1
|
Singh DD. Epigenetic Mechanisms of Endocrine-Disrupting Chemicals in Breast Cancer and Their Impact on Dietary Intake. J Xenobiot 2024; 15:1. [PMID: 39846533 PMCID: PMC11755457 DOI: 10.3390/jox15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Addressing the consequences of exposure to endocrine-disrupting chemicals (EDCs) demands thorough research and elucidation of the mechanism by which EDCs negatively impact women and lead to breast cancer (BC). Endocrine disruptors can affect major pathways through various means, including histone modifications, the erroneous expression of microRNA (miRNA), DNA methylation, and epigenetic modifications. However, it is still uncertain if the epigenetic modifications triggered by EDCs can help predict negative outcomes. Consequently, it is important to understand how different endocrine disrupters or signals interact with epigenetic modifications and regulate signalling mechanisms. This study proposes that the epigenome may be negatively impacted by several EDCs, such as cadmium, arsenic, lead, bisphenol A, phthalates, polychlorinated biphenyls and parabens, organochlorine, and dioxins. Further, this study also examines the impact of EDCs on lifestyle variables. In breast cancer research, it is essential to consider the potential impacts of EDC exposure and comprehend how EDCs function in tissues.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| |
Collapse
|
2
|
Sinclair KD. Developmental epigenetics: Understanding genetic and sexually dimorphic responses to parental diet and outcomes following assisted reproduction. J Dairy Sci 2024:S0022-0302(24)01392-4. [PMID: 39701526 DOI: 10.3168/jds.2024-25811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
The developmental integrity and wellbeing of offspring are influenced by events that occur in utero, particularly around the time of conception. While extraneous factors such as environmental temperature and exposure to environmental chemicals can each have a bearing on these events, the epigenetic mechanisms that direct cellular differentiation during early development in ruminants are best described for studies which have investigated the effects of parental nutrition or pregnancy outcomes following assisted reproduction. In this article the case is made that the genetic constitution of an individual directs epigenetic responses to environmental stimuli, and consideration in this regard is also given to the origins of sexual dimorphism and mechanisms of germline intergenerational inheritance. These aspects are considered in the context of epigenetic modifications that take place during the normal course of gametogenesis and embryogenesis, and again following either dietary or procedural interventions such as embryo culture. A recurring feature of such interventions, irrespective of species, is that one carbon metabolic pathways are invariably disrupted, and this affects the provision of methyl groups for chromatin and RNA methylation. Inter-specific variation in how these pathways operate, both within the liver and in germ cells, indicates that ruminants may be particularly sensitive in this regard. Recent advances in genomic technologies should enable rapid progress in these areas. Knowledge gained can be integrated into breed improvement programs and used to tailor management practices to specific breeds and strains (including sexes) within breeds. Ultimately, consideration should be given to integrating metagenomics into analyses of genetic-directed epigenetic programming of animal development.
Collapse
Affiliation(s)
- Kevin D Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, UK, LE12 5RD.
| |
Collapse
|
3
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
4
|
Zhang W, Jin M, Lu Z, Li T, Wang H, Yuan Z, Wei C. Whole Genome Resequencing Reveals Selection Signals Related to Wool Color in Sheep. Animals (Basel) 2023; 13:3265. [PMID: 37893989 PMCID: PMC10603731 DOI: 10.3390/ani13203265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Wool color is controlled by a variety of genes. Although the gene regulation of some wool colors has been studied in relative depth, there may still be unknown genetic variants and control genes for some colors or different breeds of wool that need to be identified and recognized by whole genome resequencing. Therefore, we used whole genome resequencing data to compare and analyze sheep populations of different breeds by population differentiation index and nucleotide diversity ratios (Fst and θπ ratio) as well as extended haplotype purity between populations (XP-EHH) to reveal selection signals related to wool coloration in sheep. Screening in the non-white wool color group (G1 vs. G2) yielded 365 candidate genes, among which PDE4B, GMDS, GATA1, RCOR1, MAPK4, SLC36A1, and PPP3CA were associated with the formation of non-white wool; an enrichment analysis of the candidate genes yielded 21 significant GO terms and 49 significant KEGG pathways (p < 0.05), among which 17 GO terms and 21 KEGG pathways were associated with the formation of non-white wool. Screening in the white wool color group (G2 vs. G1) yielded 214 candidate genes, including ABCD4, VSX2, ITCH, NNT, POLA1, IGF1R, HOXA10, and DAO, which were associated with the formation of white wool; an enrichment analysis of the candidate genes revealed 9 significant GO-enriched pathways and 19 significant KEGG pathways (p < 0.05), including 5 GO terms and 12 KEGG pathways associated with the formation of white wool. In addition to furthering our understanding of wool color genetics, this research is important for breeding purposes.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| |
Collapse
|
5
|
Mahmoudian RA, Farshchian M, Golyan FF, Mahmoudian P, Alasti A, Moghimi V, Maftooh M, Khazaei M, Hassanian SM, Ferns GA, Mahaki H, Shahidsales S, Avan A. Preclinical tumor mouse models for studying esophageal cancer. Crit Rev Oncol Hematol 2023; 189:104068. [PMID: 37468084 DOI: 10.1016/j.critrevonc.2023.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Farshchian
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Mahmoudian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Alasti
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Moghimi
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
6
|
Feng L, Si J, Yue J, Zhao M, Qi W, Zhu S, Mo J, Wang L, Lan G, Liang J. The Landscape of Accessible Chromatin and Developmental Transcriptome Maps Reveal a Genetic Mechanism of Skeletal Muscle Development in Pigs. Int J Mol Sci 2023; 24:ijms24076413. [PMID: 37047386 PMCID: PMC10094211 DOI: 10.3390/ijms24076413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The epigenetic regulation mechanism of porcine skeletal muscle development relies on the openness of chromatin and is also precisely regulated by transcriptional machinery. However, fewer studies have exploited the temporal changes in gene expression and the landscape of accessible chromatin to reveal the underlying molecular mechanisms controlling muscle development. To address this, skeletal muscle biopsy samples were taken from Landrace pigs at days 0 (D0), 60 (D60), 120 (D120), and 180 (D180) after birth and were then analyzed using RNA-seq and ATAC-seq. The RNA-seq analysis identified 8554 effective differential genes, among which ACBD7, TMEM220, and ATP1A2 were identified as key genes related to the development of porcine skeletal muscle. Some potential cis-regulatory elements identified by ATAC-seq analysis contain binding sites for many transcription factors, including SP1 and EGR1, which are also the predicted transcription factors regulating the expression of ACBD7 genes. Moreover, the omics analyses revealed regulatory regions that become ectopically active after birth during porcine skeletal muscle development after birth and identified 151,245, 53,435, 30,494, and 40,911 peaks. The enriched functional elements are related to the cell cycle, muscle development, and lipid metabolism. In summary, comprehensive high-resolution gene expression maps were developed for the transcriptome and accessible chromatin during postnatal skeletal muscle development in pigs.
Collapse
Affiliation(s)
- Lingli Feng
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Guangxi University, Nanning 530004, China (G.L.)
| | - Jinglei Si
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Guangxi University, Nanning 530004, China (G.L.)
| | - Jingwei Yue
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100097, China
| | - Mingwei Zhao
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Guangxi University, Nanning 530004, China (G.L.)
| | - Wenjing Qi
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Guangxi University, Nanning 530004, China (G.L.)
| | - Siran Zhu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Guangxi University, Nanning 530004, China (G.L.)
| | - Jiayuan Mo
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Guangxi University, Nanning 530004, China (G.L.)
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100097, China
| | - Ganqiu Lan
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Guangxi University, Nanning 530004, China (G.L.)
| | - Jing Liang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Guangxi University, Nanning 530004, China (G.L.)
- Correspondence:
| |
Collapse
|
7
|
Martin EM, Grimm SA, Xu Z, Taylor JA, Wade PA. Beadchip technology to detect DNA methylation in mouse faithfully recapitulates whole-genome bisulfite sequencing. Epigenomics 2023; 15:115-129. [PMID: 37020391 PMCID: PMC10131490 DOI: 10.2217/epi-2023-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Aim: To facilitate wide-scale implementation of Illumina Mouse Methylation BeadChip (MMB) technology, array-based measurement of cytosine methylation was compared with the gold-standard assessment of DNA methylation by whole-genome bisulfite sequencing (WGBS). Methods: DNA methylation across two mouse strains (C57B6 and C3H) and both sexes was assessed using the MMB and compared with previously existing deep-coverage WGBS of mice of the same strain and sex. Results & conclusion: The findings demonstrated that 93.3-99.2% of sites had similar measurements of methylation across technologies and that differentially methylated cytosines and regions identified by each technology overlap and enrich for similar biological functions, suggesting that the MMB faithfully recapitulates the findings of WGBS.
Collapse
Affiliation(s)
- Elizabeth M Martin
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Sara A Grimm
- Integrative Bioinformatics, Biostatistics & Computational Biology Branch, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Jack A Taylor
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
- Epidemiology Branch, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Paul A Wade
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| |
Collapse
|
8
|
Chan SY, Wan CWT, Law TYS, Chan DYL, Fok EKL. The Sperm Small RNA Transcriptome: Implications beyond Reproductive Disorder. Int J Mol Sci 2022; 23:15716. [PMID: 36555356 PMCID: PMC9779749 DOI: 10.3390/ijms232415716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Apart from the paternal half of the genetic material, the male gamete carries assorted epigenetic marks for optimal fertilization and the developmental trajectory for the early embryo. Recent works showed dynamic changes in small noncoding RNA (sncRNA) in spermatozoa as they transit through the testicular environment to the epididymal segments. Studies demonstrated the changes to be mediated by epididymosomes during the transit through the adluminal duct in the epididymis, and the changes in sperm sncRNA content stemmed from environmental insults significantly altering the early embryo development and predisposing the offspring to metabolic disorders. Here, we review the current knowledge on the establishment of the sperm sncRNA transcriptome and their role in male-factor infertility, evidence of altered offspring health in response to the paternal life experiences through sperm sncRNA species and, finally, their implications in assisted reproductive technology in terms of epigenetic inheritance.
Collapse
Affiliation(s)
- Sze Yan Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Crystal Wing Tung Wan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin Yu Samuel Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David Yiu Leung Chan
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ellis Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| |
Collapse
|
9
|
Food abundance in men before puberty predicts a range of cancers in grandsons. Nat Commun 2022; 13:7507. [PMID: 36473854 PMCID: PMC9726939 DOI: 10.1038/s41467-022-35217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Nutritional conditions early in human life may influence phenotypic characteristics in later generations. A male-line transgenerational pathway, triggered by the early environment, has been postulated with support from animal and a small number of human studies. Here we analyse individuals born in Uppsala Sweden 1915-29 with linked data from their children and parents, which enables us to explore the hypothesis that pre-pubertal food abundance may trigger a transgenerational effect on cancer events. We used cancer registry and cause-of-death data to analyse 3422 cancer events in grandchildren (G2) by grandparental (G0) food access. We show that variation in harvests and food access in G0 predicts cancer occurrence in G2 in a specific way: abundance among paternal grandfathers, but not any other grandparent, predicts cancer occurrence in grandsons but not in granddaughters. This male-line response is observed for several groups of cancers, suggesting a general susceptibility, possibly acquired in early embryonic development. We observed no transgenerational influence in the middle generation.
Collapse
|
10
|
Towarnicki SG, Youngson NA, Corley SM, St. John JC, Melvin RG, Turner N, Morris MJ, Ballard JWO. Ancestral dietary change alters the development of Drosophila larvae through MAPK signalling. Fly (Austin) 2022; 16:299-311. [PMID: 35765944 PMCID: PMC9354765 DOI: 10.1080/19336934.2022.2088032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Studies in a broad range of animal species have revealed phenotypes that are caused by ancestral life experiences, including stress and diet. Ancestral dietary macronutrient composition and quantity (over- and under-nutrition) have been shown to alter descendent growth, metabolism and behaviour. Molecules have been identified in gametes that are changed by ancestral diet and are required for transgenerational effects. However, there is less understanding of the developmental pathways altered by inherited molecules during the period between fertilization and adulthood. To investigate this non-genetic inheritance, we exposed great grand-parental and grand-parental generations to defined protein to carbohydrate (P:C) dietary ratios. Descendent developmental timing was consistently faster in the period between the embryonic and pupal stages when ancestors had a higher P:C ratio diet. Transcriptional analysis revealed extensive and long-lasting changes to the MAPK signalling pathway, which controls growth rate through the regulation of ribosomal RNA transcription. Pharmacological inhibition of both MAPK and rRNA pathways recapitulated the ancestral diet-induced developmental changes. This work provides insight into non-genetic inheritance between fertilization and adulthood.
Collapse
Affiliation(s)
- Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia,The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - Susan M. Corley
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Jus C. St. John
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Richard G. Melvin
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia
| | - Nigel Turner
- The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - Margaret J. Morris
- The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - J. William O. Ballard
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia,Department of Ecology, Environment and Evolution, School of Life Sciences, Victoria 3086, La Trobe University, Melbourne, VIC, Australia,CONTACT J. William O. Ballard Department of Environment and Genetics, SABE, La Trobe University, Bundoora, VIC3086, Australia
| |
Collapse
|
11
|
Stierwalt HD, Morris EM, Maurer A, Apte U, Phillips K, Li T, Meers GME, Koch LG, Britton SL, Graf G, Rector RS, Mercer K, Shankar K, Thyfault JP. Rats with high aerobic capacity display enhanced transcriptional adaptability and upregulation of bile acid metabolism in response to an acute high-fat diet. Physiol Rep 2022; 10:e15405. [PMID: 35923133 PMCID: PMC9350427 DOI: 10.14814/phy2.15405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 06/09/2023] Open
Abstract
Rats selectively bred for the high intrinsic aerobic capacity runner (HCR) or low aerobic capacity runner (LCR) show pronounced differences in susceptibility for high-fat/high sucrose (HFHS) diet-induced hepatic steatosis and insulin resistance, replicating the protective effect of high aerobic capacity in humans. We have previously shown multiple systemic differences in energy and substrate metabolism that impacts steatosis between HCR and LCR rats. This study aimed to investigate hepatic-specific mechanisms of action via changes in gene transcription. Livers of HCR rats had a greater number of genes that significantly changed in response to 3-day HFHS compared with LCR rats (171 vs. 75 genes: >1.5-fold, p < 0.05). HCR and LCR rats displayed numerous baseline differences in gene expression while on a low-fat control diet (CON). A 3-day HFHS diet resulted in greater expression of genes involved in the conversion of excess acetyl-CoA to cholesterol and bile acid (BA) synthesis compared with the CON diet in HCR, but not LCR rats. These results were associated with higher fecal BA loss and lower serum BA concentrations in HCR rats. Exercise studies in rats and mice also revealed higher hepatic expression of cholesterol and BA synthesis genes. Overall, these results suggest that high aerobic capacity and exercise are associated with upregulated BA synthesis paired with greater fecal excretion of cholesterol and BA, an effect that may play a role in protection against hepatic steatosis in rodents.
Collapse
Affiliation(s)
- Harrison D. Stierwalt
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
- Research ServiceKansas City VA Medical CenterKansas CityMissouriUSA
| | - E. Matthew Morris
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
| | - Adrianna Maurer
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and TherapeuticsUniversity of Kansas Medical CenterKansas CityMissouriUSA
| | | | - Tiangang Li
- Department of PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Grace M. E. Meers
- Division of Gastroenterology and HepatologyUniversity of MissouriColumbiaMissouriUSA
- Division of Nutrition and Exercise PhysiologyColumbiaMissouriUSA
| | - Lauren G. Koch
- Physiology and PharmacologyThe University of ToledoToledoOhioUSA
| | | | - Greg Graf
- Department of Pharmaceutical SciencesSaha Cardiovascular Research Center, University of KentuckyLexingtonKentuckyUSA
| | - R. Scott Rector
- Division of Gastroenterology and HepatologyUniversity of MissouriColumbiaMissouriUSA
- Division of Nutrition and Exercise PhysiologyColumbiaMissouriUSA
- Research ServiceHarry S Truman Memorial VA HospitalColumbiaMissouriUSA
| | - Kelly Mercer
- Arkansas Children's Nutrition CenterUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Kartik Shankar
- Section of Nutrition, Department of PediatricsUniversity of Colorado School of Medicine Anschutz Medical CampusAuroraColoradoUSA
| | - John P. Thyfault
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
- Research ServiceKansas City VA Medical CenterKansas CityMissouriUSA
| |
Collapse
|
12
|
Chandana BS, Mahto RK, Singh RK, Ford R, Vaghefi N, Gupta SK, Yadav HK, Manohar M, Kumar R. Epigenomics as Potential Tools for Enhancing Magnitude of Breeding Approaches for Developing Climate Resilient Chickpea. Front Genet 2022; 13:900253. [PMID: 35937986 PMCID: PMC9355295 DOI: 10.3389/fgene.2022.900253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenomics has become a significant research interest at a time when rapid environmental changes are occurring. Epigenetic mechanisms mainly result from systems like DNA methylation, histone modification, and RNA interference. Epigenetic mechanisms are gaining importance in classical genetics, developmental biology, molecular biology, cancer biology, epidemiology, and evolution. Epigenetic mechanisms play important role in the action and interaction of plant genes during development, and also have an impact on classical plant breeding programs, inclusive of novel variation, single plant heritability, hybrid vigor, plant-environment interactions, stress tolerance, and performance stability. The epigenetics and epigenomics may be significant for crop adaptability and pliability to ambient alterations, directing to the creation of stout climate-resilient elegant crop cultivars. In this review, we have summarized recent progress made in understanding the epigenetic mechanisms in plant responses to biotic and abiotic stresses and have also tried to provide the ways for the efficient utilization of epigenomic mechanisms in developing climate-resilient crop cultivars, especially in chickpea, and other legume crops.
Collapse
Affiliation(s)
- B. S. Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | | | - Rebecca Ford
- Center for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Niloofar Vaghefi
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | | | | | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
13
|
Boldyreva LV, Andreyeva EN, Pindyurin AV. Position Effect Variegation: Role of the Local Chromatin Context in Gene Expression Regulation. Mol Biol 2022. [DOI: 10.1134/s0026893322030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Spanagel R. Ten Points to Improve Reproducibility and Translation of Animal Research. Front Behav Neurosci 2022; 16:869511. [PMID: 35530730 PMCID: PMC9070052 DOI: 10.3389/fnbeh.2022.869511] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Findings from animal experiments are often difficult to transfer to humans. In this perspective article I discuss two questions. First, why are the results of animal experiments often so difficult to transfer to humans? And second, what can be done to improve translation from animal experiments to humans? Translation failures are often the result of poor methodology. It is not merely the fact that low statistical power of basic and preclinical studies undermine a "real effect," but the accuracy with which data from animal studies are collected and described, and the resulting robustness of the data is generally very low and often does not allow translation to a much more heterogeneous human condition. Equally important is the fact that the vast majority of publications in the biomedical field in the last few decades have reported positive findings and have thus generated a knowledge bias. Further contributions to reproducibility and translation failures are discussed in this paper, and 10 points of recommendation to improve reproducibility and translation are outlined. These recommendations are: (i) prior to planning an actual study, a systematic review or potential preclinical meta-analysis should be considered. (ii) An a priori power calculation should be carried out. (iii) The experimental study protocol should be pre-registered. (iv) The execution of the study should be in accordance with the most recent ARRIVE guidelines. (v) When planning the study, the generalizability of the data to be collected should also be considered (e.g., sex or age differences). (vi) "Method-hopping" should be avoided, meaning that it is not necessary to use the most advanced technology but rather to have the applied methodology under control. (vii) National or international networks should be considered to carry out multicenter preclinical studies or to obtain convergent evidence. (viii) Animal models that capture DSM-5 or ICD-11 criteria should be considered in the context of research on psychiatric disorders. (ix) Raw data of publication should be made publicly available and should be in accordance with the FAIR Guiding Principles for scientific data management. (x) Finally, negative findings should be published to counteract publication bias. The application of these 10 points of recommendation, especially for preclinical confirmatory studies but also to some degree for exploratory studies, will ultimately improve the reproducibility and translation of animal research.
Collapse
Affiliation(s)
- Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
15
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
16
|
Bilmez Y, Talibova G, Ozturk S. Expression of the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 exhibits significant changes in the oocytes and granulosa cells of aged mouse ovaries. Histochem Cell Biol 2022; 158:79-95. [PMID: 35445296 DOI: 10.1007/s00418-022-02102-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Histone methylation is one of the main epigenetic mechanisms by which methyl groups are dynamically added to the lysine and arginine residues of histone tails in nucleosomes. This process is catalyzed by specific histone methyltransferase enzymes. Methylation of these residues promotes gene expression regulation through chromatin remodeling. Functional analysis and knockout studies have revealed that the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 play key roles in establishing the methylation marks required for proper oocyte maturation and follicle development. As oocyte quality and follicle numbers progressively decrease with advancing maternal age, investigating their expression patterns in the ovaries at different reproductive periods may elucidate the fertility loss occurring during ovarian aging. The aim of our study was to determine the spatiotemporal distributions and relative expression levels of the Setd1b, Setdb1, Setd2, and Cxxc1 (encoding the CFP1 protein) genes in the postnatal mouse ovaries from prepuberty to late aged periods. For this purpose, five groups based on their reproductive periods and histological structures were created: prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). We found that Setd1b, Setdb1, Setd2, and Cxxc1 mRNA levels showed significant changes among postnatal ovary groups (P < 0.05). Furthermore, SETD1B, SETDB1, SETD2, and CFP1 proteins exhibited different subcellular localizations in the ovarian cells, including oocytes, granulosa cells, stromal and germinal epithelial cells. In general, their levels in the follicles, oocytes, and granulosa cells as well as in the germinal epithelial and stromal cells significantly decreased in the aged groups when compared the other groups (P < 0.05). These decreases were concordant with the reduced numbers of the follicles at different stages and the luteal structures in the aged groups (P < 0.05). In conclusion, these findings suggest that altered expression of the histone methyltransferase genes in the ovarian cells may be associated with female fertility loss in advancing maternal age.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
17
|
BAF complex-mediated chromatin relaxation is required for establishment of X chromosome inactivation. Nat Commun 2022; 13:1658. [PMID: 35351876 PMCID: PMC8964718 DOI: 10.1038/s41467-022-29333-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The process of epigenetic silencing, while fundamentally important, is not yet completely understood. Here we report a replenishable female mouse embryonic stem cell (mESC) system, Xmas, that allows rapid assessment of X chromosome inactivation (XCI), the epigenetic silencing mechanism of one of the two X chromosomes that enables dosage compensation in female mammals. Through a targeted genetic screen in differentiating Xmas mESCs, we reveal that the BAF complex is required to create nucleosome-depleted regions at promoters on the inactive X chromosome during the earliest stages of establishment of XCI. Without this action gene silencing fails. Xmas mESCs provide a tractable model for screen-based approaches that enable the discovery of unknown facets of the female-specific process of XCI and epigenetic silencing more broadly. Female embryonic stem cells (ESCs) are the ideal model to study X chromosome inactivation (XCI) establishment; however, these cells are challenging to keep in culture. Here the authors create fluorescent ‘Xmas’ reporter mice as a renewable source of ESCs and show nucleosome remodelers Smarcc1 and Smarca4 create a nucleosome-free promoter region prior to the establishment of silencing.
Collapse
|
18
|
Shields RK, Dudley-Javoroski S. Epigenetics and the International Classification of Functioning, Disability and Health Model: Bridging Nature, Nurture, and Patient-Centered Population Health. Phys Ther 2021; 102:6413906. [PMID: 34718813 PMCID: PMC9432474 DOI: 10.1093/ptj/pzab247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022]
Abstract
Epigenetic processes enable environmental inputs such as diet, exercise, and health behaviors to reversibly tag DNA with chemical "marks" that increase or decrease the expression of an individual's genetic template. Over time, epigenetic adaptations enable the effects of healthy or unhealthy stresses to become stably expressed in the tissue of an organism, with important consequences for health and disease. New research indicates that seemingly non-biological factors such as social stress, poverty, and childhood hardship initiate epigenetic adaptations in gene pathways that govern inflammation and immunity, two of the greatest contributors to chronic diseases such as diabetes and obesity. Epigenetic processes therefore provide a biological bridge between the genome-an individual's genetic inheritance-and the Social Determinants of Health-the conditions in which they are born, grow, live, work, and age. This Perspective paper argues that physical therapy clinicians, researchers, and educators can use the theoretical framework provided by the International Classification of Functioning, Disability, and Health (ICF model) to harmonize new discoveries from both public health research and medically focused genomic research. The ICF model likewise captures the essential role played by physical activity and exercise, which initiate powerful and widespread epigenetic adaptations that promote health and functioning. In this proposed framework, epigenetic processes transduce the effects of the social determinants of health and behaviors such as exercise into stable biological adaptations that affect an individual's daily activities and their participation in social roles. By harmonizing "nature" and "nurture," physical therapists can approach patient care with a more integrated perspective, capitalizing on novel discoveries in precision medicine, rehabilitation science, and in population-level research. As the experts in physical activity and exercise, physical therapists are ideally positioned to drive progress in the new era of patient-centered population health care.
Collapse
Affiliation(s)
| | - Shauna Dudley-Javoroski
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Rauschendorfer T, Gurri S, Heggli I, Maddaluno L, Meyer M, Inglés-Prieto Á, Janovjak H, Werner S. Acute and chronic effects of a light-activated FGF receptor in keratinocytes in vitro and in mice. Life Sci Alliance 2021; 4:4/11/e202101100. [PMID: 34548382 PMCID: PMC8473723 DOI: 10.26508/lsa.202101100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022] Open
Abstract
Optogenetic activation of FGFR2 allowed temporally precise induction of signaling and behavioural changes, but counter-regulation at multiple levels prevented a sustained response in keratinocytes. FGFs and their high-affinity receptors (FGFRs) play key roles in development, tissue repair, and disease. Because FGFRs bind overlapping sets of ligands, their individual functions cannot be determined using ligand stimulation. Here, we generated a light-activated FGFR2 variant (OptoR2) to selectively activate signaling by the major FGFR in keratinocytes. Illumination of OptoR2-expressing HEK 293T cells activated FGFR signaling with remarkable temporal precision and promoted cell migration and proliferation. In murine and human keratinocytes, OptoR2 activation rapidly induced the classical FGFR signaling pathways and expression of FGF target genes. Surprisingly, multi-level counter-regulation occurred in keratinocytes in vitro and in transgenic mice in vivo, including OptoR2 down-regulation and loss of responsiveness to light activation. These results demonstrate unexpected cell type–specific limitations of optogenetic FGFRs in long-term in vitro and in vivo settings and highlight the complex consequences of transferring optogenetic cell signaling tools into their relevant cellular contexts.
Collapse
Affiliation(s)
- Theresa Rauschendorfer
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Selina Gurri
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Irina Heggli
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Luigi Maddaluno
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Michael Meyer
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | - Harald Janovjak
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria .,Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia.,European Molecular Biology Laboratory Australia, Monash University, Clayton, Australia
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Abstract
Epigenetics has enriched human disease studies by adding new interpretations to disease features that cannot be explained by genetic and environmental factors. However, identifying causal mechanisms of epigenetic origin has been challenging. New opportunities have risen from recent findings in intra-individual and cyclical epigenetic variation, which includes circadian epigenetic oscillations. Cytosine modifications display deterministic temporal rhythms, which may drive ageing and complex disease. Temporality in the epigenome, or the 'chrono' dimension, may help the integration of epigenetic, environmental and genetic disease studies, and reconcile several disparities stemming from the arbitrarily delimited research fields. The ultimate goal of chrono-epigenetics is to predict disease risk, age of onset and disease dynamics from within individual-specific temporal dynamics of epigenomes.
Collapse
|
21
|
Estrada-Gutiérrez G, Zambrano E, Polo-Oteyza E, Cardona-Pérez A, Vadillo-Ortega F. Intervention during the first 1000 days in Mexico. Nutr Rev 2021; 78:80-90. [PMID: 33196088 DOI: 10.1093/nutrit/nuaa082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Health systems and society are facing the growing problem of obesity and its accompanying comorbidities. New approaches to reduce these problems must be oriented to population groups in which long-lasting effects of interventions may occur. Biological processes occurring during the first 1000 days of life, which may be modulated by environmental modifications and result in phenotypes with differential risk for noncommunicable chronic disease, constitute an opportunity for interventions. The nutritional and general health conditions of pregnant women and the fetus, as well as toddlers, can be improved with interventions during the first 1000 days, offering pregnancy care, promoting breastfeeding, instructing on the use of complementary foods, and educating on the adequacy of the family dietary patterns for children. Evidence that interventions during this period result in promotion of children's growth and development, influencing the risk for development of obesity in infancy, is available. In this article, an ongoing program in Mexico City directed to offer continuum of care during the first 1000 days is described.
Collapse
Affiliation(s)
- Guadalupe Estrada-Gutiérrez
- Dirección de Investigación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, México City, México
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | | | - Arturo Cardona-Pérez
- Dirección General, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, México City, México
| | - Felipe Vadillo-Ortega
- Dirección de Investigación y Unidad de Vinculación de la Facultad de Medicina, UNAM, Instituto Nacional de Medicina Genómica, México City, México
| |
Collapse
|
22
|
Tang K, Zhang H. Editorial: The Interplay Between Epigenetic Regulation and Other Cellular Processes. Front Genet 2021; 12:691202. [PMID: 34025726 PMCID: PMC8138172 DOI: 10.3389/fgene.2021.691202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Pérez RF, Tejedor JR, Santamarina-Ojeda P, Martínez VL, Urdinguio RG, Villamañán L, Candiota AP, Sarró NMV, Barradas M, Fernandez-Marcos PJ, Serrano M, Fernández AF, Fraga MF. Conservation of Aging and Cancer Epigenetic Signatures across Human and Mouse. Mol Biol Evol 2021; 38:3415-3435. [PMID: 33871658 PMCID: PMC8321527 DOI: 10.1093/molbev/msab112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.
Collapse
Affiliation(s)
- Raúl F Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Pablo Santamarina-Ojeda
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Virginia López Martínez
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Rocío G Urdinguio
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Lucía Villamañán
- Unitat de Bioquímica de Biociències, Departament de Bioquímica i Biologia Molecular, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Unitat de Bioquímica de Biociències, Departament de Bioquímica i Biologia Molecular, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - N Mí Vidal Sarró
- Servicio Anatomía Patológica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Spain
| | - Marta Barradas
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Pablo Jose Fernandez-Marcos
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Agusín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain.,Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain.,Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain.,Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| |
Collapse
|
24
|
Vogt G. Epigenetic variation in animal populations: Sources, extent, phenotypic implications, and ecological and evolutionary relevance. J Biosci 2021. [DOI: 10.1007/s12038-021-00138-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Farris MH, Texter PA, Mora AA, Wiles MV, Mac Garrigle EF, Klaus SA, Rosfjord K. Detection of CRISPR-mediated genome modifications through altered methylation patterns of CpG islands. BMC Genomics 2020; 21:856. [PMID: 33267773 PMCID: PMC7709351 DOI: 10.1186/s12864-020-07233-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/17/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The development and application of CRISPR technologies for the modification of the genome are rapidly expanding. Advances in the field describe new CRISPR components that are strategically engineered to improve the precision and reliability of CRISPR editing within the genome sequence. Genome modification using induced genome breaks that are targeted and mediated by CRISPR components leverage cellular mechanisms for repair like homology directed repair (HDR) to incorporate genomic edits with increased precision. RESULTS In this report, we describe the gain of methylation at typically hypomethylated CpG island (CGI) locations affected by the CRISPR-mediated incorporation of donor DNA using HDR mechanisms. With characterization of CpG methylation patterns using whole genome bisulfite sequencing, these CGI methylation disruptions trace the insertion of the donor DNA during the genomic edit. These insertions mediated by homology-directed recombination disrupt the generational methylation pattern stability of the edited CGI within the cells and their cellular lineage within the animal strain, persisting across generations. Our approach describes a statistically based workflow for indicating locations of modified CGIs and provides a mechanism for evaluating the directed modification of the methylome of the affected CGI at the CpG-level. CONCLUSIONS With advances in genome modification technology comes the need to detect the level and persistence of methylation change that modifications to the genomic sequence impose upon the collaterally edited methylome. Any modification of the methylome of somatic or germline cells could have implications for gene regulation mechanisms governed by the methylation patterns of CGI regions in the application of therapeutic edits of more sensitively regulated genomic regions. The method described here locates the directed modification of the mouse epigenome that persists over generations. While this observance would require supporting molecular observations such as direct sequence changes or gene expression changes, the observation of epigenetic modification provides an indicator that intentionally directed genomic edits can lead to collateral, unintentional epigenomic changes post modification with generational persistence.
Collapse
Affiliation(s)
- M Heath Farris
- The MITRE Corporation, 7515 Colshire Drive, McLean, Virginia, 22102, USA.
| | - Pamela A Texter
- The MITRE Corporation, 7515 Colshire Drive, McLean, Virginia, 22102, USA
| | - Agustin A Mora
- The MITRE Corporation, 7515 Colshire Drive, McLean, Virginia, 22102, USA
| | - Michael V Wiles
- The Jackson Laboratory, Technology Evaluation and Development, Bar Harbor, ME, USA
| | | | - Sybil A Klaus
- The MITRE Corporation, 7515 Colshire Drive, McLean, Virginia, 22102, USA
| | - Kristine Rosfjord
- The MITRE Corporation, 7515 Colshire Drive, McLean, Virginia, 22102, USA
| |
Collapse
|
26
|
Strain-Specific Epigenetic Regulation of Endogenous Retroviruses: The Role of Trans-Acting Modifiers. Viruses 2020; 12:v12080810. [PMID: 32727076 PMCID: PMC7472028 DOI: 10.3390/v12080810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Approximately 10 percent of the mouse genome consists of endogenous retroviruses (ERVs), relics of ancient retroviral infections that are classified based on their relatedness to exogenous retroviral genera. Because of the ability of ERVs to retrotranspose, as well as their cis-acting regulatory potential due to functional elements located within the elements, mammalian ERVs are generally subject to epigenetic silencing by DNA methylation and repressive histone modifications. The mobilisation and expansion of ERV elements is strain-specific, leading to ERVs being highly polymorphic between inbred mouse strains, hinting at the possibility of the strain-specific regulation of ERVs. In this review, we describe the existing evidence of mouse strain-specific epigenetic control of ERVs and discuss the implications of differential ERV regulation on epigenetic inheritance models. We consider Krüppel-associated box domain (KRAB) zinc finger proteins as likely candidates for strain-specific ERV modifiers, drawing on insights gained from the study of the strain-specific behaviour of transgenes. We conclude by considering the coevolution of KRAB zinc finger proteins and actively transposing ERV elements, and highlight the importance of cross-strain studies in elucidating the mechanisms and consequences of strain-specific ERV regulation.
Collapse
|
27
|
Luppino JM, Joyce EF. Single cell analysis pushes the boundaries of TAD formation and function. Curr Opin Genet Dev 2020; 61:25-31. [PMID: 32302920 DOI: 10.1016/j.gde.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/30/2022]
Abstract
Eukaryotic genomes encode genetic information in their linear sequence, but appropriate expression of their genes requires chromosomes to fold into complex three-dimensional structures. Fueled by a growing collection of sequencing and imaging-based technologies, studies have uncovered a hierarchy of DNA interactions, from small chromatin loops that connect genes and enhancers to larger topologically associated domains (TADs) and compartments. However, despite the remarkable conservation of these organizational features, we have a very limited understanding of how this organization influences gene expression. This issue is further complicated in the context of single-cell heterogeneity, as has recently been revealed at both the level of gene activation and chromatin topology. Here, we provide a perspective on recent studies that address cell-to-cell variability and the relationship between structural heterogeneity and gene expression. We propose that transcription is regulated by variable 3D structures driven by at least two independent and partially redundant mechanisms. Collectively, this may provide flexibility to transcriptional regulation at the level of individual cells as well as reproducibility across whole tissues.
Collapse
Affiliation(s)
- Jennifer M Luppino
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
28
|
Linnér A, Almgren M. Epigenetic programming-The important first 1000 days. Acta Paediatr 2020; 109:443-452. [PMID: 31603247 DOI: 10.1111/apa.15050] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
The perinatal period is a time of fast physiological change, including epigenetic programming. Adverse events may lead to epigenetic changes, with implications for health and disease. Our review covers the basics of clinical epigenetics and explores the latest research, including the role of epigenetic processes in complex disease phenotypes, such as neurodevelopmental, neurodegenerative and immunological disorders. Some studies suggest that epigenetic alterations are linked to early life environmental stressors, including mode of delivery, famine, psychosocial stress, severe institutional deprivation and childhood abuse. CONCLUSION: Epigenetic modifications due to perinatal environmental exposures can lead to lifelong, but potentially reversible, phenotypic alterations and disease.
Collapse
Affiliation(s)
- Agnes Linnér
- Department of Women’s and Children’s Health Karolinska Institutet Stockholm Sweden
| | - Malin Almgren
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| |
Collapse
|
29
|
Chung FFL, Herceg Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:15001. [PMID: 31950866 PMCID: PMC7015548 DOI: 10.1289/ehp6104] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the scientific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental factors of health and disease. OBJECTIVES We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disruptors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology. DISCUSSION Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epigenomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by researchers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years. https://doi.org/10.1289/EHP6104.
Collapse
Affiliation(s)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
30
|
Saravanan K, Kumar H, Chhotaray S, Preethi AL, Talokar AJ, Natarajan A, Parida S, Bhushan B, Panigrahi M. Drosophila melanogaster: a promising model system for epigenetic research. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1685216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- K.A. Saravanan
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Supriya Chhotaray
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - A. Latha Preethi
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Amol J. Talokar
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - A. Natarajan
- Division of Animal Nutrition, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
31
|
Lappé M. The paradox of care in behavioral epigenetics: Constructing early-life adversity in the lab. BIOSOCIETIES 2018; 13:698-714. [PMID: 31156717 PMCID: PMC6540972 DOI: 10.1057/s41292-017-0090-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many epigenetic studies focus on how stress, trauma, and care become molecularly embodied, affect gene expression without changing DNA sequence, and produce changes that influence the health and behavior of individuals, their offspring, and future generations. This article describes how care has become central in research on the epigenetic effects of early-life adversity. My analysis draws on two years of ethnographic research in a behavioral epigenetics laboratory in the United States. Building on traditions in feminist theory and the sociology of science, I document how care is enacted with research samples, experimental protocols, and behavioral endpoints in experiments with model organisms. My findings point to tensions between researchers' care for the data and their measurement of adversity as a discrete variable in the form of maternal interaction, neglect, and abuse. I argue that these tensions suggest a "paradox of care" that is actively shaping how epigenetic knowledge is produced and its impacts in society. My analysis shows how decisions in the lab are shaping new understandings of how early-life experiences influence health, with significant impacts on our expectations of mothers and pregnant women. This study suggests that the more complex explanations of health and development promised by epigenetics are simultaneously constructed and constrained by caring practices in the laboratory.
Collapse
Affiliation(s)
- Martine Lappé
- Columbia University Center for Research on Ethical, Legal and Social Implications of Psychiatric, Neurologic, and Behavioral Genetics
| |
Collapse
|
32
|
Stringer JM, Forster SC, Qu Z, Prokopuk L, O'Bryan MK, Gardner DK, White SJ, Adelson D, Western PS. Reduced PRC2 function alters male germline epigenetic programming and paternal inheritance. BMC Biol 2018; 16:104. [PMID: 30236109 PMCID: PMC6149058 DOI: 10.1186/s12915-018-0569-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Defining the mechanisms that establish and regulate the transmission of epigenetic information from parent to offspring is critical for understanding disease heredity. Currently, the molecular pathways that regulate epigenetic information in the germline and its transmission to offspring are poorly understood. RESULTS Here we provide evidence that Polycomb Repressive Complex 2 (PRC2) regulates paternal inheritance. Reduced PRC2 function in mice resulted in male sub-fertility and altered epigenetic and transcriptional control of retrotransposed elements in foetal male germ cells. Males with reduced PRC2 function produced offspring that over-expressed retrotransposed pseudogenes and had altered preimplantation embryo cleavage rates and cell cycle control. CONCLUSION This study reveals a novel role for the histone-modifying complex, PRC2, in paternal intergenerational transmission of epigenetic effects on offspring, with important implications for understanding disease inheritance.
Collapse
Affiliation(s)
- Jessica M Stringer
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Anatomy and Developmental Biology, Ovarian Biology Laboratory, Biomedicine Discovery Institute, Monash University, Melbourne, 3168, Australia
| | - Samuel C Forster
- Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Zhipeng Qu
- Bioinformatics and Computational Genetics, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lexie Prokopuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, Australia
| | - Stefan J White
- Department of Human Genetics, Leiden Genome Technology Centre, Leiden University Medical Center, Leiden, the Netherlands
| | - David Adelson
- Bioinformatics and Computational Genetics, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.
- Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
33
|
Mørkve Knudsen T, Rezwan FI, Jiang Y, Karmaus W, Svanes C, Holloway JW. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J Allergy Clin Immunol 2018; 142:765-772. [PMID: 30040975 PMCID: PMC6167012 DOI: 10.1016/j.jaci.2018.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023]
Abstract
It has become clear that early life (including in utero exposures) is a key window of vulnerability during which environmental exposures can alter developmental trajectories and initiate allergic disease development. However, recent evidence suggests that there might be additional windows of vulnerability to environmental exposures in the parental generation before conception or even in previous generations. There is evidence suggesting that information of prior exposures can be transferred across generations, and experimental animal models suggest that such transmission can be conveyed through epigenetic mechanisms. Although the molecular mechanisms of intergenerational and transgenerationational epigenetic transmission have yet to be determined, the realization that environment before conception can alter the risks of allergic diseases has profound implications for the development of public health interventions to prevent disease. Future research in both experimental models and in multigenerational human cohorts is needed to better understand the role of intergenerational and transgenerational effects in patients with asthma and allergic disease. This will provide the knowledge basis for a new approach to efficient intervention strategies aimed at reducing the major public health challenge of these conditions.
Collapse
Affiliation(s)
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
34
|
|
35
|
The Vast Complexity of the Epigenetic Landscape during Neurodevelopment: An Open Frame to Understanding Brain Function. Int J Mol Sci 2018; 19:ijms19051333. [PMID: 29723958 PMCID: PMC5983638 DOI: 10.3390/ijms19051333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Development is a well-defined stage-to-stage process that allows the coordination and maintenance of the structure and function of cells and their progenitors, in a complete organism embedded in an environment that, in turn, will shape cellular responses to external stimuli. Epigenetic mechanisms comprise a group of process that regulate genetic expression without changing the DNA sequence, and they contribute to the necessary plasticity of individuals to face a constantly changing medium. These mechanisms act in conjunction with genetic pools and their correct interactions will be crucial to zygote formation, embryo development, and brain tissue organization. In this work, we will summarize the main findings related to DNA methylation and histone modifications in embryonic stem cells and throughout early development phases. Furthermore, we will critically outline some key observations on how epigenetic mechanisms influence the rest of the developmental process and how long its footprint is extended from fecundation to adulthood.
Collapse
|
36
|
Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy016. [PMID: 30038800 PMCID: PMC6051467 DOI: 10.1093/eep/dvy016] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 05/21/2023]
Abstract
Ancestral environmental exposures such as toxicants, abnormal nutrition or stress can promote the epigenetic transgenerational inheritance of disease and phenotypic variation. These environmental factors induce the epigenetic reprogramming of the germline (sperm and egg). The germline epimutations can in turn increase disease susceptibility of subsequent generations of the exposed ancestors. A variety of environmental factors, species and exposure specificity of this induced epigenetic transgenerational inheritance of disease is discussed with a consideration of generational toxicology. The molecular mechanisms and processes involved in the ability of these inherited epimutations to increase disease susceptibility are discussed. In addition to altered disease susceptibility, the potential impact of the epigenetic inheritance on phenotypic variation and evolution is considered. Observations suggest environmentally induced epigenetic transgenerational inheritance of disease is a critical aspect of disease etiology, toxicology and evolution that needs to be considered.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
- Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1-509-335-1524; Fax: +1-509-335-2176; E-mail:
| |
Collapse
|
37
|
Vogt G. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. J Biosci 2018; 43:189-223. [PMID: 29485126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the last 15 years, considerable attempts have been undertaken to develop the obligately parthenogenetic marbled crayfish Procambarus virginalis as a new model in biology. Its main advantage is the production of large numbers of offspring that are genetically identical to the mother, making this crustacean particularly suitable for research in epigenetics. Now, a draft genome, transcriptome and genome-wide methylome are available opening new windows for research. In this article, I summarize the biological advantages and genomic and epigenetic features of marbled crayfish and, based on first promising data, discuss what this new model could contribute to answering of ''big'' biological questions. Genome mining is expected to reveal new insights into the genetic specificities of decapod crustaceans, the genetic basis of arthropod reproduction, moulting and immunity, and more general topics such as the genetic underpinning of adaptation to fresh water, omnivory, biomineralization, sexual system change, behavioural variation, clonal genome evolution, and resistance to cancer. Epigenetic investigations with the marbled crayfish can help clarifying the role of epigenetic mechanisms in gene regulation, tissue specification, adult stem cell regulation, cell ageing, organ regeneration and disease susceptibility. Marbled crayfish is further suitable to elucidate the relationship between genetic and epigenetic variation, the transgenerational inheritance of epigenetic signatures and the contribution of epigenetic phenotype variation to the establishment of social hierarchies, environmental adaptation and speciation. These issues can be tackled by experiments with highly standardized laboratory lineages, comparison of differently adapted wild populations and the generation of genetically and epigenetically edited strains.
Collapse
Affiliation(s)
- Gunter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany,
| |
Collapse
|
38
|
Vogt G. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. J Biosci 2018. [DOI: 10.1007/s12038-018-9741-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Abstract
Developmental origins of health and disease (DOHaD) is the study of how the early life environment can impact the risk of chronic diseases from childhood to adulthood and the mechanisms involved. Epigenetic modifications such as DNA methylation, histone modifications and non-coding RNAs are involved in mediating how early life environment impacts later health. This review is a summary of the Epigenetics and DOHaD workshop held at the 2016 DOHaD Society of Australia and New Zealand Conference. Our extensive knowledge of how the early life environment impacts later risk for chronic disease would not have been possible without animal models. In this review we highlight some animal model examples that demonstrate how an adverse early life exposure results in epigenetic and gene expression changes that may contribute to increased risk of chronic disease later in life. Type 2 diabetes and cardiovascular disease are chronic diseases with an increasing incidence due to the increased number of children and adults that are obese. Epigenetic changes such as DNA methylation have been shown to be associated with metabolic health measures and potentially predict future metabolic health status. Although more difficult to elucidate in humans, recent studies suggest that DNA methylation may be one of the epigenetic mechanisms that mediates the effects of early life exposures on later life risk of obesity and obesity related diseases. Finally, we discuss the role of the microbiome and how it is a new player in developmental programming and mediating early life exposures on later risk of chronic disease.
Collapse
|
40
|
Samtani R, Sharma N, Garg D. Effects of Endocrine-Disrupting Chemicals and Epigenetic Modifications in Ovarian Cancer: A Review. Reprod Sci 2017; 25:7-18. [PMID: 28602118 DOI: 10.1177/1933719117711261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ovarian cancer (OC) is a relatively fatal female reproductive malignancy. Since the underlying causes are uncertain, it brings us to believe that both genetic and external factors contribute toward development of this lethal disorder. Exposure to endocrine-disrupting chemicals (EDCs) in the form of occupational usage of pesticides, fungicides, herbicides, plasticizers, cosmetics, and so on is potentially carcinogenic and their ability to cause epigenetic modifications has led us to hypothesize that they may play a catalytic role in OC progression. In response to synthetic chemicals, animal models have demonstrated disturbances in the development of ovaries and steroid hormonal levels but in humans, more research is required. The present review is an attempt to address the impact of EDCs on the hormonal system and gene methylation levels that may lead to malfunctioning of the ovaries which may consequently develop in the form of cancer. It can be concluded that endocrine disruptors do have a potential carcinogenicity and their high proportions in human body may cause epigenetic modifications, prompting ovarian surface epithelium to grow in an abnormal manner.
Collapse
Affiliation(s)
- Ratika Samtani
- 1 Amity Institute of Anthropology, Amity University, Noida, Uttar Pradesh, India
| | - Noopur Sharma
- 1 Amity Institute of Anthropology, Amity University, Noida, Uttar Pradesh, India
| | - Deepali Garg
- 2 Dr Deepali Path Labs & Cancer Diagnostic Centre, Bathinda, Punjab, India
| |
Collapse
|
41
|
Evsikov AV, Marín de Evsikova C. Friend or Foe: Epigenetic Regulation of Retrotransposons in Mammalian Oogenesis and Early Development. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:487-497. [PMID: 28018140 PMCID: PMC5168827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epigenetics is the study of phenotypic variation arising from developmental and environmental factors regulating gene transcription at molecular, cellular, and physiological levels. A naturally occurring biological process driven by epigenetics is the egg-to-embryo developmental transition when two fully differentiated adult cells - egg and sperm - revert to an early stem cell type with totipotency but subsequently differentiates into pluripotent embryonic stem cells that give rise to any cell type. Transposable elements (TEs) are active in mammalian oocytes and early embryos, and this activity, albeit counterintuitive because TEs can lead to genomic instability in somatic cells, correlates to successful development. TEs bridge genetic and epigenetic landscapes because TEs are genetic elements whose silencing and de-repression are regulated by epigenetic mechanisms that are sensitive to environmental factors. Ultimately, transposition events can change size, content, and function of mammalian genomes. Thus, TEs act beyond mutagenic agents reshuffling the genomes, and epigenetic regulation of TEs may act as a proximate mechanism by which evolutionary forces increase a species' hidden reserve of epigenetic and phenotypic variability facilitating the adaptation of genomes to their environment.
Collapse
Affiliation(s)
- Alexei V. Evsikov
- To whom all correspondence should be addressed: Caralina Marín de Evsikova, Alexei V. Evsikov, Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., MDC07, Tampa, FL 33612, CMdE: ; (813) 974 2248; AVE: ; (813) 974 6922, Fax: 813-974-7357
| | - Caralina Marín de Evsikova
- To whom all correspondence should be addressed: Caralina Marín de Evsikova, Alexei V. Evsikov, Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., MDC07, Tampa, FL 33612, CMdE: ; (813) 974 2248; AVE: ; (813) 974 6922, Fax: 813-974-7357
| |
Collapse
|
42
|
Abstract
Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that have a significant impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and discuss how the somatic activity of TEs can influence gene regulatory networks.
Collapse
Affiliation(s)
- Jose L Garcia-Perez
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Department of Genomic Medicine, GENYO, Centre for Genomics & Oncology (Pfizer - University of Granada & Andalusian Regional Government), PTS Granada, Avda. de la Ilustración 114, Granada 18016, Spain
| | - Thomas J Widmann
- Department of Genomic Medicine, GENYO, Centre for Genomics & Oncology (Pfizer - University of Granada & Andalusian Regional Government), PTS Granada, Avda. de la Ilustración 114, Granada 18016, Spain
| | - Ian R Adams
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
43
|
Timms RT, Tchasovnikarova IA, Lehner PJ. Position-effect variegation revisited: HUSHing up heterochromatin in human cells. Bioessays 2016; 38:333-43. [DOI: 10.1002/bies.201500184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Richard T. Timms
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| | - Iva A. Tchasovnikarova
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| | - Paul J. Lehner
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| |
Collapse
|
44
|
Klosin A, Lehner B. Mechanisms, timescales and principles of trans-generational epigenetic inheritance in animals. Curr Opin Genet Dev 2016; 36:41-9. [DOI: 10.1016/j.gde.2016.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
|
45
|
Abstract
Epigenetic mechanisms play an essential role in the germline and imprinting cycle. Germ cells show extensive epigenetic programming in preparation for the generation of the totipotent state, which in turn leads to the establishment of pluripotent cells in blastocysts. The latter are the cells from which pluripotent embryonic stem cells are derived and maintained in culture. Following blastocyst implantation, postimplantation epiblast cells develop, which give rise to all somatic cells as well as primordial germ cells, the precursors of sperm and eggs. Pluripotent stem cells in culture can be induced to undergo differentiation into somatic cells and germ cells in culture. Understanding the natural cycles of epigenetic reprogramming that occur in the germline will allow the generation of better and more versatile stem cells for both therapeutic and research purposes.
Collapse
Affiliation(s)
- Wolf Reik
- The Babraham Institute, Babraham Research Campus, Cambridge CB2 3EG, United Kingdom Wellcome Trust Cancer Research UK Gurdon Institute & Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute & Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
46
|
Abstract
Histones package and compact DNA by assembling into nucleosome core particles. Most histones are synthesized at S phase for rapid deposition behind replication forks. In addition, the replacement of histones deposited during S phase by variants that can be deposited independently of replication provide the most fundamental level of chromatin differentiation. Alternative mechanisms for depositing different variants can potentially establish and maintain epigenetic states. Variants have also evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, and other processes. Investigations into the evolution, structure, and metabolism of histone variants provide a foundation for understanding the participation of chromatin in important cellular processes and in epigenetic memory.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
| | - M Mitchell Smith
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
47
|
Abstract
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Department of Molecular and Cellular Biochemistry, and Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405
| | - Ortrun Mittelsten Scheid
- Gregor Mendel-Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
48
|
Karambataki M, Malousi A, Kouidou S. Risk-associated coding synonymous SNPs in type 2 diabetes and neurodegenerative diseases: genetic silence and the underrated association with splicing regulation and epigenetics. Mutat Res 2014; 770:85-93. [PMID: 25771874 DOI: 10.1016/j.mrfmmm.2014.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
Single nucleotide polymorphisms (SNPs) are tentatively critical with regard to disease predisposition, but coding synonymous SNPs (sSNPs) are generally considered "neutral". Nevertheless, sSNPs in serine/arginine-rich (SR) and splice-site (SS) exonic splicing enhancers (ESEs) or in exonic CpG methylation targets, could be decisive for splicing, particularly in aging-related conditions, where mis-splicing is frequently observed. We presently identified 33 genes T2D-related and 28 related to neurodegenerative diseases, by investigating the impact of the corresponding coding sSNPs on splicing and using gene ontology data and computational tools. Potentially critical (prominent) sSNPs comply with the following criteria: changing the splicing potential of prominent SR-ESEs or of significant SS-ESEs by >1.5 units (Δscore), or formation/deletion of ESEs with maximum splicing score. We also noted the formation/disruption of CpGs (tentative methylation sites of epigenetic sSNPs). All disease association studies involving sSNPs are also reported. Only 21/670 coding SNPs, mostly epigenetic, reported in 33 T2D-related genes, were found to be prominent coding synonymous. No prominent sSNPs have been recorded in three key T2D-related genes (GCGR, PPARGC1A, IGF1). Similarly, 20/366 coding synonymous were identified in ND related genes, mostly epigenetic. Meta-analysis showed that 17 of the above prominent sSNPs were previously investigated in association with various pathological conditions. Three out of four sSNPs (all epigenetic) were associated with T2D and one with NDs (branch site sSNP). Five were associated with other or related pathological conditions. None of the four sSNPs introducing new ESEs was found to be disease-associated. sSNPs introducing smaller Δscore changes (<1.5) in key proteins (INSR, IRS1, DISC1) were also correlated to pathological conditions. This data reveals that genetic variation in splicing-regulatory and particularly CpG sites might be related to disease predisposition and that in-silico analysis is useful for identifying sSNPs, which might be falsely identified as silent or synonymous.
Collapse
Affiliation(s)
- M Karambataki
- Lab of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Malousi
- Lab of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - S Kouidou
- Lab of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
49
|
Abstract
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Department of Molecular and Cellular Biochemistry, and Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405
| | - Ortrun Mittelsten Scheid
- Gregor Mendel-Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
50
|
Skinner MK. Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol 2014; 398:4-12. [PMID: 25088466 PMCID: PMC4262585 DOI: 10.1016/j.mce.2014.07.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023]
Abstract
Environmental exposures such as toxicants, nutrition and stress have been shown to promote the epigenetic transgenerational inheritance of disease susceptibility. Endocrine disruptors are one of the largest groups of specific toxicants shown to promote this form of epigenetic inheritance. These environmental compounds that interfere with normal endocrine signaling are one of the largest classes of toxicants we are exposed to on a daily level. The ability of ancestral exposures to promote disease susceptibility significantly increases the potential biohazards of these toxicants. Therefore, what your great-grandmother was exposed to during pregnancy may influence your disease development, even in the absence of any exposure, and you are going to pass this on to your grandchildren. This non-genetic form of inheritance significantly impacts our understanding of biology from the origins of disease to evolutionary biology. The current review will describe the previous studies and endocrine disruptors shown to promote the epigenetic transgenerational inheritance of disease.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| |
Collapse
|