1
|
Preetam S, Ghosh A, Mishra R, Pandey A, Roy DS, Rustagi S, Malik S. Electrical stimulation: a novel therapeutic strategy to heal biological wounds. RSC Adv 2024; 14:32142-32173. [PMID: 39399261 PMCID: PMC11467653 DOI: 10.1039/d4ra04258a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Electrical stimulation (ES) has emerged as a powerful therapeutic modality for enhancing biological wound healing. This non-invasive technique utilizes low-level electrical currents to promote tissue regeneration and expedite the wound healing process. ES has been shown to accelerate wound closure, reduce inflammation, enhance angiogenesis, and modulate cell migration and proliferation through various mechanisms. The principle goal of wound management is the rapid recovery of the anatomical continuity of the skin, to prevent infections from the external environment and maintain homeostasis conditions inside. ES at the wound site is a compelling strategy for skin wound repair. Several ES applications are described in medical literature like AC, DC, and PC to improve cutaneous perfusion and accelerate wound healing. This review aimed to evaluate the primary factors and provides an overview of the potential benefits and mechanisms of ES in wound healing, and its ability to stimulate cellular responses, promote tissue regeneration, and improve overall healing outcomes. We also shed light on the application of ES which holds excellent promise as an adjunct therapy for various types of wounds, including chronic wounds, diabetic ulcers, and surgical incisions.
Collapse
Affiliation(s)
- Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Arka Ghosh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology (PIET), Parul University Ta. Waghodia Vadodara Gujarat 391760 India
| | - Arunima Pandey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Debanjan Singha Roy
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University 22 Dehradun Uttarakhand India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand Ranchi Jharkhand 834001 India
- Department of Biotechnology, University Center for Research & Development (UCRD) Chandigarh University Ludhiana Highway Mohali 140413 Punjab India
| |
Collapse
|
2
|
Rubio P, Loy I, Pellón R. Some properties of habituation of siphon withdrawal in the slimy clam (Ruditapes decussatus). Behav Processes 2024; 222:105100. [PMID: 39284375 DOI: 10.1016/j.beproc.2024.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
A first approximation to the study of learning processes in bivalves is presented. A habituation procedure was developed using the slimy clam Ruditapes decussatus. The percentage of siphon withdrawal when they were exposed to a white light was measured. In Experiment 1, a habituation-discrimination procedure was used to study the stimulus intensity effect (350-lm vs 806 lm). Clams exposed to 350-lm showed a faster habituation than those exposed to 806-lm. Experiment 2 studied the effect of stimulus and intertrial interval (ITI) duration using a 2×2 design. Trials lasted 20 or 180 seconds, and the ITI lasted 5 or 10 minutes. A combined effect of these two parameters was obtained. Habituation was faster in clams exposed to 180-sec trials with a 5-min ITI. Finally, in Experiment 3 clams were trained with five blocks of five trials with a 5-min ITI. Groups differed on trial duration (20 or 180 s). The results showed a general spontaneous recovery effect that was more pronounced for the 180 s group. Also, it was found in this experimental condition a reduced response 24 hours after finishing training (long-term habituation). Altogether, this series of experiments constitutes a first systematic demonstration of habituation in bivalves.
Collapse
Affiliation(s)
- Pablo Rubio
- Departamento de Psicología Básica, Universidad Autónoma de Madrid, C/ Ivan Pavlov 6, Madrid 28049, Spain.
| | - Ignacio Loy
- Departamento de Psicología, Universidad de Oviedo, Plaza de Feijoo s/n, Oviedo 33003, Spain
| | - Ricardo Pellón
- Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal 10, Ciudad Universitaria, Madrid 28040, Spain
| |
Collapse
|
3
|
Hurwitz I, Tam S, Jing J, Chiel HJ, Susswein AJ. Repeated stimulation of feeding mechanoafferents in Aplysia generates responses consistent with the release of food. Learn Mem 2024; 31:a053880. [PMID: 38950976 PMCID: PMC11261209 DOI: 10.1101/lm.053880.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/19/2024] [Indexed: 07/03/2024]
Abstract
How does repeated stimulation of mechanoafferents affect feeding motor neurons? Monosynaptic connections from a mechanoafferent population in the Aplysia buccal ganglia to five motor followers with different functions were examined during repeated stimulus trains. The mechanoafferents produced both fast and slow synaptic outputs, which could be excitatory or inhibitory. In contrast, other Aplysia mechanoafferents produce only fast excitation on their followers. In addition, patterns of synaptic connections were different to the different motor followers. Some followers received both fast excitation and fast inhibition, whereas others received exclusively fast excitation. All followers showed strong decreases in fast postsynaptic potential (PSP) amplitude within a stimulus train. Fast and slow synaptic connections were of net opposite signs in some followers but not in others. For one follower, synaptic contacts were not uniform from all subareas of the mechanoafferent cluster. Differences in properties of the buccal ganglia mechanoafferents and other Aplysia mechanoafferents may arise because the buccal ganglia neurons innervate the interior of the feeding apparatus, rather than an external surface, and connect to motor neurons for muscles with different motor functions. Fast connection patterns suggest that these synapses may be activated when food slips, biasing the musculature to release food. The largest slow inhibitory synaptic PSPs may contribute to a delay in the onset of the next behavior. Additional functions are also possible.
Collapse
Affiliation(s)
- Itay Hurwitz
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Shlomit Tam
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School Life Sciences, Nanjing University, Jiangsu 210023, China
| | - Hillel J Chiel
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Abraham J Susswein
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
4
|
Brown JW, Berg OH, Boutko A, Stoerck C, Boersma MA, Frost WN. Division of labor for defensive retaliation and preemption by the peripheral and central nervous systems in the nudibranch Berghia. Curr Biol 2024; 34:2175-2185.e4. [PMID: 38718797 DOI: 10.1016/j.cub.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Relatively little is known about how peripheral nervous systems (PNSs) contribute to the patterning of behavior in which their role transcends the simple execution of central motor commands or mediation of reflexes. We sought to draw inferences to this end in the aeolid nudibranch Berghia stephanieae, which generates a rapid, dramatic defense behavior, "bristling." This behavior involves the coordinated movement of cerata, dozens of venomous appendages emerging from the animal's mantle. Our investigations revealed that bristling constitutes a stereotyped but non-reflexive two-stage behavior: an initial adduction of proximate cerata to sting the offending stimulus (stage 1) followed by a coordinated radial extension of remaining cerata to create a pincushion-like defensive screen around the animal (stage 2). In decerebrated specimens, stage 1 bristling was preserved, while stage 2 bristling was replaced by slower, uncoordinated ceratal movements. We conclude from these observations that, first, the animal's PNS and central nervous system (CNS) mediate stages 1 and 2 of bristling, respectively; second, the behavior propagates through the body utilizing both peripheral- and central-origin nerve networks that support different signaling kinetics; and third, the former network inhibits the latter in the body region being stimulated. These findings extend our understanding of the PNS' computational capacity and provide insight into a neuroethological scheme in which the CNS and PNS both independently and interactively pattern different aspects of non-reflexive behavior.
Collapse
Affiliation(s)
- Jeffrey W Brown
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Ondine H Berg
- Neuroscience Program, Lake Forest College, Lake Forest, IL 60045, USA
| | - Anastasiya Boutko
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Cody Stoerck
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831, USA
| | | | - William N Frost
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
5
|
Tang Y, Gonzalez MR, Deák GO. The slow emergence of gaze- and point-following: A longitudinal study of infants from 4 to 12 months. Dev Sci 2024; 27:e13457. [PMID: 37941084 DOI: 10.1111/desc.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
Acquisition of visual attention-following skills, notably gaze- and point-following, contributes to infants' ability to share attention with caregivers, which in turn contributes to social learning and communication. However, the development of gaze- and point-following in the first 18 months remains controversial, in part because of different testing protocols and standards. To address this, we longitudinally tested N = 43 low-risk, North American middle-class infants' tendency to follow gaze direction, pointing gestures, and gaze-and-point combinations. Infants were tested monthly from 4 to 12 months of age. To control motivational differences, infants were taught to expect contingent reward videos in the target locations. No-cue trials were included to estimate spontaneous target fixation rates. A comparison sample (N = 23) was tested at 9 and 12 months to estimate practice effects. Results showed gradual increases in both gaze- and point-following starting around 7 months, and modest month-to-month individual stability from 8 to 12 months. However, attention-following did not exceed chance levels until after 6 months. Infants rarely followed cues to locations behind them, even at 12 months. Infants followed combined gaze-and-point cues more than gaze alone, and followed points at intermediate levels (not reliably different from the other cues). The comparison group's results showed that practice effects did not explain the age-related increase in attention-following. The results corroborate and extend previous findings that North American middle-class infants' attention-following in controlled laboratory settings increases slowly and incrementally between 6 and 12 months of age. RESEARCH HIGHLIGHTS: A longitudinal experimental study documented the emergence and developmental trajectories of North American middle-class infants' visual attention-following skills, including gaze-following, point-following, and gaze-and-point-following. A new paradigm controlled for factors including motivation, attentiveness, and visual-search baserates. Motor development was ruled out as a predictor or limiter of the emergence of attention-following. Infants did not follow attention reliably until after 6 months, and following increased slowly from 7 to 12 months. Infants' individual trajectories showed modest month-to-month stability from 8 to 12 months of age.
Collapse
Affiliation(s)
- Yueyan Tang
- Department of Cognitive Science, University of California, San Diego, California, USA
| | - Marybel Robledo Gonzalez
- Department of Cognitive Science, University of California, San Diego, California, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio, USA
| | - Gedeon O Deák
- Department of Cognitive Science, University of California, San Diego, California, USA
| |
Collapse
|
6
|
Bergmann K, Lin AC. Relocating coincidence detection for associative learning. J Physiol 2024; 602:1877-1878. [PMID: 38652560 DOI: 10.1113/jp286472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Katharina Bergmann
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Hughes S, Hessel EVS. Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity. Crit Rev Toxicol 2024; 54:330-343. [PMID: 38832580 DOI: 10.1080/10408444.2024.2342448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Despite the growing epidemiological evidence of an association between toxin exposure and developmental neurotoxicity (DNT), systematic testing of DNT is not mandatory in international regulations for admission of pharmaceuticals or industrial chemicals. However, to date around 200 compounds, ranging from pesticides, pharmaceuticals and industrial chemicals, have been tested for DNT in the current OECD test guidelines (TG-443 or TG-426). There are calls for the development of new approach methodologies (NAMs) for DNT, which has resulted in a DNT testing battery using in vitro human cell-based assays. These assays provide a means to elucidate the molecular mechanisms of toxicity in humans which is lacking in animal-based toxicity tests. However, cell-based assays do not represent all steps of the complex process leading to DNT. Validated models with a multi-organ network of pathways that interact at the molecular, cellular and tissue level at very specific timepoints in a life cycle are currently missing. Consequently, whole model organisms are being developed to screen for, and causally link, new molecular targets of DNT compounds and how they affect whole brain development and neurobehavioral endpoints. Given the practical and ethical restraints associated with vertebrate testing, lower animal models that qualify as 3 R (reduce, refine and replace) models, including the nematode (Caenorhabditis elegans) and the zebrafish (Danio rerio) will prove particularly valuable for unravelling toxicity pathways leading to DNT. Although not as complex as the human brain, these 3 R-models develop a complete functioning brain with numerous neurodevelopmental processes overlapping with human brain development. Importantly, the main signalling pathways relating to (neuro)development, metabolism and growth are highly conserved in these models. We propose the use of whole model organisms specifically zebrafish and C. elegans for DNT relevant endpoints.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
8
|
Rahmani A, McMillen A, Allen E, Minervini C, Chew YL. Behavioral Tests for Associative Learning in Caenorhabditis elegans. Methods Mol Biol 2024; 2746:21-46. [PMID: 38070077 DOI: 10.1007/978-1-0716-3585-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Learning is critical for survival as it provides the capacity to adapt to a changing environment. At the molecular and cellular level, learning leads to alterations within neural circuits that include synaptic rewiring, synaptic plasticity, and protein level/gene expression changes. There has been substantial progress in recent years on dissecting how learning and memory is regulated at the molecular and cellular level, including the use of compact invertebrate nervous systems as experimental models. This progress has been facilitated by the establishment of robust behavioral assays that generate a quantifiable readout of the extent to which animals learn and remember. This chapter will focus on protocols of behavioral tests for associative learning using the nematode Caenorhabditis elegans, with its unparalleled genetic tractability, compact nervous system of ~300 neurons, high level of conservation with mammalian systems, and amenability to a suite of behavioral tools and analyses. Specifically, we will provide a detailed description of the methods for two behavioral assays that model associative learning, one measuring appetitive olfactory learning and the other assaying aversive gustatory learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Anna McMillen
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Ericka Allen
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Caitlin Minervini
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
9
|
Walters ET. Exaptation and Evolutionary Adaptation in Nociceptor Mechanisms Driving Persistent Pain. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:314-330. [PMID: 38035556 PMCID: PMC10922759 DOI: 10.1159/000535552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Several evolutionary explanations have been proposed for why chronic pain is a major clinical problem. One is that some mechanisms important for driving chronic pain, while maladaptive for modern humans, were adaptive because they enhanced survival. Evidence is reviewed for persistent nociceptor hyperactivity (PNH), known to promote chronic pain in rodents and humans, being an evolutionarily adaptive response to significant bodily injury, and primitive molecular mechanisms related to cellular injury and stress being exapted (co-opted or repurposed) to drive PNH and consequent pain. SUMMARY PNH in a snail (Aplysia californica), squid (Doryteuthis pealeii), fruit fly (Drosophila melanogaster), mice, rats, and humans has been documented as long-lasting enhancement of action potential discharge evoked by peripheral stimuli, and in some of these species as persistent extrinsically driven ongoing activity and/or intrinsic spontaneous activity (OA and SA, respectively). In mammals, OA and SA are often initiated within the protected nociceptor soma long after an inducing injury. Generation of OA or SA in nociceptor somata may be very rare in invertebrates, but prolonged afterdischarge in nociceptor somata readily occurs in sensitized Aplysia. Evidence for the adaptiveness of injury-induced PNH has come from observations of decreased survival of injured squid exposed to predators when PNH is blocked, from plausible survival benefits of chronic sensitization after severe injuries such as amputation, and from the functional coherence and intricacy of mammalian PNH mechanisms. Major contributions of cAMP-PKA signaling (with associated calcium signaling) to the maintenance of PNH both in mammals and molluscs suggest that this ancient stress signaling system was exapted early during the evolution of nociceptors to drive hyperactivity following bodily injury. Vertebrates have retained core cAMP-PKA signaling modules for PNH while adding new extracellular modulators (e.g., opioids) and cAMP-regulated ion channels (e.g., TRPV1 and Nav1.8 channels). KEY MESSAGES Evidence from multiple phyla indicates that PNH is a physiological adaptation that decreases the risk of attacks on injured animals. Core cAMP-PKA signaling modules make major contributions to the maintenance of PNH in molluscs and mammals. This conserved signaling has been linked to ancient cellular responses to stress, which may have been exapted in early nociceptors to drive protective hyperactivity that can persist while bodily functions recover after significant injury.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Jelen M, Musso PY, Junca P, Gordon MD. Optogenetic induction of appetitive and aversive taste memories in Drosophila. eLife 2023; 12:e81535. [PMID: 37750673 PMCID: PMC10561975 DOI: 10.7554/elife.81535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
Tastes typically evoke innate behavioral responses that can be broadly categorized as acceptance or rejection. However, research in Drosophila melanogaster indicates that taste responses also exhibit plasticity through experience-dependent changes in mushroom body circuits. In this study, we develop a novel taste learning paradigm using closed-loop optogenetics. We find that appetitive and aversive taste memories can be formed by pairing gustatory stimuli with optogenetic activation of sensory neurons or dopaminergic neurons encoding reward or punishment. As with olfactory memories, distinct dopaminergic subpopulations drive the parallel formation of short- and long-term appetitive memories. Long-term memories are protein synthesis-dependent and have energetic requirements that are satisfied by a variety of caloric food sources or by direct stimulation of MB-MP1 dopaminergic neurons. Our paradigm affords new opportunities to probe plasticity mechanisms within the taste system and understand the extent to which taste responses depend on experience.
Collapse
Affiliation(s)
- Meghan Jelen
- Department of Zoology and Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Pierre-Yves Musso
- Department of Zoology and Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Pierre Junca
- Department of Zoology and Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Michael D Gordon
- Department of Zoology and Life Sciences Institute, University of British ColumbiaVancouverCanada
| |
Collapse
|
11
|
Goncharova AA, Besedina NG, Bragina JV, Danilenkova LV, Kamysheva EA, Fedotov SA. Courtship suppression in Drosophila melanogaster: The role of mating failure. PLoS One 2023; 18:e0290048. [PMID: 37561803 PMCID: PMC10414572 DOI: 10.1371/journal.pone.0290048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Drosophila melanogaster is a popular model organism in the study of memory due to a wide arsenal of methods used to analyze neuronal activity. The most commonly used tests in research of behavioral plasticity are shock avoidance associated with chemosensory cues and courtship suppression after mating failure. Many authors emphasize the value of courtship suppression as a model of behavior most appropriate to natural conditions. However, researchers often investigate courtship suppression using immobilized and decapitated females as targets of courtship by males, which makes the data obtained from such flies less valuable. In our study, we evaluate courtship suppression towards immature mobile non-receptive females after training with mated or immature females combined with an aversive stimulus (quinine). We have shown that the previously described mechanisms of courtship suppression, as a result of the association of the courtship object with the repellent, as well as due to increased sensitivity to the anti-aphrodisiac cVA after mating failure, are not confirmed when immature mobile females are used. We discuss the reasons for the discrepancies between our results and literature data, define the conditions to be met in the courtship suppression test if the aim is to analyze the natural forms of behavioral plasticity, and present data on the test modifications to approximate conditions to natural ones.
Collapse
Affiliation(s)
- Anna A. Goncharova
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalia G. Besedina
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Julia V. Bragina
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Larisa V. Danilenkova
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena A. Kamysheva
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergei A. Fedotov
- Laboratory of Comparative Behavioral Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Laboratory of Toxinology and Molecular Systematics, L.A. Orbeli Institute of Physiology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- Laboratory of Amyloid Biology, Saint Petersburg University, St. Petersburg, Russia
| |
Collapse
|
12
|
Brown JW, Berg OH, Boutko A, Stoerck C, Boersma MA, Frost WN. Neural division of labor: the gastropod Berghia defends against attack using its PNS to retaliate and its CNS to erect a defensive screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551068. [PMID: 37577477 PMCID: PMC10418079 DOI: 10.1101/2023.07.29.551068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Relatively little is known about how the peripheral nervous system (PNS) contributes to the patterning of behavior, in which its role transcends the simple execution of central motor commands or mediation of reflexes. We sought to draw inferences to this end in the aeolid nudibranch Berghia stephanieae, which generates a rapid, dramatic defense behavior, "bristling." This behavior involves the coordinated movement of cerata, dozens of venomous appendages emerging from the animal's mantle. Our investigations revealed that bristling constitutes a stereotyped but non-reflexive two-stage behavior: an initial adduction of proximate cerata to sting the offending stimulus (Stage 1), followed by a coordinated radial extension of remaining cerata to create a pincushion-like defensive screen around the animal (Stage 2). In decerebrated specimens, Stage 1 bristling was preserved, while Stage 2 bristling was replaced by slower, uncoordinated, and ultimately maladaptive ceratal movements. We conclude from these observations that 1) the PNS and central nervous system (CNS) mediate Stages 1 and 2 of bristling, respectively; 2) the behavior propagates through the body utilizing both peripheral- and central-origin nerve networks that support different signaling kinetics; and 3) the former network inhibits the latter in the body region being stimulated. These findings extend our understanding of the PNS's computational capacity and provide insight into a neuroethological scheme that may generalize across cephalized animals, in which the CNS and PNS both independently and interactively pattern different aspects of non-reflexive behavior.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Ondine H. Berg
- Neuroscience Program, Lake Forest College, Lake Forest, IL 60045
| | - Anastasiya Boutko
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Cody Stoerck
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | | | - William N. Frost
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| |
Collapse
|
13
|
Brando S, Norman M. Handling and Training of Wild Animals: Evidence and Ethics-Based Approaches and Best Practices in the Modern Zoo. Animals (Basel) 2023; 13:2247. [PMID: 37508025 PMCID: PMC10375971 DOI: 10.3390/ani13142247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
There is an ethical responsibility to provide all animals living in human care with optimal and positive well-being. As animals living in zoos and aquariums frequently interact with their human caregivers as part of their daily care routines, it is both relevant and essential to consider the impact of these interactions on animal well-being. Allowing animals to have choice and control in multiple areas of their lives, such as by providing opportunities for them to voluntarily participate in their own care through, for example, positive reinforcement training, is an essential component of good animal well-being programs. This review aims to describe evidence-based approaches, ethics, and best practices in the handling and training of the many taxa held in zoos and aquariums worldwide, drawing from work in related animal care fields such as laboratories, farms, rescue, and sanctuaries. The importance of ongoing animal well-being assessments is discussed, with a particular focus on the need for continued review and refinement of processes and procedures pertaining to animal training and handling specifically. Review, enquiry, assessment, evaluation, and refinement will aim to dynamically support positive well-being for all animals.
Collapse
|
14
|
Romano A, Freudenthal R, Feld M. Molecular insights from the crab Neohelice memory model. Front Mol Neurosci 2023; 16:1214061. [PMID: 37415833 PMCID: PMC10321408 DOI: 10.3389/fnmol.2023.1214061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Memory acquisition, formation and maintenance depend on synaptic post-translational machinery and regulation of gene expression triggered by several transduction pathways. In turns, these processes lead to stabilization of synaptic modifications in neurons in the activated circuits. In order to study the molecular mechanisms involved in acquisition and memory, we have taken advantage of the context-signal associative learning and, more recently, the place preference task, of the crab Neohelice granulata. In this model organism, we studied several molecular processes, including activation of extracellular signal-regulated kinase (ERK) and the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) transcription factor, involvement of synaptic proteins such as NMDA receptors and neuroepigenetic regulation of gene expression. All these studies allowed description of key plasticity mechanisms involved in memory, including consolidation, reconsolidation and extinction. This article is aimed at review the most salient findings obtained over decades of research in this memory model.
Collapse
Affiliation(s)
- Arturo Romano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular “Dr. Hector Maldonado” (FBMC), Buenos Aires, Argentina
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular “Dr. Hector Maldonado” (FBMC), Buenos Aires, Argentina
- Biotecnología y Biología Traslacional (IB3), Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Feld
- Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Gupta M, Pandey S, Rumman M, Singh B, Mahdi AA. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neurosci Rep 2023; 14:57-63. [PMID: 36590246 PMCID: PMC9800261 DOI: 10.1016/j.ibneur.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia. DM can lead to a number of secondary complications affecting multiple organs in the body including the eyes, kidney, heart, and brain. The most common effect of hyperglycemia on the brain is cognitive decline. It has been estimated that 20-70% of people with DM have cognitive deficits. High blood sugar affects key brain areas involved in learning, memory, and spatial navigation, and the structural complexity of the brain has made it prone to a variety of pathological disorders, including T2DM. Studies have reported that cognitive decline can occur in people with diabetes, which could go undetected for several years. Moreover, studies on brain imaging suggest extensive effects on different brain regions in patients with T2D. It remains unclear whether diabetes-associated cognitive decline is a consequence of hyperglycemia or a complication that co-occurs with T2D. The exact mechanism underlying cognitive impairment in diabetes is complex; however, impaired glucose metabolism and abnormal insulin function are thought to play important roles. In this review, we have tried to summarize the effect of hyperglycemia on the brain structure and functions, along with the potential mechanisms underlying T2DM-associated cognitive decline.
Collapse
Affiliation(s)
- Mrinal Gupta
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Shivani Pandey
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Mohammad Rumman
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
16
|
Salimi L, Seyedaghamiri F, Karimipour M, Mobarak H, Mardi N, Taghavi M, Rahbarghazi R. Physiological and pathological consequences of exosomes at the blood-brain-barrier interface. Cell Commun Signal 2023; 21:118. [PMID: 37208741 DOI: 10.1186/s12964-023-01142-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
Blood-brain barrier (BBB) interface with multicellular structure controls strictly the entry of varied circulating macromolecules from the blood-facing surface into the brain parenchyma. Under several pathological conditions within the central nervous system, the integrity of the BBB interface is disrupted due to the abnormal crosstalk between the cellular constituents and the recruitment of inflammatory cells. Exosomes (Exos) are nano-sized extracellular vesicles with diverse therapeutic outcomes. These particles transfer a plethora of signaling molecules with the potential to modulate target cell behavior in a paracrine manner. Here, in the current review article, the therapeutic properties of Exos and their potential in the alleviation of compromised BBB structure were discussed. Video Abstract.
Collapse
Affiliation(s)
- Leila Salimi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Fu P, Mei YS, Liu WJ, Chen P, Jin QC, Guo SQ, Wang HY, Xu JP, Zhang YCF, Ding XY, Liu CP, Liu CY, Mao RT, Zhang G, Jing J. Identification of three elevenin receptors and roles of elevenin disulfide bond and residues in receptor activation in Aplysia californica. Sci Rep 2023; 13:7662. [PMID: 37169790 PMCID: PMC10175484 DOI: 10.1038/s41598-023-34596-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Neuropeptides are ubiquitous intercellular signaling molecules in the CNS and play diverse roles in modulating physiological functions by acting on specific G-protein coupled receptors (GPCRs). Among them, the elevenin signaling system is now believed to be present primarily in protostomes. Although elevenin was first identified from the L11 neuron of the abdominal ganglion in mollusc Aplysia californica, no receptors have been described in Aplysia, nor in any other molluscs. Here, using two elevenin receptors in annelid Platynereis dumerilii, we found three putative elevenin GPCRs in Aplysia. We cloned the three receptors and tentatively named them apElevR1, apElevR2, and apElevR3. Using an inositol monophosphate (IP1) accumulation assay, we demonstrated that Aplysia elevenin with the disulfide bond activated the three putative receptors with low EC50 values (ranging from 1.2 to 25 nM), supporting that they are true receptors for elevenin. In contrast, elevenin without the disulfide bond could not activate the receptors, indicating that the disulfide bond is required for receptor activity. Using alanine substitution of individual conserved residues other than the two cysteines, we showed that these residues appear to be critical to receptor activity, and the three different receptors had different sensitivities to the single residue substitution. Finally, we examined the roles of those residues outside the disulfide bond ring by removing these residues and found that they also appeared to be important to receptor activity. Thus, our study provides an important basis for further study of the functions of elevenin and its receptors in Aplysia and other molluscs.
Collapse
Affiliation(s)
- Ping Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yu-Shuo Mei
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Wei-Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Qing-Chun Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ju-Ping Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yan-Chu-Fei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xue-Ying Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Cui-Ping Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Cheng-Yi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Rui-Ting Mao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medical Psychology and Neurology, Nanjing Drum Tower Hospital, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
- Peng Cheng Laboratory, Shenzhen, 518000, China.
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
18
|
Chen BL, Yuan B, Jiang WX, Yu YT, Ji M. Research on epidemic spread model based on cold chain input. Soft comput 2023; 27:2251-2268. [PMID: 36694866 PMCID: PMC9851120 DOI: 10.1007/s00500-023-07823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
In recent years, the new type of coronary pneumonia (COVID-19) has become a highly contagious disease worldwide, posing a serious threat to the public health. This paper is based on the SEIR model of the new coronavirus pneumonia, considering the impact of cold chain input and re-positive on the spread of the virus in the COVID-19. In the process of model design, the food cold chain and re-positive are used as parameters, and its stability is analyzed and simulated. The experimental results show that taking into account the cold chain input and re-positive can effectively simulate the spread of the epidemic. The research results have important research value and practical significance for the prevention and control of the COVID-19 and the prediction of important time nodes.
Collapse
Affiliation(s)
- Bo-Lun Chen
- Department of Computer Science, Huaiyin Institute of Technology, Huaiyin, 223003 Jiangsu China ,Institute of Informatics, University of Zurich, 8050 Zurich, Switzerland
| | - Ben Yuan
- Department of Computer Science, Huaiyin Institute of Technology, Huaiyin, 223003 Jiangsu China
| | - Win-Xin Jiang
- Department of Computer Science, Huaiyin Institute of Technology, Huaiyin, 223003 Jiangsu China
| | - Yong-Tao Yu
- Department of Computer Science, Huaiyin Institute of Technology, Huaiyin, 223003 Jiangsu China
| | - Min Ji
- Department of Computer Science, Huaiyin Institute of Technology, Huaiyin, 223003 Jiangsu China
| |
Collapse
|
19
|
Kumar A, Singh AK, Singh H, Thareja S, Kumar P. Regulation of thymidylate synthase: an approach to overcome 5-FU resistance in colorectal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:3. [PMID: 36308643 DOI: 10.1007/s12032-022-01864-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/29/2022] [Indexed: 01/17/2023]
Abstract
Thymidylate synthase is the rate-limiting enzyme required for DNA synthesis and overexpression of this enzyme causes resistance to cancer cells. Long treatments with 5-FU cause resistance to Thymidylate synthase targeting drugs. We have also compiled different mechanisms of drug resistance including autophagy and apoptosis, drug detoxification and ABC transporters, drug efflux, signaling pathways (AKT/PI3K, RAS-MAPK, WNT/β catenin, mTOR, NFKB, and Notch1 and FOXM1) and different genes associated with resistance in colorectal cancer. We can overcome 5-FU resistance in cancer cells by regulating thymidylate synthase by natural products (Coptidis rhizoma), HDAC inhibitors, mTOR inhibitors, Folate antagonists, and several other drugs which have been used in combination with TS inhibitors. This review is a compilation of different approaches reported for the regulation of thymidylate synthase to overcome resistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India.
| |
Collapse
|
20
|
Hashim M, Mujahid H, Hassan S, Bukhari S, Anjum I, Hano C, Abbasi BH, Anjum S. Implication of Nanoparticles to Combat Chronic Liver and Kidney Diseases: Progress and Perspectives. Biomolecules 2022; 12:1337. [PMID: 36291548 PMCID: PMC9599274 DOI: 10.3390/biom12101337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Liver and kidney diseases are the most frequently encountered problems around the globe. Damage to the liver and kidney may occur as a result of exposure to various drugs, chemicals, toxins, and pathogens, leading to severe disease conditions such as cirrhosis, fibrosis, hepatitis, acute kidney injury, and liver and renal failure. In this regard, the use of nanoparticles (NPs) such as silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), and zinc oxide nanoparticles (ZnONPs) has emerged as a rapidly developing field of study in terms of safe delivery of various medications to target organs with minimal side effects. Due to their physical characteristics, NPs have inherent pharmacological effects, and an accidental buildup can have a significant impact on the structure and function of the liver and kidney. By suppressing the expression of the proinflammatory cytokines iNOS and COX-2, NPs are known to possess anti-inflammatory effects. Additionally, NPs have demonstrated their ability to operate as an antioxidant, squelching the generation of ROS caused by substances that cause oxidative stress. Finally, because of their pro-oxidant properties, they are also known to increase the level of ROS, which causes malignant liver and kidney cells to undergo apoptosis. As a result, NPs can be regarded as a double-edged sword whose inherent therapeutic benefits can be refined as we work to comprehend them in terms of their toxicity.
Collapse
Affiliation(s)
- Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Huma Mujahid
- Department of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Samina Hassan
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Shanila Bukhari
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure & Loir Campus, 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| |
Collapse
|
21
|
The evolution of synaptic and cognitive capacity: Insights from the nervous system transcriptome of Aplysia. Proc Natl Acad Sci U S A 2022; 119:e2122301119. [PMID: 35867761 PMCID: PMC9282427 DOI: 10.1073/pnas.2122301119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The gastropod mollusk Aplysia is an important model for cellular and molecular neurobiological studies, particularly for investigations of molecular mechanisms of learning and memory. We developed an optimized assembly pipeline to generate an improved Aplysia nervous system transcriptome. This improved transcriptome enabled us to explore the evolution of cognitive capacity at the molecular level. Were there evolutionary expansions of neuronal genes between this relatively simple gastropod Aplysia (20,000 neurons) and Octopus (500 million neurons), the invertebrate with the most elaborate neuronal circuitry and greatest behavioral complexity? Are the tremendous advances in cognitive power in vertebrates explained by expansion of the synaptic proteome that resulted from multiple rounds of whole genome duplication in this clade? Overall, the complement of genes linked to neuronal function is similar between Octopus and Aplysia. As expected, a number of synaptic scaffold proteins have more isoforms in humans than in Aplysia or Octopus. However, several scaffold families present in mollusks and other protostomes are absent in vertebrates, including the Fifes, Lev10s, SOLs, and a NETO family. Thus, whereas vertebrates have more scaffold isoforms from select families, invertebrates have additional scaffold protein families not found in vertebrates. This analysis provides insights into the evolution of the synaptic proteome. Both synaptic proteins and synaptic plasticity evolved gradually, yet the last deuterostome-protostome common ancestor already possessed an elaborate suite of genes associated with synaptic function, and critical for synaptic plasticity.
Collapse
|
22
|
Improving Antibacterial Activity of Methicillin by Conjugation to Functionalized Single-Wall Carbon Nanotubes Against MRSA. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Croteau-Chonka EC, Clayton MS, Venkatasubramanian L, Harris SN, Jones BMW, Narayan L, Winding M, Masson JB, Zlatic M, Klein KT. High-throughput automated methods for classical and operant conditioning of Drosophila larvae. eLife 2022; 11:70015. [PMID: 36305588 PMCID: PMC9678368 DOI: 10.7554/elife.70015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/26/2022] [Indexed: 02/02/2023] Open
Abstract
Learning which stimuli (classical conditioning) or which actions (operant conditioning) predict rewards or punishments can improve chances of survival. However, the circuit mechanisms that underlie distinct types of associative learning are still not fully understood. Automated, high-throughput paradigms for studying different types of associative learning, combined with manipulation of specific neurons in freely behaving animals, can help advance this field. The Drosophila melanogaster larva is a tractable model system for studying the circuit basis of behaviour, but many forms of associative learning have not yet been demonstrated in this animal. Here, we developed a high-throughput (i.e. multi-larva) training system that combines real-time behaviour detection of freely moving larvae with targeted opto- and thermogenetic stimulation of tracked animals. Both stimuli are controlled in either open- or closed-loop, and delivered with high temporal and spatial precision. Using this tracker, we show for the first time that Drosophila larvae can perform classical conditioning with no overlap between sensory stimuli (i.e. trace conditioning). We also demonstrate that larvae are capable of operant conditioning by inducing a bend direction preference through optogenetic activation of reward-encoding serotonergic neurons. Our results extend the known associative learning capacities of Drosophila larvae. Our automated training rig will facilitate the study of many different forms of associative learning and the identification of the neural circuits that underpin them.
Collapse
Affiliation(s)
- Elise C Croteau-Chonka
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | | | | | | | - Lakshmi Narayan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael Winding
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jean-Baptiste Masson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States,Decision and Bayesian Computation, Neuroscience Department & Computational Biology Department, Institut PasteurParisFrance
| | - Marta Zlatic
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States,MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Kristina T Klein
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
24
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
Thiede KI, Born J, Vorster APA. Sleep and conditioning of the siphon withdrawal reflex in Aplysia. J Exp Biol 2021; 224:271187. [PMID: 34346500 DOI: 10.1242/jeb.242431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022]
Abstract
Sleep is essential for memory consolidation after learning as shown in mammals and invertebrates such as bees and flies. Aplysia californica displays sleep, and sleep in this mollusk was also found to support memory for an operant conditioning task. Here, we investigated whether sleep in Aplysia is also required for memory consolidation in a simpler type of learning, i.e. the conditioning of the siphon withdrawal reflex. Two groups of animals (Wake, Sleep, each n=11) were conditioned on the siphon withdrawal reflex, with the training following a classical conditioning procedure where an electrical tail shock served as the unconditioned stimulus (US) and a tactile stimulus to the siphon as the conditioned stimulus (CS). Responses to the CS were tested before (pre-test), and 24 and 48 h after training. While Wake animals remained awake for 6 h after training, Sleep animals had undisturbed sleep. The 24 h test in both groups was combined with extinction training, i.e. the extended presentation of the CS alone over two blocks. At the 24 h test, siphon withdrawal duration in response to the CS was distinctly enhanced in both Sleep and Wake groups with no significant difference between groups, consistent with the view that consolidation of a simple conditioned reflex response does not require post-training sleep. Surprisingly, extinction training did not reverse the enhancement of responses to the CS. On the contrary, at the 48 h test, withdrawal duration in response to the CS was even further enhanced across both groups. This suggests that processes of sensitization, an even simpler non-associative type of learning, contributed to the withdrawal responses. Our study provides evidence for the hypothesis that sleep preferentially benefits consolidation of more complex learning paradigms than conditioning of simple reflexes.
Collapse
Affiliation(s)
- Kathrin I Thiede
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience CIN, University of Tübingen, Tübingen 72076, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience CIN, University of Tübingen, Tübingen 72076, Germany.,German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen 72076, Germany
| | - Albrecht P A Vorster
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience CIN, University of Tübingen, Tübingen 72076, Germany.,Training Centre of Neuroscience (GTC)/International Max Planck Research School (IMPRS) at the University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
26
|
Bennett MS. Five Breakthroughs: A First Approximation of Brain Evolution From Early Bilaterians to Humans. Front Neuroanat 2021; 15:693346. [PMID: 34489649 PMCID: PMC8418099 DOI: 10.3389/fnana.2021.693346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Retracing the evolutionary steps by which human brains evolved can offer insights into the underlying mechanisms of human brain function as well as the phylogenetic origin of various features of human behavior. To this end, this article presents a model for interpreting the physical and behavioral modifications throughout major milestones in human brain evolution. This model introduces the concept of a "breakthrough" as a useful tool for interpreting suites of brain modifications and the various adaptive behaviors these modifications enabled. This offers a unique view into the ordered steps by which human brains evolved and suggests several unique hypotheses on the mechanisms of human brain function.
Collapse
|
27
|
Bennett MS. What Behavioral Abilities Emerged at Key Milestones in Human Brain Evolution? 13 Hypotheses on the 600-Million-Year Phylogenetic History of Human Intelligence. Front Psychol 2021; 12:685853. [PMID: 34393912 PMCID: PMC8358274 DOI: 10.3389/fpsyg.2021.685853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023] Open
Abstract
This paper presents 13 hypotheses regarding the specific behavioral abilities that emerged at key milestones during the 600-million-year phylogenetic history from early bilaterians to extant humans. The behavioral, intellectual, and cognitive faculties of humans are complex and varied: we have abilities as diverse as map-based navigation, theory of mind, counterfactual learning, episodic memory, and language. But these faculties, which emerge from the complex human brain, are likely to have evolved from simpler prototypes in the simpler brains of our ancestors. Understanding the order in which behavioral abilities evolved can shed light on how and why our brains evolved. To propose these hypotheses, I review the available data from comparative psychology and evolutionary neuroscience.
Collapse
|
28
|
Carrasco-Pujante J, Bringas C, Malaina I, Fedetz M, Martínez L, Pérez-Yarza G, Dolores Boyano M, Berdieva M, Goodkov A, López JI, Knafo S, De la Fuente IM. Associative Conditioning Is a Robust Systemic Behavior in Unicellular Organisms: An Interspecies Comparison. Front Microbiol 2021; 12:707086. [PMID: 34349748 PMCID: PMC8327096 DOI: 10.3389/fmicb.2021.707086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
The capacity to learn new efficient systemic behavior is a fundamental issue of contemporary biology. We have recently observed, in a preliminary analysis, the emergence of conditioned behavior in some individual amoebae cells. In these experiments, cells were able to acquire new migratory patterns and remember them for long periods of their cellular cycle, forgetting them later on. Here, following a similar conceptual framework of Pavlov's experiments, we have exhaustively studied the migration trajectories of more than 2000 individual cells belonging to three different species: Amoeba proteus, Metamoeba leningradensis, and Amoeba borokensis. Fundamentally, we have analyzed several relevant properties of conditioned cells, such as the intensity of the responses, the directionality persistence, the total distance traveled, the directionality ratio, the average speed, and the persistence times. We have observed that cells belonging to these three species can modify the systemic response to a specific stimulus by associative conditioning. Our main analysis shows that such new behavior is very robust and presents a similar structure of migration patterns in the three species, which was characterized by the presence of conditioning for long periods, remarkable straightness in their trajectories and strong directional persistence. Our experimental and quantitative results, compared with other studies on complex cellular responses in bacteria, protozoa, fungus-like organisms and metazoans that we discus here, allow us to conclude that cellular associative conditioning might be a widespread characteristic of unicellular organisms. This new systemic behavior could be essential to understand some key principles involved in increasing the cellular adaptive fitness to microenvironments.
Collapse
Affiliation(s)
- Jose Carrasco-Pujante
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Carlos Bringas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, CSIC, Institute of Parasitology and Biomedicine “López-Neyra”, Granada, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Basque Center of Applied Mathematics, Bilbao, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mariia Berdieva
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology Russian Academy of Science, Saint Petersburg, Russia
| | - Andrew Goodkov
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology Russian Academy of Science, Saint Petersburg, Russia
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Shira Knafo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
- Biophysics Institute, CSIC-UPV/EHU, University of the Basque Country (UPV/EHU) and Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| | - Ildefonso M. De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, Murcia, Spain
| |
Collapse
|
29
|
Role of a Heat Shock Transcription Factor and the Major Heat Shock Protein Hsp70 in Memory Formation and Neuroprotection. Cells 2021; 10:cells10071638. [PMID: 34210082 PMCID: PMC8305005 DOI: 10.3390/cells10071638] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.
Collapse
|
30
|
Bownik A, Wlodkowic D. Applications of advanced neuro-behavioral analysis strategies in aquatic ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145577. [PMID: 33770877 DOI: 10.1016/j.scitotenv.2021.145577] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Despite mounting evidence of pleiotropic ecological risks, the understanding of the eco-neurotoxic impact of most industrially relevant chemicals is still very limited. In particularly the acute and chronic exposures to industrial pollutants on nervous systems and thus potential alterations in ecological fitness remain profoundly understudied. Since the behavioral phenotype is the highest-level and functional manifestation of integrated neurological functions, the alterations in neuro-behavioral traits have been postulated as very sensitive and physiologically integrative endpoints to assess eco-neurotoxicological risks associated with industrial pollutants. Due to a considerable backlog of risk assessments of existing and new production chemicals there is a need for a paradigm shift from high cost, low throughput ecotoxicity test models to next generation systems amenable to higher throughput. In this review we concentrate on emerging aspects of laboratory-based neuro-behavioral phenotyping approaches that can be amenable for rapid prioritizing pipelines. We outline the importance of development and applications of innovative neuro-behavioral assays utilizing small aquatic biological indicators and demonstrate emerging concepts of high-throughput chemo-behavioral phenotyping. We also discuss new analytical approaches to effectively and rapidly evaluate the impact of pollutants on higher behavioral functions such as sensory-motor assays, decision-making and cognitive behaviors using innovative model organisms. Finally, we provide a snapshot of most recent analytical approaches that can be applied to elucidate mechanistic rationale that underlie the observed neuro-behavioral alterations upon exposure to pollutants. This review is intended to outline the emerging opportunities for innovative multidisciplinary research and highlight the existing challenges as well barriers to future development.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | | |
Collapse
|
31
|
Gold AR, Glanzman DL. The central importance of nuclear mechanisms in the storage of memory. Biochem Biophys Res Commun 2021; 564:103-113. [PMID: 34020774 DOI: 10.1016/j.bbrc.2021.04.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
The neurobiological nature of the memory trace (engram) remains controversial. The most widely accepted hypothesis at present is that long-term memory is stored as stable, learning-induced changes in synaptic connections. This hypothesis, the synaptic plasticity hypothesis of memory, is supported by extensive experimental data gathered from over 50 years of research. Nonetheless, there are important mnemonic phenomena that the synaptic plasticity hypothesis cannot, or cannot readily, account for. Furthermore, recent work indicates that epigenetic and genomic mechanisms play heretofore underappreciated roles in memory. Here, we critically assess the evidence that supports the synaptic plasticity hypothesis and discuss alternative non-synaptic, nuclear mechanisms of memory storage, including DNA methylation and retrotransposition. We argue that long-term encoding of memory is mediated by nuclear processes; synaptic plasticity, by contrast, represents a means of relatively temporary memory storage. In addition, we propose that memories are evaluated for their mnemonic significance during an initial period of synaptic storage; if assessed as sufficiently important, the memories then undergo nuclear encoding.
Collapse
Affiliation(s)
- Adam R Gold
- Behavioral Neuroscience Program, Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - David L Glanzman
- Department of Integrative Biology & Physiology, UCLA College, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
32
|
Van Damme S, De Fruyt N, Watteyne J, Kenis S, Peymen K, Schoofs L, Beets I. Neuromodulatory pathways in learning and memory: Lessons from invertebrates. J Neuroendocrinol 2021; 33:e12911. [PMID: 33350018 DOI: 10.1111/jne.12911] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
In an ever-changing environment, animals have to continuously adapt their behaviour. The ability to learn from experience is crucial for animals to increase their chances of survival. It is therefore not surprising that learning and memory evolved early in evolution and are mediated by conserved molecular mechanisms. A broad range of neuromodulators, in particular monoamines and neuropeptides, have been found to influence learning and memory, although our knowledge on their modulatory functions in learning circuits remains fragmentary. Many neuromodulatory systems are evolutionarily ancient and well-conserved between vertebrates and invertebrates. Here, we highlight general principles and mechanistic insights concerning the actions of monoamines and neuropeptides in learning circuits that have emerged from invertebrate studies. Diverse neuromodulators have been shown to influence learning and memory in invertebrates, which can have divergent or convergent actions at different spatiotemporal scales. In addition, neuromodulators can regulate learning dependent on internal and external states, such as food and social context. The strong conservation of neuromodulatory systems, the extensive toolkit and the compact learning circuits in invertebrate models make these powerful systems to further deepen our understanding of neuromodulatory pathways involved in learning and memory.
Collapse
Affiliation(s)
- Sara Van Damme
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Katleen Peymen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Smolen P, Baxter DA, Byrne JH. Comparing Theories for the Maintenance of Late LTP and Long-Term Memory: Computational Analysis of the Roles of Kinase Feedback Pathways and Synaptic Reactivation. Front Comput Neurosci 2020; 14:569349. [PMID: 33390922 PMCID: PMC7772319 DOI: 10.3389/fncom.2020.569349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022] Open
Abstract
A fundamental neuroscience question is how memories are maintained from days to a lifetime, given turnover of proteins that underlie expression of long-term synaptic potentiation (LTP) or “tag” synapses as eligible for LTP. A likely solution relies on synaptic positive feedback loops, prominently including persistent activation of Ca2+/calmodulin kinase II (CaMKII) and self-activated synthesis of protein kinase M ζ (PKMζ). Data also suggest positive feedback based on recurrent synaptic reactivation within neuron assemblies, or engrams, is necessary to maintain memories. The relative importance of these mechanisms is controversial. To explore the likelihood that each mechanism is necessary or sufficient to maintain memory, we simulated maintenance of LTP with a simplified model incorporating persistent kinase activation, synaptic tagging, and preferential reactivation of strong synapses, and analyzed implications of recent data. We simulated three model variants, each maintaining LTP with one feedback loop: autonomous, self-activated PKMζ synthesis (model variant I); self-activated CamKII (model variant II); and recurrent reactivation of strengthened synapses (model variant III). Variant I predicts that, for successful maintenance of LTP, either 1) PKMζ contributes to synaptic tagging, or 2) a low constitutive tag level persists during maintenance independent of PKMζ, or 3) maintenance of LTP is independent of tagging. Variant II maintains LTP and suggests persistent CaMKII activation could maintain PKMζ activity, a feedforward interaction not previously considered. However, we note data challenging the CaMKII feedback loop. In Variant III synaptic reactivation drives, and thus predicts, recurrent or persistent activation of CamKII and other necessary kinases, plausibly contributing to persistent elevation of PKMζ levels. Reactivation is thus predicted to sustain recurrent rounds of synaptic tagging and incorporation of plasticity-related proteins. We also suggest (model variant IV) that synaptic reactivation and autonomous kinase activation could synergistically maintain LTP. We propose experiments that could discriminate these maintenance mechanisms.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States.,Engineering and Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
34
|
Miller MW. Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. THE BIOLOGICAL BULLETIN 2020; 239:189-208. [PMID: 33347799 PMCID: PMC8016498 DOI: 10.1086/711293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe catecholamine 3,4-dihydroxyphenethylamine, or dopamine, acts as a neurotransmitter across a broad phylogenetic spectrum. Functions attributed to dopamine in the mammalian brain include regulation of motor circuits, valuation of sensory stimuli, and mediation of reward or reinforcement signals. Considerable evidence also supports a neurotransmitter role for dopamine in gastropod molluscs, and there is growing appreciation for its potential common functions across phylogeny. This article reviews evidence for dopamine's transmitter role in the nervous systems of gastropods. The functional properties of identified dopaminergic neurons in well-characterized neural circuits suggest a hypothetical incremental sequence by which dopamine accumulated its diverse roles. The successive acquisition of dopamine functions is proposed in the context of gastropod feeding behavior: (1) sensation of potential nutrients, (2) activation of motor circuits, (3) selection of motor patterns from multifunctional circuits, (4) valuation of sensory stimuli with reference to internal state, (5) association of motor programs with their outcomes, and (6) coincidence detection between sensory stimuli and their consequences. At each stage of this sequence, it is proposed that existing functions of dopaminergic neurons favored their recruitment to fulfill additional information processing demands. Common functions of dopamine in other intensively studied groups, ranging from mammals and insects to nematodes, suggest an ancient origin for this progression.
Collapse
|
35
|
Koh MT, Gallagher M. Using internal memory representations in associative learning to study hallucination-like phenomenon. Neurobiol Learn Mem 2020; 175:107319. [PMID: 33010386 PMCID: PMC7655598 DOI: 10.1016/j.nlm.2020.107319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/23/2022]
Abstract
Studies of Pavlovian conditioning have enriched our understanding of how relations among events can adaptively guide behavior through the formation and use of internal mental representations. In this review, we illustrate how internal representations flexibly integrate new updated information in reinforcer revaluation to influence relationships to impact actions and outcomes. We highlight representation-mediated learning to show the similarities in properties and functions between internally generated and directly activated representations, and how normal perception of internal representations could contribute to hallucinations. Converging evidence emerges from recent behavioral and neural activation studies using animal models of schizophrenia as well as clinical studies in patients to support increased tendencies in these populations to evoke internal representations from prior associative experience that approximate hallucination-like percepts. The heightened propensity is dependent on dopaminergic activation which is known to be sensitive to hippocampal overexcitability, a condition that has been observed in patients with psychosis. This presents a network that overlaps with cognitive neural circuits and offers a fresh approach for the development of therapeutic interventions targeting psychosis.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA.
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
36
|
Multiple Local Synaptic Modifications at Specific Sensorimotor Connections after Learning Are Associated with Behavioral Adaptations That Are Components of a Global Response Change. J Neurosci 2020; 40:4363-4371. [PMID: 32366723 DOI: 10.1523/jneurosci.2647-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/21/2022] Open
Abstract
Learning causes local changes in synaptic connectivity and coordinated, global changes affecting many aspects of behavior. How do local synaptic changes produce global behavioral changes? In the hermaphroditic mollusc Aplysia, after learning that food is inedible, memory is expressed as bias to reject a food and to reduce responses to that food. We now show that memory is also expressed as an increased bias to reject even a nonfood object. The increased bias to rejection is partially explained by changes in synaptic connections from primary mechanoafferents to five follower neurons with well defined roles in producing different feeding behaviors. Previously, these mechanoafferents had been shown to play a role in memory consolidation. Connectivity changes differed for each follower neuron: the probability that cells were connected changed; excitation changed to inhibition and vice versa; and connection amplitude changed. Thus, multiple neural changes at different sites underlie specific aspects of a coordinated behavioral change. Changes in the connectivity between mechanoafferents and their followers cannot account for all of the behavioral changes expressed after learning, indicating that additional synaptic sites are also changed. Access to the circuit controlling feeding can help determine the logic and cellular mechanisms by which multiple local synaptic changes produce an integrated, global change in behavior.SIGNIFICANCE STATEMENT How do local changes in synapses affect global behavior? Studies on invertebrate preparations usually examine synaptic changes at specific neural sites, producing a specific behavioral change. However, memory may be expressed by multiple behavioral changes. We report that a change in behavior after learning in Aplysia is accomplished, in part, by regulating connections between mechanoafferents and their synaptic followers. For some followers, the connection probabilities change; for others, the connection signs are reversed; in others, the connection strength is modified. Thus, learning produces changes in connectivity at multiple sites, via multiple synaptic mechanisms that are consistent with the observed behavioral change.
Collapse
|
37
|
Mechanisms of a near-orthogonal ultra-fast evolution of human behaviour as a source of culture development. Behav Brain Res 2020; 384:112521. [DOI: 10.1016/j.bbr.2020.112521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
|
38
|
Specificity of synapse formation in Aplysia: paracrine and autocrine signaling regulates bidirectional molecular interactions between sensory and non-target motor neurons. Sci Rep 2020; 10:5222. [PMID: 32251363 PMCID: PMC7089980 DOI: 10.1038/s41598-020-62099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/02/2020] [Indexed: 12/01/2022] Open
Abstract
The formation of appropriate neural connections during development is critical for the proper wiring and functioning of the brain. Although considerable research suggests that the specificity of synapse formation is supported by complex intercellular signaling between potential presynaptic and postsynaptic partners, the extracellular factors and the intracellular signal transduction pathways engaged in this process remain largely unknown. Using the sensory-motor neural circuit that contributes to learning in defensive withdrawal reflexes in Aplysia californica, we investigated the molecular processes governing the interactions between sensory neurons and both target and non-target motor neurons during synapse formation in culture. We found that evolutionarily-conserved intercellular and intracellular signaling mechanisms critical for learning-related plasticity are also engaged during synaptogenesis in this in vitro model system. Our results reveal a surprising bidirectional regulation of molecular signaling between sensory neurons and non-target motor neurons. This regulation is mediated by signaling via both paracrine and autocrine diffusible factors that induce differential effects on transcription and on protein expression/activation in sensory neurons and in target and non-target motor neurons. Collectively, our data reveal novel molecular mechanisms that could underlie the repression of inappropriate synapse formation, and suggest mechanistic similarities between developmental and learning-related plasticity.
Collapse
|
39
|
Nikitin V, Solntseva S, Kozyrev S, Nikitin P. Long-term memory consolidation or reconsolidation impairment induces amnesia with key characteristics that are similar to key learning characteristics. Neurosci Biobehav Rev 2020; 108:542-558. [DOI: 10.1016/j.neubiorev.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
|
40
|
Hawkins RD, Kandel ER. Comparison of the ionic currents modulated during activity-dependent and normal presynaptic facilitation. ACTA ACUST UNITED AC 2019; 26:449-454. [PMID: 31615856 PMCID: PMC6796788 DOI: 10.1101/lm.049916.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/20/2019] [Indexed: 11/30/2022]
Abstract
One of the major questions in psychology is whether associative and nonassociative learning are fundamentally different or whether they involve similar processes and mechanisms. We have addressed this question by comparing mechanisms of a nonassociative form of learning, sensitization, and an associative form of learning, classical conditioning of the siphon-withdrawal reflex of hermaphroditic Aplysia. In an analog of differential conditioning, action potentials in one siphon sensory neuron (SN) were paired with shock to the pedal nerves, producing activity-dependent presynaptic facilitation, and action potentials in another SN were unpaired with the shock as a control. The difference between paired and unpaired training is a measure of associative plasticity. Before and after this training, we voltage clamped each SN and measured the outward current during depolarizing pulses. There was a significantly greater decrease in the net outward current in the paired SN than in the unpaired SN. We obtained similar results when we substituted the depolarizing voltage clamp pulse for action potentials during training. We then bathed the ganglion in serotonin as a measure of nonassociative plasticity. The current that was modulated differentially (paired−unpaired) had time and voltage dependencies similar to the current that was modulated by serotonin (Is). These results suggest that an associative form of plasticity, activity-dependent presynaptic facilitation underlying conditioning, involves enhanced modulation of the same ionic current as a nonassociative form, normal presynaptic facilitation underlying sensitization.
Collapse
Affiliation(s)
- Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032, USA.,Division of Systems Neuroscience, New York State Psychiatric Institute, New York, New York 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, New York 10032, USA.,Division of Systems Neuroscience, New York State Psychiatric Institute, New York, New York 10032, USA.,Howard Hughes Medical Institute, New York, New York 10032, USA
| |
Collapse
|
41
|
De la Fuente IM, Bringas C, Malaina I, Fedetz M, Carrasco-Pujante J, Morales M, Knafo S, Martínez L, Pérez-Samartín A, López JI, Pérez-Yarza G, Boyano MD. Evidence of conditioned behavior in amoebae. Nat Commun 2019; 10:3690. [PMID: 31417086 PMCID: PMC6695432 DOI: 10.1038/s41467-019-11677-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/26/2019] [Indexed: 01/05/2023] Open
Abstract
Associative memory is the main type of learning by which complex organisms endowed with evolved nervous systems respond efficiently to certain environmental stimuli. It has been found in different multicellular species, from cephalopods to humans, but never in individual cells. Here we describe a motility pattern consistent with associative conditioned behavior in the microorganism Amoeba proteus. We use a controlled direct-current electric field as the conditioned stimulus, and a specific chemotactic peptide as the unconditioned stimulus. The amoebae are capable of linking two independent past events, generating persistent locomotion movements that can prevail for 44 min on average. We confirm a similar behavior in a related species, Metamoeba leningradensis. Thus, our results indicate that unicellular organisms can modify their behavior during migration by associative conditioning.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, Murcia, 30100, Spain.
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Carlos Bringas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - María Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Miguel Morales
- Biophysics Institute, CSIC-UPV/EHU, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Shira Knafo
- Biophysics Institute, CSIC-UPV/EHU, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- Department of Physiology and Cell Biology, Faculty of Health Sciences, and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
- Basque Center of Applied Mathematics (BCAM), Bilbao, 48009, Spain
| | - Alberto Pérez-Samartín
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (UPV/EHU), Barakaldo, 48903, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
42
|
Nikitin VP, Solntseva SV, Kozyrev SA, Nikitin PV. Proteins or RNA synthesis inhibitors suppressed induction of amnesia developing under impairment of memory reconsolidation by serotonin receptors antagonist. Neurochem Int 2019; 131:104520. [PMID: 31400436 DOI: 10.1016/j.neuint.2019.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
Studies have shown that retrieval of long-term memory can cause memory reconsolidation, and impaired reconsolidation leads to amnesia development. However, the mechanisms of amnesia induction due to impaired memory reconsolidation remains poorly described. Using experiments involving grape snails trained to conditioned food aversion, we studied the role of translation and transcription processes and the role of serotonin receptors in the mechanisms of amnesia induction. We found that administration of a serotonin receptor antagonist or a protein synthesis inhibitor before the administration of a reminder using a conditioned food stimulus induced amnesia development, whereas injections of mRNA synthesis inhibitor did not affect memory safety. Moreover, combined injections of an antagonist of serotonin receptor and inhibitors of protein or mRNA synthesis before reminder administration completely prevented amnesia development. In addition, inhibitors of protein or mRNA synthesis prevented amnesia development 3 h but not 9 h after the administration of a serotonin receptor antagonist/reminder. We hypothesize that the mechanisms of amnesia induction caused by impaired memory reconsolidation depend on protein and mRNA syntheses within a certain time window, similar to the mechanisms of induction of other long-term plastic brain rearrangements.
Collapse
Affiliation(s)
- Vladimir P Nikitin
- P.K. Anokhin Research Institute of Normal Physiology, Laboratory of Functional Neurochemistry, Baltiyskala Str. 8, 125315, Moscow, Russian Federation.
| | - Svetlana V Solntseva
- P.K. Anokhin Research Institute of Normal Physiology, Laboratory of Functional Neurochemistry, Baltiyskala Str. 8, 125315, Moscow, Russian Federation
| | - Sergey A Kozyrev
- P.K. Anokhin Research Institute of Normal Physiology, Laboratory of Functional Neurochemistry, Baltiyskala Str. 8, 125315, Moscow, Russian Federation
| | - Pavel V Nikitin
- P.K. Anokhin Research Institute of Normal Physiology, Laboratory of Functional Neurochemistry, Baltiyskala Str. 8, 125315, Moscow, Russian Federation; N.N. Burdenko National Medical Research Center of Neurosurgery, Department of Neuropathology and Molecular Diagnostics, Moscow, Russian Federation
| |
Collapse
|
43
|
The contributions and mechanisms of changes in excitability during simple forms of learning in Aplysia. Neurobiol Learn Mem 2019; 164:107049. [PMID: 31362057 DOI: 10.1016/j.nlm.2019.107049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022]
Abstract
Learning and memory have long been thought to involve changes in synaptic connections between neurons. However, in many cases learning-related plasticity also involves changes in the excitability of neurons. These findings have raised questions about the relative importance of these two types of mechanisms to behavioral learning, and also about the extent to which they involve shared or unique molecular mechanisms. We have taken a reductionist approach to these questions by addressing them in a simple model organism, Aplysia californica. Studies of a semi-intact Aplysia siphon withdrawal preparation suggest that classical conditioning involves an increase in the evoked firing of sensory neurons (SNs) as well as facilitation of the monosynaptic PSP to motor neurons (MNs). Furthermore, these two mechanisms may act cooperatively at the cellular level: increased SN firing produces more PSPs, each of which is facilitated, leading to a multiplicative increase in depolarization of the MN and siphon withdrawal. The changes in SN firing and the monosynaptic PSP also share several mechanisms at the molecular level, suggesting that they may both be due in part to a decrease in K+ current that causes an increase in SN excitability as well as an increase in SN spike width and thus increased transmitter release. However, changes in the monosynaptic PSP also involve additional mechanisms that are not shared and may affect different aspects of synaptic transmission as well. Studies of operant conditioning of feeding suggest that it involves similar mechanisms as classical conditioning of siphon withdrawal. In particular, for both types of associative learning adenylyl cyclase appears to serve as a molecular coincidence detector that leads to increased activation of PKA and changes in excitability of key neurons in the neural circuit. Furthermore, in both cases those changes in excitability make an important contribution to the behavioral learning.
Collapse
|
44
|
Zwaka H, Bartels R, Lehfeldt S, Jusyte M, Hantke S, Menzel S, Gora J, Alberdi R, Menzel R. Learning and Its Neural Correlates in a Virtual Environment for Honeybees. Front Behav Neurosci 2019; 12:279. [PMID: 30740045 PMCID: PMC6355692 DOI: 10.3389/fnbeh.2018.00279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
The search for neural correlates of operant and observational learning requires a combination of two (experimental) conditions that are very difficult to combine: stable recording from high order neurons and free movement of the animal in a rather natural environment. We developed a virtual environment (VE) that simulates a simplified 3D world for honeybees walking stationary on an air-supported spherical treadmill. We show that honeybees perceive the stimuli in the VE as meaningful by transferring learned information from free flight to the virtual world. In search for neural correlates of learning in the VE, mushroom body extrinsic neurons were recorded over days during learning. We found changes in the neural activity specific to the rewarded and unrewarded visual stimuli. Our results suggest an involvement of the mushroom body extrinsic neurons in operant learning in the honeybee (Apis mellifera).
Collapse
Affiliation(s)
- Hanna Zwaka
- Department of Biology and Neurobiology, Freie Universität Berlin, Berlin, Germany.,Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Ruth Bartels
- Department of Biology and Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Sophie Lehfeldt
- Department of Biology and Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Meida Jusyte
- Department of Biology and Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Sören Hantke
- Department of Biology and Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Simon Menzel
- Department of Biology and Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Jacob Gora
- Department of Biology and Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Rafael Alberdi
- Department of Biology and Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Randolf Menzel
- Department of Biology and Neurobiology, Freie Universität Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
45
|
Mizunami M, Terao K, Alvarez B. Application of a Prediction Error Theory to Pavlovian Conditioning in an Insect. Front Psychol 2018; 9:1272. [PMID: 30083125 PMCID: PMC6064870 DOI: 10.3389/fpsyg.2018.01272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/03/2018] [Indexed: 12/01/2022] Open
Abstract
Elucidation of the conditions in which associative learning occurs is a critical issue in neuroscience and comparative psychology. In Pavlovian conditioning in mammals, it is thought that the discrepancy, or error, between the actual reward and the predicted reward determines whether learning occurs. This theory stems from the finding of Kamin’s blocking effect, in which after pairing of a stimulus with an unconditioned stimulus (US), conditioning of a second stimulus is blocked when the two stimuli are presented in compound and paired with the same US. Whether this theory is applicable to any species of invertebrates, however, has remained unknown. We first showed blocking and one-trial blocking of Pavlovian conditioning in the cricket Gryllus bimaculatus, which supported the Rescorla–Wagner model but not attentional theories, the major competitive error-correction learning theories to account for blocking. To match the prediction error theory, a neural circuit model was proposed, and prediction from the model was tested: the results were consistent with the Rescorla–Wagner model but not with the retrieval theory, another competitive theory to account for blocking. The findings suggest that the Rescorla–Wagner model best accounts for Pavlovian conditioning in crickets and that the basic computation rule underlying Pavlovian conditioning in crickets is the same to those suggested in mammals. Moreover, results of pharmacological studies in crickets suggested that octopamine and dopamine mediate prediction error signals in appetitive and aversive conditioning, respectively. This was in contrast to the notion that dopamine mediates appetitive prediction error signals in mammals. The functional significance and evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
| | - Kanta Terao
- Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
46
|
Freeman SM, Rebout N, Bales KL. Effect of reward type on object discrimination learning in socially monogamous coppery titi monkeys (Callicebus cupreus). Am J Primatol 2018; 80:e22868. [PMID: 29756654 DOI: 10.1002/ajp.22868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 02/05/2023]
Abstract
Highly valued food items are often used as rewards to reinforce an animal's behavior. For social species, social interaction is rewarding and can drive an individual's behavior as well. In the currently study, we wanted to compare the efficacy of a food reward and a social reward on object discrimination learning in socially monogamous titi monkeys. We hypothesized that titi monkeys would perform more accurately for a social reward (their pair mate) than for a food reward (a highly desired food item). Eleven adult titi monkeys were tested with a two-object visual discrimination task for both types of reward. The colors and shapes of the objects in the two-object discrimination task were counterbalanced across subjects. During each trial, subjects were shown two objects, and the trial ended when the subject touched the reinforced shape (S+) or after 5 min. A correct trial was defined as one when the subject touched S+ first. We found that 45.5% of subjects were able to learn the task with a social reward, and 83.3% were able to learn the task with a food reward. We found that subjects balked more often and had fewer correct trials for the social reward. Finally, subjects took longer to approach the shapes for a social reward, possibly indicating lower motivation to engage in the task when a social reward is used compared to a food reward. Although significantly fewer subjects met criteria of success with the social reward than with the food reward, our results show that titi monkeys can learn a visual discrimination task with either type of reward.
Collapse
Affiliation(s)
- Sara M Freeman
- California National Primate Research Center, Department of Psychology, University of California-Davis, Davis, California
| | - Nancy Rebout
- Centre National de la Recherche Scientifique, Cognitive and Social Ethology, Université de Strasbourg, Strasbourg, France
| | - Karen L Bales
- California National Primate Research Center, Department of Psychology, University of California-Davis, Davis, California
| |
Collapse
|
47
|
LeDoux J, Daw ND. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat Rev Neurosci 2018; 19:269-282. [PMID: 29593300 DOI: 10.1038/nrn.2018.22] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research on defensive behaviour in mammals has in recent years focused on elicited reactions; however, organisms also make active choices when responding to danger. We propose a hierarchical taxonomy of defensive behaviour on the basis of known psychological processes. Included are three categories of reactions (reflexes, fixed reactions and habits) and three categories of goal-directed actions (direct action-outcome behaviours and actions based on implicit or explicit forecasting of outcomes). We then use this taxonomy to guide a summary of findings regarding the underlying neural circuits.
Collapse
Affiliation(s)
- Joseph LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA.,Department of Psychiatry and Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY, USA.,Nathan Kline Institute for Psychiatry Research, Orangeburg, NY, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
48
|
Abstract
Members of the phylum Mollusca demonstrate the animal kingdom's tremendous diversity of body morphology, size and complexity of the nervous system, as well as diversity of behavioral repertoires, ranging from very simple to highly flexible. Molluscs include Solenogastres, with their worm-like bodies and behavior (see phylogenetic tree; Figure 1); Bivalvia (mussels and clams), protected by shells and practically immobile; and the cephalopods, such as the octopus, cuttlefish and squid. The latter are strange-looking animals with nervous systems comprising up to half a billion neurons, which mediate the complex behaviors that characterize these freely moving, highly visual predators. Molluscs are undoubtedly special - their extraordinary evolutionary advance somehow managed to sidestep the acquisition of the rigid skeleton that appears essential to the evolution of other 'successful' phyla: the exoskeleton in ecdysozoan invertebrates and the internal skeleton in Deuterostomia, including vertebrates.
Collapse
Affiliation(s)
- Binyamin Hochner
- Department of Neurobiology, Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel.
| | - David L Glanzman
- Department of Integrative Biology and Physiology, University of California Los Angeles, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
49
|
Mizunami M, Matsumoto Y. Roles of Octopamine and Dopamine Neurons for Mediating Appetitive and Aversive Signals in Pavlovian Conditioning in Crickets. Front Physiol 2017; 8:1027. [PMID: 29311961 PMCID: PMC5733098 DOI: 10.3389/fphys.2017.01027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of “blocking” and “auto-blocking” phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals.
Collapse
Affiliation(s)
| | - Yukihisa Matsumoto
- College of Liberal Arts and Science, Tokyo Medical and Dental University, Ichikawa, Japan
| |
Collapse
|
50
|
Hige T. What can tiny mushrooms in fruit flies tell us about learning and memory? Neurosci Res 2017; 129:8-16. [PMID: 28483586 DOI: 10.1016/j.neures.2017.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
Nervous systems have evolved to translate external stimuli into appropriate behavioral responses. In an ever-changing environment, flexible adjustment of behavioral choice by experience-dependent learning is essential for the animal's survival. Associative learning is a simple form of learning that is widely observed from worms to humans. To understand the whole process of learning, we need to know how sensory information is represented and transformed in the brain, how it is changed by experience, and how the changes are reflected on motor output. To tackle these questions, studying numerically simple invertebrate nervous systems has a great advantage. In this review, I will feature the Pavlovian olfactory learning in the fruit fly, Drosophila melanogaster. The mushroom body is a key brain area for the olfactory learning in this organism. Recently, comprehensive anatomical information and the genetic tool sets were made available for the mushroom body circuit. This greatly accelerated the physiological understanding of the learning process. One of the key findings was dopamine-induced long-term synaptic plasticity that can alter the representations of stimulus valence. I will mostly focus on the new studies within these few years and discuss what we can possibly learn about the vertebrate systems from this model organism.
Collapse
Affiliation(s)
- Toshihide Hige
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|