1
|
Zhu S, Liu X, Lu X, Liao Q, Luo H, Tian Y, Cheng X, Jiang Y, Liu G, Chen J. Biomaterials and tissue engineering in traumatic brain injury: novel perspectives on promoting neural regeneration. Neural Regen Res 2024; 19:2157-2174. [PMID: 38488550 PMCID: PMC11034597 DOI: 10.4103/1673-5374.391179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 04/24/2024] Open
Abstract
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.
Collapse
Affiliation(s)
- Shihong Zhu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiyue Lu
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiang Liao
- Department of Pharmacy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Huiyang Luo
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Tian
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yaxin Jiang
- Out-patient Department, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Guangdi Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Markowska A, Tarnacka B. Molecular Changes in the Ischemic Brain as Non-Invasive Brain Stimulation Targets-TMS and tDCS Mechanisms, Therapeutic Challenges, and Combination Therapies. Biomedicines 2024; 12:1560. [PMID: 39062133 PMCID: PMC11274560 DOI: 10.3390/biomedicines12071560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability. As the currently used neurorehabilitation methods present several limitations, the ongoing research focuses on the use of non-invasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). NIBS methods were demonstrated to modulate neural excitability and improve motor and cognitive functioning in neurodegenerative diseases. However, their mechanisms of action are not fully elucidated, and the clinical outcomes are often unpredictable. This review explores the molecular processes underlying the effects of TMS and tDCS in stroke rehabilitation, including oxidative stress reduction, cell death, stimulation of neurogenesis, and neuroprotective phenotypes of glial cells. A highlight is put on the newly emerging therapeutic targets, such as ferroptotic and pyroptotic pathways. In addition, the issue of interindividual variability is discussed, and the role of neuroimaging techniques is investigated to get closer to personalized medicine. Furthermore, translational challenges of NIBS techniques are analyzed, and limitations of current clinical trials are investigated. The paper concludes with suggestions for further neurorehabilitation stroke treatment, putting the focus on combination and personalized therapies, as well as novel protocols of brain stimulation techniques.
Collapse
Affiliation(s)
- Aleksandra Markowska
- Department of Rehabilitation Medicine, Faculty of Medicine, Warsaw Medical University, Spartańska 1, 02-637 Warsaw, Poland;
| | | |
Collapse
|
4
|
Taranov A, Bedolla A, Iwasawa E, Brown FN, Baumgartner S, Fugate EM, Levoy J, Crone SA, Goto J, Luo Y. The choroid plexus maintains adult brain ventricles and subventricular zone neuroblast pool, which facilitates poststroke neurogenesis. Proc Natl Acad Sci U S A 2024; 121:e2400213121. [PMID: 38954546 PMCID: PMC11252789 DOI: 10.1073/pnas.2400213121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
The brain's neuroreparative capacity after injuries such as ischemic stroke is partly contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here, we report a mouse genetic tool (the ROSA26iDTR mouse line) for noninvasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury. Using this model, we demonstrate that ChP ablation causes rapid and permanent CSF volume loss in both aged and young adult brains, accompanied by disruption of ependymal cilia bundles. Surprisingly, ChP ablation did not result in overt neurological deficits at 1 mo postablation. However, we observed a pronounced decrease in the pool of SVZ neuroblasts (NBs) following ChP ablation, which occurs due to their enhanced migration into the olfactory bulb. In the middle cerebral artery occlusion model of ischemic stroke, NB migration into the lesion site was also reduced in the CSF-depleted mice. Thus, our study establishes an important role of ChP/CSF in regulating the regenerative capacity of the adult brain under normal conditions and after ischemic stroke.
Collapse
Affiliation(s)
- Aleksandr Taranov
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH45229
| | - Alicia Bedolla
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH45229
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Farrah N. Brown
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Sarah Baumgartner
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Elizabeth M. Fugate
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH45229
| | - Joel Levoy
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH45229
| | - Steven A. Crone
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Neurosurgery, College of Medicine, University of Cincinnati, Cincinnati, OH45267
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Neurosurgery, College of Medicine, University of Cincinnati, Cincinnati, OH45267
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH45229
| |
Collapse
|
5
|
Verkhratsky A, Zorec R. Neuroglia in cognitive reserve. Mol Psychiatry 2024:10.1038/s41380-024-02644-z. [PMID: 38956370 DOI: 10.1038/s41380-024-02644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The concept of cognitive reserve was born to account for the disjunction between the objective extent of brain damage in pathology and its clinical and intellectual outcome. The cognitive reserve comprises structural (brain reserve) and functional (brain maintenance, resilience, compensation) aspects of the nervous tissue reflecting exposome-driven life-long plasticity, which defines the ability of the brain to withstand aging and pathology. The mechanistic background of this concept was primarily focused on adaptive changes in neurones and neuronal networks. We present arguments favoring the more inclusive view, positing that neuroglia are fundamental for defining the cognitive reserve through homeostatic, neuroprotective, and neurodegenerative mechanisms. Neuroglia are critical for the life-long shaping of synaptically connected neuronal circuits as well as the brain connectome thus defining cognitive reserve. Neuroglial homeostatic and protective physiological responses define brain maintenance and resilience, while neuroglia regenerative capabilities are critical for brain compensation in pathology. Targeting neuroglia may represent an untrodden path for prolonging cognitive longevity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Department of Neurosciences, University of the Basque Country, 48940, Leioa, Bizkaia, Spain.
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain.
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloška cesta 4, SI-1000, Ljubljana, Slovenia.
- Celica, BIOMEDICAL, Technology Park 24, 1000, Ljubljana, Slovenia.
| | - Robert Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloška cesta 4, SI-1000, Ljubljana, Slovenia.
- Celica, BIOMEDICAL, Technology Park 24, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Purvis EM, Garcia-Epelboim AD, Krizman EN, O’Donnell JC, Cullen DK. A three-dimensional tissue-engineered rostral migratory stream as an in vitro platform for subventricular zone-derived cell migration. Front Bioeng Biotechnol 2024; 12:1410717. [PMID: 38933539 PMCID: PMC11199690 DOI: 10.3389/fbioe.2024.1410717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
In the brains of most adult mammals, neural precursor cells (NPCs) from the subventricular zone (SVZ) migrate through the rostral migratory stream (RMS) to replace olfactory bulb interneurons. Following brain injury, published studies have shown that NPCs can divert from the SVZ-RMS-OB route and migrate toward injured brain regions, but the quantity of arriving cells, the lack of survival and terminal differentiation of neuroblasts into neurons, and their limited capacity to re-connect into circuitry are insufficient to promote functional recovery in the absence of therapeutic intervention. Our lab has fabricated a biomimetic tissue-engineered rostral migratory stream (TE-RMS) that replicates some notable structural and functional components of the endogenous rat RMS. Based on the design attributes for the TE-RMS platform, it may serve as a regenerative medicine strategy to facilitate sustained neuronal replacement into an injured brain region or an in vitro tool to investigate cell-cell communication and neuroblast migration. Previous work has demonstrated that the TE-RMS replicates the basic structure, unique nuclear shape, cytoskeletal arrangement, and surface protein expression of the endogenous rat RMS. Here, we developed an enhanced TE-RMS fabrication method in hydrogel microchannels that allowed more robust and high-throughput TE-RMS assembly. We report unique astrocyte behavior, including astrocyte bundling into the TE-RMS, the presence of multiple TE-RMS bundles, and observations of discontinuities in TE-RMS bundles, when microtissues are fabricated in agarose microchannels containing different critical curved or straight geometric features. We also demonstrate that we can harvest NPCs from the SVZ of adult rat brains and that EGFP+ cells migrate in chain formation from SVZ neurospheres through the TE-RMS in vitro. Overall, the TE-RMS can be utilized as an in vitro platform to investigate the pivotal cell-cell signaling mechanisms underlying the synergy of molecular cues involved in immature neuronal migration and differentiation.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrés D. Garcia-Epelboim
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Elizabeth N. Krizman
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Fan YY, Li Y, Tian XY, Wang YJ, Huo J, Guo BL, Chen R, Yang CH, Li Y, Zhang HF, Niu BL, Zhang MS. Delayed Chronic Acidic Postconditioning Improves Poststroke Motor Functional Recovery and Brain Tissue Repair by Activating Proton-Sensing TDAG8. Transl Stroke Res 2024; 15:620-635. [PMID: 36853417 DOI: 10.1007/s12975-023-01143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Acidic postconditioning by transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects in the acute phase of stroke. However, the effects of delayed chronic acidic postconditioning (DCAPC) initiated during the subacute phase of stroke or other acute brain injuries are unknown. Mice received daily DCAPC by inhaling 5%/10%/20% CO2 for various durations (three cycles of 10- or 20-min CO2 inhalation/10-min break) at days 3-7, 7-21, or 3-21 after photothrombotic stroke. Grid-walk, cylinder, and gait tests were used to assess motor function. DCAPC with all CO2 concentrations significantly promoted motor functional recovery, even when DCAPC was delayed for 3-7 days. DCAPC enhanced the puncta density of GAP-43 (a marker of axon growth and regeneration) and synaptophysin (a marker of synaptogenesis) and reduced the amoeboid microglia number, glial scar thickness and mRNA expression of CD16 and CD32 (markers of proinflammatory M1 microglia) compared with those of the stroke group. Cerebral blood flow (CBF) increased in response to DCAPC. Furthermore, the mRNA expression of TDAG8 (a proton-activated G-protein-coupled receptor) was increased during the subacute phase of stroke, while DCAPC effects were blocked by systemic knockout of TDAG8, except for those on CBF. DCAPC reproduced the benefits by re-expressing TDAG8 in the peri-infarct cortex of TDAG8-/- mice infected with HBAAV2/9-CMV-TDAG8-3flag-ZsGreen. Taken together, we first showed that DCAPC promoted functional recovery and brain tissue repair after stroke with a wide therapeutic time window of at least 7 days after stroke. Brain-derived TDAG8 is a direct target of DCAPC that induces neuroreparative effects.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Yu Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Ying Tian
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Ying-Jing Wang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Huo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Bao-Lu Guo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Ru Chen
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Cai-Hong Yang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Yan Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hui-Feng Zhang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Bao-Long Niu
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Ming-Sheng Zhang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
8
|
Ruscu M, Glavan D, Surugiu R, Doeppner TR, Hermann DM, Gresita A, Capitanescu B, Popa-Wagner A. Pharmacological and stem cell therapy of stroke in animal models: Do they accurately reflect the response of humans? Exp Neurol 2024; 376:114753. [PMID: 38490317 DOI: 10.1016/j.expneurol.2024.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Cerebrovascular diseases are the second leading cause of death worldwide. Despite significant research investment, the only available therapeutic options are mechanical thrombectomy and tissue plasminogen activator thrombolysis. None of the more than a thousand drugs tested on animal models have proven successful in human clinical trials. Several factors contribute to this poor translation of data from stroke-related animal models to human stroke patients. Firstly, our understanding of the molecular and cellular processes involved in recovering from an ischemic stroke is severely limited. Secondly, although the risk of stroke is particularly high among older patients with comorbidities, most drugs are tested on young, healthy animals in controlled laboratory conditions. Furthermore, in animal models, the tracking of post-stroke recovery typically spans only 3 to 28 days, with occasional extensions to 60 days, whereas human stroke recovery is a more extended and complex process. Thirdly, young animal models often exhibit a considerably higher rate of spontaneous recovery compared to humans following a stroke. Fourth, only a very limited number of animals are utilized for each condition, including control groups. Another contributing factor to the much smaller beneficial effects in humans is that positive outcomes from numerous animal studies are more readily accepted than results reported in human trials that do not show a clear benefit to the patient. Useful recommendations for conducting experiments in animal models, with increased chances of translatability to humans, have been issued by both the STEPS investigative team and the STAIR committee. However, largely, due to economic factors, these recommendations are largely ignored. Furthermore, one might attribute the overall failures in predicting and subsequently developing effective acute stroke therapies beyond thrombolysis to potential design deficiencies in clinical trials.
Collapse
Affiliation(s)
- Mihai Ruscu
- Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Roxana Surugiu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen 45147, Germany
| | - Andrei Gresita
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA
| | - Bogdan Capitanescu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| | - Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| |
Collapse
|
9
|
Lai W, Luo R, Tang Y, Yu Z, Zhou B, Yang Z, Brown J, Hong G. Salidroside directly activates HSC70, revealing a new role for HSC70 in BDNF signalling and neurogenesis after cerebral ischemia. Phytother Res 2024; 38:2619-2640. [PMID: 38488455 DOI: 10.1002/ptr.8178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 02/11/2024] [Indexed: 06/13/2024]
Abstract
Salidroside, a principal bioactive component of Rhodiola crenulata, is neuroprotective across a wide time window in stroke models. We investigated whether salidroside induced neurogenesis after cerebral ischemia and aimed to identify its primary molecular targets. Rats, subjected to transient 2 h of middle cerebral artery occlusion (MCAO), received intraperitoneal vehicle or salidroside ± intracerebroventricular HSC70 inhibitor VER155008 or TrkB inhibitor ANA-12 for up to 7 days. MRI, behavioural tests, immunofluorescent staining and western blotting measured effects of salidroside. Reverse virtual docking and enzymatic assays assessed interaction of salidroside with purified recombinant HSC70. Salidroside dose-dependently decreased cerebral infarct volumes and neurological deficits, with maximal effects by 50 mg/kg/day. This dose also improved performance in beam balance and Morris water maze tests. Salidroside significantly increased BrdU+/nestin+, BrdU+/DCX+, BrdU+/NeuN+, BrdU-/NeuN+ and BDNF+ cells in the peri-infarct cortex, with less effect in striatum and no significant effect in the subventricular zone. Salidroside was predicted to bind with HSC70. Salidroside dose-dependently increased HSC70 ATPase and HSC70-dependent luciferase activities, but it did not activate HSP70. HSC70 immunoreactivity concentrated in the peri-infarct cortex and was unchanged by salidroside. However, VER155008 prevented salidroside-dependent increases of neurogenesis, BrdU-/NeuN+ cells and BDNF+ cells in peri-infarct cortex. Salidroside also increased BDNF protein and p-TrkB/TrkB ratio in ischemic brain, changes prevented by VER155008 and ANA-12, respectively. Additionally, ANA-12 blocked salidroside-dependent neurogenesis and increased BrdU-/NeuN+ cells in the peri-infarct cortex. Salidroside directly activates HSC70, thereby stimulating neurogenesis and neuroprotection via BDNF/TrkB signalling after MCAO. Salidroside and similar activators of HSC70 might provide clinical therapies for ischemic stroke.
Collapse
Affiliation(s)
- Wenfang Lai
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Luo
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuheng Tang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhengshuang Yu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Binbin Zhou
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zelin Yang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - John Brown
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guizhu Hong
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
10
|
Zhao J, Liu S, Xiang X, Zhu X. Versatile strategies for adult neurogenesis: avenues to repair the injured brain. Neural Regen Res 2024; 19:774-780. [PMID: 37843211 PMCID: PMC10664121 DOI: 10.4103/1673-5374.382224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 10/17/2023] Open
Abstract
Brain injuries due to trauma or stroke are major causes of adult death and disability. Unfortunately, few interventions are effective for post-injury repair of brain tissue. After a long debate on whether endogenous neurogenesis actually happens in the adult human brain, there is now substantial evidence to support its occurrence. Although neurogenesis is usually significantly stimulated by injury, the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient. Alternatively, exogenous stem cell transplantation has shown promising results in animal models, but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use. Recently, a high focus was placed on glia-to-neuron conversion under single-factor regulation. Despite some inspiring results, the validity of this strategy is still controversial. In this review, we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury. We also discuss their advantages and drawbacks, as to provide a comprehensive account of their potentials for further studies.
Collapse
Affiliation(s)
- Junyi Zhao
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Siyu Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xianyuan Xiang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong Province, China
| |
Collapse
|
11
|
Passarelli JP, Nimjee SM, Townsend KL. Stroke and Neurogenesis: Bridging Clinical Observations to New Mechanistic Insights from Animal Models. Transl Stroke Res 2024; 15:53-68. [PMID: 36462099 DOI: 10.1007/s12975-022-01109-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
Stroke was the 2nd leading cause of death and a major cause of morbidity. Unfortunately, there are limited means to promote neurological recovery post-stroke, but research has unearthed potential targets for therapies to encourage post-stroke neurogenesis and neuroplasticity. The occurrence of neurogenesis in adult mammalian brains, including humans, was not widely accepted until the 1990s. Now, adult neurogenesis has been extensively studied in human and mouse neurogenic brain niches, of which the subventricular zone of the lateral ventricles and subgranular zone of the dentate gyrus are best studied. Numerous other niches are under investigation for neurogenic potential. This review offers a basic overview to stroke in the clinical setting, a focused summary of recent and foundational research literature on cortical neurogenesis and post-stroke brain plasticity, and insights regarding how the meninges and choroid plexus have emerged as key players in neurogenesis and neuroplasticity in the context of focal cerebral ischemia disrupting the anterior circulation. The choroid plexus and meninges are vital as they are integral sites for neuroimmune interactions, glymphatic perfusion, and niche signaling pertinent to neural stem cells and neurogenesis. Modulating neuroimmune interactions with a focus on astrocyte activity, potentially through manipulation of the choroid plexus and meningeal niches, may reduce the exacerbation of stroke by inflammatory mediators and create an environment conducive to neurorecovery. Furthermore, addressing impaired glymphatic perfusion after ischemic stroke likely supports a neurogenic environment by clearing out inflammatory mediators, neurotoxic metabolites, and other accumulated waste. The meninges and choroid plexus also contribute more directly to promoting neurogenesis: the meninges are thought to harbor neural stem cells and are a niche amenable to neural stem/progenitor cell migration. Additionally, the choroid plexus has secretory functions that directly influences stem cells through signaling mechanisms and growth factor actions. More research to better understand the functions of the meninges and choroid plexus may lead to novel approaches for stimulating neuronal recovery after ischemic stroke.
Collapse
Affiliation(s)
| | - Shahid M Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Sakurai M, Takenaka M, Mitsui Y, Sakai Y, Morimoto M. Prednisolone improves hippocampal regeneration after trimethyltin-induced neurodegeneration in association with prevention of T lymphocyte infiltration. Neuropathology 2024; 44:21-30. [PMID: 37288771 DOI: 10.1111/neup.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
The endogenous regenerative capacity of the brain is quite weak; however, a regenerative reaction, the production of new neurons (neurogenesis), has been reported to occur in brain lesions. In addition, leukocytes are well known to infiltrate brain lesions. Therefore, leukocytes would also have a link with regenerative neurogenesis; however, their role has not been fully elucidated. In this study, we investigated leukocyte infiltration and its influence on brain tissue regeneration in a trimethyltin (TMT)-injected mouse model of hippocampal regeneration. Immunohistochemically, CD3-positive T lymphocytes were found in the hippocampal lesion of TMT-injected mice. Prednisolone (PSL) treatment inhibited T lymphocyte infiltration and increased neuronal nuclei (NeuN)-positive mature neurons and doublecortin (DCX)-positive immature neurons in the hippocampus. Investigation of bromodeoxyuridine (BrdU)-labeled newborn cells revealed the percentage of BrdU/NeuN- and BrdU/DCX-positive cells increased by PSL treatment. These results indicate that infiltrated T lymphocytes prevent brain tissue regeneration by inhibiting hippocampal neurogenesis.
Collapse
Affiliation(s)
- Masashi Sakurai
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Miki Takenaka
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Mitsui
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahiro Morimoto
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
13
|
Ge Y, Yang J, Chen J, Dai M, Dou X, Yao S, Yao C, Lin Y. Absence in CX3CR1 receptor signaling promotes post-ischemic stroke cognitive function recovery through suppressed microglial pyroptosis in mice. CNS Neurosci Ther 2024; 30:e14551. [PMID: 38421089 PMCID: PMC10850801 DOI: 10.1111/cns.14551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Post-stroke cognitive impairment (PSCI) is a major source of morbidity and mortality after stroke, but the pathological mechanisms remain unclear. Previous studies have demonstrated that the CX3CR1 receptor plays a crucial role in maintaining an early protective microenvironment after stroke, but whether it persistently influences cognitive dysfunction in the chronic phase requires further investigation. METHODS Mouse was used to establish a middle cerebral artery occlusion (MCAO)/reperfusion model to study PSCI. Cognitive function was assessed by the Morris water maze (MWM) and the novel object recognition test. Neurogenesis was assessed by immunofluorescence staining with Nestin+ /Ki67+ and DCX+ /BrdU+ double-positive cells. The cerebral damage was monitored by [18 F]-DPA-714 positron emission tomography, Nissel, and TTC staining. The pyroptosis was histologically, biochemically, and electron microscopically examined. RESULTS Upon MCAO, at 28 to 35 days, CX3CR1 knockout (CX3CR1-/- ) mice had better cognitive behavioral performance both in MWM and novel object recognition test than their CX3CR1+/- counterparts. Upon MCAO, at 7 days, CX3CR1-/- mice increased the numbers of Nestin+ /Ki67+ and DCX+ /BrdU+ cells, and meanwhile it decreased the protein expression of GSDMD, NLRP3 inflammasome subunit, caspase-1, mature IL-1β/IL-18, and p-P65 in the hippocampus as compared with CX3CR1+/- mice. In addition, CX3CR1-/- mice could reverse infarct volume in the hippocampus region post-stroke. CONCLUSION Our study demonstrated that CX3CR1 gene deletion was beneficial to PSCI recovery. The mechanism might lie in inhibited pyroptosis and enhanced neurogenesis. CX3CR1 receptor may serve as a therapeutic target for improving the PSCI.
Collapse
Affiliation(s)
- Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chenye Yao
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
14
|
Duan H, Li S, Hao P, Hao F, Zhao W, Gao Y, Qiao H, Gu Y, Lv Y, Bao X, Chiu K, So KF, Yang Z, Li X. Activation of endogenous neurogenesis and angiogenesis by basic fibroblast growth factor-chitosan gel in an adult rat model of ischemic stroke. Neural Regen Res 2024; 19:409-415. [PMID: 37488905 PMCID: PMC10503635 DOI: 10.4103/1673-5374.375344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/04/2023] [Accepted: 04/12/2023] [Indexed: 07/26/2023] Open
Abstract
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation, differentiation, migration, and survival, as well as angiogenesis, in the context of brain injury. However, whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown. In this study, we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats. The gel slowly released basic fibroblast growth factor, which improved the local microenvironment, activated endogenous neural stem/progenitor cells, and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons, while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery. This study revealed the mechanism by which bioactive materials repair ischemic strokes, thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui Qiao
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yiming Gu
- Department of Physical Education, Capital University of Economics and Businessm, Beijing, China
| | - Yang Lv
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kin Chiu
- Department of Psychology, State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
15
|
Taranov A, Bedolla A, Iwasawa E, Brown FN, Baumgartner S, Fugate EM, Levoy J, Crone SA, Goto J, Luo Y. The choroid plexus maintains ventricle volume and adult subventricular zone neuroblast pool, which facilitates post-stroke neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.575277. [PMID: 38328050 PMCID: PMC10849542 DOI: 10.1101/2024.01.22.575277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The brain's neuroreparative capacity after injuries such as ischemic stroke is contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here we report a mouse genetic tool (the ROSA26iDTR mouse line) for non-invasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury. Using this model, we demonstrate that ChP ablation causes rapid and permanent CSF volume loss accompanied by disruption of ependymal cilia bundles. Surprisingly, ChP ablation did not result in overt neurological deficits at one-month post-ablation. However, we observed a pronounced decrease in the pool of SVZ neuroblasts following ChP ablation, which occurs due to their enhanced migration into the olfactory bulb. In the MCAo model of ischemic stroke, neuroblast migration into the lesion site was also reduced in the CSF-depleted mice. Thus, our study establishes an important and novel role of ChP/CSF in regulating the regenerative capacity of the adult brain under normal conditions and after ischemic stroke.
Collapse
Affiliation(s)
- Aleksandr Taranov
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Alicia Bedolla
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Farrah N. Brown
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sarah Baumgartner
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Elizabeth M. Fugate
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Department of Radiology, University of Cincinnati, Cincinnati, USA
| | - Joel Levoy
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Department of Radiology, University of Cincinnati, Cincinnati, USA
| | - Steven A. Crone
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Neurosurgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Neurosurgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
16
|
Velikic G, Maric DM, Maric DL, Supic G, Puletic M, Dulic O, Vojvodic D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int J Mol Sci 2024; 25:993. [PMID: 38256066 PMCID: PMC10816024 DOI: 10.3390/ijms25020993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Regenerative medicine harnesses the body's innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer's and Parkinson's. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Boyle BR, Berghella AP, Blanco-Suarez E. Astrocyte Regulation of Neuronal Function and Survival in Stroke Pathophysiology. ADVANCES IN NEUROBIOLOGY 2024; 39:233-267. [PMID: 39190078 DOI: 10.1007/978-3-031-64839-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The interactions between astrocytes and neurons in the context of stroke play crucial roles in the disease's progression and eventual outcomes. After a stroke, astrocytes undergo significant changes in their morphology, molecular profile, and function, together termed reactive astrogliosis. Many of these changes modulate how astrocytes relate to neurons, inducing mechanisms both beneficial and detrimental to stroke recovery. For example, excessive glutamate release and astrocytic malfunction contribute to excitotoxicity in stroke, eventually causing neuronal death. Astrocytes also provide essential metabolic support and neurotrophic signals to neurons after stroke, ensuring homeostatic stability and promoting neuronal survival. Furthermore, several astrocyte-secreted molecules regulate synaptic plasticity in response to stroke, allowing for the rewiring of neural circuits to compensate for damaged areas. In this chapter, we highlight the current understanding of the interactions between astrocytes and neurons in response to stroke, explaining the varied mechanisms contributing to injury progression and the potential implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Bridget R Boyle
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea P Berghella
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Neurological Surgery, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Nie L, He J, Wang J, Wang R, Huang L, Jia L, Kim YT, Bhawal UK, Fan X, Zille M, Jiang C, Chen X, Wang J. Environmental Enrichment for Stroke and Traumatic Brain Injury: Mechanisms and Translational Implications. Compr Physiol 2023; 14:5291-5323. [PMID: 38158368 DOI: 10.1002/cphy.c230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Acquired brain injuries, such as ischemic stroke, intracerebral hemorrhage (ICH), and traumatic brain injury (TBI), can cause severe neurologic damage and even death. Unfortunately, currently, there are no effective and safe treatments to reduce the high disability and mortality rates associated with these brain injuries. However, environmental enrichment (EE) is an emerging approach to treating and rehabilitating acquired brain injuries by promoting motor, sensory, and social stimulation. Multiple preclinical studies have shown that EE benefits functional recovery, including improved motor and cognitive function and psychological benefits mediated by complex protective signaling pathways. This article provides an overview of the enriched environment protocols used in animal models of ischemic stroke, ICH, and TBI, as well as relevant clinical studies, with a particular focus on ischemic stroke. Additionally, we explored studies of animals with stroke and TBI exposed to EE alone or in combination with multiple drugs and other rehabilitation modalities. Finally, we discuss the potential clinical applications of EE in future brain rehabilitation therapy and the molecular and cellular changes caused by EE in rodents with stroke or TBI. This article aims to advance preclinical and clinical research on EE rehabilitation therapy for acquired brain injury. © 2024 American Physiological Society. Compr Physiol 14:5291-5323, 2024.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin He
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory for Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruike Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lin Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Republic of Korea
| | - Ujjal K Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
19
|
Bautista-Perez SM, Silva-Islas CA, Sandoval-Marquez OU, Toledo-Toledo J, Bello-Martínez JM, Barrera-Oviedo D, Maldonado PD. Antioxidant and Anti-Inflammatory Effects of Garlic in Ischemic Stroke: Proposal of a New Mechanism of Protection through Regulation of Neuroplasticity. Antioxidants (Basel) 2023; 12:2126. [PMID: 38136245 PMCID: PMC10740829 DOI: 10.3390/antiox12122126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Stroke represents one of the main causes of death and disability in the world; despite this, pharmacological therapies against stroke remain insufficient. Ischemic stroke is the leading etiology of stroke. Different molecular mechanisms, such as excitotoxicity, oxidative stress, and inflammation, participate in cell death and tissue damage. At a preclinical level, different garlic compounds have been evaluated against these mechanisms. Additionally, there is evidence supporting the participation of garlic compounds in other mechanisms that contribute to brain tissue recovery, such as neuroplasticity. After ischemia, neuroplasticity is activated to recover cognitive and motor function. Some garlic-derived compounds and preparations have shown the ability to promote neuroplasticity under physiological conditions and, more importantly, in cerebral damage models. This work describes damage/repair mechanisms and the importance of garlic as a source of antioxidant and anti-inflammatory agents against damage. Moreover, we examine the less-explored neurotrophic properties of garlic, culminating in proposals and observations based on our review of the available information. The aim of the present study is to propose that garlic compounds and preparations could contribute to the treatment of ischemic stroke through their neurotrophic effects.
Collapse
Affiliation(s)
- Sandra Monserrat Bautista-Perez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Carlos Alfredo Silva-Islas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Oscar Uriel Sandoval-Marquez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Jesús Toledo-Toledo
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
- Servicio de Cirugía General, Hospital General de Zona #30, Instituto Mexicano del Seguro Social, Mexico City 08300, Mexico
| | - José Manuel Bello-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Departamento Cirugía General, Hospital Central Militar, Mexico City 11600, Mexico
| | - Diana Barrera-Oviedo
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
| | - Perla D. Maldonado
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| |
Collapse
|
20
|
Shen J, Zhang T, Guan H, Li X, Zhang S, Xu G. PDGFR-beta signaling mediates endogenous neurogenesis after postischemic neural stem/progenitor cell transplantation in mice. Brain Inj 2023; 37:1345-1354. [PMID: 37975626 DOI: 10.1080/02699052.2023.2280894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Although platelet-derived growth factor receptor (PDGFR)-β mediates the self-renewal and multipotency of neural stem/progenitor cells (NSPCs) in vitro and in vivo, its mechanisms of activating endogenous NSPCs following ischemic stroke still remain unproven. METHODS The exogenous NSPCs were transplanted into the ischemic striatum of PDGFR-β conditionally neuroepithelial knockout (KO) mice at 24 h after transient middle cerebral artery occlusion (tMCAO). 5-Bromo-2'-deoxyuridine (BrdU) was intraperitoneally injected to label the newly formed endogenous NSPCs. Infarction volume was measured, and behavioral tests were performed. In the subventricular zone (SVZ), proliferation of endogenous NSPCs was tested, and synapse formation and expression of nutritional factors were measured. RESULTS Compared with control mice, KO mice showed larger infarction volume, delayed neurological recovery, reduced numbers of BrdU positive cells, decreased expression of neurogenic factors (including neurofilament, synaptophysin, and brain-derived neurotrophic factor), and decreased synaptic regeneration in SVZ after tMCAO. Moreover, exogenous NSPC transplantation significantly alleviated neurologic dysfunction, promoted neurogenesis, increased expression of neurologic factors, and diminished synaptic deformation in SVZ of FL mice after tMCAO but had no beneficial effect in KO mice. CONCLUSION PDGFR-β signaling may promote activation of endogenous NSPCs after postischemic NSPC transplantation, and thus represents a novel potential regeneration-based therapeutic target.
Collapse
Affiliation(s)
- Jie Shen
- Department of Neurology, Dongguan Binhaiwan Central Hospital, Dongguan, Guang Dong, China
| | - Tong Zhang
- School of Medicine, Shanxi Datong University, Datong, Shanxi, China
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi, China
| | - Hong Guan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xin Li
- Department of Pulmonary and Critical Care Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Sainan Zhang
- Department of Pulmonary and Critical Care Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Guihua Xu
- Department of Science and Education, Dongguan Binhaiwan Central Hospital, Dongguan, Guang Dong, China
- Dongguan Key Laboratory of Precision Medicine
| |
Collapse
|
21
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
22
|
Yang X, Qi Y, Wang C, Zwang TJ, Rommelfanger NJ, Hong G, Lieber CM. Laminin-coated electronic scaffolds with vascular topography for tracking and promoting the migration of brain cells after injury. Nat Biomed Eng 2023; 7:1282-1292. [PMID: 37814007 DOI: 10.1038/s41551-023-01101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/30/2023] [Indexed: 10/11/2023]
Abstract
In the adult brain, neural stem cells are largely restricted into spatially discrete neurogenic niches, and hence areas of neuron loss during neurodegenerative disease or following a stroke or traumatic brain injury do not typically repopulate spontaneously. Moreover, understanding neural activity accompanying the neural repair process is hindered by a lack of minimally invasive devices for the chronic measurement of the electrophysiological dynamics in damaged brain tissue. Here we show that 32 individually addressable platinum microelectrodes integrated into laminin-coated branched polymer scaffolds stereotaxically injected to span a hydrogel-filled cortical lesion and deeper regions in the brains of mice promote neural regeneration while allowing for the tracking of migrating host brain cells into the lesion. Chronic measurements of single-unit activity and neural-circuit analyses revealed the establishment of spiking activity in new neurons in the lesion and their functional connections with neurons deeper in the brain. Electronic implants mimicking the topographical and surface properties of brain vasculature may aid the stimulation and tracking of neural-circuit restoration following injury.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Psychiatry and Behavioral Sciences and Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Yue Qi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Beijing Graphene Institute, Beijing, China
| | - Chonghe Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theodore J Zwang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Lieber Research Group, Lexington, MA, USA.
| |
Collapse
|
23
|
Du W, Wang T, Hu S, Luan J, Tian F, Ma G, Xue J. Engineering of electrospun nanofiber scaffolds for repairing brain injury. ENGINEERED REGENERATION 2023; 4:289-303. [DOI: 10.1016/j.engreg.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023] Open
|
24
|
Bazarek SF, Thaqi M, King P, Mehta AR, Patel R, Briggs CA, Reisenbigler E, Yousey JE, Miller EA, Stutzmann GE, Marr RA, Peterson DA. Engineered neurogenesis in naïve adult rat cortex by Ngn2-mediated neuronal reprogramming of resident oligodendrocyte progenitor cells. Front Neurosci 2023; 17:1237176. [PMID: 37662111 PMCID: PMC10471311 DOI: 10.3389/fnins.2023.1237176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Adult tissue stem cells contribute to tissue homeostasis and repair but the long-lived neurons in the human adult cerebral cortex are not replaced, despite evidence for a limited regenerative response. However, the adult cortex contains a population of proliferating oligodendrocyte progenitor cells (OPCs). We examined the capacity of rat cortical OPCs to be re-specified to a neuronal lineage both in vitro and in vivo. Expressing the developmental transcription factor Neurogenin2 (Ngn2) in OPCs isolated from adult rat cortex resulted in their expression of early neuronal lineage markers and genes while downregulating expression of OPC markers and genes. Ngn2 induced progression through a neuronal lineage to express mature neuronal markers and functional activity as glutamatergic neurons. In vivo retroviral gene delivery of Ngn2 to naive adult rat cortex ensured restricted targeting to proliferating OPCs. Ngn2 expression in OPCs resulted in their lineage re-specification and transition through an immature neuronal morphology into mature pyramidal cortical neurons with spiny dendrites, axons, synaptic contacts, and subtype specification matching local cytoarchitecture. Lineage re-specification of rat cortical OPCs occurred without prior injury, demonstrating these glial progenitor cells need not be put into a reactive state to achieve lineage reprogramming. These results show it may be feasible to precisely engineer additional neurons directly in adult cerebral cortex for experimental study or potentially for therapeutic use to modify dysfunctional or damaged circuitry.
Collapse
Affiliation(s)
- Stanley F. Bazarek
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Mentor Thaqi
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Patrick King
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Amol R. Mehta
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Ronil Patel
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Clark A. Briggs
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Emily Reisenbigler
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Jonathon E. Yousey
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Elis A. Miller
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Grace E. Stutzmann
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Robert A. Marr
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Daniel A. Peterson
- Center for Stem Cell and Regenerative Medicine, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurodegenerative Disease and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
25
|
Alonso Bellido IM, Posada-Pérez M, Hernández-Rasco F, Vázquez-Reyes S, Cabanillas M, Herrera AJ, Bachiller S, Soldán-Hidalgo J, Espinosa-Oliva AM, Joseph B, de Pablos RM, Venero JL, Ruiz R. Microglial Caspase-3 is essential for modulating hippocampal neurogenesis. Brain Behav Immun 2023:S0889-1591(23)00157-5. [PMID: 37327833 DOI: 10.1016/j.bbi.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023] Open
Abstract
Adult hippocampal neurogenesis (AHN) is a process involved in numerous neurodegenerative diseases. Many researchers have described microglia as a key component in regulating the formation and migration of new neurons along the rostral migratory stream. Caspase-3 is a cysteine-aspartate-protease classically considered as one of the main effector caspases in the cell death program process. In addition to this classical function, we have identified the role of this protein as a modulator of microglial function; however, its action on neurogenic processes is unknown. The aim of the present study is to identify the role of Caspase-3 in neurogenesis-related microglial functions. To address this study, Caspase-3 conditional knockout mice in the microglia cell line were used. Using this tool, we wanted to elucidate the role of this protein in microglial function in the hippocampus, the main region in which adult neurogenesis takes place. After the reduction of Caspase-3 in microglia, mutant mice showed a reduction of microglia in the hippocampus, especially in the dentate gyrus region, a region inherently associated to neurogenesis. In addition, we found a reduction in doublecortin-positive neurons in conditional Caspase-3 knockout mice, which corresponds to a reduction in neurogenic neurons. Furthermore, using high-resolution image analysis, we also observed a reduction in the phagocytic capacity of microglia lacking Caspase-3. Behavioral analysis using object recognition and Y-maze tests showed altered memory and learning in the absence of Caspase-3. Finally, we identified specific microglia located specifically in neurogenic niche positive for Galectin 3 which colocalized with Cleaved-Caspase-3 in control mice. Taken together, these results showed the essential role of Caspase-3 in microglial function and highlight the relevant role of this specific microglial phenotype in the maintenance of AHN in the hippocampus.
Collapse
Affiliation(s)
- Isabel M Alonso Bellido
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Mercedes Posada-Pérez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Hernández-Rasco
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Sandra Vázquez-Reyes
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - María Cabanillas
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Antonio J Herrera
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Sara Bachiller
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Laboratory of Immunovirology, Virgen del Rocío University Hospital, Seville, Spain; Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Jesús Soldán-Hidalgo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - José L Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain.
| |
Collapse
|
26
|
Tang H, Li Y, Tang W, Zhu J, Parker GC, Zhang JH. Endogenous Neural Stem Cell-induced Neurogenesis after Ischemic Stroke: Processes for Brain Repair and Perspectives. Transl Stroke Res 2023; 14:297-303. [PMID: 36057034 DOI: 10.1007/s12975-022-01078-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Ischemic stroke is a very common cerebrovascular accident that occurred in adults and causes higher risk of neural deficits. After ischemic stroke, patients are often left with severe neurological deficits. Therapeutic strategies for ischemic stroke might mitigate neuronal loss due to delayed neural cell death in the penumbra or seek to replace dead neural cells in the ischemic core. Currently, stem cell therapy is the most promising approach for inducing neurogenesis for neural repair after ischemic stroke. Stem cell treatments include transplantation of exogenous stem cells but also stimulating endogenous neural stem cells (NSCs) proliferation and differentiation into neural cells. In this review, we will discuss endogenous NSCs-induced neurogenesis after ischemic stroke and provide perspectives for the therapeutic effects of endogenous NSCs in ischemic stroke. Our review would inform future therapeutic development not only for patients with ischemic stroke but also with other neurological deficits.
Collapse
Affiliation(s)
- Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China.
| | - Graham C Parker
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
27
|
Li L, Li X, Han R, Wu M, Ma Y, Chen Y, Zhang H, Li Y. Therapeutic Potential of Chinese Medicine for Endogenous Neurogenesis: A Promising Candidate for Stroke Treatment. Pharmaceuticals (Basel) 2023; 16:ph16050706. [PMID: 37242489 DOI: 10.3390/ph16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Strokes are a leading cause of morbidity and mortality in adults worldwide. Extensive preclinical studies have shown that neural-stem-cell-based treatments have great therapeutic potential for stroke. Several studies have confirmed that the effective components of traditional Chinese medicine can protect and maintain the survival, proliferation, and differentiation of endogenous neural stem cells through different targets and mechanisms. Therefore, the use of Chinese medicines to activate and promote endogenous nerve regeneration and repair is a potential treatment option for stroke patients. Here, we summarize the current knowledge regarding neural stem cell strategies for ischemic strokes and the potential effects of these Chinese medicines on neuronal regeneration.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meirong Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaolei Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzhao Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
28
|
Li J, Li C, Subedi P, Tian X, Lu X, Miriyala S, Panchatcharam M, Sun H. Light Alcohol Consumption Promotes Early Neurogenesis Following Ischemic Stroke in Adult C57BL/6J Mice. Biomedicines 2023; 11:biomedicines11041074. [PMID: 37189692 DOI: 10.3390/biomedicines11041074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Neurogenesis plays a crucial role in postischemic functional recovery. Alcohol dose-dependently affects the prognosis of ischemic stroke. We investigated the impact of light alcohol consumption (LAC) on neurogenesis under physiological conditions and following ischemic stroke. C57BL/6J mice (three months old) were fed with 0.7 g/kg/day ethanol (designed as LAC) or volume-matched water (designed as control) daily for eight weeks. To evaluate neurogenesis, the numbers of 5-bromo-2-deoxyuridine (BrdU)+/doublecortin (DCX)+ and BrdU+/NeuN+ neurons were assessed in the subventricular zone (SVZ), dentate gyrus (DG), ischemic cortex, and ischemic striatum. The locomotor activity was determined by the accelerating rotarod and open field tests. LAC significantly increased BrdU+/DCX+ and BrdU+/NeuN+ cells in the SVZ under physiological conditions. Ischemic stroke dramatically increased BrdU+/DCX+ and BrdU+/NeuN+ cells in the DG, SVZ, ischemic cortex, and ischemic striatum. The increase in BrdU+/DCX+ cells was significantly greater in LAC mice compared to the control mice. In addition, LAC significantly increased BrdU+/NeuN+ cells by about three folds in the DG, SVZ, and ischemic cortex. Furthermore, LAC reduced ischemic brain damage and improved locomotor activity. Therefore, LAC may protect the brain against ischemic stroke by promoting neurogenesis.
Collapse
Affiliation(s)
- Jiyu Li
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Chun Li
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Pushpa Subedi
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Xinli Tian
- Department of Pharmacology, Toxicology & Neuroscience, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Xiaohong Lu
- Department of Pharmacology, Toxicology & Neuroscience, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | | | - Hong Sun
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
29
|
Post-Stroke Environmental Enrichment Improves Neurogenesis and Cognitive Function and Reduces the Generation of Aberrant Neurons in the Mouse Hippocampus. Cells 2023; 12:cells12040652. [PMID: 36831319 PMCID: PMC9954243 DOI: 10.3390/cells12040652] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Ischemic lesions stimulate adult neurogenesis in the dentate gyrus, however, this is not associated with better cognitive function. Furthermore, increased neurogenesis is associated with the formation of aberrant neurons. In a previous study, we showed that a running task after a stroke not only increases neurogenesis but also the number of aberrant neurons without improving general performance. Here, we determined whether stimulation in an enriched environment after a lesion could increase neurogenesis and cognitive function without enhancing the number of aberrant neurons. After an ischemic stroke induced by MCAO, animals were transferred to an enriched environment containing a running wheel, tunnels and nest materials. A GFP-retroviral vector was delivered on day 3 post-stroke and a modified water maze test was performed 6 weeks after the lesion. We found that the enriched environment significantly increased the number of new neurons compared with the unstimulated stroke group but not the number of aberrant cells after a lesion. Increased neurogenesis after environmental enrichment was associated with improved cognitive function. Our study showed that early placement in an enriched environment after a stroke lesion markedly increased neurogenesis and flexible learning but not the formation of aberrant neurons, indicating that rehabilitative training, as a combination of running wheel training and enriched environment housing, improved functional and structural outcomes after a stroke.
Collapse
|
30
|
Constantakis JW, Reed-McBain CA, Famakin B. Astrocyte innate immune activation and injury amplification following experimental focal cerebral ischemia. Neurochem Int 2023; 162:105456. [PMID: 36509233 DOI: 10.1016/j.neuint.2022.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022]
Abstract
Astrocytes are a distinct population of glial cells responsible for many homeostatic functions in normal neural architecture. In the healthy brain, astrocyte functions range from maintenance of the blood brain barrier to modulation of synaptic transmission and neuronal plasticity to glial scar formation post-ischemic injury. In humans, this group of cells exhibits far greater heterogeneity than previously thought-with distinct subpopulations that likely carry out specialized functions. Following ischemic injury, astrocytes take on a distinct phenotype-known as the reactive astrocyte. This phenotype is responsible for both the propagation and amelioration of neuronal injury during ischemia. Following ischemia, astrocytes undergo temporal and spatial-dependent changes in morphology, gene expression, hypertrophy and hyperplasia as a result of signaling within the local microenvironment of the penumbra compared to the core infarct. This elicits a cascade of downstream effects, including inflammation and activation of the innate immune system, which both propagates and ameliorates local injury within the brain parenchyma. This review will focus upon the double-edged sword-that are astrocytes and the innate immune system. We will discuss the role that astrocytes and the innate immune system play in amplifying secondary brain injury, as well as attenuating ischemic damage. Specifically, we will focus on molecular signaling and processes that could be targeted as potential therapeutic interventions.
Collapse
Affiliation(s)
- John W Constantakis
- Department of Neurology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Catherine A Reed-McBain
- Department of Dermatology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Bolanle Famakin
- Department of Neurology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
31
|
Adult Neurogenesis: A Potential Target for Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
32
|
Roshan SA, Elangovan G, Gunaseelan D, Jayachandran SK, Kandasamy M, Anusuyadevi M. Pathogenomic Signature and Aberrant Neurogenic Events in Experimental Cerebral Ischemic Stroke: A Neurotranscriptomic-Based Implication for Dementia. J Alzheimers Dis 2023; 94:S289-S308. [PMID: 36776051 PMCID: PMC10473090 DOI: 10.3233/jad-220831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 02/12/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is caused due to neurovascular damage or thrombosis, leading to neuronal dysfunction, neuroinflammation, neurodegeneration, and regenerative failure responsible for neurological deficits and dementia. The valid therapeutic targets against cerebral stroke remain obscure. Thus, insight into neuropathomechanisms resulting from the aberrant expression of genes appears to be crucial. OBJECTIVE In this study, we have elucidated how neurogenesis-related genes are altered in experimental stroke brains from the available transcriptome profiles in correlation with transcriptome profiles of human postmortem stroke brain tissues. METHODS The transcriptome datasets available on the middle cerebral artery occlusion (MCAo) rat brains were obtained from the Gene Expression Omnibus, National Center for Biotechnology Information. Of the available datasets, 97 samples were subjected to the meta-analysis using the network analyst tool followed by Cytoscape-based enrichment mapping analysis. The key differentially expressed genes (DEGs) were validated and compared with transcriptome profiling of human stroke brains. RESULTS Results revealed 939 genes are differently expressed in the brains of the MCAo rat model of stroke, in which 30 genes are key markers of neural stem cells, and regulators of neurogenic processes. Its convergence with DEGs from human stroke brains has revealed common targets. CONCLUSION This study has established a panel of highly important DEGs to signify the potential therapeutic targets for neuroregenerative strategy against pathogenic events associated with cerebral stroke. The outcome of the findings can be translated to mitigate neuroregeneration failure seen in various neurological and metabolic disease manifestations with neurocognitive impairments.
Collapse
Affiliation(s)
- Syed Aasish Roshan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Gayathri Elangovan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dharani Gunaseelan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Swaminathan K. Jayachandran
- Drug Discovery and Molecular Cardiology Laboratory, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- University Grants Commission-Faculty Recharge Program (UGC-FRP), New Delhi, India
| | - Muthuswamy Anusuyadevi
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
33
|
Hossain MM, Belkadi A, Zhou X, DiCicco-Bloom E. Exposure to deltamethrin at the NOAEL causes ER stress and disruption of hippocampal neurogenesis in adult mice. Neurotoxicology 2022; 93:233-243. [DOI: 10.1016/j.neuro.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
|
34
|
Kot M, Neglur PK, Pietraszewska A, Buzanska L. Boosting Neurogenesis in the Adult Hippocampus Using Antidepressants and Mesenchymal Stem Cells. Cells 2022; 11:cells11203234. [PMID: 36291101 PMCID: PMC9600461 DOI: 10.3390/cells11203234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus is one of the few privileged regions (neural stem cell niche) of the brain, where neural stem cells differentiate into new neurons throughout adulthood. However, dysregulation of hippocampal neurogenesis with aging, injury, depression and neurodegenerative disease leads to debilitating cognitive impacts. These debilitating symptoms deteriorate the quality of life in the afflicted individuals. Impaired hippocampal neurogenesis is especially difficult to rescue with increasing age and neurodegeneration. However, the potential to boost endogenous Wnt signaling by influencing pathway modulators such as receptors, agonists, and antagonists through drug and cell therapy-based interventions offers hope. Restoration and augmentation of hampered Wnt signaling to facilitate increased hippocampal neurogenesis would serve as an endogenous repair mechanism and contribute to hippocampal structural and functional plasticity. This review focuses on the possible interaction between neurogenesis and Wnt signaling under the control of antidepressants and mesenchymal stem cells (MSCs) to overcome debilitating symptoms caused by age, diseases, or environmental factors such as stress. It will also address some current limitations hindering the direct extrapolation of research from animal models to human application, and the technical challenges associated with the MSCs and their cellular products as potential therapeutic solutions.
Collapse
Affiliation(s)
- Marta Kot
- Correspondence: ; Tel.: +48-22-60-86-563
| | | | | | | |
Collapse
|
35
|
Yuan Y, Liu L, Du Y, Fan R, Zhang R, Zhou N. p-hydroxy benzaldehyde revitalizes the microenvironment of peri-infarct cortex in rats after cerebral ischemia-reperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154379. [PMID: 35987017 DOI: 10.1016/j.phymed.2022.154379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The formation of glial scar around the ischemic core following cerebral blood interruption exerts a protective effect in the subacute phase but impedes neurorepair in the chronic phase. Therefore, the present study aimed to explore whether p-hydroxy benzaldehyde (p-HBA), a phenolic compound isolated from Gastrodia elata Blume, can cut the Gordian knot of glial scar and promote brain repair after cerebral ischemia. METHODS The effects of p-HBA on neurorepair were evaluated using a rat model of transient middle cerebral artery occlusion (tMCAO). The motor functions were evaluated by neurobehavioral tests, the pathophysiological processes in the peri-infarct cortex (PIC) were detected by viral-based lineage tracking or immunofluorescence staining, and the putative signaling pathway was analyzed by western blot. RESULTS Administration of p-HBA in the acute stage after stroke onset alleviated the motor impairment in tMCAO rats in a time-dependent manner. The corresponding cellular events were inhibition of astrogliosis, facilitating the conversion of reactive astrocytes (RAs) into neurons, and prompting angiogenesis in PIC, thereby protecting the structure of the neurovascular unit (NVU). One of the underlying molecular mechanisms is the activation of the neurogenic switch of the Wnt/β-catenin signaling pathway. Notably, p-HBA only promotes astrocyte-to-neuron conversion in the PIC, and only partial RAs were converted to neurons. This pattern of conversion ensures that the brain structure remains unaltered, and the beneficial role of glial scarring is preserved during the subacute phase after ischemia. CONCLUSIONS These results provided a potential approach to address the dilemma of glial scarring after brain injury, i.e., the pharmacological promotion of astrocyte-to-neuron conversion in the PIC without interfering with normal brain tissue, which mitigates but does not eliminate the glial scar. Subsequently, the neuron rescue-unfriendly environment is switched to a beneficial reconstruction milieu in PIC, which is conducive to neurorepair. Moreover, p-HBA could be a candidate for pharmacological intervention.
Collapse
Affiliation(s)
- Yajin Yuan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Lijun Liu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Yao Du
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Ruoxi Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Rongping Zhang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Ningna Zhou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China.
| |
Collapse
|
36
|
Kennedy L, Glesaaen ER, Palibrk V, Pannone M, Wang W, Al-Jabri A, Suganthan R, Meyer N, Austbø ML, Lin X, Bergersen LH, Bjørås M, Rinholm JE. Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia. eLife 2022; 11:76451. [PMID: 35942676 PMCID: PMC9363115 DOI: 10.7554/elife.76451] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Neonatal cerebral hypoxia-ischemia (HI) is the leading cause of death and disability in newborns with the only current treatment being hypothermia. An increased understanding of the pathways that facilitate tissue repair after HI may aid the development of better treatments. Here, we study the role of lactate receptor HCAR1 in tissue repair after neonatal HI in mice. We show that HCAR1 knockout mice have reduced tissue regeneration compared with wildtype mice. Furthermore, proliferation of neural progenitor cells and glial cells, as well as microglial activation was impaired. Transcriptome analysis showed a strong transcriptional response to HI in the subventricular zone of wildtype mice involving about 7300 genes. In contrast, the HCAR1 knockout mice showed a modest response, involving about 750 genes. Notably, fundamental processes in tissue repair such as cell cycle and innate immunity were dysregulated in HCAR1 knockout. Our data suggest that HCAR1 is a key transcriptional regulator of pathways that promote tissue regeneration after HI.
Collapse
Affiliation(s)
- Lauritz Kennedy
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Emilie R Glesaaen
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vuk Palibrk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marco Pannone
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ali Al-Jabri
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Niklas Meyer
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marie Landa Austbø
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiaolin Lin
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Linda H Bergersen
- The Brain and Muscle Energy Group, Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johanne E Rinholm
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Wilson KL, Pérez SCL, Naffaa MM, Kelly SH, Segura T. Stoichiometric Post-Modification of Hydrogel Microparticles Dictates Neural Stem Cell Fate in Microporous Annealed Particle Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201921. [PMID: 35731241 PMCID: PMC9645378 DOI: 10.1002/adma.202201921] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/07/2022] [Indexed: 05/16/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are generated from assembled hydrogel microparticles (microgels). It has been previously demonstrated that MAP scaffold are porous, biocompatible, and recruit neural progenitor cells (NPCs) to the stroke cavity after injection into the stroke core. Here, the goal is to study NPC fate inside MAP scaffolds in vitro. To create plain microgels that can later be converted to contain different types of bioactivities, the inverse electron-demand Diels-Alder reaction between tetrazine and norbornene is utilized, which allows the post-modification of plain microgels stoichiometrically. As a result of adhesive peptide attachment, NPC spreading leads to contractile force generation which can be recorded by tracking microgel displacement. Alternatively, non-adhesive peptide integration results in neurosphere formation that grows within the void space of MAP scaffolds. Although the formed neurospheres do not impose a contractile force on the scaffolds, they are seen to continuously transverse the scaffolds. It is concluded that MAP scaffolds can be engineered to either promote neurogenesis or enhance stemness depending on the chosen post-modifications of the microgels, which can be key in modulating their phenotypes in various applications in vivo.
Collapse
Affiliation(s)
- Katrina L Wilson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
| | - Sasha Cai Lesher Pérez
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 28, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA
| | - Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA
| | - Sean H Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
- Department of Neurology, Duke University, Durham, NC, 27708-0281, USA
- Department of Dermatology, Duke University, Durham, NC, 27708-0281, USA
| |
Collapse
|
38
|
Asgari Taei A, Dargahi L, Khodabakhsh P, Kadivar M, Farahmandfar M. Hippocampal neuroprotection mediated by secretome of human mesenchymal stem cells against experimental stroke. CNS Neurosci Ther 2022; 28:1425-1438. [PMID: 35715988 PMCID: PMC9344087 DOI: 10.1111/cns.13886] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/26/2022] Open
Abstract
Aims Regenerative medicine literature has demonstrated that the therapeutic potentials of mesenchymal stem cells (MSCs) in experimental stroke are attributed to secreted bioactive factors rather than to cell replacement. Here, we explored the effects of secretome or conditioned medium (CM) derived from human embryonic stem cell‐derived MSCs (hESC‐MSCs) on hippocampal neurogenesis, inflammation, and apoptosis in experimental stroke. Methods Ischemic stroke was induced by right middle cerebral artery occlusion (MCAO) in male Wistar rats, and CM was infused either one time (1‐h post‐stroke; CM1) or three times (1‐, 24‐, and 48‐h post‐stroke; CM3) into left lateral ventricle. Neurogenesis markers (Nestin, Ki67, Doublecortin, and Reelin) were assessed at transcript and protein levels in the dentate gyrus of the hippocampus on day seven following MCAO. In parallel, changes in the gene expression of markers of apoptosis (Bax and Bim, as well as an anti‐apoptotic marker of Bcl2), inflammation (IL‐1β and IL‐6, as well as IL‐10 as an anti‐inflammatory cytokine), trophic factors (BDNF, GDNF, NGF, and NT‐3), and angiogenesis (CD31 and VEGF) in the hippocampus were assessed. Results Our results demonstrate that CM3 treatment could stimulate neurogenesis and angiogenesis concomitant with inhibition of inflammation, apoptosis, and neuronal loss in ischemic brains. Furthermore, rats treated with CM3 exhibited upregulation in neurotrophic factors. Conclusion Our results suggest that hESC‐MSC‐CM could promote neurogenesis and protect brain tissue from ischemic injury, partly mediated by induction of angiogenesis and neurotrophic factors and inhibition of inflammatory and apoptotic factors expression.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Expression of Trace Amine-Associated Receptors in the Murine and Human Hippocampus Based on Public Transcriptomic Data. Cells 2022; 11:cells11111813. [PMID: 35681508 PMCID: PMC9180029 DOI: 10.3390/cells11111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Hippocampus is one of the neurogenic zones where adult neurogenesis takes place. This process is quite complex and has a multicomponent regulation. A family of G protein-coupled trace amine-associated receptors (TAARs) was discovered only in 2001, and most of them (TAAR2-TAAR9) were primarily considered olfactory. Recent studies have shown, however, that they are also expressed in the mouse brain, particularly in limbic formations, and can play a role in the regulation of emotional behaviors. The observations in knockout mice indicate that at least two members of the family, TAAR2 and TAAR5, have an impact on the regulation of adult neurogenesis. In the present study, we analyzed the expression of TAARs in the murine and human hippocampus using public RNAseq datasets. Our results indicate a low but detectable level of certain TAARs expression in the hippocampal cells in selected high-quality transcriptomic datasets from both mouse and human samples. At the same time, we observed the difference between humans, where TAAR6 expression was the highest, and murine samples, where TAAR1, TAAR2, TAAR3, TAAR4 and TAAR5 are more pronouncedly expressed. These observations provide further support to the data gained in knockout mice, indicating a role of TAARs in the regulation of adult neurogenesis in the hippocampus.
Collapse
|
40
|
Mdzinarishvili A, Houson H, Hedrick A, Awasthi V. Evaluation of anti-inflammatory diphenyldihaloketone EF24 in transient ischemic stroke model. Brain Inj 2022; 36:279-286. [PMID: 35254869 DOI: 10.1080/02699052.2022.2034959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Revascularization is necessary in patients with ischemic stroke, however it does not address inflammation that contribute to reperfusion injury and the early growth of ischemic core. We investigated EF24, an anti-inflammatory agent, in a stroke model. METHODS Ischemic stroke was induced in mice by occluding middle cerebral artery for 1 h followed by reperfusion. EF24 was given either 10 min post-reperfusion (EF24Post) or 10 min before occlusion (prophylactic, EF24Pro). Survival, ipsilateral uptake of radioactive infarct marker 18F-fluoroglucaric acid (FGA), inflammatory cytokines, and tetrazolium chloride (TTC) staining were assessed. RESULTS Survival was increased in both EF24-treated groups compared to the stroke+vehicle group. Ipsilateral 18F-FGA uptake increased 2.6-fold in stroke+vehicle group compared to sham group (p < 0.05); the uptake in EF24-treated groups and sham group was not significantly different. TTC-staining also showed reduction in infarct size by EF24 treatment. Plasma IL-6, TNF-α, and corticosterone did not show significant changes among groups. However, ipsilateral tissue in stroke+vehicle mice showed increased IL-6 (>90-fold) and TNF-α (3-fold); the tissue IL-6 and TNF-α were significantly reduced in stroke+EF24Pro and stroke+EF24Post groups. 18F-FGA uptake significantly correlated with tissue IL-6 levels. CONCLUSIONS EF24 controls infarct growth and suppresses tissue inflammation in ischemic stroke, which can be monitored by 18F-FGA uptake.
Collapse
Affiliation(s)
- Alexander Mdzinarishvili
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hailey Houson
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andria Hedrick
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
41
|
Verma N, Fazioli A, Matijasich P. Natural recovery and regeneration of the central nervous system. Regen Med 2022; 17:233-244. [DOI: 10.2217/rme-2021-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The diagnosis and management of CNS injuries comprises a large portion of psychiatric practice. Many clinical and preclinical studies have demonstrated the benefit of treating CNS injuries using various regenerative techniques and materials such as stem cells, biomaterials and genetic modification. Therefore it is the goal of this review article to briefly summarize the pathogenesis of CNS injuries, including traumatic brain injuries, spinal cord injuries and cerebrovascular accidents. Next, we discuss the role of natural recovery and regeneration of the CNS, explore the relevance in clinical practice and discuss emerging and cutting-edge treatments and current barriers in the field of regenerative medicine.
Collapse
Affiliation(s)
- Nikhil Verma
- Essential Sports & Spine Solutions, 6100 East Main Street 107, Columbus, OH 43213, USA
| | - Alex Fazioli
- Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Paige Matijasich
- University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
42
|
Lewis LA, Urban CM, Hashim SA. A Non-Invasive Determination of Ketosis-Induced Elimination of Chronic Daytime Somnolence in a Patient with Late-Stage Dementia (Assessed with Type 3 Diabetes): A Potential Role of Neurogenesis. J Alzheimers Dis Rep 2022; 5:827-846. [PMID: 35088033 PMCID: PMC8764628 DOI: 10.3233/adr-210315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 11/15/2022] Open
Abstract
Background The study involved a female patient diagnosed with late-stage dementia, with chronic daytime somnolence (CDS) as a prominent symptom. Objective To explore whether her dementia resulted from Type 3 diabetes, and whether it could be reversed through ketosis therapy. Methods A ketogenic diet (KD) generating low-dose 100 μM Blood Ketone Levels (BKL) enhanced by a brief Ketone Mono Ester (KME) regimen with high-dose 2-4 mM BKLs was used. Results Three sets of data describe relief (assessed by % days awake) from CDS: 1) incremental, slow, time-dependent KD plus KME-induced sigmoid curve responses which resulted in partial wakefulness (0-40% in 255 days) and complete wakefulness (40-85% in 50 days); 2) both levels of wakefulness were shown to be permanent; 3) initial permanent relief from CDS with low-dose ketosis from 6.7% to 40% took 87 days. Subsequent low-dose recovery from illness-induced CDS (6.9% to 40%) took 10 days. We deduce that the first restoration involved permanent repair, and the second energized the repaired circuits. Conclusion The results suggest a role for ketosis in the elimination of CDS with the permanent functional restoration of the awake neural circuits of the Sleep-Wake cycle. We discuss whether available evidence supports ketosis-induced bioenergetics alone or whether other mechanisms of functional renewal were the basis for the elimination of CDS. Given evidence for permanent repair, two direct links between ketosis and neurogenesis in the adult mammalian brain are discussed: Ketosis-induced 1) brain-derived neurotrophic factor, resulting in neural progenitor/stem cell proliferation, and 2) mitochondrial bioenergetics-induced stem cell biogenesis.
Collapse
Affiliation(s)
- Leslie A Lewis
- York College of the City University of New York, Jamaica, NY, USA
| | - Carl M Urban
- Department of Medicine, The Dr. James J. Rahal, Jr. Division of Infectious Diseases, New York Presbyterian/Queens, Flushing, NY, USA
| | - Sami A Hashim
- Division of Endocrinology, Mt. Sinai Morningside, New York, NY, USA
| |
Collapse
|
43
|
Var SR, Shetty AV, Grande AW, Low WC, Cheeran MC. Microglia and Macrophages in Neuroprotection, Neurogenesis, and Emerging Therapies for Stroke. Cells 2021; 10:3555. [PMID: 34944064 PMCID: PMC8700390 DOI: 10.3390/cells10123555] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022] Open
Abstract
Stroke remains the number one cause of morbidity in the United States. Within weeks to months after an ischemic event, there is a resolution of inflammation and evidence of neurogenesis; however, years following a stroke, there is evidence of chronic inflammation in the central nervous system, possibly by the persistence of an autoimmune response to brain antigens as a result of ischemia. The mechanisms underlying the involvement of macrophage and microglial activation after stroke are widely acknowledged as having a role in ischemic stroke pathology; thus, modulating inflammation and neurological recovery is a hopeful strategy for treating the long-term outcomes after ischemic injury. Current treatments fail to provide neuroprotective or neurorestorative benefits after stroke; therefore, to ameliorate brain injury-induced deficits, therapies must alter both the initial response to injury and the subsequent inflammatory process. This review will address differences in macrophage and microglia nomenclature and summarize recent work in elucidating the mechanisms of macrophage and microglial participation in antigen presentation, neuroprotection, angiogenesis, neurogenesis, synaptic remodeling, and immune modulating strategies for treating the long-term outcomes after ischemic injury.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (S.R.V.); (A.W.G.)
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Anala V. Shetty
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
- Department of Biological Sciences, University of Minnesota Medical School, Minneapolis, MN 55108, USA
| | - Andrew W. Grande
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (S.R.V.); (A.W.G.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (S.R.V.); (A.W.G.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Maxim C. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
44
|
The Antioxidant Phytochemical Schisandrin A Promotes Neural Cell Proliferation and Differentiation after Ischemic Brain Injury. Molecules 2021; 26:molecules26247466. [PMID: 34946548 PMCID: PMC8706049 DOI: 10.3390/molecules26247466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Schisandrin A (SCH) is a natural bioactive phytonutrient that belongs to the lignan derivatives found in Schisandra chinensis fruit. This study aims to investigate the impact of SCH on promoting neural progenitor cell (NPC) regeneration for avoiding stroke ischemic injury. The promoting effect of SCH on NPCs was evaluated by photothrombotic model, immunofluorescence, cell line culture of NPCs, and Western blot assay. The results showed that neuron-specific class III beta-tubulin (Tuj1) was positive with Map2 positive nerve fibers in the ischemic area after using SCH. In addition, Nestin and SOX2 positive NPCs were significantly (p < 0.05) increased in the penumbra and core. Further analysis identified that SCH can regulate the expression level of cell division control protein 42 (Cdc42). In conclusion, our findings suggest that SCH enhanced NPCs proliferation and differentiation possible by Cdc42 to regulated cytoskeletal rearrangement and polarization of cells, which provides new hope for the late recovery of stroke.
Collapse
|
45
|
Neuroprotective and Proneurogenic Effects of Glucosamine in an Internal Carotid Artery Occlusion Model of Ischemia. Neuromolecular Med 2021; 24:268-273. [PMID: 34837638 DOI: 10.1007/s12017-021-08697-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Neuroprotective, antineuroinflammatory, and proneurogenic effects of glucosamine, a naturally occurring amino sugar, have been reported in various animal models of brain injury including cerebral ischemia and hypoxic brain damage. Given that clinical translation of therapeutic candidates identified in animal models of ischemic stroke has remained unsatisfactory in general, possibly due to inadequacy of existing models, we sought to study the effects of glucosamine in a recently developed, clinical condition mimicking mouse model of internal cerebral artery occlusion. In this model of mild to moderate striatal damage, glucosamine ameliorated behavioral dysfunction, rescued ischemia-induced striatal damage, and suppressed ischemia-induced upregulation of proinflammatory genes in striatal tissue. Further, in ex vivo neurosphere assay involving neural stem cells/neural progenitor cells from subventricular zone, glucosamine increased the number of large neurospheres, along with enhancing mRNA levels of the proliferation markers Nestin, NeuroD1, and Sox2. Lastly, coronal brain sections containing the striatal region with subventricular zone showed increased number of BrdU positive cells and DCX positive cells, a marker for newly differentiating and immature neurons, in glucosamine-treated ischemic mice. Cumulatively, the results confirming neuroprotective, antineuroinflammatory, and proneurogenic effects of glucosamine enhance drug repurposing potential of glucosamine in cerebral ischemia.
Collapse
|
46
|
Vandestadt C, Vanwalleghem GC, Khabooshan MA, Douek AM, Castillo HA, Li M, Schulze K, Don E, Stamatis SA, Ratnadiwakara M, Änkö ML, Scott EK, Kaslin J. RNA-induced inflammation and migration of precursor neurons initiates neuronal circuit regeneration in zebrafish. Dev Cell 2021; 56:2364-2380.e8. [PMID: 34428400 DOI: 10.1016/j.devcel.2021.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
Tissue regeneration and functional restoration after injury are considered as stem- and progenitor-cell-driven processes. In the central nervous system, stem cell-driven repair is slow and problematic because function needs to be restored rapidly for vital tasks. In highly regenerative vertebrates, such as zebrafish, functional recovery is rapid, suggesting a capability for fast cell production and functional integration. Surprisingly, we found that migration of dormant "precursor neurons" to the injury site pioneers functional circuit regeneration after spinal cord injury and controls the subsequent stem-cell-driven repair response. Thus, the precursor neurons make do before the stem cells make new. Furthermore, RNA released from the dying or damaged cells at the site of injury acts as a signal to attract precursor neurons for repair. Taken together, our data demonstrate an unanticipated role of neuronal migration and RNA as drivers of neural repair.
Collapse
Affiliation(s)
- Celia Vandestadt
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Gilles C Vanwalleghem
- The Queensland Brain Institute, the University of Queensland, St. Lucia, QLD, Australia
| | - Mitra Amiri Khabooshan
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Alon M Douek
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Hozana Andrade Castillo
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia; Brazilian Biosciences National Laboratory, Brazilian Centre for Research in Energy and Materials, Campinas CEP 13083-100, Brazil
| | - Mei Li
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Keith Schulze
- Monash Micro Imaging, Monash University, Monash University, Clayton, VIC 3800, Australia
| | - Emily Don
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | | | - Madara Ratnadiwakara
- Centre for Reproductive Health and Center for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Center for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Ethan K Scott
- The Queensland Brain Institute, the University of Queensland, St. Lucia, QLD, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia.
| |
Collapse
|
47
|
Owino S, Giddens MM, Jiang JG, Nguyen TT, Shiu FH, Lala T, Gearing M, McCrary MR, Gu X, Wei L, Yu SP, Hall RA. GPR37 modulates progenitor cell dynamics in a mouse model of ischemic stroke. Exp Neurol 2021; 342:113719. [PMID: 33839144 PMCID: PMC9826632 DOI: 10.1016/j.expneurol.2021.113719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 01/11/2023]
Abstract
The generation of neural stem and progenitor cells following injury is critical for the function of the central nervous system, but the molecular mechanisms modulating this response remain largely unknown. We have previously identified the G protein-coupled receptor 37 (GPR37) as a modulator of ischemic damage in a mouse model of stroke. Here we demonstrate that GPR37 functions as a critical negative regulator of progenitor cell dynamics and gliosis following ischemic injury. In the central nervous system, GPR37 is enriched in mature oligodendrocytes, but following injury we have found that its expression is dramatically increased within a population of Sox2-positive progenitor cells. Moreover, the genetic deletion of GPR37 did not alter the number of mature oligodendrocytes following injury but did markedly increase the number of both progenitor cells and injury-induced Olig2-expressing glia. Alterations in the glial environment were further evidenced by the decreased activation of oligodendrocyte precursor cells. These data reveal that GPR37 regulates the response of progenitor cells to ischemic injury and provides new perspectives into the potential for manipulating endogenous progenitor cells following stroke.
Collapse
Affiliation(s)
- Sharon Owino
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michelle M. Giddens
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jessie G. Jiang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - TrangKimberly T. Nguyen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fu Hung Shiu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Myles R. McCrary
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan P. Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA;,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA 30033, USA
| | - Randy A. Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
48
|
Asgari Taei A, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed Pharmacother 2021; 140:111709. [PMID: 34020250 DOI: 10.1016/j.biopha.2021.111709] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
It is well accepted that the success of mesenchymal stem cells (MSCs) therapy against experimental stroke is mainly due to cellular paracrine manners rather than to replace lost tissue per se. Given such "bystander" effects, cell-free therapeutics manifest as a promising approach in regenerative medicine. Here we aimed at evaluating the effect of conditioned medium (CM) derived from human embryonic MSCs (hESC-MSC) on the neurological deficit, neurogenesis, and angiogenesis in experimental stroke. Adult male Wistar rats subjected to middle cerebral artery occlusion (MCAO), were treated with intracerebroventricular CM either one time (1 h post MCAO) or three times (1, 24, and 48 h post MCAO). Motor performance was assessed by the cylinder test on days 3 and 7. Cerebral samples were obtained for infarct size and molecular analysis on day 7 post-injury. Neurogenesis was evaluated by probing Nestin, Ki67, DCX, and Reelin transcripts and protein levels in the striatum, cortex, subventricular zone, and corpus callosum. The mRNA and protein expression of CD31 were also assessed in the striatum and cortical region to estimate angiogenesis post MCAO. Our findings demonstrate that CM treatment could significantly ameliorate neurological deficits and infarct volume in MCAO rats. Furthermore, ischemic stroke was associated with higher levels of neurogenesis and angiogenesis markers. Following treatment with CM, these markers were further potentiated in the brain regions. This study suggests that the therapeutic benefits of CM obtained from hESC-MSCs at least partly are mediated through improved neurogenesis and angiogenesis to accelerate the recovery of cerebral ischemia insult.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Hamblin MH, Lee JP. Neural Stem Cells for Early Ischemic Stroke. Int J Mol Sci 2021; 22:ijms22147703. [PMID: 34299322 PMCID: PMC8306669 DOI: 10.3390/ijms22147703] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical treatments for ischemic stroke are limited. Neural stem cell (NSC) transplantation can be a promising therapy. Clinically, ischemia and subsequent reperfusion lead to extensive neurovascular injury that involves inflammation, disruption of the blood-brain barrier, and brain cell death. NSCs exhibit multiple potentially therapeutic actions against neurovascular injury. Currently, tissue plasminogen activator (tPA) is the only FDA-approved clot-dissolving agent. While tPA’s thrombolytic role within the vasculature is beneficial, tPA’s non-thrombolytic deleterious effects aggravates neurovascular injury, restricting the treatment time window (time-sensitive) and tPA eligibility. Thus, new strategies are needed to mitigate tPA’s detrimental effects and quickly mediate vascular repair after stroke. Up to date, clinical trials focus on the impact of stem cell therapy on neuro-restoration by delivering cells during the chronic stroke stage. Also, NSCs secrete factors that stimulate endogenous repair mechanisms for early-stage ischemic stroke. This review will present an integrated view of the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury, with an emphasis on early-stage ischemic stroke. Further, this will highlight the impact of early sub-acute NSC delivery on improving short-term and long-term stroke outcomes.
Collapse
Affiliation(s)
- Milton H. Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| |
Collapse
|
50
|
An implantable human stem cell-derived tissue-engineered rostral migratory stream for directed neuronal replacement. Commun Biol 2021; 4:879. [PMID: 34267315 PMCID: PMC8282659 DOI: 10.1038/s42003-021-02392-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
The rostral migratory stream (RMS) facilitates neuroblast migration from the subventricular zone to the olfactory bulb throughout adulthood. Brain lesions attract neuroblast migration out of the RMS, but resultant regeneration is insufficient. Increasing neuroblast migration into lesions has improved recovery in rodent studies. We previously developed techniques for fabricating an astrocyte-based Tissue-Engineered RMS (TE-RMS) intended to redirect endogenous neuroblasts into distal brain lesions for sustained neuronal replacement. Here, we demonstrate that astrocyte-like-cells can be derived from adult human gingiva mesenchymal stem cells and used for TE-RMS fabrication. We report that key proteins enriched in the RMS are enriched in TE-RMSs. Furthermore, the human TE-RMS facilitates directed migration of immature neurons in vitro. Finally, human TE-RMSs implanted in athymic rat brains redirect migration of neuroblasts out of the endogenous RMS. By emulating the brain’s most efficient means for directing neuroblast migration, the TE-RMS offers a promising new approach to neuroregenerative medicine. O’Donnell et al. describe their Tissue-Engineered Rostral Migratory Stream (TE-RMS) comprised of human astrocyte-like cells that can be derived from adult gingival stem cells within one week, which reorganizes into bundles of bidirectional, longitudinally-aligned astrocytes to emulate the endogenous RMS. Establishing immature neuronal migration in vitro and in vivo, their study demonstrates surgical feasibility and proof-of-concept evidence for this nascent technology.
Collapse
|