1
|
Porozhan Y, Carstensen M, Thouroude S, Costallat M, Rachez C, Batsché E, Petersen T, Christensen T, Muchardt C. Defective Integrator activity shapes the transcriptome of patients with multiple sclerosis. Life Sci Alliance 2024; 7:e202402586. [PMID: 39029934 PMCID: PMC11259605 DOI: 10.26508/lsa.202402586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
HP1α/CBX5 is an epigenetic regulator with a suspected role in multiple sclerosis (MS). Here, using high-depth RNA sequencing on monocytes, we identified a subset of MS patients with reduced CBX5 expression, correlating with progressive stages of the disease and extensive transcriptomic alterations. Examination of rare non-coding RNA species in these patients revealed impaired maturation/degradation of U snRNAs and enhancer RNAs, indicative of reduced activity of the Integrator, a complex with suspected links to increased MS risk. At protein-coding genes, compromised Integrator activity manifested in reduced pre-mRNA splicing efficiency and altered expression of genes regulated by RNA polymerase II pause-release. Inactivation of Cbx5 in the mouse mirrored most of these transcriptional defects and resulted in hypersensitivity to experimental autoimmune encephalomyelitis. Collectively, our observations suggested a major contribution of the Integrator complex in safeguarding against transcriptional anomalies characteristic of MS, with HP1α/CBX5 emerging as an unexpected regulator of this complex's activity. These findings bring novel insights into the transcriptional aspects of MS and provide potential new criteria for patient stratification.
Collapse
Affiliation(s)
- Yevheniia Porozhan
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Mikkel Carstensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Forum, Aarhus, Denmark
| | - Sandrine Thouroude
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Mickael Costallat
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Christophe Rachez
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Eric Batsché
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Thor Petersen
- Department of Neurology, Hospital of Southern Jutland and Research Unit in Neurology, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | | | - Christian Muchardt
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Wu P, Zhang Q, Xu X, He S, Liu Z, Li Y, Guo R. Primary infection enhances neutrophil-mediated host defense by educating HSPCs. Int Immunopharmacol 2024; 137:112382. [PMID: 38875995 DOI: 10.1016/j.intimp.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can give rise to all kinds of immune cells including neutrophils. Neutrophils are the first line of defense in the innate immune system with a short lifespan, due to which it is well-accepted that neutrophils have no immune memory. However, recent reports showed that the changes in HSPCs induced by primary stimulation could last a long time, which contributes to enhancing response to subsequent infection by generating more monocytes or macrophages equipped with stronger anti-bacterial function. Here, we used the reinfection mice model to reveal that primary infection could improve neutrophil-mediated host defense by training neutrophil progenitors in mammals, providing a new idea to enhance neutrophil number and improve neutrophil functions, which is pretty pivotal for patients with compromised or disordered immunity.
Collapse
Affiliation(s)
- Peng Wu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Qingyu Zhang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450053, Henan, China
| | - Xianqun Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Songjiang He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheming Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
| |
Collapse
|
3
|
Jin C, Einig E, Xu W, Kollampally RB, Schlosser A, Flentje M, Popov N. The dimeric deubiquitinase USP28 integrates 53BP1 and MYC functions to limit DNA damage. Nucleic Acids Res 2024; 52:3011-3030. [PMID: 38227944 PMCID: PMC11024517 DOI: 10.1093/nar/gkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
DNA replication is a major source of endogenous DNA damage in tumor cells and a key target of cellular response to genotoxic stress. DNA replication can be deregulated by oncoproteins, such as transcription factor MYC, aberrantly activated in many human cancers. MYC is stringently regulated by the ubiquitin system - for example, ubiquitination controls recruitment of the elongation factor PAF1c, instrumental in MYC activity. Curiously, a key MYC-targeting deubiquitinase USP28 also controls cellular response to DNA damage via the mediator protein 53BP1. USP28 forms stable dimers, but the biological role of USP28 dimerization is unknown. We show here that dimerization limits USP28 activity and restricts recruitment of PAF1c by MYC. Expression of monomeric USP28 stabilizes MYC and promotes PAF1c recruitment, leading to ectopic DNA synthesis and replication-associated DNA damage. USP28 dimerization is stimulated by 53BP1, which selectively binds USP28 dimers. Genotoxic stress diminishes 53BP1-USP28 interaction, promotes disassembly of USP28 dimers and stimulates PAF1c recruitment by MYC. This triggers firing of DNA replication origins during early response to genotoxins and exacerbates DNA damage. We propose that dimerization of USP28 prevents ectopic DNA replication at transcriptionally active chromatin to maintain genome stability.
Collapse
Affiliation(s)
- Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Wenshan Xu
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ravi Babu Kollampally
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str 2, 97080 Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Kotekar A, Singh AK, Devaiah BN. BRD4 and MYC: power couple in transcription and disease. FEBS J 2023; 290:4820-4842. [PMID: 35866356 PMCID: PMC9867786 DOI: 10.1111/febs.16580] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
The MYC proto-oncogene and BRD4, a BET family protein, are two cardinal proteins that have a broad influence in cell biology and disease. Both proteins are expressed ubiquitously in mammalian cells and play central roles in controlling growth, development, stress responses and metabolic function. As chromatin and transcriptional regulators, they play a critical role in regulating the expression of a burgeoning array of genes, maintaining chromatin architecture and genome stability. Consequently, impairment of their function or regulation leads to many diseases, with cancer being the most predominant. Interestingly, accumulating evidence indicates that regulation of the expression and functions of MYC are tightly intertwined with BRD4 at both transcriptional and post-transcriptional levels. Here, we review the mechanisms by which MYC and BRD4 are regulated, their functions in governing various molecular mechanisms and the consequences of their dysregulation that lead to disease. We present a perspective of how the regulatory mechanisms for the two proteins could be entwined at multiple points in a BRD4-MYC nexus that leads to the modulation of their functions and disease upon dysregulation.
Collapse
Affiliation(s)
- Aparna Kotekar
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
5
|
Rousseau V, Einig E, Jin C, Horn J, Riebold M, Poth T, Jarboui MA, Flentje M, Popov N. Trim33 masks a non-transcriptional function of E2f4 in replication fork progression. Nat Commun 2023; 14:5143. [PMID: 37612308 PMCID: PMC10447549 DOI: 10.1038/s41467-023-40847-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Replicative stress promotes genomic instability and tumorigenesis but also presents an effective therapeutic endpoint, rationalizing detailed analysis of pathways that control DNA replication. We show here that the transcription factor E2f4 recruits the DNA helicase Recql to facilitate progression of DNA replication forks upon drug- or oncogene-induced replicative stress. In unperturbed cells, the Trim33 ubiquitin ligase targets E2f4 for degradation, limiting its genomic binding and interactions with Recql. Replicative stress blunts Trim33-dependent ubiquitination of E2f4, which stimulates transient Recql recruitment to chromatin and facilitates recovery of DNA synthesis. In contrast, deletion of Trim33 induces chronic genome-wide recruitment of Recql and strongly accelerates DNA replication under stress, compromising checkpoint signaling and DNA repair. Depletion of Trim33 in Myc-overexpressing cells leads to accumulation of replication-associated DNA damage and delays Myc-driven tumorigenesis. We propose that the Trim33-E2f4-Recql axis controls progression of DNA replication forks along transcriptionally active chromatin to maintain genome integrity.
Collapse
Affiliation(s)
- Vanessa Rousseau
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
- Interfaculty Institute for Biochemistry, University Hospital Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
| | - Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
| | - Julia Horn
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
- Wakenitzmauer 3, 23552, Lübeck, Germany
| | - Mathias Riebold
- Department of Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectiology, and Geriatry, University Hospital Tübingen, Otfried-Müller-Str 12, 72076, Tübingen, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Mohamed-Ali Jarboui
- Core Facility for Medical Bioanalytics, Proteomics Platform Tübingen (PxP), Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str 7, 72076, Tübingen, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany.
| |
Collapse
|
6
|
Yu H, Shi T, Yao L, Xu D, Ding Y, Xia Q, Liu W, Wang X. Elevated nuclear PIGL disrupts the cMyc/BRD4 axis and improves PD-1 blockade therapy by dampening tumor immune evasion. Cell Mol Immunol 2023; 20:867-880. [PMID: 37280393 PMCID: PMC10387471 DOI: 10.1038/s41423-023-01048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
To improve the efficacy of lenvatinib in combination with programmed death-1 (PD-1) blockade therapy for hepatocellular carcinoma (HCC), we screened the suppressive metabolic enzymes that sensitize HCC to lenvatinib and PD-1 blockade, thus impeding HCC progression. After analysis of the CRISPR‒Cas9 screen, phosphatidylinositol-glycan biosynthesis class L (PIGL) ranked first in the positive selection list. PIGL depletion had no effect on tumor cell growth in vitro but reprogrammed the tumor microenvironment (TME) in vivo to support tumor cell survival. Specifically, nuclear PIGL disrupted the interaction between cMyc/BRD4 on the distant promoter of target genes and thus decreased the expression of CCL2 and CCL20, which are involved in shaping the immunosuppressive TME by recruiting macrophages and regulatory T cells. PIGL phosphorylation at Y81 by FGFR2 abolished the interaction of PIGL with importin α/β1, thus retaining PIGL in the cytosol and facilitating tumor evasion by releasing CCL2 and CCL20. Clinically, elevated nuclear PIGL predicts a better prognosis for HCC patients and presents a positive correlation with CD8 + T-cell enrichment in tumors. Clinically, our findings highlight that the nuclear PIGL intensity or the change in PIGL-Y81 phosphorylation should be used as a biomarker to guide lenvatinib with PD-1 blockade therapy.
Collapse
Affiliation(s)
- Hua Yu
- Precise Genome Engineering Centre, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Tiezhu Shi
- Precise Genome Engineering Centre, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Linli Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China
| | - Dongwei Xu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yufeng Ding
- Precise Genome Engineering Centre, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China.
| | - Xiongjun Wang
- Precise Genome Engineering Centre, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China.
| |
Collapse
|
7
|
Xu M, Lin L, Ram BM, Shriwas O, Chuang KH, Dai S, Su KH, Tang Z, Dai C. Heat shock factor 1 (HSF1) specifically potentiates c-MYC-mediated transcription independently of the canonical heat shock response. Cell Rep 2023; 42:112557. [PMID: 37224019 PMCID: PMC10592515 DOI: 10.1016/j.celrep.2023.112557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/27/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Despite its pivotal roles in biology, how the transcriptional activity of c-MYC is tuned quantitatively remains poorly defined. Here, we show that heat shock factor 1 (HSF1), the master transcriptional regulator of the heat shock response, acts as a prime modifier of the c-MYC-mediated transcription. HSF1 deficiency diminishes c-MYC DNA binding and dampens its transcriptional activity genome wide. Mechanistically, c-MYC, MAX, and HSF1 assemble into a transcription factor complex on genomic DNAs, and surprisingly, the DNA binding of HSF1 is dispensable. Instead, HSF1 physically recruits the histone acetyltransferase general control nonderepressible 5 (GCN5), promoting histone acetylation and augmenting c-MYC transcriptional activity. Thus, we find that HSF1 specifically potentiates the c-MYC-mediated transcription, discrete from its canonical role in countering proteotoxic stress. Importantly, this mechanism of action engenders two distinct c-MYC activation states, primary and advanced, which may be important to accommodate diverse physiological and pathological conditions.
Collapse
Affiliation(s)
- Meng Xu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ling Lin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Babul Moni Ram
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Omprakash Shriwas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kun-Han Chuang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Siyuan Dai
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kuo-Hui Su
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Zijian Tang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Wang Z, Yang C, Guan D, Li J, Zhang H. Cellular proteins act as surfactants to control the interfacial behavior and function of biological condensates. Dev Cell 2023:S1534-5807(23)00157-0. [PMID: 37098348 DOI: 10.1016/j.devcel.2023.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/02/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
Interfacial tension governs the behaviors and physiological functions of multiple biological condensates during diverse biological processes. Little is known about whether there are cellular surfactant factors that regulate the interfacial tension and functions of biological condensates within physiological environments. TFEB, a master transcription factor that controls expression of autophagic-lysosomal genes, assembles into transcriptional condensates to control the autophagy-lysosome pathway (ALP). Here, we show that interfacial tension modulates the transcriptional activity of TFEB condensates. MLX, MYC, and IPMK act as synergistic surfactants to decrease the interfacial tension and consequent DNA affinity of TFEB condensates. The interfacial tension of TFEB condensates is quantitatively correlated to their DNA affinity and subsequent ALP activity. The interfacial tension and DNA affinity of condensates formed by TAZ-TEAD4 are also regulated by the synergistic surfactant proteins RUNX3 and HOXA4. Our results indicate that the interfacial tension and functions of biological condensates can be controlled by cellular surfactant proteins in human cells.
Collapse
Affiliation(s)
- Zheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China.
| | - Chun Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jiaqi Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
9
|
Piazza VG, Cicconi NS, Martinez CS, Dominici FP, Miquet JG, Sotelo AI. Liver impact of growth hormone (GH) intermittent treatment during the growth period in mice. Mol Cell Endocrinol 2023; 566-567:111911. [PMID: 36905979 DOI: 10.1016/j.mce.2023.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/08/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Liver impact of prolonged GH-treatment given to non-GH-deficient growing mice between the third and eighth week of life was evaluated in both sexes. Tissues were collected 6 h after last dose or four weeks later. Somatometric, biochemical, histological, immunohistochemical, RT-qPCR and immunoblotting determinations were performed. Five-week GH intermittent administration induced body weight gain and body and bone length increase, augmented organ weight, higher hepatocellular size and proliferation, and increased liver IGF1 gene expression. Phosphorylation of signaling mediators and expression of GH-induced proliferation-related genes was decreased in GH-treated mice liver 6h after last injection, reflecting active sensitization/desensitization cycles. In females, GH elicited EGFR expression, associated to higher EGF-induced STAT3/5 phosphorylation. Four weeks after treatment, increased organ weight concomitant to body weight gain was still observed, whereas hepatocyte enlargement reverted. However, basal signaling for critical mediators was lower in GH-treated animals and in male controls compared to female ones, suggesting signaling declination.
Collapse
Affiliation(s)
- Verónica G Piazza
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadia S Cicconi
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina S Martinez
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando P Dominici
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Johanna G Miquet
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana I Sotelo
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Das SK, Lewis BA, Levens D. MYC: a complex problem. Trends Cell Biol 2023; 33:235-246. [PMID: 35963793 PMCID: PMC9911561 DOI: 10.1016/j.tcb.2022.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
The MYC protooncogene functions as a universal amplifier of transcription through interaction with numerous factors and complexes that regulate almost every cellular process. However, a comprehensive model that explains MYC's actions and the interplay governing the complicated dynamics of components of the transcription and replication machinery is still lacking. Here, we review the potency of MYC as an oncogenic driver and how it regulates the broad spectrum of complexes (effectors and regulators). We propose a 'hand-over model' for differential partitioning and trafficking of unstructured MYC via a loose interaction network between various gene-regulatory complexes and factors. Additionally, the article discusses how unstructured-MYC energetically favors efficient modulation of the energy landscape of the transcription cycle.
Collapse
Affiliation(s)
- Subhendu K Das
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - Brian A Lewis
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA.
| |
Collapse
|
11
|
Akcan TS, Vilov S, Heinig M. Predictive model of transcriptional elongation control identifies trans regulatory factors from chromatin signatures. Nucleic Acids Res 2023; 51:1608-1624. [PMID: 36727445 PMCID: PMC9976927 DOI: 10.1093/nar/gkac1272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Promoter-proximal Polymerase II (Pol II) pausing is a key rate-limiting step for gene expression. DNA and RNA-binding trans-acting factors regulating the extent of pausing have been identified. However, we lack a quantitative model of how interactions of these factors determine pausing, therefore the relative importance of implicated factors is unknown. Moreover, previously unknown regulators might exist. Here we address this gap with a machine learning model that accurately predicts the extent of promoter-proximal Pol II pausing from large-scale genome and transcriptome binding maps and gene annotation and sequence composition features. We demonstrate high accuracy and generalizability of the model by validation on an independent cell line which reveals the model's cell line agnostic character. Model interpretation in light of prior knowledge about molecular functions of regulatory factors confirms the interconnection of pausing with other RNA processing steps. Harnessing underlying feature contributions, we assess the relative importance of each factor, quantify their predictive effects and systematically identify previously unknown regulators of pausing. We additionally identify 16 previously unknown 7SK ncRNA interacting RNA-binding proteins predictive of pausing. Our work provides a framework to further our understanding of the regulation of the critical early steps in transcriptional elongation.
Collapse
Affiliation(s)
- Toray S Akcan
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany
| | - Sergey Vilov
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| |
Collapse
|
12
|
Wang X, Fan Y, Wu Q. The regulation of transcription elongation in embryonic stem cells. Front Cell Dev Biol 2023; 11:1145611. [PMID: 36875763 PMCID: PMC9978399 DOI: 10.3389/fcell.2023.1145611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Transcription elongation is a fundamental molecular process which is accurately regulated to ensure proper gene expression in cellular activities whereas its malfunction is associated with impaired cellular functions. Embryonic stem cells (ESCs) have significant value in regenerative medicine due to their self-renewal ability and their potential to differentiate to almost all types of cells. Therefore, dissection of the exact regulatory mechanism of transcription elongation in ESCs is crucial for both basic research and their clinical applications. In this review, we discuss the current understanding on the regulatory mechanisms of transcription elongation mediated by transcription factors and epigenetic modifications in ESCs.
Collapse
Affiliation(s)
- Xuepeng Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yudan Fan
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
13
|
Pal S, Yadav D, Biswas D. ATM-mediated ELL phosphorylation enhances its self-association through increased EAF1 interaction and inhibits global transcription during genotoxic stress. Nucleic Acids Res 2022; 50:10995-11012. [PMID: 36305813 PMCID: PMC9638944 DOI: 10.1093/nar/gkac943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 10/15/2022] [Indexed: 12/05/2022] Open
Abstract
Mammalian cells immediately inhibit transcription upon exposure to genotoxic stress to avoid fatal collision between ongoing transcription and newly recruited DNA repair machineries to protect genomic integrity. However, mechanisms of this early transcriptional inhibition are poorly understood. In this study, we decipher a novel role of human EAF1, a positive regulator of ELL-dependent RNA Polymerase II-mediated transcription in vitro, in regulation of temporal inhibition of transcription during genotoxic stress. Our results show that, besides Super Elongation Complex (SEC) and Little Elongation Complex (LEC), human ELL (aka ELL1) also forms a complex with EAF1 alone. Interestingly, contrary to the in vitro studies, EAF1 inhibits ELL-dependent RNA polymerase II-mediated transcription of diverse target genes. Mechanistically, we show that intrinsic self-association property of ELL leads to its reduced interaction with other SEC components. EAF1 enhances ELL self-association and thus reduces its interaction with other SEC components leading to transcriptional inhibition. Physiologically, we show that upon exposure to genotoxic stress, ATM-mediated ELL phosphorylation-dependent enhanced EAF1 association results in reduced ELL interaction with other SEC components that lead to global transcriptional inhibition. Thus, we describe an important mechanism of dynamic transcriptional regulation during genotoxic stress involving post-translational modification of a key elongation factor.
Collapse
Affiliation(s)
- Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road , Kolkata - 32, India
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002, India
| | - Dipika Yadav
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road , Kolkata - 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road , Kolkata - 32, India
| |
Collapse
|
14
|
Singh A, Kumar P, Sarvagalla S, Bharadwaj T, Nayak N, Coumar MS, Giri R, Garg N. Functional inhibition of c-Myc using novel inhibitors identified through “hot spot” targeting. J Biol Chem 2022; 298:101898. [PMID: 35378126 PMCID: PMC9065629 DOI: 10.1016/j.jbc.2022.101898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Protein–protein interactions drive various biological processes in healthy as well as disease states. The transcription factor c-Myc plays a crucial role in maintaining cellular homeostasis, and its deregulated expression is linked to various human cancers; therefore, it can be considered a viable target for cancer therapeutics. However, the structural heterogeneity of c-Myc due to its disordered nature poses a major challenge to drug discovery. In the present study, we used an in silico alanine scanning mutagenesis approach to identify “hot spot” residues within the c-Myc/Myc-associated factor X interface, which is highly disordered and has not yet been systematically analyzed for potential small molecule binding sites. We then used the information gained from this analysis to screen potential inhibitors using a conformation ensemble approach. The fluorescence-based biophysical experiments showed that the identified hit molecules displayed noncovalent interactions with these hot spot residues, and further cell-based experiments showed substantial in vitro potency against diverse c-Myc-expressing cancer/stem cells by deregulating c-Myc activity. These biophysical and computational studies demonstrated stable binding of the hit compounds with the disordered c-Myc protein. Collectively, our data indicated effective drug targeting of the disordered c-Myc protein via the determination of hot spot residues in the c-Myc/Myc-associated factor X heterodimer.
Collapse
|
15
|
EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol 2022; 24:384-399. [PMID: 35210568 PMCID: PMC9710513 DOI: 10.1038/s41556-022-00850-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
Abstract
Canonically, EZH2 serves as the catalytic subunit of PRC2, which mediates H3K27me3 deposition and transcriptional repression. Here, we report that in acute leukaemias, EZH2 has additional noncanonical functions by binding cMyc at non-PRC2 targets and uses a hidden transactivation domain (TAD) for (co)activator recruitment and gene activation. Both canonical (EZH2-PRC2) and noncanonical (EZH2-TAD-cMyc-coactivators) activities of EZH2 promote oncogenesis, which explains the slow and ineffective antitumour effect of inhibitors of the catalytic function of EZH2. To suppress the multifaceted activities of EZH2, we used proteolysis-targeting chimera (PROTAC) to develop a degrader, MS177, which achieved effective, on-target depletion of EZH2 and interacting partners (that is, both canonical EZH2-PRC2 and noncanonical EZH2-cMyc complexes). Compared with inhibitors of the enzymatic function of EZH2, MS177 is fast-acting and more potent in suppressing cancer growth. This study reveals noncanonical oncogenic roles of EZH2, reports a PROTAC for targeting the multifaceted tumorigenic functions of EZH2 and presents an attractive strategy for treating EZH2-dependent cancers.
Collapse
|
16
|
Brown IN, Lafita-Navarro MC, Conacci-Sorrell M. Regulation of Nucleolar Activity by MYC. Cells 2022; 11:574. [PMID: 35159381 PMCID: PMC8834138 DOI: 10.3390/cells11030574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC's role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.
Collapse
Affiliation(s)
- Isabella N. Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - M. Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Cellular experiments to study the inhibition of c-Myc/MAX heterodimerization. Methods Enzymol 2022; 675:193-205. [DOI: 10.1016/bs.mie.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Vervoort SJ, Devlin JR, Kwiatkowski N, Teng M, Gray NS, Johnstone RW. Targeting transcription cycles in cancer. Nat Rev Cancer 2022; 22:5-24. [PMID: 34675395 DOI: 10.1038/s41568-021-00411-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Accurate control of gene expression is essential for normal development and dysregulation of transcription underpins cancer onset and progression. Similar to cell cycle regulation, RNA polymerase II-driven transcription can be considered as a unidirectional multistep cycle, with thousands of unique transcription cycles occurring in concert within each cell. Each transcription cycle comprises recruitment, initiation, pausing, elongation, termination and recycling stages that are tightly controlled by the coordinated action of transcriptional cyclin-dependent kinases and their cognate cyclins as well as the opposing activity of transcriptional phosphatases. Oncogenic dysregulation of transcription can entail defective control of gene expression, either at select loci or more globally, impacting a large proportion of the genome. The resultant dependency on the core-transcriptional machinery is believed to render 'transcriptionally addicted' cancers sensitive to perturbation of transcription. Based on these findings, small molecules targeting transcriptional cyclin-dependent kinases and associated proteins hold promise for the treatment of cancer. Here, we utilize the transcription cycles concept to explain how dysregulation of these finely tuned gene expression processes may drive tumorigenesis and how therapeutically beneficial responses may arise from global or selective transcriptional perturbation. This conceptual framework helps to explain tumour-selective transcriptional dependencies and facilitates the rational design of combination therapies.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer R Devlin
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingxing Teng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA.
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Hu CY, Wu KY, Lin TY, Chen CC. The Crosstalk of Long Non-Coding RNA and MicroRNA in Castration-Resistant and Neuroendocrine Prostate Cancer: Their Interaction and Clinical Importance. Int J Mol Sci 2021; 23:ijms23010392. [PMID: 35008817 PMCID: PMC8745162 DOI: 10.3390/ijms23010392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is featured by its heterogeneous nature, which indicates a different prognosis. Castration-resistant prostate cancer (CRPC) is a hallmark of the treatment-refractory stage, and the median survival of patients is only within two years. Neuroendocrine prostate cancer (NEPC) is an aggressive variant that arises from de novo presentation of small cell carcinoma or treatment-related transformation with a median survival of 1–2 years from the time of diagnosis. The epigenetic regulators, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been proven involved in multiple pathologic mechanisms of CRPC and NEPC. LncRNAs can act as competing endogenous RNAs to sponge miRNAs that would inhibit the expression of their targets. After that, miRNAs interact with the 3’ untranslated region (UTR) of target mRNAs to repress the step of translation. These interactions may modulate gene expression and influence cancer development and progression. Otherwise, epigenetic regulators and genetic mutation also promote neuroendocrine differentiation and cancer stem-like cell formation. This step may induce neuroendocrine prostate cancer development. This review aims to provide an integrated, synthesized overview under current evidence to elucidate the crosstalk of lncRNAs with miRNAs and their influence on castration resistance or neuroendocrine differentiation of prostate cancer. Notably, we also discuss the mechanisms of lncRNA–miRNA interaction in androgen receptor-independent prostate cancer, such as growth factors, oncogenic signaling pathways, cell cycle dysregulation, and cytokines or other transmembrane proteins. Conclusively, we underscore the potential of these communications as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Che-Yuan Hu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Kuan-Yu Wu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Tsung-Yen Lin
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Division of Urology, Department of Surgery, Dou-Liou Branch, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| |
Collapse
|
20
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
21
|
Akberdin IR, Kiselev IN, Pintus SS, Sharipov RN, Vertyshev AY, Vinogradova OL, Popov DV, Kolpakov FA. A Modular Mathematical Model of Exercise-Induced Changes in Metabolism, Signaling, and Gene Expression in Human Skeletal Muscle. Int J Mol Sci 2021; 22:10353. [PMID: 34638694 PMCID: PMC8508736 DOI: 10.3390/ijms221910353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle is the principal contributor to exercise-induced changes in human metabolism. Strikingly, although it has been demonstrated that a lot of metabolites accumulating in blood and human skeletal muscle during an exercise activate different signaling pathways and induce the expression of many genes in working muscle fibres, the systematic understanding of signaling-metabolic pathway interrelations with downstream genetic regulation in the skeletal muscle is still elusive. Herein, a physiologically based computational model of skeletal muscle comprising energy metabolism, Ca2+, and AMPK (AMP-dependent protein kinase) signaling pathways and the expression regulation of genes with early and delayed responses was developed based on a modular modeling approach and included 171 differential equations and more than 640 parameters. The integrated modular model validated on diverse including original experimental data and different exercise modes provides a comprehensive in silico platform in order to decipher and track cause-effect relationships between metabolic, signaling, and gene expression levels in skeletal muscle.
Collapse
Affiliation(s)
- Ilya R. Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Ilya N. Kiselev
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | - Sergey S. Pintus
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | - Ruslan N. Sharipov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| | | | - Olga L. Vinogradova
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Daniil V. Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Fedor A. Kolpakov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (I.N.K.); (S.S.P.); (R.N.S.); (F.A.K.)
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 633010 Novosibirsk, Russia
| |
Collapse
|
22
|
Singh A, Kumar A, Kumar P, Nayak N, Bhardwaj T, Giri R, Garg N. A novel inhibitor L755507 efficiently blocks c-Myc-MAX heterodimerization and induces apoptosis in cancer cells. J Biol Chem 2021; 297:100903. [PMID: 34157284 PMCID: PMC8294579 DOI: 10.1016/j.jbc.2021.100903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/24/2023] Open
Abstract
c-Myc is a transcription factor that plays a crucial role in cellular homeostasis, and its deregulation is associated with highly aggressive and chemotherapy-resistant cancers. After binding with partner MAX, the c-Myc-MAX heterodimer regulates the expression of several genes, leading to an oncogenic phenotype. Although considered a crucial therapeutic target, no clinically approved c-Myc-targeted therapy has yet been discovered. Here, we report the discovery via computer-aided drug discovery of a small molecule, L755507, which functions as a c-Myc inhibitor to efficiently restrict the growth of diverse Myc-expressing cells with low micromolar IC50 values. L755507 successfully disrupts the c-Myc-MAX heterodimer, resulting in decreased expression of c-Myc target genes. Spectroscopic and computational experiments demonstrated that L755507 binds to the c-Myc peptide and thereby stabilizes the helix-loop-helix conformation of the c-Myc transcription factor. Taken together, this study suggests that L755507 effectively inhibits the c-Myc-MAX heterodimerization and may be used for further optimization to develop a c-Myc-targeted antineoplastic drug.
Collapse
Affiliation(s)
- Ashutosh Singh
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Ankur Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Prateek Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Namyashree Nayak
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Taniya Bhardwaj
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajanish Giri
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
23
|
Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov 2021; 20:669-688. [PMID: 34006959 DOI: 10.1038/s41573-021-00199-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.
Collapse
Affiliation(s)
- Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
24
|
Marinkovic T, Marinkovic D. Obscure Involvement of MYC in Neurodegenerative Diseases and Neuronal Repair. Mol Neurobiol 2021; 58:4169-4177. [PMID: 33954904 DOI: 10.1007/s12035-021-02406-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
MYC is well known as a potent oncogene involved in regulating cell cycle and metabolism. Augmented MYC expression leads to cell cycle dysregulation, intense cell proliferation, and carcinogenesis. Surprisingly, its increased expression in neurons does not induce their proliferation, but leads to neuronal cell death and consequent development of a neurodegenerative phenotype. Interestingly, while cancer and neurodegenerative diseases such as Alzheimer's disease are placed at the opposite sides of cell division spectrum, both start with cell cycle dysregulation and stimulation of proliferation. It seems that MYC action directed toward neuron cell proliferation and neural tissue repair collides with evolutional loss of regenerative capacity of CNS neurons in order to strengthen synaptic structure, to protect our cognitive abilities and therefore character. Accordingly, there are abundant mechanisms that block its expression and action specifically in the brain. Moreover, while MYC expression in brain neurons during neurodegenerative processes is related to their death, there are obvious evidences that MYC action after physical injury is beneficial in case of peripheral nerve recovery. MYC might be a useful tool to repair brain cells upon development of neurodegenerative disease or CNS trauma, including stroke and traumatic brain and spinal cord injury, as even imperfect axonal growth and regeneration strategies will likely be of profound benefit. Understanding complex control of MYC action in the brain might have important therapeutic significance, but also it may contribute to the comprehension of development of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Visokog Stevana 2, 11000, Belgrade, Serbia.
| |
Collapse
|
25
|
Ecker J, Thatikonda V, Sigismondo G, Selt F, Valinciute G, Oehme I, Müller C, Buhl JL, Ridinger J, Usta D, Qin N, van Tilburg CM, Herold-Mende C, Remke M, Sahm F, Westermann F, Kool M, Wechsler-Reya RJ, Chavez L, Krijgsveld J, Jäger N, Pfister SM, Witt O, Milde T. Reduced chromatin binding of MYC is a key effect of HDAC inhibition in MYC amplified medulloblastoma. Neuro Oncol 2021; 23:226-239. [PMID: 32822486 DOI: 10.1093/neuonc/noaa191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The sensitivity of myelocytomatosis oncogene (MYC) amplified medulloblastoma to class I histone deacetylase (HDAC) inhibition has been shown previously; however, understanding the underlying molecular mechanism is crucial for selection of effective HDAC inhibitors for clinical use. The aim of this study was to investigate the direct molecular interaction of MYC and class I HDAC2, and the impact of class I HDAC inhibition on MYC function. METHODS Co-immunoprecipitation and mass spectrometry were used to determine the co-localization of MYC and HDAC2. Chromatin immunoprecipitation (ChIP) sequencing and gene expression profiling were used to analyze the co-localization of MYC and HDAC2 on DNA and the impact on transcriptional activity in primary tumors and a MYC amplified cell line treated with the class I HDAC inhibitor entinostat. The effect on MYC was investigated by quantitative real-time PCR, western blot, and immunofluorescence. RESULTS HDAC2 is a cofactor of MYC in MYC amplified medulloblastoma. The MYC-HDAC2 complex is bound to genes defining the MYC-dependent transcriptional profile. Class I HDAC inhibition leads to stabilization and reduced DNA binding of MYC protein, inducing a downregulation of MYC activated genes (MAGs) and upregulation of MYC repressed genes (MRGs). MAGs and MRGs are characterized by opposing biological functions and by distinct enhancer-box distribution. CONCLUSIONS Our data elucidate the molecular interaction of MYC and HDAC2 and support a model in which inhibition of class I HDACs directly targets MYC's transactivating and transrepressing functions.
Collapse
Affiliation(s)
- Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Venu Thatikonda
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Gintvile Valinciute
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Carina Müller
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Juliane L Buhl
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Diren Usta
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Nan Qin
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | | | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Lukas Chavez
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany.,Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Natalie Jäger
- Division of Pediatric Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| |
Collapse
|
26
|
Willbanks A, Wood S, Cheng JX. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes (Basel) 2021; 12:genes12050627. [PMID: 33922187 PMCID: PMC8145807 DOI: 10.3390/genes12050627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases.
Collapse
|
27
|
Abstract
The MYC oncogene was originally identified as a transduced allele (v-myc) in the genome of the highly oncogenic avian retrovirus MC29. The protein product (MYC) of the cellular MYC (c-myc) protooncogene represents the key component of a transcription factor network controlling the expression of a large fraction of all human genes. MYC regulates fundamental cellular processes like growth control, metabolism, proliferation, differentiation, and apoptosis. Mutational deregulation of MYC, leading to increased levels of the MYC protein, is a frequent event in the etiology of human cancers. In this chapter, we describe cell systems and experimental strategies to quantify the oncogenic potential of MYC alleles, to test MYC inhibitors, and to monitor MYC-specific protein-protein interactions that are relevant for the cell transformation process. We also describe experimental procedures to study the evolutionary origin of MYC and to analyze structure, function, and regulation of the ancestral MYC proto-oncogenes.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of Biochemistry, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| | - Klaus Bister
- Institute of Biochemistry, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
28
|
Abstract
More than 50 years after the identification of RNA polymerase II, the enzyme responsible for the transcription of most eukaryotic genes, studies have continued to reveal fresh aspects of its structure and regulation. New technologies, coupled with years of development of a vast catalog of RNA polymerase II accessory proteins and activities, have led to new revelations about the transcription process. The maturation of cryo-electron microscopy as a tool for unraveling the detailed structure of large molecular machines has provided numerous structures of the enzyme and its accessory factors. Advances in biophysical methods have enabled the observation of a single polymerase’s behavior, distinct from work on aggregate population averages. Other recent work has revealed new properties and activities of the general initiation factors that RNA polymerase II employs to accurately initiate transcription, as well as chromatin proteins that control RNA polymerase II’s firing frequency, and elongation factors that facilitate the enzyme’s departure from the promoter and which control sequential steps and obstacles that must be navigated by elongating RNA polymerase II. There has also been a growing appreciation of the physical properties conferred upon many of these proteins by regions of each polypeptide that are of low primary sequence complexity and that are often intrinsically disordered. This peculiar feature of a surprisingly large number of proteins enables a disordered region of the protein to morph into a stable structure and creates an opportunity for pathway participants to dynamically partition into subcompartments of the nucleus. These subcompartments host designated portions of the chemical reactions that lead to mRNA synthesis. This article highlights a selection of recent findings that reveal some of the resolved workings of RNA polymerase II and its ensemble of supporting factors.
Collapse
Affiliation(s)
- Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
29
|
Poon E, Liang T, Jamin Y, Walz S, Kwok C, Hakkert A, Barker K, Urban Z, Thway K, Zeid R, Hallsworth A, Box G, Ebus ME, Licciardello MP, Sbirkov Y, Lazaro G, Calton E, Costa BM, Valenti M, De Haven Brandon A, Webber H, Tardif N, Almeida GS, Christova R, Boysen G, Richards MW, Barone G, Ford A, Bayliss R, Clarke PA, De Bono J, Gray NS, Blagg J, Robinson SP, Eccles SA, Zheleva D, Bradner JE, Molenaar J, Vivanco I, Eilers M, Workman P, Lin CY, Chesler L. Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma. J Clin Invest 2020; 130:5875-5892. [PMID: 33016930 PMCID: PMC7598076 DOI: 10.1172/jci134132] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/29/2020] [Indexed: 01/23/2023] Open
Abstract
The undruggable nature of oncogenic Myc transcription factors poses a therapeutic challenge in neuroblastoma, a pediatric cancer in which MYCN amplification is strongly associated with unfavorable outcome. Here, we show that CYC065 (fadraciclib), a clinical inhibitor of CDK9 and CDK2, selectively targeted MYCN-amplified neuroblastoma via multiple mechanisms. CDK9 - a component of the transcription elongation complex P-TEFb - bound to the MYCN-amplicon superenhancer, and its inhibition resulted in selective loss of nascent MYCN transcription. MYCN loss led to growth arrest, sensitizing cells for apoptosis following CDK2 inhibition. In MYCN-amplified neuroblastoma, MYCN invaded active enhancers, driving a transcriptionally encoded adrenergic gene expression program that was selectively reversed by CYC065. MYCN overexpression in mesenchymal neuroblastoma was sufficient to induce adrenergic identity and sensitize cells to CYC065. CYC065, used together with temozolomide, a reference therapy for relapsed neuroblastoma, caused long-term suppression of neuroblastoma growth in vivo, highlighting the clinical potential of CDK9/2 inhibition in the treatment of MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Evon Poon
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Tong Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yann Jamin
- Division of Radiotherapy and Imaging, ICR, London, United Kingdom
| | - Susanne Walz
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken and Theodor Boveri Institute, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - Colin Kwok
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Anne Hakkert
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Karen Barker
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Zuzanna Urban
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Khin Thway
- Division of Molecular Pathology, ICR, London, and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Rhamy Zeid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Albert Hallsworth
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Gary Box
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | - Marli E. Ebus
- Prinses Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marco P. Licciardello
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | - Yordan Sbirkov
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Glori Lazaro
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Elizabeth Calton
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Barbara M. Costa
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Melanie Valenti
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | - Alexis De Haven Brandon
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | - Hannah Webber
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Nicolas Tardif
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Gilberto S. Almeida
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Division of Radiotherapy and Imaging, ICR, London, United Kingdom
| | | | | | - Mark W. Richards
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Giuseppe Barone
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Anthony Ford
- Division of Molecular Pathology, ICR, London, and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul A. Clarke
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | | | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian Blagg
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | | | - Suzanne A. Eccles
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | | | - James E. Bradner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Molenaar
- Prinses Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Igor Vivanco
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Martin Eilers
- Comprehensive Cancer Center Mainfranken and Theodor Boveri Institute, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - Paul Workman
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Louis Chesler
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| |
Collapse
|
30
|
Tsamou M, Nawrot TS, Carollo RM, Trippas AJ, Lefebvre W, Vanpoucke C, Vrijens K. Prenatal particulate air pollution exposure and expression of the miR-17/92 cluster in cord blood: Findings from the ENVIRONAGE birth cohort. ENVIRONMENT INTERNATIONAL 2020; 142:105860. [PMID: 32599355 DOI: 10.1016/j.envint.2020.105860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Air pollution exposure during pregnancy is an important environmental health issue. Epigenetics mediate the effects of prenatal exposure and could increase disease predisposition in later life. The oncogenic miR-17/92 cluster is involved in normal development and disease. OBJECTIVES Here, for the first time the potential prenatal effects of particulate matter with a diameter<2.5 μm (PM2.5) exposure on expression of the miR-17/92 cluster in cord blood are explored. METHODS In 370 mother-newborn pairs from the ENVIRONAGE birth cohort, expression of three members of the miR-17/92 cluster was measured in cord blood by qRT-PCR. Expression of C-MYC and CDKN1A, a cluster activator and a target gene, respectively, was also analyzed. Multivariable linear regression models were used to associate the relative m(i)RNA expression with prenatal PM2.5 exposure. RESULTS PM2.5 exposure averaged (10th-90th percentile) 11.7 (9.0-14.4) µg/m3 over the entire pregnancy. In cord blood, miR-17 and miR-20a showed a -45.0% (95%CI: -55.9 to -31.4, p < 0.0001) and a -33.7% (95%CI: -46.9 to -17.2, p = 0.0003), decrease in expression in association with first trimester PM2.5 exposure, and a -32.5% (95%CI: -45.6 to -16.3, p = 0.0004) and -23.3% (95%CI: -38.1 to -4.8, p = 0.02), respectively, decrease in expression in association with PM2.5 exposure during the entire pregnancy. In association with third trimester PM2.5 exposure, a reduction of -25.8% (95%CI: -40.2 to -8.0, p = 0.007) and -14.2% (95%CI: -27.7 to 1.9, p = 0.08), for miR-20a and miR-92a expression, respectively, was identified. Only miR-92a expression (-15.7%, 95%CI: -27.3 to -2.4, p = 0.02) was associated with PM2.5 exposure during the last month of pregnancy. C-MYC expression was downregulated in cord blood in association with prenatal PM2.5 exposure during the first trimester and the entire pregnancy, in the adjusted model. DISCUSSION Lower expression levels of the miR-17/92 cluster in cord blood in association with increased prenatal PM2.5 exposure were observed. Whether this oncogenic microRNA cluster plays a role in trans-placental carcinogenesis remains to be elucidated.
Collapse
Affiliation(s)
- Maria Tsamou
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health, Environment & Health Unit, Leuven University (KU Leuven), Leuven, Belgium
| | | | - Ann-Julie Trippas
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Karen Vrijens
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
31
|
Deregulated levels of RUVBL1 induce transcription-dependent replication stress. Int J Biochem Cell Biol 2020; 128:105839. [PMID: 32846207 DOI: 10.1016/j.biocel.2020.105839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Chromatin regulators control transcription and replication, however if and how they might influence the coordination of these processes still is largely unknown. RUVBL1 and the related ATPase RUVBL2 participate in multiple nuclear processes and are implicated in cancer. Here, we report that both the excess and the deficit of the chromatin regulator RUVBL1 impede DNA replication as a consequence of altered transcription. Surprisingly, cells that either overexpressed or were silenced for RUVBL1 had slower replication fork rates and accumulated phosphorylated H2AX, dependent on active transcription. However, the mechanisms of transcription-dependent replication stress were different when RUVBL1 was overexpressed and when depleted. RUVBL1 overexpression led to increased c-Myc-dependent pause release of RNAPII, as evidenced by higher overall transcription, much stronger Ser2 phosphorylation of Rpb1- C-terminal domain, and enhanced colocalization of Rpb1 and c-Myc. RUVBL1 deficiency resulted in increased ubiquitination of Rpb1 and reduced mobility of an RNAP subunit, suggesting accumulation of stalled RNAPIIs on chromatin. Overall, our data show that by modulating the state of RNAPII complexes, RUVBL1 deregulation induces replication-transcription interference and compromises genome integrity during S-phase.
Collapse
|
32
|
Evolutionary-driven C-MYC gene expression in mammalian fibroblasts. Sci Rep 2020; 10:11056. [PMID: 32632086 PMCID: PMC7338511 DOI: 10.1038/s41598-020-67391-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
The extent to which mammalian cells share similar transcriptomes remains unclear. Notwithstanding, such cross-species gene expression inquiries have been scarce for defined cell types and most lack the dissection of gene regulatory landscapes. Therefore, the work was aimed to determine C-MYC relative expression across mammalian fibroblasts (Ovis aries and Bos taurus) via cross-species RT-qPCR and comprehensively explore its regulatory landscape by in silico tools. The prediction of transcription factor binding sites in C-MYC and its 2.5 kb upstream sequence revealed substantial variation, thus indicating evolutionary-driven re-wiring of cis-regulatory elements. C-MYC and its downstream target TBX3 were up-regulated in Bos taurus fibroblasts. The relative expression of C-MYC regulators [RONIN (also known as THAP11), RXRβ, and TCF3] and the C-MYC-associated transcript elongation factor CDK9 did not differ between species. Additional in silico analyses suggested Bos taurus-specific C-MYC exonization, alternative splicing, and binding sites for non-coding RNAs. C-MYC protein orthologs were highly conserved, while variation was in the transactivation domain and the leucine zipper motif. Altogether, mammalian fibroblasts display evolutionary-driven C-MYC relative expression that should be instructive for understanding cellular physiology, cellular reprogramming, and C-MYC-related diseases.
Collapse
|
33
|
Ibrahim MA, Radwan MI, Kim HK, Han J, Warda M. Evaluation of global expression of selected genes as potential candidates for internal normalizing control during transcriptome analysis in dromedary camel (camelus dromedarius). Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Hartl M, Puglisi K, Nist A, Raffeiner P, Bister K. The brain acid-soluble protein 1 (BASP1) interferes with the oncogenic capacity of MYC and its binding to calmodulin. Mol Oncol 2020; 14:625-644. [PMID: 31944520 PMCID: PMC7053243 DOI: 10.1002/1878-0261.12636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
The MYC protein is a transcription factor with oncogenic potential controlling fundamental cellular processes such as cell proliferation, metabolism, differentiation, and apoptosis. The MYC gene is a major cancer driver, and elevated MYC protein levels are a hallmark of most human cancers. We have previously shown that the brain acid-soluble protein 1 gene (BASP1) is specifically downregulated by the v-myc oncogene and that ectopic BASP1 expression inhibits v-myc-induced cell transformation. The 11-amino acid effector domain of the BASP1 protein interacts with the calcium sensor calmodulin (CaM) and is mainly responsible for this inhibitory function. We also reported recently that CaM interacts with all MYC variant proteins and that ectopic CaM increases the transactivation and transformation potential of the v-Myc protein. Here, we show that the presence of excess BASP1 or of a synthetic BASP1 effector domain peptide leads to displacement of v-Myc from CaM. The protein stability of v-Myc is decreased in cells co-expressing v-Myc and BASP1, which may account for the inhibition of v-Myc. Furthermore, suppression of v-Myc-triggered transcriptional activation and cell transformation is compensated by ectopic CaM, suggesting that BASP1-mediated withdrawal of CaM from v-Myc is a crucial event in the inhibition. In view of the tumor-suppressive role of BASP1 which was recently also reported for human cancer, small compounds or peptides based on the BASP1 effector domain could be used in drug development strategies aimed at tumors with high MYC expression.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI)University of InnsbruckAustria
| | - Kane Puglisi
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI)University of InnsbruckAustria
| | - Andrea Nist
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI)University of InnsbruckAustria
- Present address:
Genomics Core FacilityPhilipps University of MarburgGermany
| | - Philipp Raffeiner
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI)University of InnsbruckAustria
- Present address:
Department of Molecular MedicineScripps ResearchLa JollaCAUSA
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI)University of InnsbruckAustria
| |
Collapse
|
35
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
36
|
Jiang G, Deng W, Liu Y, Wang C. General mechanism of JQ1 in inhibiting various types of cancer. Mol Med Rep 2020; 21:1021-1034. [PMID: 31922235 PMCID: PMC7003028 DOI: 10.3892/mmr.2020.10927] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/04/2019] [Indexed: 01/21/2023] Open
Abstract
Bromodomain-containing 4 (BRD4) is a histone modification reader and transcriptional regulator that has been reported to interact with acetylated lysine histone motifs transcription factors (TFs), transcription co-activators and RNA polymerase II. The selective small molecule inhibitor JQ1, which binds competitively to bromodomains, has been reported to exhibit anti-proliferative effects in various types of cancer. Previous studies on the mechanism of action of JQ1 mostly focused on a specific tumor type or disease; however, the general mechanism through which JQ1 affects various tumors remains to be determined. In the present study, chromatin immunoprecipitation sequencing data for BRD4 and its expression profiles in six cancer cell lines were integrated and analyzed systematically. The results indicated that BRD4 binds to enhancers with histone H3 acetylated at lysine 27 (H3K27Ac) and mediator complex subunit 1 in a cell type-specific manner, as well as binds to promoter regions with the oncogenic TFs MYC and E2F1 in a cell type-common manner. The cell type-common sites across the six cell types investigated were found to be functionally important for tumorigenesis, whereas the cell type-specific sites were functionally enriched with the cell identity, all of which were sensitive to JQ1 treatment. Furthermore, a core set of JQ1-regulated BRD4 binding genes were obtained, which were significantly inhibited by JQ1 in various cancer cell lines and contributed to hallmarks of cancer. These results implied a common mechanism underlying the therapeutic effects of JQ1 and suggested its potential suitability as an anti-cancer drug targeting BRD4-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Guojuan Jiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Wanglong Deng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Yang Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Chengde Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
37
|
Reddy D, Kumavath R, Tan TZ, Ampasala DR, Kumar AP. Peruvoside targets apoptosis and autophagy through MAPK Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways in human cancers. Life Sci 2019; 241:117147. [PMID: 31830480 DOI: 10.1016/j.lfs.2019.117147] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
AIM To investigate the cytotoxic effect of Peruvoside and mechanism of action in human cancers. MAIN METHODS Cell viability was measured by MTT assay and the cell cycle arrest was identified by FACS. Real-time qPCR and western blotting studies were performed to identify important gene and protein expressions in the different pathways leading to apoptosis. Immunofluorescence was performed to understand protein localization and molecular docking studies were performed to identify protein-ligand interactions. KEY FINDINGS Peruvoside showed significant anti-proliferative activities against human breast, lung, and liver cancer cells in dose-dependent manner. The anti-cancer mechanism was further confirmed by DNA damage and cell cycle arrest at the G0/G1 phase. Dysregulation of Wnt/β-catenin signaling with Peruvoside treatment resulted in inhibition of cyclin D1 and c-Myc also observed in this study. Furthermore, we identified that Peruvoside can inhibit autophagy by PI3K/AKT/mTOR signaling and through downregulating MEK1. Moreover, Peruvoside has the ability to modulate the expressions of key proteins from the cell cycle, MAPK, NF-kB, and JAK-STAT signaling. In silico studies revealed that Peruvoside has the ability to interact with crucial proteins from different biochemical signaling pathways. SIGNIFICANCE Our results demonstrated that Peruvoside has the ability to inhibit cancer cell proliferation by modulating the expression of various key proteins involved in cell cycle arrest, apoptosis, and autophagic cell death. Clinical data generated from the present study might provide a novel impetus for targeting several human cancers. Conclusively, our findings suggest that the Peruvoside possesses a broad spectrum of anticancer activity in breast, lung, and liver cancers, which provides an impetus for further investigation of the anticancer potentiality of this biomolecule.
Collapse
Affiliation(s)
- Dhanasekhar Reddy
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India.
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Dinakara Rao Ampasala
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
38
|
Effects of Polymorphisms in Myc-Related Genes on Bleeding Complications in Patients with Stable Warfarin Responses. Cardiovasc Ther 2019; 2019:1813747. [PMID: 31772606 PMCID: PMC6739803 DOI: 10.1155/2019/1813747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/28/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives This study aimed to identify the possible effects of Myc and 8q24 polymorphisms on bleeding complications in patients who maintained international normalized ratio (INR) of 2.0-3.0 with warfarin therapy after cardiac valve replacement. Methods Twenty-five single nucleotide polymorphisms were analyzed, including VKORC1, CYP2C9, Myc, and 8q24. Univariate and multivariate analyses were conducted to evaluate the associations between genetic polymorphisms and bleeding complications. Attributable risk and the number needed to genotype (NNG) were also calculated to evaluate the potential clinical value of genotyping. Results We included 142 patients, among whom 21 experienced bleeding complications. Multivariate models showed that patients carrying the CC genotype of rs6983561 and the A allele of rs13281615 at 8q24 had 27.6- and 10.0-fold higher bleeding complications, compared with patients with the A allele and the GG genotype, respectively. For rs6983561, the attributable risk and NNG were 96.4% and 36.8, respectively, whereas, for rs13281615, the attributable risk and NNG were 90.0% and 8.3, respectively. Atrial fibrillation was associated with a 5.5-fold increased risk of bleeding complications. The AUROC value was 0.761 (95% CI 0.659-0.863, p<0.001), and the Hosmer–Lemeshow test showed that the fitness of the multivariate analysis model was satisfactory (χ2=0.846; 3 degrees of freedom; p=0.838). Conclusions Bleeding complications during warfarin therapy were associated with 8q24 polymorphisms and atrial fibrillation in patients with mechanical heart valves.
Collapse
|
39
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
40
|
Filip D, Mraz M. The role of MYC in the transformation and aggressiveness of ‘indolent’ B-cell malignancies. Leuk Lymphoma 2019; 61:510-524. [DOI: 10.1080/10428194.2019.1675877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel Filip
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
41
|
Reyes-Garau D, Ribeiro ML, Roué G. Pharmacological Targeting of BET Bromodomain Proteins in Acute Myeloid Leukemia and Malignant Lymphomas: From Molecular Characterization to Clinical Applications. Cancers (Basel) 2019; 11:cancers11101483. [PMID: 31581671 PMCID: PMC6826405 DOI: 10.3390/cancers11101483] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Alterations in protein-protein and DNA-protein interactions and abnormal chromatin remodeling are a major cause of uncontrolled gene transcription and constitutive activation of critical signaling pathways in cancer cells. Multiple epigenetic regulators are known to be deregulated in several hematologic neoplasms, by somatic mutation, amplification, or deletion, allowing the identification of specific epigenetic signatures, but at the same time providing new therapeutic opportunities. While these vulnerabilities have been traditionally addressed by hypomethylating agents or histone deacetylase inhibitors, pharmacological targeting of bromodomain-containing proteins has recently emerged as a promising approach in a number of lymphoid and myeloid malignancies. Indeed, preclinical and clinical studies highlight the relevance of targeting the bromodomain and extra-terminal (BET) family as an efficient strategy of target transcription irrespective of the presence of epigenetic mutations. Here we will summarize the main advances achieved in the last decade regarding the preclinical and clinical evaluation of BET bromodomain inhibitors in hematologic cancers, either as monotherapies or in combinations with standard and/or experimental agents. A mention will finally be given to the new concept of the protein degrader, and the perspective it holds for the design of bromodomain-based therapies.
Collapse
Affiliation(s)
- Diana Reyes-Garau
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
| | - Marcelo L Ribeiro
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista, São Paulo 12916-900, Brazil.
| | - Gaël Roué
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain.
| |
Collapse
|
42
|
Littler S, Sloss O, Geary B, Pierce A, Whetton AD, Taylor SS. Oncogenic MYC amplifies mitotic perturbations. Open Biol 2019; 9:190136. [PMID: 31455158 PMCID: PMC6731591 DOI: 10.1098/rsob.190136] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
The oncogenic transcription factor MYC modulates vast arrays of genes, thereby influencing numerous biological pathways including biogenesis, metabolism, proliferation, apoptosis and pluripotency. When deregulated, MYC drives genomic instability via several mechanisms including aberrant proliferation, replication stress and ROS production. Deregulated MYC also promotes chromosome instability, but less is known about how MYC influences mitosis. Here, we show that deregulating MYC modulates multiple aspects of mitotic chromosome segregation. Cells overexpressing MYC have altered spindle morphology, take longer to align their chromosomes at metaphase and enter anaphase sooner. When challenged with a variety of anti-mitotic drugs, cells overexpressing MYC display more anomalies, the net effect of which is increased micronuclei, a hallmark of chromosome instability. Proteomic analysis showed that MYC modulates multiple networks predicted to influence mitosis, with the mitotic kinase PLK1 identified as a central hub. In turn, we show that MYC modulates several PLK1-dependent processes, namely mitotic entry, spindle assembly and SAC satisfaction. These observations thus underpin the pervasive nature of oncogenic MYC and provide a mechanistic rationale for MYC's ability to drive chromosome instability.
Collapse
Affiliation(s)
- Samantha Littler
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Olivia Sloss
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Bethany Geary
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9NQ, UK
| | - Andrew Pierce
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony D. Whetton
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9NQ, UK
| | - Stephen S. Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
43
|
Etchegaray JP, Zhong L, Li C, Henriques T, Ablondi E, Nakadai T, Van Rechem C, Ferrer C, Ross KN, Choi JE, Samarakkody A, Ji F, Chang A, Sadreyev RI, Ramaswamy S, Nechaev S, Whetstine JR, Roeder RG, Adelman K, Goren A, Mostoslavsky R. The Histone Deacetylase SIRT6 Restrains Transcription Elongation via Promoter-Proximal Pausing. Mol Cell 2019; 75:683-699.e7. [PMID: 31399344 PMCID: PMC6907403 DOI: 10.1016/j.molcel.2019.06.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.
Collapse
Affiliation(s)
- Jean-Pierre Etchegaray
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Zhong
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Li
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Telmo Henriques
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen Ablondi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Capucine Van Rechem
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth N Ross
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Eun Choi
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ann Samarakkody
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Chang
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridhar Ramaswamy
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Sergei Nechaev
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Johnathan R Whetstine
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alon Goren
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
44
|
Kim D, Brocker CN, Takahashi S, Yagai T, Kim T, Xie G, Wang H, Qu A, Gonzalez FJ. Keratin 23 Is a Peroxisome Proliferator-Activated Receptor Alpha-Dependent, MYC-Amplified Oncogene That Promotes Hepatocyte Proliferation. Hepatology 2019; 70:154-167. [PMID: 30697791 PMCID: PMC6597269 DOI: 10.1002/hep.30530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022]
Abstract
Chronic activation of the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARA) promotes MYC-linked hepatocellular carcinoma (HCC) in mice. Recent studies have shown that MYC can function as an amplifier of transcription where MYC does not act as an "on-off" switch for gene expression but rather accelerates transcription rates at active promoters by stimulating transcript elongation. Considering the possibility that MYC may amplify the expression of PPARA target genes to potentiate cell proliferation and liver cancer, gene expression was analyzed from livers of wild-type and liver-specific Myc knockout (MycΔHep ) mice treated with the PPARA agonist pirinixic acid. A subset of PPARA target genes was amplified in the presence of MYC, including keratin 23 (Krt23). The induction of Krt23 was significantly attenuated in MycΔHep mice and completely abolished in Ppara-null mice. Reporter gene assays and chromatin immunoprecipitation confirmed direct binding of both PPARA and MYC to sites within the Krt23 promoter. Forced expression of KRT23 in primary hepatocytes induced cell cycle-related genes. These data indicate that PPARA activation elevates MYC expression, which in turn potentiates the expression of select PPARA target genes involved in cell proliferation. Finally, KRT23 protein is highly elevated in human HCCs. Conclusion: These results revealed that MYC-mediated transcriptional potentiation of select PPARA target genes, such as Krt23, may remove rate-limiting constraints on hepatocyte growth and proliferation leading to liver cancer.
Collapse
Affiliation(s)
- Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chad N. Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tomoki Yagai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Taehyeong Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,Deceased
| | - Guomin Xie
- Department of Pharmacy, Anhui Medical University; Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Pharmacy, Anhui Medical University; Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Roca-Ayats N, Martínez-Gil N, Cozar M, Gerousi M, Garcia-Giralt N, Ovejero D, Mellibovsky L, Nogués X, Díez-Pérez A, Grinberg D, Balcells S. Functional characterization of the C7ORF76 genomic region, a prominent GWAS signal for osteoporosis in 7q21.3. Bone 2019; 123:39-47. [PMID: 30878523 DOI: 10.1016/j.bone.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWAS) have repeatedly identified genetic variants associated with bone mineral density (BMD) and osteoporotic fracture in non-coding regions of C7ORF76, a poorly studied gene of unknown function. The aim of the present study was to elucidate the causality and molecular mechanisms underlying the association. We re-sequenced the genomic region in two extreme BMD groups from the BARCOS cohort of postmenopausal women to search for functionally relevant variants. Eight selected variants were tested for association in the complete cohort and 2 of them (rs4342521 and rs10085588) were found significantly associated with lumbar spine BMD and nominally associated with osteoporotic fracture. cis-eQTL analyses of these 2 SNPs, together with SNP rs4727338 (GWAS lead SNP in Estrada et al., Nat Genet. 44:491-501, 2012), performed in human primary osteoblasts, disclosed a statistically significant influence on the expression of the proximal neighbouring gene SLC25A13 and a tendency on the distal SHFM1. We then studied the functionality of a putative upstream regulatory element (UPE), containing rs10085588. Luciferase reporter assays showed transactivation capability with a strong allele-dependent effect. Finally, 4C-seq experiments in osteoblastic cell lines showed that the UPE interacted with different tissue-specific enhancers and a lncRNA (LOC100506136) in the region. In summary, this study is the first one to analyse in depth the functionality of C7ORF76 genomic region. We provide functional regulatory evidence for the rs10085588, which may be a causal SNP within the 7q21.3 GWAS signal for osteoporosis.
Collapse
Affiliation(s)
- Neus Roca-Ayats
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Núria Martínez-Gil
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Mónica Cozar
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Marina Gerousi
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Natàlia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Diana Ovejero
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Xavier Nogués
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Adolfo Díez-Pérez
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain.
| |
Collapse
|
46
|
Leemans C, van der Zwalm MCH, Brueckner L, Comoglio F, van Schaik T, Pagie L, van Arensbergen J, van Steensel B. Promoter-Intrinsic and Local Chromatin Features Determine Gene Repression in LADs. Cell 2019; 177:852-864.e14. [PMID: 30982597 PMCID: PMC6506275 DOI: 10.1016/j.cell.2019.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/23/2019] [Accepted: 03/04/2019] [Indexed: 12/28/2022]
Abstract
It is largely unclear whether genes that are naturally embedded in lamina-associated domains (LADs) are inactive due to their chromatin environment or whether LADs are merely secondary to the lack of transcription. We show that hundreds of human promoters become active when moved from their native LAD position to a neutral context in the same cells, indicating that LADs form a repressive environment. Another set of promoters inside LADs is able to "escape" repression, although their transcription elongation is attenuated. By inserting reporters into thousands of genomic locations, we demonstrate that escaper promoters are intrinsically less sensitive to LAD repression. This is not simply explained by promoter strength but by the interplay between promoter sequence and local chromatin features that vary strongly across LADs. Enhancers also differ in their sensitivity to LAD chromatin. This work provides a general framework for the systematic understanding of gene regulation by repressive chromatin.
Collapse
Affiliation(s)
- Christ Leemans
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marloes C H van der Zwalm
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laura Brueckner
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Federico Comoglio
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tom van Schaik
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ludo Pagie
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joris van Arensbergen
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
47
|
Lu Y, Liao S, Tu W, Yang B, Liu S, Pei X, Tao D, Lu Y, Ma Y, Yang Y, Liu Y. DNA demethylation facilitates the specific transcription of the mouse X-linked Tsga8 gene in round spermatids†. Biol Reprod 2019; 100:994-1007. [PMID: 30541061 DOI: 10.1093/biolre/ioy255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/08/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023] Open
Abstract
Some X-linked genes necessary for spermiogenesis are specifically activated in the postmeiotic germ cells. However, the regulatory mechanism about this activation is not clearly understood. Here, we examined the potential mechanism controlling the transcriptional activation of the mouse testis specific gene A8 (Tsga8) gene in round spermatids. We observed that the Tsga8 expression was negatively correlated with the methylation level of the CpG sites in its core promoter. During spermatogenesis, the Tsga8 promoter was methylated in spermatogonia, and then demethylated in spermatocytes. The demethylation status of Tsga8 promoter was maintained through the postmeiotic germ cells, providing a potentially active chromatin for Tsga8 transcription. In vitro investigation showed that the E12 and Spz1 transcription factors can enhance the Tsga8 promoter activity by binding to the unmethylated E-box motif within the Tsga8 promoter. Additionally, the core Tsga8 promoter drove green fluorescent protein (GFP) expression in the germ cells of Tsga8-GFP transgenic mice, and the GFP expression pattern was similar to that of endogenous Tsga8. Moreover, the DNA methylation profile of the Tsga8-promoter-driven transgene was consistent with that of the endogenous Tsga8 promoter, indicating the existence of a similar epigenetic modification for the Tsga8 promoter to ensure its spatiotemporal expression in vivo. Taken together, this study reports the details of a regulatory mechanism that includes DNA methylation and transcription factors to mediate the postmeiotic expression of an X-linked gene.
Collapse
Affiliation(s)
- Yongjie Lu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Shunyao Liao
- Diabetic Center and Institute of Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Wenling Tu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shasha Liu
- Diabetic Center and Institute of Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xue Pei
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Dachang Tao
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yilu Lu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yongxin Ma
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Yang
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yunqiang Liu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
48
|
García-Gutiérrez L, Delgado MD, León J. MYC Oncogene Contributions to Release of Cell Cycle Brakes. Genes (Basel) 2019; 10:E244. [PMID: 30909496 PMCID: PMC6470592 DOI: 10.3390/genes10030244] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Promotion of the cell cycle is a major oncogenic mechanism of the oncogene c-MYC (MYC). MYC promotes the cell cycle by not only activating or inducing cyclins and CDKs but also through the downregulation or the impairment of the activity of a set of proteins that act as cell-cycle brakes. This review is focused on the role of MYC as a cell-cycle brake releaser i.e., how MYC stimulates the cell cycle mainly through the functional inactivation of cell cycle inhibitors. MYC antagonizes the activities and/or the expression levels of p15, ARF, p21, and p27. The mechanism involved differs for each protein. p15 (encoded by CDKN2B) and p21 (CDKN1A) are repressed by MYC at the transcriptional level. In contrast, MYC activates ARF, which contributes to the apoptosis induced by high MYC levels. At least in some cells types, MYC inhibits the transcription of the p27 gene (CDKN1B) but also enhances p27's degradation through the upregulation of components of ubiquitin ligases complexes. The effect of MYC on cell-cycle brakes also opens the possibility of antitumoral therapies based on synthetic lethal interactions involving MYC and CDKs, for which a series of inhibitors are being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
- Current address: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - María Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
49
|
Li M, Liu Y, Wei Y, Wu C, Meng H, Niu W, Zhou Y, Wang H, Wen Q, Fan S, Li Z, Li X, Zhou J, Cao K, Xiong W, Zeng Z, Li X, Qiu Y, Li G, Zhou M. Zinc-finger protein YY1 suppresses tumor growth of human nasopharyngeal carcinoma by inactivating c-Myc-mediated microRNA-141 transcription. J Biol Chem 2019; 294:6172-6187. [PMID: 30718276 DOI: 10.1074/jbc.ra118.006281] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1) is a zinc-finger protein that plays critical roles in various biological processes by interacting with DNA and numerous protein partners. YY1 has been reported to play dual biological functions as either an oncogene or tumor suppressor in the development and progression of multiple cancers, but its role in human nasopharyngeal carcinoma (NPC) has not yet been revealed. In this study, we found that YY1 overexpression significantly inhibits cell proliferation and cell-cycle progression from G1 to S and promotes apoptosis in NPC cells. Moreover, we identified YY1 as a component of the c-Myc complex and observed that ectopic expression of YY1 inhibits c-Myc transcriptional activity, as well as the promoter activity and expression of the c-Myc target gene microRNA-141 (miR-141). Furthermore, restoring miR-141 expression could at least partially reverse the inhibitory effect of YY1 on cell proliferation and tumor growth and on the expression of some critical c-Myc targets, such as PTEN/AKT pathway components both in vitro and in vivo We also found that YY1 expression is reduced in NPC tissues, negatively correlates with miR-141 expression and clinical stages in NPC patients, and positively correlates with survival prognosis. Our results reveal a previously unappreciated mechanism in which the YY1/c-Myc/miR-141 axis plays a critical role in NPC progression and may provide some potential and valuable targets for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Mengna Li
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yukun Liu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yanmei Wei
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Chunchun Wu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Hanbing Meng
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Weihong Niu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yao Zhou
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Heran Wang
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013
| | - Qiuyuan Wen
- the Second XiangYa Hospital, Central South University, Changsha, Hunan 410011
| | - Songqing Fan
- the Second XiangYa Hospital, Central South University, Changsha, Hunan 410011
| | - Zheng Li
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078; the High Resolution Mass Spectrometry Laboratory of Advanced Research Center, Central South University, Changsha, Hunan 410013
| | - Xiayu Li
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jianda Zhou
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ke Cao
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xiong
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Zhaoyang Zeng
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Xiaoling Li
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yuanzheng Qiu
- the Department of Otolaryngology Head and Neck Surgery, the Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Guiyuan Li
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Ming Zhou
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078.
| |
Collapse
|
50
|
Carabet LA, Lallous N, Leblanc E, Ban F, Morin H, Lawn S, Ghaidi F, Lee J, Mills IG, Gleave ME, Rennie PS, Cherkasov A. Computer-aided drug discovery of Myc-Max inhibitors as potential therapeutics for prostate cancer. Eur J Med Chem 2018; 160:108-119. [PMID: 30326371 DOI: 10.1016/j.ejmech.2018.09.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022]
Abstract
While Myc is an essential regulator of growth in normal cells, it is also frequently associated with cancer progression, therapy-resistance and lethal outcomes in most human cancers. In prostate cancer (PCa), Myc transcription factors are implicated in the pathogenesis and progression of the full spectrum of PCa, from adenocarcinoma to advanced castration-resistant and neuroendocrine phenotypes. Though a high-value therapeutic target, clinically approved anti-Myc drugs have yet to be discovered. To elicit its oncogenic effects, Myc must form a heterodimer with its partner Max, which together bind DNA and activate transcription of a spectrum of target genes that promote cell growth, proliferation, metabolism, and apoptosis while blocking differentiation. In this study, we identified a binding site on the DNA-binding domain of the structurally ordered Myc-Max complex and employed a computer-aided rational drug discovery approach to identify small molecules that effectively inhibit Myc-Max functionality. A large-scale virtual screening protocol implementing structure-based methodologies was utilized to select a set of top-ranked compounds that were subsequently evaluated experimentally and characterized mechanistically for their ability to inhibit Myc-Max transcriptional activity and subsequent downstream functions, to reduce viability in PCa cell lines, disrupt protein-DNA interactions and to induce apoptosis as their mechanism of action. Among compounds identified that effectively inhibit Myc-Max activity with low to mid-micromolar range potency and no or minimal generic cytotoxicity, VPC-70067, a close analog of the previously identified Myc inhibitor 10058-F4, served as proof-of-concept that our in silico drug discovery strategy performed as expected. Compound VPC-70063, of a chemically different scaffold, was the best performer in a panel of in vitro assays, and the forerunner for future hit-to-lead optimization efforts. These findings lay a foundation for developing more potent, specific and clinically optimized Myc-Max inhibitors that may serve as promising therapeutics, alone or in combination with current anti-cancer treatments, for treatment of specific phenotypes or heterogeneous tumors.
Collapse
Affiliation(s)
- Lavinia A Carabet
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Nada Lallous
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Eric Leblanc
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Fuqiang Ban
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Helene Morin
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Sam Lawn
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Fariba Ghaidi
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Joseph Lee
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Ian G Mills
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom; Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Martin E Gleave
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada.
| |
Collapse
|