritz
- Max
Planck Institute for Medical Research, Jahnstraße 29, Heidelberg 69121, Germany
| | - Massimo Kube
- Technical
University of Munich, Am Coulombwall 4a, Garching 85748, Germany
| | - Hannah Kempf
- Max
Planck Institute for Medical Research, Jahnstraße 29, Heidelberg 69121, Germany
| | - Hendrik Dietz
- Max
Planck School Matter to Life, Jahnstraße 29, Heidelberg 69121, Germany
- Technical
University of Munich, Am Coulombwall 4a, Garching 85748, Germany
| | - Ilia Platzman
- Max
Planck Institute for Medical Research, Jahnstraße 29, Heidelberg 69121, Germany
- Institute
of Molecular Systems Engineering and Advanced Materials, Im Neuenheimer Feld 225, Heidelberg 69120, Germany
| | - Joachim P. Spatz
- Max
Planck Institute for Medical Research, Jahnstraße 29, Heidelberg 69121, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, Heidelberg 69121, Germany
- Institute
of Molecular Systems Engineering and Advanced Materials, Im Neuenheimer Feld 225, Heidelberg 69120, Germany
| |
Collapse
|
26
|
Moran SJ, Oglietti R, Smith KC, Macosko JC, Holzwarth G, Lyles DS. Mechanisms of active diffusion of vesicular stomatitis virus inclusion bodies and cellular early endosomes in the cytoplasm of mammalian cells. PLoS One 2024; 19:e0290672. [PMID: 38483897 PMCID: PMC10939199 DOI: 10.1371/journal.pone.0290672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Viral and cellular particles too large to freely diffuse have two different types of mobility in the eukaryotic cell cytoplasm: directed motion mediated by motor proteins moving along cytoskeletal elements with the particle as its load, and motion in random directions mediated by motor proteins interconnecting cytoskeletal elements. The latter motion is referred to as "active diffusion." Mechanisms of directed motion have been extensively studied compared to mechanisms of active diffusion, despite the observation that active diffusion is more common for many viral and cellular particles. Our previous research showed that active diffusion of vesicular stomatitis virus (VSV) ribonucleoproteins (RNPs) in the cytoplasm consists of hopping between traps and that actin filaments and myosin II motors are components of the hop-trap mechanism. This raises the question whether similar mechanisms mediate random motion of larger particles with different physical and biological properties. Live-cell fluorescence imaging and a variational Bayesian analysis used in pattern recognition and machine learning were used to determine the molecular mechanisms of random motion of VSV inclusion bodies and cellular early endosomes. VSV inclusion bodies are membraneless cellular compartments that are the major sites of viral RNA synthesis, and early endosomes are representative of cellular membrane-bound organelles. Like VSV RNPs, inclusion bodies and early endosomes moved from one trapped state to another, but the distance between states was inconsistent with hopping between traps, indicating that the apparent state-to-state movement is mediated by trap movement. Like VSV RNPs, treatment with the actin filament depolymerizing inhibitor latrunculin A increased VSV inclusion body mobility by increasing the size of the traps. In contrast neither treatment with latrunculin A nor depolymerization of microtubules by nocodazole treatment affected the size of traps that confine early endosome mobility, indicating that intermediate filaments are likely major trap components for these cellular organelles.
Collapse
Affiliation(s)
- Steven J. Moran
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ryan Oglietti
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Kathleen C. Smith
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jed C. Macosko
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - George Holzwarth
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Douglas S. Lyles
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
27
|
Boseley RE, Sylvain NJ, Peeling L, Kelly ME, Pushie MJ. A review of concepts and methods for FTIR imaging of biomarker changes in the post-stroke brain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184287. [PMID: 38266967 DOI: 10.1016/j.bbamem.2024.184287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Stroke represents a core area of study in neurosciences and public health due to its global contribution toward mortality and disability. The intricate pathophysiology of stroke, including ischemic and hemorrhagic events, involves the interruption in oxygen and nutrient delivery to the brain. Disruption of these crucial processes in the central nervous system leads to metabolic dysregulation and cell death. Fourier transform infrared (FTIR) spectroscopy can simultaneously measure total protein and lipid content along with a number of key biomarkers within brain tissue that cannot be observed using conventional techniques. FTIR imaging provides the opportunity to visualize this information in tissue which has not been chemically treated prior to analysis, thus retaining the spatial distribution and in situ chemical information. Here we present a review of FTIR imaging methods for investigating the biomarker responses in the post-stroke brain.
Collapse
Affiliation(s)
- Rhiannon E Boseley
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Nicole J Sylvain
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Lissa Peeling
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Michael E Kelly
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|
28
|
Klauer MJ, Willette BKA, Tsvetanova NG. Functional diversification of cell signaling by GPCR localization. J Biol Chem 2024; 300:105668. [PMID: 38272232 PMCID: PMC10882132 DOI: 10.1016/j.jbc.2024.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 01/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and a critical class of regulators of mammalian physiology. Also known as seven transmembrane receptors (7TMs), GPCRs are ubiquitously expressed and versatile, detecting a diverse set of endogenous stimuli, including odorants, neurotransmitters, hormones, peptides, and lipids. Accordingly, GPCRs have emerged as the largest class of drug targets, accounting for upward of 30% of all prescription drugs. The view that ligand-induced GPCR responses originate exclusively from the cell surface has evolved to reflect accumulating evidence that receptors can elicit additional waves of signaling from intracellular compartments. These events in turn shape unique cellular and physiological outcomes. Here, we discuss our current understanding of the roles and regulation of compartmentalized GPCR signaling.
Collapse
Affiliation(s)
- Matthew J Klauer
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Blair K A Willette
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Nikoleta G Tsvetanova
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
29
|
Lin H, Wei Y, Li S, Mao X, Qin J, Su S, He T. Changes in transcriptome regulations of a marine rotifer Brachionus plicatilis under methylmercury stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101177. [PMID: 38104474 DOI: 10.1016/j.cbd.2023.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Mercury (Hg), a heavy metal pollutant worldwide, can be transformed into methylmercury (MeHg) by various aquatic microorganisms in water, thus accumulating along the aquatic food chain and posing a particular challenge to human health. Zooplankton plays a crucial role in aquatic ecosystems and serves as a major component of the food chain. To evaluate the effects of MeHg on the rotifer Brachionus plicatilis and reveal the underlying mechanism of these effects, we exposed B. plicatilis to MeHg by either direct immersion or by feeding with MeHg-poisoned Chlorella pyrenoidesa, respectively, and conducted a transcriptomic analysis. The results showed that B. plicatilis directly exposed to MeHg by immersion showed significant enrichment of the glutathione metabolism pathway for detoxification of MeHg. In addition, the exposure to MeHg by feeding induced a significant enrichment of lysosome and notch signaling pathways of rotifers, supporting the hypothesis that MeHg can induce autophagy dysfunction in cells and disturb the nervous system of rotifers. In two different routes of MeHg exposure, the pathway of cytochrome P450 in rotifers showed significant enrichment for resisting MeHg toxicity. Our results suggest further studies on the potential mechanism and biological responses of MeHg toxicity in other links of the aquatic food chain.
Collapse
Affiliation(s)
- Hangyu Lin
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Yanlin Wei
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Songzhang Li
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaodong Mao
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Shengqi Su
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| | - Tao He
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| |
Collapse
|
30
|
van der Beek J, de Heus C, Sanza P, Liv N, Klumperman J. Loss of the HOPS complex disrupts early-to-late endosome transition, impairs endosomal recycling and induces accumulation of amphisomes. Mol Biol Cell 2024; 35:ar40. [PMID: 38198575 PMCID: PMC10916860 DOI: 10.1091/mbc.e23-08-0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
The multisubunit HOPS tethering complex is a well-established regulator of lysosome fusion with late endosomes and autophagosomes. However, the role of the HOPS complex in other stages of endo-lysosomal trafficking is not well understood. To address this, we made HeLa cells knocked out for the HOPS-specific subunits Vps39 or Vps41, or the HOPS-CORVET-core subunits Vps18 or Vps11. In all four knockout cells, we found that endocytosed cargos were trapped in enlarged endosomes that clustered in the perinuclear area. By correlative light-electron microscopy, these endosomes showed a complex ultrastructure and hybrid molecular composition, displaying markers for early (Rab5, PtdIns3P, EEA1) as well as late (Rab7, CD63, LAMP1) endosomes. These "HOPS bodies" were not acidified, contained enzymatically inactive cathepsins and accumulated endocytosed cargo and cation-independent mannose-6-phosphate receptor (CI-MPR). Consequently, CI-MPR was depleted from the TGN, and secretion of lysosomal enzymes to the extracellular space was enhanced. Strikingly, HOPS bodies also contained the autophagy proteins p62 and LC3, defining them as amphisomes. Together, these findings show that depletion of the lysosomal HOPS complex has a profound impact on the functional organization of the entire endosomal system and suggest the existence of a HOPS-independent mechanism for amphisome formation.
Collapse
Affiliation(s)
- Jan van der Beek
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Cecilia de Heus
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Paolo Sanza
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
31
|
Zaffagnini G, Cheng S, Salzer MC, Pernaute B, Duran JM, Irimia M, Schuh M, Böke E. Mouse oocytes sequester aggregated proteins in degradative super-organelles. Cell 2024; 187:1109-1126.e21. [PMID: 38382525 DOI: 10.1016/j.cell.2024.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Oocytes are among the longest-lived cells in the body and need to preserve their cytoplasm to support proper embryonic development. Protein aggregation is a major threat for intracellular homeostasis in long-lived cells. How oocytes cope with protein aggregation during their extended life is unknown. Here, we find that mouse oocytes accumulate protein aggregates in specialized compartments that we named endolysosomal vesicular assemblies (ELVAs). Combining live-cell imaging, electron microscopy, and proteomics, we found that ELVAs are non-membrane-bound compartments composed of endolysosomes, autophagosomes, and proteasomes held together by a protein matrix formed by RUFY1. Functional assays revealed that in immature oocytes, ELVAs sequester aggregated proteins, including TDP-43, and degrade them upon oocyte maturation. Inhibiting degradative activity in ELVAs leads to the accumulation of protein aggregates in the embryo and is detrimental for embryo survival. Thus, ELVAs represent a strategy to safeguard protein homeostasis in long-lived cells.
Collapse
Affiliation(s)
- Gabriele Zaffagnini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Marion C Salzer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Barbara Pernaute
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juan Manuel Duran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
32
|
Yu Y, Chen D, Farmer SM, Xu S, Rios B, Solbach A, Ye X, Ye L, Zhang S. Endolysosomal trafficking controls yolk granule biogenesis in vitellogenic Drosophila oocytes. PLoS Genet 2024; 20:e1011152. [PMID: 38315726 PMCID: PMC10898735 DOI: 10.1371/journal.pgen.1011152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/27/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Endocytosis and endolysosomal trafficking are essential for almost all aspects of physiological functions of eukaryotic cells. As our understanding on these membrane trafficking events are mostly from studies in yeast and cultured mammalian cells, one challenge is to systematically evaluate the findings from these cell-based studies in multicellular organisms under physiological settings. One potentially valuable in vivo system to address this challenge is the vitellogenic oocyte in Drosophila, which undergoes extensive endocytosis by Yolkless (Yl), a low-density lipoprotein receptor (LDLR), to uptake extracellular lipoproteins into oocytes and package them into a specialized lysosome, the yolk granule, for storage and usage during later development. However, by now there is still a lack of sufficient understanding on the molecular and cellular processes that control yolk granule biogenesis. Here, by creating genome-tagging lines for Yl receptor and analyzing its distribution in vitellogenic oocytes, we observed a close association of different endosomal structures with distinct phosphoinositides and actin cytoskeleton dynamics. We further showed that Rab5 and Rab11, but surprisingly not Rab4 and Rab7, are essential for yolk granules biogenesis. Instead, we uncovered evidence for a potential role of Rab7 in actin regulation and observed a notable overlap of Rab4 and Rab7, two Rab GTPases that have long been proposed to have distinct spatial distribution and functional roles during endolysosomal trafficking. Through a small-scale RNA interference (RNAi) screen on a set of reported Rab5 effectors, we showed that yolk granule biogenesis largely follows the canonical endolysosomal trafficking and maturation processes. Further, the data suggest that the RAVE/V-ATPase complexes function upstream of or in parallel with Rab7, and are involved in earlier stages of endosomal trafficking events. Together, our study provides s novel insights into endolysosomal pathways and establishes vitellogenic oocyte in Drosophila as an excellent in vivo model for dissecting the highly complex membrane trafficking events in metazoan.
Collapse
Affiliation(s)
- Yue Yu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Dongsheng Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- The College of Life Sciences, Anhui Normal University, #1 Beijing East Road, Wuhu, Anhui, People’s Republic of China
| | - Stephen M. Farmer
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Shiyu Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Beatriz Rios
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Amanda Solbach
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Xin Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Lili Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| |
Collapse
|
33
|
Escalona-Rodriguez FA, Cruz-Leal Y, La O-Bonet J, Pérez-Erviti JA, Valdés-Tresanco ME, Rivero-Hernández AL, Sifontes-Niebla M, Manso-Vargas A, Sánchez B, Alvarez C, Barbosa LRS, Itri R, Lanio ME. Unveiling Sticholysin II and plasmid DNA interaction: Implications for developing non-viral vectors. Toxicon 2024; 238:107571. [PMID: 38141971 DOI: 10.1016/j.toxicon.2023.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Non-viral gene delivery systems offer significant potential for gene therapy due to their versatility, safety, and cost advantages over viral vectors. However, their effectiveness can be hindered by the challenge of efficiently releasing the genetic cargo from endosomes to prevent degradation in lysosomes. To overcome this obstacle, functional components can be incorporated into these systems. Sticholysin II (StII) is one of the pore-forming proteins derived from the sea anemone Stichodactyla helianthus, known for its high ability to permeabilize cellular and model membranes. In this study, we aimed to investigate the interaction between StII, and a model plasmid (pDNA) as an initial step towards designing an improved vector with enhanced endosomal escape capability. The electrophoretic mobility shift assay (EMSA) confirmed the formation of complexes between StII and pDNA. Computational predictions identified specific residues involved in the StII-DNA interaction interface, highlighting the importance of electrostatic interactions and hydrogen bonds in mediating the binding. Atomic force microscopy (AFM) of StII-pDNA complexes revealed the presence of nodular fiber and toroid shapes. These complexes were found to have a predominantly micrometer size, as confirmed by dynamic light scattering (DLS) measurements. Despite increase in the overall charge, the complexes formed at the evaluated nitrogen-to-phosphorus (N/P) ratios still maintained a negative charge. Moreover, StII retained its pore-forming capacity regardless of its binding to the complexes. These findings suggest that the potential ability of StII to permeabilize endosomal membranes could be largely maintained when combined with nucleic acid delivery systems. Additionally, the still remaining negative charge of the complexes would enable the association of another positively charged component to compact pDNA. However, to minimize non-specific cytotoxic effects, it is advisable to explore methods to regulate the protein's activity in response to the microenvironment.
Collapse
Affiliation(s)
- Felipe A Escalona-Rodriguez
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Yoelys Cruz-Leal
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Javier La O-Bonet
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Julio A Pérez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Mario Ernesto Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Ada L Rivero-Hernández
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Maricary Sifontes-Niebla
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Alexis Manso-Vargas
- Immunology and Immunotherapy Direction, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Belinda Sánchez
- Immunology and Immunotherapy Direction, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo, 05508-090, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-100, SP, Brazil.
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, 05508-090, Brazil.
| | - María E Lanio
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| |
Collapse
|
34
|
Rose SE, Williams CA, Hailey DW, Mishra S, Kirkland A, Keene CD, Garden GA, Jayadev S, Young JE. Advancements in high-resolution 3D microscopy analysis of endosomal morphology in postmortem Alzheimer's disease brains. Front Neurosci 2024; 17:1321680. [PMID: 38292900 PMCID: PMC10824887 DOI: 10.3389/fnins.2023.1321680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Abnormal endo-lysosomal morphology is an early cytopathological feature of Alzheimer's disease (AD) and genome-wide association studies (GWAS) have implicated genes involved in the endo-lysosomal network (ELN) as conferring increased risk for developing sporadic, late-onset AD (LOAD). Characterization of ELN pathology and the underlying pathophysiology is a promising area of translational AD research and drug development. However, rigorous study of ELN vesicles in AD and aged control brains poses a unique constellation of methodological challenges due in part to the small size of these structures and subsequent requirements for high-resolution imaging. Here we provide a detailed protocol for high-resolution 3D morphological quantification of neuronal endosomes in postmortem AD brain tissue, using immunofluorescent staining, confocal imaging with image deconvolution, and Imaris software analysis pipelines. To demonstrate these methods, we present neuronal endosome morphology data from 23 sporadic LOAD donors and one aged non-AD control donor. The techniques described here were developed across a range of AD neuropathology to best optimize these methods for future studies with large cohorts. Application of these methods in research cohorts will help advance understanding of ELN dysfunction and cytopathology in sporadic AD.
Collapse
Affiliation(s)
- Shannon E. Rose
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - C. Andrew Williams
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Dale W. Hailey
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Amanda Kirkland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
| | - Gwenn A. Garden
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Suman Jayadev
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
- Department of Neurology, University of Washington, Seattle, WA, United States
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
35
|
Ahmadi M, Abbasi R, Rezaie J. Tumor immune escape: extracellular vesicles roles and therapeutics application. Cell Commun Signal 2024; 22:9. [PMID: 38167133 PMCID: PMC10763406 DOI: 10.1186/s12964-023-01370-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Immune escape, a process by which tumor cells evade immune surveillance, remains a challenge for cancer therapy. Tumor cells produce extracellular vesicles (EVs) that participate in immune escape by transferring bioactive molecules between cells. EVs refer to heterogeneous vesicles that participate in intercellular communication. EVs from tumor cells usually carry tumor antigens and have been considered a source of tumor antigens to induce anti-tumor immunity. However, evidence also suggests that these EVs can accelerate immune escape by carrying heat shock proteins (HSPs), programmed death-ligand 1 (PD-L1), etc. to immune cells, suppressing function and exhausting the immune cells pool. EVs are progressively being evaluated for therapeutic implementation in cancer therapies. EVs-based immunotherapies involve inhibiting EVs generation, using natural EVs, and harnessing engineering EVs. All approaches are associated with advantages and disadvantages. The EVs heterogeneity and diverse physicochemical properties are the main challenges to their clinical applications. SHORT CONCLUSION Although EVs are criminal; they can be useful for overcoming immune escape. This review discusses the latest knowledge on EVs population and sheds light on the function of tumor-derived EVs in immune escape. It also describes EVs-based immunotherapies with a focus on engineered EVs, followed by challenges that hinder the clinical translation of EVs that are essential to be addressed in future investigations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
36
|
Yang Y, Luo J, Kang Y, Wu W, Lu Y, Fu J, Zhang X, Cheng M, Cui X. Progression in the Relationship between Exosome Production and Atherosclerosis. Curr Pharm Biotechnol 2024; 25:1099-1111. [PMID: 37493161 DOI: 10.2174/1389201024666230726114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
Atherosclerosis (AS) is the leading cause of cardiovascular disease, causing a major burden on patients as well as families and society. Exosomes generally refer to various lipid bilayer microvesicles originating from different cells that deliver various bioactive molecules to the recipient cells, exerting biological effects in cellular communication and thereby changing the internal environment of the body. The mechanisms of correlation between exosomes and the disease process of atherosclerosis have been recently clarified. Exosomes are rich in nucleic acid molecules and proteins. For example, the exosome miRNAs reportedly play important roles in the progression of atherosclerotic diseases. In this review, we focus on the composition of exosomes, the mechanism of their biogenesis and release, and the commonly used methods for exosome extraction. By summarizing the latest research progress on exosomes and atherosclerosis, we can explore the advances in the roles of exosomes in atherosclerosis to provide new ideas and targets for atherosclerosis prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yi Yang
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Jinxi Luo
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Yunan Kang
- College of Anesthesiology, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Wenqian Wu
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Yajie Lu
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Jie Fu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Min Cheng
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| |
Collapse
|
37
|
van de Wakker SI, Bauzá‐Martinez J, Ríos Arceo C, Manjikian H, Snijders Blok CJB, Roefs MT, Willms E, Maas RGC, Pronker MF, de Jong OG, Wu W, Görgens A, El Andaloussi S, Sluijter JPG, Vader P. Size matters: Functional differences of small extracellular vesicle subpopulations in cardiac repair responses. J Extracell Vesicles 2024; 13:e12396. [PMID: 38179654 PMCID: PMC10767609 DOI: 10.1002/jev2.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Cardiac progenitor cell (CPC)-derived small extracellular vesicles (sEVs) exhibit great potential to stimulate cardiac repair. However, the multifaceted nature of sEV heterogeneity presents a challenge in understanding the distinct mechanisms underlying their regenerative abilities. Here, a dual-step multimodal flowthrough and size-exclusion chromatography method was applied to isolate and separate CPC-derived sEV subpopulations to study the functional differences related to cardiac repair responses. Three distinct sEV subpopulations were identified with unique protein profiles. Functional cell assays for cardiac repair-related processes demonstrated that the middle-sized and smallest-sized sEV subpopulations exhibited the highest pro-angiogenic and anti-fibrotic activities. Proteasome activity was uniquely seen in the smallest-sized subpopulation. The largest-sized subpopulation showed no effect in any of the functional assays. This research uncovers the existence of sEV subpopulations, each characterized by a distinct composition and biological function. Enhancing our understanding of sEV heterogeneity will provide valuable insights into sEV mechanisms of action, ultimately accelerating the translation of sEV therapeutics.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Julia Bauzá‐Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Carla Ríos Arceo
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Herak Manjikian
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Christian Jamie Bernard Snijders Blok
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Marieke Theodora Roefs
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Eduard Willms
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia
| | - Renee Goverdina Catharina Maas
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Matti Feije Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Olivier Gerrit de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUtrechtThe Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Singapore Immunology Network (SIgN), Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| | - André Görgens
- Department of Laboratory MedicineKarolinska InstituteStockholm, HuddingeSweden
- Institute for Transfusion Medicine, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Samir El Andaloussi
- Department of Laboratory MedicineKarolinska InstituteStockholm, HuddingeSweden
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Pieter Vader
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
38
|
Padbury EH, Bálint Š, Carollo E, Carter DRF, Becker EBE. TRPC3 signalling contributes to the biogenesis of extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e132. [PMID: 38938673 PMCID: PMC11080740 DOI: 10.1002/jex2.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 12/08/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) contribute to a wide range of pathological processes including cancer progression, yet the molecular mechanisms underlying their biogenesis remain incompletely characterized. The development of tetraspanin-based pHluorin reporters has enabled the real-time analysis of EV release at the plasma membrane. Here, we employed CD81-pHluorin to investigate mechanisms of EV release in ovarian cancer (OC) cells and report a novel role for the Ca2+-permeable transient receptor potential (TRP) channel TRPC3 in EV-mediated communication. We found that specific activation of TRPC3 increased Ca2+ signalling in SKOV3 cells and stimulated an immediate increase in EV release. Ca2+-stimulants histamine and ionomycin likewise induced EV release, and imaging analysis revealed distinct stimulation-dependent temporal and spatial release dynamics. Interestingly, inhibition of TRPC3 attenuated histamine-stimulated Ca2+-entry and EV release, indicating that TRPC3 is likely to act downstream of histamine signalling in EV biogenesis. Furthermore, we found that direct activation of TRPC3 as well as the application of EVs derived from TRPC3-activated cells increased SKOV3 proliferation. Our data provides insights into the molecular mechanisms and dynamics underlying EV release in OC cells, proposing a key role for TRPC3 in EV biogenesis.
Collapse
Affiliation(s)
- Elise H. Padbury
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Štefan Bálint
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Emanuela Carollo
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - David R. F. Carter
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Evox Therapeutics LimitedOxfordUK
| | - Esther B. E. Becker
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| |
Collapse
|
39
|
Taskaeva I, Shatruk A, Bgatova N, Yeremina A, Trunov A, Kononova N, Chernykh V. Autophagy and vesicular trafficking in human uveal melanoma: A histopathological study. Microsc Res Tech 2024; 87:122-132. [PMID: 37698482 DOI: 10.1002/jemt.24417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/04/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Uveal melanoma is an ocular tumor with a high risk of developing metastases. The endo-lysosomal system can affect the melanoma progression by accelerating and facilitating invasion or metastasis. This study aims to conduct comparative analysis of normal choroidal melanocytes and uveal melanoma cells ultrastructure with a focus on intracellular transport system, and to examine the patterns of autophagy- and vesicular trafficking-related proteins expression in a case series of uveal melanomas. Transmission electron microscopy was used to assess the ultrastructure of normal choroidal melanocytes and uveal melanoma cells. The expression levels of autophagy- and vesicular trafficking-related proteins in three histological types of uveal melanoma were analyzed by immunofluorescence staining. Electron microscopy results showed that the autophagic vacuoles were more abundant in normal choroidal melanocytes, than in uveal melanoma cells. The normal choroidal melanocytes were characterized by active intracellular vesicular trafficking; however, the proportion of caveolae was higher in uveal melanoma cells. The spindle type of tumor was characterized by a high expression levels of LC3 beta, while Rab7 and Rab11 proteins expression was significantly up-regulated in the mixed-type tumor cells. The results indicate that uveal melanoma cells probably have lower basal levels of autophagy and higher receptor-mediated endocytic trafficking-associated with caveolae than normal choroidal melanocytes. RESEARCH HIGHLIGHTS: The autophagic vacuoles are abundant in normal choroidal melanocytes. Uveal melanoma cells are characterized by a high proportion of caveolae. The high expression levels of LC3 beta were revealed in a spindle type of tumor, while Rab7 and Rab11 proteins expression was up-regulated in the mixed-type tumor cells.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia Shatruk
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alena Yeremina
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Aleksander Trunov
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Natalya Kononova
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Valeriy Chernykh
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
40
|
Soukup J, Moško T, Kereïche S, Holada K. Large extracellular vesicles transfer more prions and infect cell culture better than small extracellular vesicles. Biochem Biophys Res Commun 2023; 687:149208. [PMID: 37949026 DOI: 10.1016/j.bbrc.2023.149208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Prions are responsible for a number of lethal neurodegenerative and transmissible diseases in humans and animals. Extracellular vesicles, especially small exosomes, have been extensively studied in connection with various diseases. In contrast, larger microvesicles are often overlooked. In this work, we compared the ability of large extracellular vesicles (lEVs) and small extracellular vesicles (sEVs) to spread prions in cell culture. We utilized CAD5 cell culture model of prion infection and isolated lEVs by 20,000×g force and sEVs by 110,000×g force. The lEV fraction was enriched in β-1 integrin with a vesicle size starting at 100 nm. The fraction of sEVs was partially depleted of β-1 integrin with a mean size of 79 nm. Both fractions were enriched in prion protein, but the lEVs contained a higher prion-converting activity. In addition, lEV infection led to stronger prion signals in both cell cultures, as detected by cell and western blotting. These results were verified on N2a-PK1 cell culture. Our data suggest the importance of lEVs in the trafficking and spread of prions over extensively studied small EVs.
Collapse
Affiliation(s)
- Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic.
| | - Tibor Moško
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00, Prague, Czech Republic.
| |
Collapse
|
41
|
Madan V, Albacete‐Albacete L, Jin L, Scaturro P, Watson JL, Muschalik N, Begum F, Boulanger J, Bauer K, Kiebler MA, Derivery E, Bullock SL. HEATR5B associates with dynein-dynactin and promotes motility of AP1-bound endosomal membranes. EMBO J 2023; 42:e114473. [PMID: 37872872 PMCID: PMC10690479 DOI: 10.15252/embj.2023114473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
The microtubule motor dynein mediates polarised trafficking of a wide variety of organelles, vesicles and macromolecules. These functions are dependent on the dynactin complex, which helps recruit cargoes to dynein's tail and activates motor movement. How the dynein-dynactin complex orchestrates trafficking of diverse cargoes is unclear. Here, we identify HEATR5B, an interactor of the adaptor protein-1 (AP1) clathrin adaptor complex, as a novel player in dynein-dynactin function. HEATR5B was recovered in a biochemical screen for proteins whose association with the dynein tail is augmented by dynactin. We show that HEATR5B binds directly to the dynein tail and dynactin and stimulates motility of AP1-associated endosomal membranes in human cells. We also demonstrate that the Drosophila HEATR5B homologue is an essential gene that selectively promotes dynein-based transport of AP1-bound membranes to the Golgi apparatus. As HEATR5B lacks the coiled-coil architecture typical of dynein adaptors, our data point to a non-canonical process orchestrating motor function on a specific cargo. We additionally show that HEATR5B promotes association of AP1 with endosomal membranes independently of dynein. Thus, HEATR5B co-ordinates multiple events in AP1-based trafficking.
Collapse
Affiliation(s)
- Vanesa Madan
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
- Present address:
AbcamCambridgeUK
| | - Lucas Albacete‐Albacete
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Li Jin
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | | | - Joseph L Watson
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
- Present address:
Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Nadine Muschalik
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Farida Begum
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Jérôme Boulanger
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Karl Bauer
- Biomedical Center, Department for Cell Biology, Medical FacultyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Michael A Kiebler
- Biomedical Center, Department for Cell Biology, Medical FacultyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Emmanuel Derivery
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| | - Simon L Bullock
- Division of Cell BiologyMedical Research Council (MRC) Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
42
|
Diaz J, Pellois JP. Deciphering variations in the endocytic uptake of a cell-penetrating peptide: the crucial role of cell culture protocols. Cytotechnology 2023; 75:473-490. [PMID: 37841959 PMCID: PMC10575844 DOI: 10.1007/s10616-023-00591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Delivery tools, including cell-penetrating peptides (CPPs), are often inefficient due to a combination of poor endocytosis and endosomal escape. Aspects that impact the delivery of CPPs are typically characterized using tissue culture models. One problem of using cell culture is that cell culture protocols have the potential to contribute to endosomal uptake and endosomal release of CPPs. Hence, a systematic study to identify which aspects of cell culturing techniques impact the endocytic uptake of a typical CPP, the TMR-TAT peptide (peptide sequence derived from HIV1-TAT with the N-terminus labeled with tetramethylrhodamine), was conducted. Aspects of cell culturing protocols previously found to generally modulate endocytosis, such as cell density, washing steps, and cell aging, did not affect TMR-TAT endocytosis. In contrast, cell dissociation methods, media, temperature, serum starvation, and media composition all contributed to changes in uptake. To establish a range of endocytosis achievable by different cell culture protocols, TMR-TAT uptake was compared among protocols. These protocols led to changes in uptake of more than 13-fold, indicating that differences in cell culturing techniques have a cumulative effect on CPP uptake. Taken together this study highlights how different protocols can influence the amount of endocytic uptake of TMR-TAT. Additionally, parameters that can be exploited to improve CPP accumulation in endosomes were identified. The protocols identified herein have the potential to be paired with other delivery enhancing strategies to improve overall delivery efficiency of CPPs. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00591-1.
Collapse
Affiliation(s)
- Joshua Diaz
- Department of Biochemistry and Biophysics, Texas A&M University, Room 430, 300 Olsen Blvd, College Station, TX 77843-2128 USA
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, Room 430, 300 Olsen Blvd, College Station, TX 77843-2128 USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
43
|
Osten F, Löscher W, Gericke B. Human brain microvascular endothelial cells release different types of P-glycoprotein-containing extracellular vesicles upon exposure to doxorubicin. Toxicol Appl Pharmacol 2023; 479:116712. [PMID: 37820772 DOI: 10.1016/j.taap.2023.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
In the brain, the efflux transporter P-glycoprotein (Pgp) is predominantly located on the luminal membrane of microvascular endothelial cells (BMECs) that form the blood-brain barrier. In addition, Pgp is localized in intracellular organelles involved in Pgp traffic and cycling and, by the release of extracellular vesicles (EVs), in intercellular Pgp transfer to cells with low Pgp expression. We recently described that drug exposure of a human BMEC line (hCMEC/D3) induces the release of Pgp-EGFP-containing EVs; however, the nature of the Pgp-enriched vesicles was not characterized. The two main categories of EVs are exosomes and microvesicles, which differ in origin, size, and molecular cargo. In the present study, we performed similar experiments with hCMEC/D3 cells in the absence and presence of doxorubicin and isolated and characterized the EVs released by the cells during the experiments by differential ultracentrifugation with/without subsequent sucrose gradient fractionation of EV pellets, proteomic profiling, EV size analysis, and confocal fluorescence microscopy. Using cocultures of hCMEC/D3 wildtype cells and cells transduced with MDR1-EGFP or monocultures of hCMEC/D3-MDR1-EGFP cells, we found release of both Pgp-enriched exosomes and microvesicles but analysis of the exosomal marker protein Rab7 indicated that doxorubicin increased particularly the release of exosomes. Transfer experiments with isolated EVs demonstrated EV endocytosis by recipient cells. EV release from BMECs in response to anticancer drugs such as doxorubicin likely serves different functions, including non-genetic intercellular transfer of a resistance phenotype to neighboring BMECs and a mechanism of drug extrusion that contributes to brain protection against potentially toxic chemotherapeutic drugs.
Collapse
Affiliation(s)
- Felix Osten
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| | - Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
44
|
Mangla P, Vicentini Q, Biscans A. Therapeutic Oligonucleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells 2023; 12:2253. [PMID: 37759475 PMCID: PMC10527716 DOI: 10.3390/cells12182253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| | - Quentin Vicentini
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
- Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institute, 141 57 Stockholm, Sweden
| | - Annabelle Biscans
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| |
Collapse
|
45
|
van de Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications. Pharmacol Rev 2023; 75:1043-1061. [PMID: 37280097 DOI: 10.1124/pharmrev.123.000841] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed particles that are involved in physiologic and pathologic processes. EVs are increasingly being studied for therapeutic applications in the field of regenerative medicine. Therapeutic application of stem cell-derived EVs has shown great potential to stimulate tissue repair. However, the exact mechanisms through which they induce this effect have not been fully clarified. This may to a large extent be attributed to a lack of knowledge on EV heterogeneity. Recent studies suggest that EVs represent a heterogeneous population of vesicles with distinct functions. The heterogeneity of EVs can be attributed to differences in their biogenesis, and as such, they can be classified into distinct populations that can then be further subcategorized into various subpopulations. A better understanding of EV heterogeneity is crucial for elucidating their mechanisms of action in tissue regeneration. This review provides an overview of the latest insights on EV heterogeneity related to tissue repair, including the different characteristics that contribute to such heterogeneity and the functional differences among EV subtypes. It also sheds light on the challenges that hinder clinical translation of EVs. Additionally, innovative EV isolation techniques for studying EV heterogeneity are discussed. Improved knowledge of active EV subtypes would promote the development of tailored EV therapies and aid researchers in the translation of EV-based therapeutics to the clinic. SIGNIFICANCE STATEMENT: Within this review we discuss the differences in regenerative properties of extracellular vesicle (EV) subpopulations and implications of EV heterogeneity for development of EV-based therapeutics. We aim to provide new insights into which aspects are leading to heterogeneity in EV preparations and stress the importance of EV heterogeneity studies for clinical applications.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Fleur Michelle Meijers
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| |
Collapse
|
46
|
Klipp A, Burger M, Leroux JC. Get out or die trying: Peptide- and protein-based endosomal escape of RNA therapeutics. Adv Drug Deliv Rev 2023; 200:115047. [PMID: 37536508 DOI: 10.1016/j.addr.2023.115047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
RNA therapeutics offer great potential to transform the biomedical landscape, encompassing the treatment of hereditary conditions and the development of better vaccines. However, the delivery of RNAs into the cell is hampered, among others, by poor endosomal escape. This major hurdle is often tackled using special lipids, polymers, or protein-based delivery vectors. In this review, we will focus on the most prominent peptide- and protein-based endosomal escape strategies with focus on RNA drugs. We discuss cell penetrating peptides, which are still incorporated into novel transfection systems today to promote endosomal escape. However, direct evidence for enhanced endosomal escape by the action of such peptides is missing and their transfection efficiency, even in permissive cell culture conditions, is rather low. Endosomal escape by the help of pore forming proteins or phospholipases, on the other hand, allowed to generate more efficient transfection systems. These are, however, often hampered by considerable toxicity and immunogenicity. We conclude that the perfect enhancer of endosomal escape has yet to be devised. To increase the chances of success, any new transfection system should be tested under relevant conditions and guided by assays that allow direct quantification of endosomal escape.
Collapse
Affiliation(s)
- Alexander Klipp
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| |
Collapse
|
47
|
Saadeldin IM, Ehab S, Cho J. Relevance of multilamellar and multicompartmental vesicles in biological fluids: understanding the significance of proportional variations and disease correlation. Biomark Res 2023; 11:77. [PMID: 37633948 PMCID: PMC10464313 DOI: 10.1186/s40364-023-00518-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Extracellular vesicles (EVs) have garnered significant interest in the field of biomedical science due to their potential applications in therapy and diagnosis. These vesicles participate in cell-to-cell communication and carry a diverse range of bioactive cargo molecules, such as nucleic acids, proteins, and lipids. These cargoes play essential roles in various signaling pathways, including paracrine and endocrine signaling. However, our understanding of the morphological and structural features of EVs is still limited. EVs could be unilamellar or multilamellar or even multicompartmental structures. The relative proportions of these EV subtypes in biological fluids have been associated with various human diseases; however, the mechanism remains unclear. Cryo-electron microscopy (cryo-EM) holds great promise in the field of EV characterization due to high resolution properties. Cryo-EM circumvents artifacts caused by fixation or dehydration, allows for the preservation of native conformation, and eliminates the necessity for staining procedures. In this review, we summarize the role of EVs biogenesis and pathways that might have role on their structure, and the role of cryo-EM in characterization of EVs morphology in different biological samples and integrate new knowledge of the alterations of membranous structures of EVs which could be used as biomarkers to human diseases.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seif Ehab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
48
|
Totland MZ, Omori Y, Sørensen V, Kryeziu K, Aasen T, Brech A, Leithe E. Endocytic trafficking of connexins in cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023:166812. [PMID: 37454772 DOI: 10.1016/j.bbadis.2023.166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gap junctions are specialized regions of the plasma membrane containing clusters of channels that provide for the diffusion of ions and small molecules between adjacent cells. A fundamental role of gap junctions is to coordinate the functions of cells in tissues. Cancer pathogenesis is usually associated with loss of intercellular communication mediated by gap junctions, which may affect tumor growth and the response to radio- and chemotherapy. Gap junction channels consist of integral membrane proteins termed connexins. In addition to their canonical roles in cell-cell communication, connexins modulate a range of signal transduction pathways via interactions with proteins such as β-catenin, c-Src, and PTEN. Consequently, connexins can regulate cellular processes such as cell growth, migration, and differentiation through both channel-dependent and independent mechanisms. Gap junctions are dynamic plasma membrane entities, and by modulating the rate at which connexins undergo endocytosis and sorting to lysosomes for degradation, cells rapidly adjust the level of gap junctions in response to alterations in the intracellular or extracellular milieu. Current experimental evidence indicates that aberrant trafficking of connexins in the endocytic system is intrinsically involved in mediating the loss of gap junctions during carcinogenesis. This review highlights the role played by the endocytic system in controlling connexin degradation, and consequently gap junction levels, and discusses how dysregulation of these processes contributes to the loss of gap junctions during cancer development. We also discuss the therapeutic implications of aberrant endocytic trafficking of connexins in cancer cells.
Collapse
Affiliation(s)
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Physiology and Cell Biology, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
49
|
Vöing K, Michgehl U, Mertens ND, Picciotto C, Maywald ML, Goretzko J, Waimann S, Gilhaus K, Rogg M, Schell C, Klingauf J, Tsytsyura Y, Hansen U, van Marck V, Edinger AL, Vollenbröker B, Rescher U, Braun DA, George B, Weide T, Pavenstädt H. Disruption of the Rab7-Dependent Final Common Pathway of Endosomal and Autophagic Processing Results in a Severe Podocytopathy. J Am Soc Nephrol 2023; 34:1191-1206. [PMID: 37022133 PMCID: PMC10356157 DOI: 10.1681/asn.0000000000000126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
SIGNIFICANCE STATEMENT Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates and complex morphology, such as podocytes. To improve our understanding on how disturbances of these trafficking pathways are linked to podocyte depletion and slit diaphragm (SD) injury, the authors explored the role of the small GTPase Rab7, which is linked to endosomal, lysosomal, and autophagic pathways, using as model systems mice and Drosophila with podocyte-specific or nephrocyte-specific loss of Rab7, and a human podocyte cell line depleted for Rab7. Their findings point to maturation and fusion events during endolysosomal and autophagic maturation as key processes for podocyte homeostasis and function and identify altered lysosomal pH values as a putative novel mechanism for podocytopathies. BACKGROUND Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates, such as podocytes. How disturbances within these trafficking pathways may act as factors in proteinuric glomerular diseases is poorly understood. METHODS To explore how disturbances in trafficking pathways may act as factors in proteinuric glomerular diseases, we focused on Rab7, a highly conserved GTPase that controls the homeostasis of late endolysosomal and autophagic processes. We generated mouse and Drosophila in vivo models lacking Rab7 exclusively in podocytes or nephrocytes, and performed histologic and ultrastructural analyses. To further investigate Rab7 function on lysosomal and autophagic structures, we used immortalized human cell lines depleted for Rab7. RESULTS Depletion of Rab7 in mice, Drosophila , and immortalized human cell lines resulted in an accumulation of diverse vesicular structures resembling multivesicular bodies, autophagosomes, and autoendolysosomes. Mice lacking Rab7 developed a severe and lethal renal phenotype with early-onset proteinuria and global or focal segmental glomerulosclerosis, accompanied by an altered distribution of slit diaphragm proteins. Remarkably, structures resembling multivesicular bodies began forming within 2 weeks after birth, prior to the glomerular injuries. In Drosophila nephrocytes, Rab7 knockdown resulted in the accumulation of vesicles and reduced slit diaphragms. In vitro , Rab7 knockout led to similar enlarged vesicles and altered lysosomal pH values, accompanied by an accumulation of lysosomal marker proteins. CONCLUSIONS Disruption within the final common pathway of endocytic and autophagic processes may be a novel and insufficiently understood mechanism regulating podocyte health and disease.
Collapse
Affiliation(s)
- Kristin Vöing
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| | - Ulf Michgehl
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| | - Nils David Mertens
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| | - Cara Picciotto
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| | - Mee-Ling Maywald
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| | - Jonas Goretzko
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Sofie Waimann
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| | - Kevin Gilhaus
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| | - Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Muenster, Muenster, Germany
| | - Yaroslav Tsytsyura
- Institute of Medical Physics and Biophysics, University of Muenster, Muenster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine (IMM), University of Muenster, Muenster, Germany
| | - Veerle van Marck
- Department of Pathology, University Hospital Muenster Muenster, Germany
| | - Aimee L. Edinger
- Department of Developmental & Cell Biology, University of California, Irvine, California
| | - Beate Vollenbröker
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Daniela Anne Braun
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| | - Britta George
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| | - Thomas Weide
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| | - Hermann Pavenstädt
- Department of Internal Medicine and Nephrology, University Hospital of Münster, Medical Clinic D, Munster, Germany
| |
Collapse
|
50
|
Pham MT, Lee JY, Ritter C, Thielemann R, Meyer J, Haselmann U, Funaya C, Laketa V, Rohr K, Bartenschlager R. Endosomal egress and intercellular transmission of hepatic ApoE-containing lipoproteins and its exploitation by the hepatitis C virus. PLoS Pathog 2023; 19:e1011052. [PMID: 37506130 PMCID: PMC10411793 DOI: 10.1371/journal.ppat.1011052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/09/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Liver-generated plasma Apolipoprotein E (ApoE)-containing lipoproteins (LPs) (ApoE-LPs) play central roles in lipid transport and metabolism. Perturbations of ApoE can result in several metabolic disorders and ApoE genotypes have been associated with multiple diseases. ApoE is synthesized at the endoplasmic reticulum and transported to the Golgi apparatus for LP assembly; however, the ApoE-LPs transport pathway from there to the plasma membrane is largely unknown. Here, we established an integrative imaging approach based on a fully functional fluorescently tagged ApoE. We found that newly synthesized ApoE-LPs accumulate in CD63-positive endosomes of hepatocytes. In addition, we observed the co-egress of ApoE-LPs and CD63-positive intraluminal vesicles (ILVs), which are precursors of extracellular vesicles (EVs), along the late endosomal trafficking route in a microtubule-dependent manner. A fraction of ApoE-LPs associated with CD63-positive EVs appears to be co-transmitted from cell to cell. Given the important role of ApoE in viral infections, we employed as well-studied model the hepatitis C virus (HCV) and found that the viral replicase component nonstructural protein 5A (NS5A) is enriched in ApoE-containing ILVs. Interaction between NS5A and ApoE is required for the efficient release of ILVs containing HCV RNA. These vesicles are transported along the endosomal ApoE egress pathway. Taken together, our data argue for endosomal egress and transmission of hepatic ApoE-LPs, a pathway that is hijacked by HCV. Given the more general role of EV-mediated cell-to-cell communication, these insights provide new starting points for research into the pathophysiology of ApoE-related metabolic and infection-related disorders.
Collapse
Affiliation(s)
- Minh-Tu Pham
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Christian Ritter
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Roman Thielemann
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Janis Meyer
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility (EMCF), Heidelberg University, Heidelberg, Germany
| | - Vibor Laketa
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Karl Rohr
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|