1
|
Bhola S, Park EJ, Lee HJ. Insect-derived extracts and peptides in neuroprotection. Nutr Neurosci 2024:1-9. [PMID: 39159004 DOI: 10.1080/1028415x.2024.2392410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Throughout history, various cultures have recognized the significance of insects and have integrated them into traditional medicinal practices. In addition to medicines, insects are garnering attention as a sustainable and nutritious dietary alternative. Although edible insects have long been recognized as food sources in many Asian cultures, recent scientific studies have highlighted their potential therapeutic benefits, particularly in the field of neuroprotection. This review explores insect-derived extracts and peptides, elucidating their neuroprotective potential. This review highlights the potential use of insects as a source of neuroprotective agents. Advancements in neuroprotection may find a key ally in insects as our understanding of the symbiotic relationship between insects and human health becomes more profound.
Collapse
Affiliation(s)
- Shivam Bhola
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Republic of Korea
| | - Eun-Jung Park
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Republic of Korea
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Hae-Jeung Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Republic of Korea
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
2
|
Wang K, Yang J, Xu W, Wang L, Wang Y. Interplay between immune cells and metabolites in epilepsy: insights from a Mendelian randomization analysis. Front Aging Neurosci 2024; 16:1400426. [PMID: 39170897 PMCID: PMC11335650 DOI: 10.3389/fnagi.2024.1400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Background Epilepsy is associated with the immune system and metabolism; however, its etiology remains insufficiently understood. Here, we aim to elucidate whether circulating immune cell profiles and metabolites impact the susceptibility to epilepsy. Methods We used publicly available genetic data and two-sample Mendelian randomization (MR) analyses to establish causal relationships and mediating effects between 731 immune cells and 1,400 metabolites associated with epilepsy. Sensitivity analyses were conducted to detect heterogeneity and horizontal pleiotropy in the study results. Results MR analysis examining the relationship between immune cells, metabolites, and epilepsy revealed significant causal associations with 28 different subtypes of immune cells and 14 metabolites. Besides, the mediation effects analysis revealed that eight metabolites mediated the effects of six types of immune cells on epilepsy and that 3-hydroxyoctanoylcarnitine (2) levels exhibited the highest mediating effect, mediating 15.3% (95%CI, -0.008, -30.6%, p = 0.049) of the effect of DN (CD4-CD8-) AC on epilepsy. 1-(1-enyl-stearoyl)-2-linoleoyl-GPE (p-18:0/18:2) levels (95%CI, 0.668, 10.6%, p = 0.026) and X-12544 levels (95%CI, -15.1, -0.856%, p = 0.028) contributed 5.63 and 8%, respectively, to the causal effect of FSC-A on myeloid DC on epilepsy. Conclusion This study revealed a significant causal link between immune cells, metabolites, and epilepsy. It remarkably enhances our understanding of the interplay between immune responses, metabolites, and epilepsy risk, providing insights into the development of therapeutic strategies from both immune and metabolic perspectives.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinwei Yang
- Department of Neurology, The Affiliated Fuyang People’s Hospital of Anhui Medical University, Fuyang, China
| | - Wenhao Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Pease M, Gupta K, Moshé SL, Correa DJ, Galanopoulou AS, Okonkwo DO, Gonzalez-Martinez J, Shutter L, Diaz-Arrastia R, Castellano JF. Insights into epileptogenesis from post-traumatic epilepsy. Nat Rev Neurol 2024; 20:298-312. [PMID: 38570704 DOI: 10.1038/s41582-024-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Post-traumatic epilepsy (PTE) accounts for 5% of all epilepsies. The incidence of PTE after traumatic brain injury (TBI) depends on the severity of injury, approaching one in three in groups with the most severe injuries. The repeated seizures that characterize PTE impair neurological recovery and increase the risk of poor outcomes after TBI. Given this high risk of recurrent seizures and the relatively short latency period for their development after injury, PTE serves as a model disease to understand human epileptogenesis and trial novel anti-epileptogenic therapies. Epileptogenesis is the process whereby previously normal brain tissue becomes prone to recurrent abnormal electrical activity, ultimately resulting in seizures. In this Review, we describe the clinical course of PTE and highlight promising research into epileptogenesis and treatment using animal models of PTE. Clinical, imaging, EEG and fluid biomarkers are being developed to aid the identification of patients at high risk of PTE who might benefit from anti-epileptogenic therapies. Studies in preclinical models of PTE have identified tractable pathways and novel therapeutic strategies that can potentially prevent epilepsy, which remain to be validated in humans. In addition to improving outcomes after TBI, advances in PTE research are likely to provide therapeutic insights that are relevant to all epilepsies.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurosurgery, Indiana University, Bloomington, IN, USA.
| | - Kunal Gupta
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Solomon L Moshé
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Paediatrics, Albert Einstein College of Medicine, New York, NY, USA
| | - Daniel J Correa
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Aristea S Galanopoulou
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lori Shutter
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
4
|
Leonard J, Wei X, Browning J, Gudenschwager-Basso EK, Li J, Harris EA, Olsen ML, Theus MH. Transcriptomic alterations in cortical astrocytes following the development of post-traumatic epilepsy. Sci Rep 2024; 14:8367. [PMID: 38600221 PMCID: PMC11006850 DOI: 10.1038/s41598-024-58904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Post-traumatic epilepsy (PTE) stands as one of the numerous debilitating consequences that follow traumatic brain injury (TBI). Despite its impact on many individuals, the current landscape offers only a limited array of reliable treatment options, and our understanding of the underlying mechanisms and susceptibility factors remains incomplete. Among the potential contributors to epileptogenesis, astrocytes, a type of glial cell, have garnered substantial attention as they are believed to promote hyperexcitability and the development of seizures in the brain following TBI. The current study evaluated the transcriptomic changes in cortical astrocytes derived from animals that developed seizures as a result of severe focal TBI. Using RNA-Seq and ingenuity pathway analysis (IPA), we unveil a distinct gene expression profile in astrocytes, including alterations in genes supporting inflammation, early response modifiers, and neuropeptide-amidating enzymes. The findings underscore the complex molecular dynamics in astrocytes during PTE development, offering insights into therapeutic targets and avenues for further exploration.
Collapse
Affiliation(s)
- John Leonard
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Xiaoran Wei
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jack Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Erwin Kristobal Gudenschwager-Basso
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elizabeth A Harris
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA.
| |
Collapse
|
5
|
Wen F, Tan Z, Huang D, Xiang J. Molecular mechanism analyses of post-traumatic epilepsy and hereditary epilepsy based on 10× single-cell transcriptome sequencing technology. CNS Neurosci Ther 2024; 30:e14702. [PMID: 38572804 PMCID: PMC10993349 DOI: 10.1111/cns.14702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Single-cell RNA sequencing analysis has been usually conducted on post-traumatic epilepsy (PET) and hereditary epilepsy (HE) patients; however, the transcriptome of patients with traumatic temporal lobe epilepsy has rarely been studied. MATERIALS AND METHODS Hippocampus tissues isolated from one patient with PTE and one patient with HE were used in the present study. Single cell isolates were prepared and captured using a 10× Genomics Chromium Single-Cell 3' kit (V3) according to the manufacturer's instructions. The libraries were sequenced on an Illumina NovaSeq 6000 sequencing system. Raw data were processed, and the cells were filtered and classified using the Seurat R package. Uniform Manifold Approximation and Projection was used for visualization. Differentially expressed genes (DEGs) were identified based on a p-value ≤0.01 and log fold change (FC) ≥0.25. Gene Ontology (GO, http://geneontology.org/) and KEGG (Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg) analyses were performed on the DEGs for enrichment analysis. RESULTS The reads obtained from the 10× genomic platform for PTE and HE were 39.56 M and 30.08 M, respectively. The Q30 score of the RNA reads was >91.6%. After filtering, 7479 PTE cells and 9357 HE cells remained for further study. More than 96.4% of the reads were mapped to GRCh38/GRCm38. The cells were differentially distributed in two groups, with higher numbers of oligodendrocytes (6522 vs. 2532) and astrocytes (133 vs. 52), and lower numbers of microglial cells (2242 vs. 3811), and neurons (3 vs. 203) present in the HE group than in the PTE group. The DEGs in four cell clusters were identified, with 25 being in oligodendrocytes (13 upregulated and 12 downregulated), 87 in microglia cells (42 upregulated and 45 downregulated), 222 in astrocytes (115 upregulated and 107 downregulated), and 393 in neurons (305 upregulated and 88 downregulated). The genes MTND1P23 (downregulated), XIST (downregulated), and RPS4Y1 (upregulated) were commonly expressed in all four cell clusters. The DEGs in microglial cells and astrocytes were enriched in the IL-17 signaling pathway. CONCLUSION Our study explored differences in cells found in a patient with PE compared to a patient with HE, and the transcriptome in the different cells was analyzed for the first time. Studying inflammatory and immune functions might be the best approach for investigating traumatic temporal lobe epilepsy in neurons.
Collapse
Affiliation(s)
- Fang Wen
- Department of NeurologyThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Zhigang Tan
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Dezhi Huang
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Jun Xiang
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
6
|
Pereira MF, Finazzi V, Rizzuti L, Aprile D, Aiello V, Mollica L, Riva M, Soriani C, Dossena F, Shyti R, Castaldi D, Tenderini E, Carminho-Rodrigues MT, Bally JF, de Vries BBA, Gabriele M, Vitriolo A, Testa G. YY1 mutations disrupt corticogenesis through a cell-type specific rewiring of cell-autonomous and non-cell-autonomous transcriptional programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580337. [PMID: 38405909 PMCID: PMC10888784 DOI: 10.1101/2024.02.16.580337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Germline mutations of YY1 cause Gabriele-de Vries syndrome (GADEVS), a neurodevelopmental disorder featuring intellectual disability and a wide range of systemic manifestations. To dissect the cellular and molecular mechanisms underlying GADEVS, we combined large-scale imaging, single-cell multiomics and gene regulatory network reconstruction in 2D and 3D patient-derived physiopathologically relevant cell lineages. YY1 haploinsufficiency causes a pervasive alteration of cell type specific transcriptional networks, disrupting corticogenesis at the level of neural progenitors and terminally differentiated neurons, including cytoarchitectural defects reminiscent of GADEVS clinical features. Transcriptional alterations in neurons propagated to neighboring astrocytes through a major non-cell autonomous pro-inflammatory effect that grounds the rationale for modulatory interventions. Together, neurodevelopmental trajectories, synaptic formation and neuronal-astrocyte cross talk emerged as salient domains of YY1 dosage-dependent vulnerability. Mechanistically, cell-type resolved reconstruction of gene regulatory networks uncovered the regulatory interplay between YY1, NEUROG2 and ETV5 and its aberrant rewiring in GADEVS. Our findings underscore the reach of advanced in vitro models in capturing developmental antecedents of clinical features and exposing their underlying mechanisms to guide the search for targeted interventions.
Collapse
Affiliation(s)
- Marlene F Pereira
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Veronica Finazzi
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Ludovico Rizzuti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Davide Aprile
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Vittorio Aiello
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Luca Mollica
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Matteo Riva
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Chiara Soriani
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | | | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Davide Castaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Erika Tenderini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Julien F Bally
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | | | - Michele Gabriele
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Alessandro Vitriolo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| |
Collapse
|
7
|
Bernardino PN, Luo AS, Andrew PM, Unkel CM, Gonzalez MI, Gelli A, Lein PJ. Evidence Implicating Blood-Brain Barrier Impairment in the Pathogenesis of Acquired Epilepsy following Acute Organophosphate Intoxication. J Pharmacol Exp Ther 2024; 388:301-312. [PMID: 37827702 PMCID: PMC10801776 DOI: 10.1124/jpet.123.001836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Organophosphate (OP) poisoning can trigger cholinergic crisis, a life-threatening toxidrome that includes seizures and status epilepticus. These acute toxic responses are associated with persistent neuroinflammation and spontaneous recurrent seizures (SRS), also known as acquired epilepsy. Blood-brain barrier (BBB) impairment has recently been proposed as a pathogenic mechanism linking acute OP intoxication to chronic adverse neurologic outcomes. In this review, we briefly describe the cellular and molecular components of the BBB, review evidence of altered BBB integrity following acute OP intoxication, and discuss potential mechanisms by which acute OP intoxication may promote BBB dysfunction. We highlight the complex interplay between neuroinflammation and BBB dysfunction that suggests a positive feedforward interaction. Lastly, we examine research from diverse models and disease states that suggest mechanisms by which loss of BBB integrity may contribute to epileptogenic processes. Collectively, the literature identifies BBB impairment as a convergent mechanism of neurologic disease and justifies further mechanistic research into how acute OP intoxication causes BBB impairment and its role in the pathogenesis of SRS and potentially other long-term neurologic sequelae. Such research is critical for evaluating BBB stabilization as a neuroprotective strategy for mitigating OP-induced epilepsy and possibly seizure disorders of other etiologies. SIGNIFICANCE STATEMENT: Clinical and preclinical studies support a link between blood-brain barrier (BBB) dysfunction and epileptogenesis; however, a causal relationship has been difficult to prove. Mechanistic studies to delineate relationships between BBB dysfunction and epilepsy may provide novel insights into BBB stabilization as a neuroprotective strategy for mitigating epilepsy resulting from acute organophosphate (OP) intoxication and non-OP causes and potentially other adverse neurological conditions associated with acute OP intoxication, such as cognitive impairment.
Collapse
Affiliation(s)
- Pedro N Bernardino
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Audrey S Luo
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Peter M Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Chelsea M Unkel
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Marco I Gonzalez
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Angie Gelli
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| |
Collapse
|
8
|
Pottkämper JCM, Verdijk JPAJ, Aalbregt E, Stuiver S, van de Mortel L, Norris DG, van Putten MJAM, Hofmeijer J, van Wingen GA, van Waarde JA. Changes in postictal cerebral perfusion are related to the duration of electroconvulsive therapy-induced seizures. Epilepsia 2024; 65:177-189. [PMID: 37973611 DOI: 10.1111/epi.17831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Postictal symptoms may result from cerebral hypoperfusion, which is possibly a consequence of seizure-induced vasoconstriction. Longer seizures have previously been shown to cause more severe postictal hypoperfusion in rats and epilepsy patients. We studied cerebral perfusion after generalized seizures elicited by electroconvulsive therapy (ECT) and its relation to seizure duration. METHODS Patients with a major depressive episode who underwent ECT were included. During treatment, 21-channel continuous electroencephalogram (EEG) was recorded. Arterial spin labeling magnetic resonance imaging scans were acquired before the ECT course (baseline) and approximately 1 h after an ECT-induced seizure (postictal) to quantify global and regional gray matter cerebral blood flow (CBF). Seizure duration was assessed from the period of epileptiform discharges on the EEG. Healthy controls were scanned twice to assess test-retest variability. We performed hypothesis-driven Bayesian analyses to study the relation between global and regional perfusion changes and seizure duration. RESULTS Twenty-four patients and 27 healthy controls were included. Changes in postictal global and regional CBF were correlated with seizure duration. In patients with longer seizure durations, global decrease in CBF reached values up to 28 mL/100 g/min. Regional reductions in CBF were most prominent in the inferior frontal gyrus, cingulate gyrus, and insula (up to 35 mL/100 g/min). In patients with shorter seizures, global and regional perfusion increased (up to 20 mL/100 g/min). These perfusion changes were larger than changes observed in healthy controls, with a maximum median global CBF increase of 12 mL/100 g/min and a maximum median global CBF decrease of 20 mL/100 g/min. SIGNIFICANCE Seizure duration is a key factor determining postictal perfusion changes. In future studies, seizure duration needs to be considered as a confounding factor due to its opposite effect on postictal perfusion.
Collapse
Affiliation(s)
- Julia C M Pottkämper
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands
| | - Joey P A J Verdijk
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands
| | - Eva Aalbregt
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center Location Academic Medical Center, Amsterdam, the Netherlands
| | - Sven Stuiver
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands
| | - Laurens van de Mortel
- Department of Psychiatry, Amsterdam University Medical Center Location Academic Medical Center, Amsterdam, the Netherlands
| | - David G Norris
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Michel J A M van Putten
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Guido A van Wingen
- Department of Psychiatry, Amsterdam University Medical Center Location Academic Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
9
|
Thompson A, Arano R, Saleem U, Preciado R, Munoz L, Nelson I, Ramos K, Kim Y, Li Y, Xu W. Brain-wide circuit-specific targeting of astrocytes. CELL REPORTS METHODS 2023; 3:100653. [PMID: 38052209 PMCID: PMC10753298 DOI: 10.1016/j.crmeth.2023.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 10/04/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
Astrocytes are integral components of brain circuitry. They enwrap synapses, react to neuronal activity, and regulate synaptic transmission. Astrocytes are heterogeneous and exhibit distinct features and functions in different circuits. Selectively targeting the astrocytes associated with a given neuronal circuit would enable elucidation of their circuit-specific functions but has been technically challenging to date. Recently, we constructed anterograde transneuronal viral vectors based on yellow fever vaccine YFV-17D. Among them, the replication-incompetent YFVΔNS1-Cre can selectively turn on reporter genes in postsynaptic neurons if the viral gene NS1 is expressed in postsynaptic neurons. Here we show that without exogenous expression of NS1 at the postsynaptic sites, locally injected YFVΔNS1-Cre selectively turns on reporter genes in astrocytes in downstream brain regions. The targeting of astrocytes can occur across the whole brain but is specific for the neuronal circuits traced. Therefore, YFVΔNS1-Cre provides a tool for selective genetic targeting of astrocytes to reveal their circuit-specific roles.
Collapse
Affiliation(s)
- Alyssa Thompson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rachel Arano
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Uzair Saleem
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rebecca Preciado
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lizbeth Munoz
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ian Nelson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katarina Ramos
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yerim Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ying Li
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Wei Xu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Rao NS, Putra M, Meyer C, Almanza A, Thippeswamy T. The effects of Src tyrosine kinase inhibitor, saracatinib, on the markers of epileptogenesis in a mixed-sex cohort of adult rats in the kainic acid model of epilepsy. Front Mol Neurosci 2023; 16:1294514. [PMID: 38025259 PMCID: PMC10665569 DOI: 10.3389/fnmol.2023.1294514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegeneration and neuroinflammation are key processes of epileptogenesis in temporal lobe epilepsy (TLE). A considerable number (∼30%) of patients with epilepsy are resistant to currently available antiseizure drugs and thus there is a need to develop adjunct therapies to modify disease progression. A vast majority of interventional strategies to treat TLE have utilized males which limits the translational nature of the studies. In this study, we investigated the effects of repeated low-dose kainic acid (KA) injection on the initial status epilepticus (SE) and the effects of Src kinase inhibitor, saracatinib (SAR/AZD0530; 20 mg/kg, oral, daily for 7 days), in a mixed-sex cohort of adult Sprague Dawley rats during early epileptogenesis. There were no sex differences in response to KA-induced SE, and neither did the stage of estrus influence SE severity. KA-induced SE caused significant astrogliosis and microgliosis across the hippocampus, piriform cortex, and amygdala. SAR treatment resulted in a significant reduction of microgliosis across brain regions. Microglial morphometrics such as branch length and the endpoints strongly correlated with CD68 expression in the vehicle-treated group but not in the SAR-treated group, indicating mitigation by SAR. KA-induced SE caused significant neuronal loss, including parvalbumin-positive inhibitory neurons, in both vehicle (VEH) and SAR-treated groups. SAR treatment significantly mitigated FJB-positive neuronal counts as compared to the VEH group. There was an increase in C3-positive reactive astrocytes in the VEH-treated group, and SAR treatment significantly reduced the increase in the piriform cortex. C3-positive astrogliosis significantly correlated with CD68 expression in the amygdala (AMY) of VEH-treated rats, and SAR treatment mitigated this relationship. There was a significant increase of pSrc(Y419)-positive microglia in both KA-treated groups with a statistically insignificant reduction by SAR. KA-induced SE caused the development of classical glial scars in the piriform cortex (PIR) in both KA-treated groups, while SAR treatment led to a 42.17% reduction in the size of glial scars. We did not observe sex differences in any of the parameters in this study. SAR, at the dose tested in the rat kainate model for a week in this study mitigated some of the markers of epileptogenesis in both sexes.
Collapse
Affiliation(s)
| | | | | | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Davletshin AI, Matveeva AA, Poletaeva II, Evgen'ev MB, Garbuz DG. The role of molecular chaperones in the mechanisms of epileptogenesis. Cell Stress Chaperones 2023; 28:599-619. [PMID: 37755620 PMCID: PMC10746656 DOI: 10.1007/s12192-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Epilepsy is a group of neurological diseases which requires significant economic costs for the treatment and care of patients. The central point of epileptogenesis stems from the failure of synaptic signal transmission mechanisms, leading to excessive synchronous excitation of neurons and characteristic epileptic electroencephalogram activity, in typical cases being manifested as seizures and loss of consciousness. The causes of epilepsy are extremely diverse, which is one of the reasons for the complexity of selecting a treatment regimen for each individual case and the high frequency of pharmacoresistant cases. Therefore, the search for new drugs and methods of epilepsy treatment requires an advanced study of the molecular mechanisms of epileptogenesis. In this regard, the investigation of molecular chaperones as potential mediators of epileptogenesis seems promising because the chaperones are involved in the processing and regulation of the activity of many key proteins directly responsible for the generation of abnormal neuronal excitation in epilepsy. In this review, we try to systematize current data on the role of molecular chaperones in epileptogenesis and discuss the prospects for the use of chemical modulators of various chaperone groups' activity as promising antiepileptic drugs.
Collapse
Affiliation(s)
| | - Anna A Matveeva
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow Region, Russia
| | - Inga I Poletaeva
- Biology Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - David G Garbuz
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
| |
Collapse
|
12
|
Mercado-Gómez OF, Arriaga-Ávila VS, Vega-García A, Orozco-Suarez S, Pérez-Koldenkova V, Camarillo-Sánchez JJ, Álvarez-Herrera M, Guevara-Guzmán R. Daytime-Restricted Feeding Ameliorates Oxidative Stress by Increasing NRF2 Transcriptional Factor in the Rat Hippocampus in the Pilocarpine-Induced Acute Seizure Model. Brain Sci 2023; 13:1442. [PMID: 37891811 PMCID: PMC10605835 DOI: 10.3390/brainsci13101442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Seizure-mediated oxidative stress is a crucial mechanism in the pathophysiology of epilepsy. This study evaluated the antioxidant effects of daytime-restricted feeding (DRF) and the role of the Nrf2 signaling pathway in a lithium-pilocarpine model seizure model that induces status epilepticus (SE). We performed a lipoperoxidation assay and dihydroethidium fluorescence to measure oxidative stress markers in the hippocampus (malondialdehyde and reactive oxygen species). The protein content of Nrf2 and its downstream protein SOD2 was evaluated using Western blotting. The cellular distribution of the Nrf2 and SOD2 proteins in the pyramidal cell layer of both the CA1 and CA3 hippocampal subfields and astrocytes (GFAP marker) were quantified using immunofluorescence and immunohistochemistry, respectively. Our results indicate that DRF reduced the malondialdehyde levels and the production of reactive oxygen species. Furthermore, a significant increase in Nrf2 and SOD2 protein content was observed in animals subjected to restrictive diet. In addition, DRF increased the relative intensity of the Nrf2 fluorescence in the perinuclear and nuclear compartments of pyramidal neurons in the CA1 subfield. Nrf2 immunoreactivity and the astrocyte marker GFAP also increased their colocalization under DRF conditions. Additionally, SOD2 immunoreactivity was increased in CA1 pyramidal neurons but not in the CA3 region. Our findings suggest that DRF partially prevents oxidative stress by increasing the Nrf2 transcriptional factor and the SOD2 enzyme during the development of SE.
Collapse
Affiliation(s)
- Octavio Fabián Mercado-Gómez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Virginia Selene Arriaga-Ávila
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Angélica Vega-García
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Sandra Orozco-Suarez
- Medical Research Unit in Neurological Diseases, National Medical Center XXI, Mexico City 06720, Mexico;
| | - Vadim Pérez-Koldenkova
- National Advanced Microscopy Laboratory, National Medical Center XXI, Mexico City 06720, Mexico
| | - Juan José Camarillo-Sánchez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Marcelino Álvarez-Herrera
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Rosalinda Guevara-Guzmán
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| |
Collapse
|
13
|
Zhao X, Song L, Yang A, Zhang Z, Zhang J, Yang YT, Zhao XM. Prioritizing genes associated with brain disorders by leveraging enhancer-promoter interactions in diverse neural cells and tissues. Genome Med 2023; 15:56. [PMID: 37488639 PMCID: PMC10364416 DOI: 10.1186/s13073-023-01210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Prioritizing genes that underlie complex brain disorders poses a considerable challenge. Despite previous studies have found that they shared symptoms and heterogeneity, it remained difficult to systematically identify the risk genes associated with them. METHODS By using the CAGE (Cap Analysis of Gene Expression) read alignment files for 439 human cell and tissue types (including primary cells, tissues and cell lines) from FANTOM5 project, we predicted enhancer-promoter interactions (EPIs) of 439 cell and tissue types in human, and examined their reliability. Then we evaluated the genetic heritability of 17 diverse brain disorders and behavioral-cognitive phenotypes in each neural cell type, brain region, and developmental stage. Furthermore, we prioritized genes associated with brain disorders and phenotypes by leveraging the EPIs in each neural cell and tissue type, and analyzed their pleiotropy and functionality for different categories of disorders and phenotypes. Finally, we characterized the spatiotemporal expression dynamics of these associated genes in cells and tissues. RESULTS We found that identified EPIs showed activity specificity and network aggregation in cell and tissue types, and enriched TF binding in neural cells played key roles in synaptic plasticity and nerve cell development, i.e., EGR1 and SOX family. We also discovered that most neurological disorders exhibit heritability enrichment in neural stem cells and astrocytes, while psychiatric disorders and behavioral-cognitive phenotypes exhibit enrichment in neurons. Furthermore, our identified genes recapitulated well-known risk genes, which exhibited widespread pleiotropy between psychiatric disorders and behavioral-cognitive phenotypes (i.e., FOXP2), and indicated expression specificity in neural cell types, brain regions, and developmental stages associated with disorders and phenotypes. Importantly, we showed the potential associations of brain disorders with brain regions and developmental stages that have not been well studied. CONCLUSIONS Overall, our study characterized the gene-enhancer regulatory networks and genetic mechanisms in the human neural cells and tissues, and illustrated the value of reanalysis of publicly available genomic datasets.
Collapse
Affiliation(s)
- Xingzhong Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Anyi Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Zichao Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Jinglong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Yucheng T Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Internatioal Human Phenome Institutes (Shanghai), Shanghai, 200433, China.
| |
Collapse
|
14
|
Woo AM, Sontheimer H. Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1198021. [PMID: 39086689 PMCID: PMC11285605 DOI: 10.3389/fmmed.2023.1198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2024]
Abstract
Often considered the "housekeeping" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.
Collapse
Affiliation(s)
- AnnaLin M. Woo
- Neuroscience Graduate Program, Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| | - Harald Sontheimer
- Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
15
|
Burrows DRW, Diana G, Pimpel B, Moeller F, Richardson MP, Bassett DS, Meyer MP, Rosch RE. Microscale Neuronal Activity Collectively Drives Chaotic and Inflexible Dynamics at the Macroscale in Seizures. J Neurosci 2023; 43:3259-3283. [PMID: 37019622 PMCID: PMC7614507 DOI: 10.1523/jneurosci.0171-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 04/07/2023] Open
Abstract
Neuronal activity propagates through the network during seizures, engaging brain dynamics at multiple scales. Such propagating events can be described through the avalanches framework, which can relate spatiotemporal activity at the microscale with global network properties. Interestingly, propagating avalanches in healthy networks are indicative of critical dynamics, where the network is organized to a phase transition, which optimizes certain computational properties. Some have hypothesized that the pathologic brain dynamics of epileptic seizures are an emergent property of microscale neuronal networks collectively driving the brain away from criticality. Demonstrating this would provide a unifying mechanism linking microscale spatiotemporal activity with emergent brain dysfunction during seizures. Here, we investigated the effect of drug-induced seizures on critical avalanche dynamics, using in vivo whole-brain two-photon imaging of GCaMP6s larval zebrafish (males and females) at single neuron resolution. We demonstrate that single neuron activity across the whole brain exhibits a loss of critical statistics during seizures, suggesting that microscale activity collectively drives macroscale dynamics away from criticality. We also construct spiking network models at the scale of the larval zebrafish brain, to demonstrate that only densely connected networks can drive brain-wide seizure dynamics away from criticality. Importantly, such dense networks also disrupt the optimal computational capacities of critical networks, leading to chaotic dynamics, impaired network response properties and sticky states, thus helping to explain functional impairments during seizures. This study bridges the gap between microscale neuronal activity and emergent macroscale dynamics and cognitive dysfunction during seizures.SIGNIFICANCE STATEMENT Epileptic seizures are debilitating and impair normal brain function. It is unclear how the coordinated behavior of neurons collectively impairs brain function during seizures. To investigate this we perform fluorescence microscopy in larval zebrafish, which allows for the recording of whole-brain activity at single-neuron resolution. Using techniques from physics, we show that neuronal activity during seizures drives the brain away from criticality, a regime that enables both high and low activity states, into an inflexible regime that drives high activity states. Importantly, this change is caused by more connections in the network, which we show disrupts the ability of the brain to respond appropriately to its environment. Therefore, we identify key neuronal network mechanisms driving seizures and concurrent cognitive dysfunction.
Collapse
Affiliation(s)
- Dominic R W Burrows
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Giovanni Diana
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Birgit Pimpel
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
- Great Ormond Street-University College London Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Friederike Moeller
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
| | - Mark P Richardson
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
- Departments of Electrical and Systems Engineering, Physics and Astronomy, Neurology, and Psychiatry University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
- Santa Fe Institute, Santa Fe NM 87501, New Mexico
| | - Martin P Meyer
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Richard E Rosch
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
| |
Collapse
|
16
|
Depannemaecker D, Ezzati A, Wang H, Jirsa V, Bernard C. From phenomenological to biophysical models of seizures. Neurobiol Dis 2023; 182:106131. [PMID: 37086755 DOI: 10.1016/j.nbd.2023.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
Epilepsy is a complex disease that requires various approaches for its study. In this short review, we discuss the contribution of theoretical and computational models. The review presents theoretical frameworks that underlie the understanding of certain seizure properties and their classification based on their dynamical properties at the onset and offset of seizures. Dynamical system tools are valuable resources in the study of seizures. By analyzing the complex, dynamic behavior of seizures, these tools can provide insights into seizure mechanisms and offer a framework for their classification. Additionally, computational models have high potential for clinical applications, as they can be used to develop more accurate diagnostic and personalized medicine tools. We discuss various modeling approaches that span different scales and levels, while also questioning the neurocentric view, and emphasize the importance of considering glial cells. Finally, we explore the epistemic value provided by this type of approach.
Collapse
Affiliation(s)
- Damien Depannemaecker
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France.
| | - Aitakin Ezzati
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Huifang Wang
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Viktor Jirsa
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Christophe Bernard
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France.
| |
Collapse
|
17
|
Aronica E, Ciusani E, Coppola A, Costa C, Russo E, Salmaggi A, Perversi F, Maschio M. Epilepsy and brain tumors: Two sides of the same coin. J Neurol Sci 2023; 446:120584. [PMID: 36842341 DOI: 10.1016/j.jns.2023.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Epilepsy is the most common symptom in patients with brain tumors. The shared genetic, molecular, and cellular mechanisms between tumorigenesis and epileptogenesis represent 'two sides of the same coin'. These include augmented neuronal excitatory transmission, impaired inhibitory transmission, genetic mutations in the BRAF, IDH, and PIK3CA genes, inflammation, hemodynamic impairments, and astrocyte dysfunction, which are still largely unknown. Low-grade developmental brain tumors are those most commonly associated with epilepsy. Given this strict relationship, drugs able to target both seizures and tumors would be of extreme clinical usefulness. In this regard, anti-seizure medications (ASMs) are optimal candidates as they have well-characterized effects and safety profiles, do not increase the risk of developing cancer, and already offer well-defined seizure control. The most important ASMs showing preclinical and clinical efficacy are brivaracetam, lacosamide, perampanel, and especially valproic acid and levetiracetam. However, the data quality is low or limited to preclinical studies, and results are sometimes conflicting. Future trials with a prospective, randomized, and controlled design accounting for different prognostic factors will help clarify the role of these ASMs and the clinical setting in which they might be used. In conclusion, brain tumor-related epilepsies are clear examples of how close, multidisciplinary collaborations among investigators with different expertise are warranted for pursuing scientific knowledge and, more importantly, for the well-being of patients needing targeted and effective therapies.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC location the University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Emilio Ciusani
- Department of Research and Technology, Fondazione IRCCS Istituto Neurologico C. Besta Milan, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Emilio Russo
- Science of Health Department, Magna Grecia University, Catanzaro, Italy
| | - Andrea Salmaggi
- Department of Neurosciences, Unit of Neurology, Presidio A. Manzoni, ASST Lecco, Italy
| | | | - Marta Maschio
- Center for tumor-related epilepsy, UOSD Neurooncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
18
|
Duran J. Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders. Cells 2023; 12:cells12050722. [PMID: 36899857 PMCID: PMC10000527 DOI: 10.3390/cells12050722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Lafora disease is a rare disorder caused by loss of function mutations in either the EPM2A or NHLRC1 gene. The initial symptoms of this condition are most commonly epileptic seizures, but the disease progresses rapidly with dementia, neuropsychiatric symptoms, and cognitive deterioration and has a fatal outcome within 5-10 years after onset. The hallmark of the disease is the accumulation of poorly branched glycogen in the form of aggregates known as Lafora bodies in the brain and other tissues. Several reports have demonstrated that the accumulation of this abnormal glycogen underlies all the pathologic traits of the disease. For decades, Lafora bodies were thought to accumulate exclusively in neurons. However, it was recently identified that most of these glycogen aggregates are present in astrocytes. Importantly, astrocytic Lafora bodies have been shown to contribute to pathology in Lafora disease. These results identify a primary role of astrocytes in the pathophysiology of Lafora disease and have important implications for other conditions in which glycogen abnormally accumulates in astrocytes, such as Adult Polyglucosan Body disease and the buildup of Corpora amylacea in aged brains.
Collapse
Affiliation(s)
- Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Uchino K, Tanaka Y, Ikezawa W, Deshimaru M, Kubota K, Watanabe T, Katsurabayashi S, Iwasaki K, Hirose S. Astrocyte Ca 2+ signaling is facilitated in Scn1a +/- mouse model of Dravet syndrome. Biochem Biophys Res Commun 2023; 643:169-174. [PMID: 36610382 DOI: 10.1016/j.bbrc.2022.12.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
Dravet syndrome (DS) is an infantile-onset epileptic encephalopathy. More than 80% of DS patients have a heterozygous mutation in SCN1A, which encodes a subunit of the voltage-gated sodium channel, Nav1.1, in neurons. The roles played by astrocytes, the most abundant glial cell type in the brain, have been investigated in the pathogenesis of epilepsy; however, the specific involvement of astrocytes in DS has not been clarified. In this study, we evaluated Ca2+ signaling in astrocytes using genetically modified mice that have a loss-of-function mutation in Scn1a. We found that the slope of spontaneous Ca2+ spiking was increased without a change in amplitude in Scn1a+/- astrocytes. In addition, ATP-induced transient Ca2+ influx and the slope of Ca2+ spiking were also increased in Scn1a+/- astrocytes. These data indicate that perturbed Ca2+ dynamics in astrocytes may be involved in the pathogenesis of DS.
Collapse
Affiliation(s)
- Kouya Uchino
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yasuyoshi Tanaka
- Department of Advanced Pharmacology, Daiichi University of Pharmacy, Fukuoka, Japan; iONtarget, Co. Inc, Fukuoka, Japan; Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Wakana Ikezawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Masanobu Deshimaru
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan; Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan.
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinichi Hirose
- iONtarget, Co. Inc, Fukuoka, Japan; Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan; General Medical Research Center, School of Medicine, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
20
|
Salazar JJ, Satriano A, Matamoros JA, Fernández-Albarral JA, Salobrar-García E, López-Cuenca I, de Hoz R, Sánchez-Puebla L, Ramírez JM, Alonso C, Satta V, Hernández-Fisac I, Sagredo O, Ramírez AI. Retinal Tissue Shows Glial Changes in a Dravet Syndrome Knock-in Mouse Model. Int J Mol Sci 2023; 24:ijms24032727. [PMID: 36769051 PMCID: PMC9916888 DOI: 10.3390/ijms24032727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Dravet syndrome (DS) is an epileptic encephalopathy caused by mutations in the Scn1a gene encoding the α1 subunit of the Nav1.1 sodium channel, which is associated with recurrent and generalized seizures, even leading to death. In experimental models of DS, histological alterations have been found in the brain; however, the retina is a projection of the brain and there are no studies that analyze the possible histological changes that may occur in the disease. This study analyzes the retinal histological changes in glial cells (microglia and astrocytes), retinal ganglion cells (RGCs) and GABAergic amacrine cells in an experimental model of DS (Syn-Cre/Scn1aWT/A1783V) compared to a control group at postnatal day (PND) 25. Retinal whole-mounts were labeled with anti-GFAP, anti-Iba-1, anti-Brn3a and anti-GAD65/67. Signs of microglial and astroglial activation, and the number of Brn3a+ and GAD65+67+ cells were quantified. We found retinal activation of astroglial and microglial cells but not death of RGCs and GABAergic amacrine cells. These changes are similar to those found at the level of the hippocampus in the same experimental model in PND25, indicating a relationship between brain and retinal changes in DS. This suggests that the retina could serve as a possible biomarker in DS.
Collapse
Affiliation(s)
- Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Andrea Satriano
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - José A. Matamoros
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - José A. Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Medicina, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Cristina Alonso
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Valentina Satta
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Inés Hernández-Fisac
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Onintza Sagredo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Correspondence: (O.S.); (A.I.R.)
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Facultad de Óptica y Optometría, Departamento de Inmunología, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
- Correspondence: (O.S.); (A.I.R.)
| |
Collapse
|
21
|
Astrocyte reactivity in the glia limitans superficialis of the rat medial prefrontal cortex following sciatic nerve injury. Histochem Cell Biol 2023; 159:185-198. [PMID: 36326875 DOI: 10.1007/s00418-022-02161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The glia limitans superficialis (GLS) on the rodent cortical surface consists of astrocyte bodies intermingled with their cytoplasmic processes. Many studies have observed astrocyte reactivity in the medial prefrontal cortex (mPFC) parenchyma induced by a peripheral nerve injury, while the response of GLS astrocytes is still not fully understood. The aim of our study was to identify the reactivity of rat GLS astrocytes in response to sciatic nerve compression (SNC) over different time periods. The alteration of GLS astrocyte reactivity was monitored using immunofluorescence (IF) intensities of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and NFκBp65. Our results demonstrated that SNC induced GLS astrocyte reactivity seen as increased intensities of GFAP-IF, and longer extensions of cytoplasmic processes into lamina I. First significant increase of GFAP-IF was observed on post-operation day 7 (POD7) after SNC with further increases on POD14 and POD21. In contrast, dynamic alteration of the extension of cytoplasmic processes into lamina I was detected as early as POD1 and continued throughout the monitored survival periods of both sham and SNC operations. The reactivity of GLS astrocytes was not associated with their proliferation. In addition, GLS astrocytes also displayed a significant decrease in GS immunofluorescence (GS-IF) and NFκB immunofluorescence (NFκB-IF) in response to sham and SNC operation compared with naïve control rats. These results suggest that damaged peripheral tissues (following sham operation as well as peripheral nerve lesions) may induce significant changes in GLS astrocyte reactivity. The signaling mechanism from injured peripheral tissue and nerve remains to be elucidated.
Collapse
|
22
|
Henning L, Antony H, Breuer A, Müller J, Seifert G, Audinat E, Singh P, Brosseron F, Heneka MT, Steinhäuser C, Bedner P. Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Glia 2023; 71:168-186. [PMID: 36373840 DOI: 10.1002/glia.24265] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Henrike Antony
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annika Breuer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Sitnikova E, Rutskova E, Smirnov K. Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy. Int J Mol Sci 2023; 24:1477. [PMID: 36674992 PMCID: PMC9862736 DOI: 10.3390/ijms24021477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Spike-wave discharges are the hallmark of idiopathic generalized epilepsy. They are caused by a disorder in the thalamocortical network. Commercially available anti-epileptic drugs have pronounced side effects (i.e., sedation and gastroenterological concerns), which might result from a low selectivity to molecular targets. We suggest a specific subtype of adrenergic receptors (ARs) as a promising anti-epileptic molecular target. In rats with a predisposition to absence epilepsy, alpha2 ARs agonists provoke sedation and enhance spike-wave activity during transitions from awake/sedation. A number of studies together with our own observations bring evidence that the sedative and proepileptic effects require different alpha2 ARs subtypes activation. Here we introduce a new concept on target pharmacotherapy of absence epilepsy via alpha2B ARs which are presented almost exclusively in the thalamus. We discuss HCN and calcium channels as the most relevant cellular targets of alpha2 ARs involved in spike-wave activity generation.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Elizaveta Rutskova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Kirill Smirnov
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 121205, Russia
| |
Collapse
|
24
|
Chen R, Peng B, Zhu P, Wang Y. Editorial: Modulation of neuronal excitability by non-neuronal cells in physiological and pathophysiological conditions. Front Cell Neurosci 2023; 17:1133445. [PMID: 36714438 PMCID: PMC9879699 DOI: 10.3389/fncel.2023.1133445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Affiliation(s)
- Rongqing Chen
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Rongqing Chen ✉
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peimin Zhu
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Yang X, Lv W, Yang Y, Yang J, Zhang H, Xu Z. Progesterone receptor membrane component 2 regulates the neuronal activity and participates in epileptic seizures in experimental mice. IBRAIN 2023; 10:356-365. [PMID: 39346797 PMCID: PMC11427800 DOI: 10.1002/ibra.12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 10/01/2024]
Abstract
It was found the expression of progesterone receptor membrane component 2 (PGRMC2) in the histone of epileptic mice was lower than that of normal mice. In this study, we found by the immunofluorescence technique, PGRMC2 was expressed in both astrocytes and neurons of the mouse hippocampus. In addition, the seizure latency and seizure grade of mice in each group were observed after stereotactic injection of the PGRMC2 knockdown virus, PGRMC2 overexpression lentivirus, and related null virus into the hippocampus of mice. It was found that the seizure latency of mice in the PTZ + siPGRMC2 group was prolonged compared with the null virus group. The seizure latency was shortened in the PTZ + PGRMC2 group. The number of grade IV and above seizures in the PTZ + siPGRMC2 group was significantly reduced, while the number of grade IV and above seizures in the PTZ + PGRMC2 group was significantly increased. It was found that the nerve cells in the PTZ + siPGRMC2 group were still intact. In the PTZ + PGRMC2 group, the neural cells were damaged, the intercellular space was widened, and the number of cells was reduced. These findings support that PGRMC2 may be involved in epileptic seizures.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Wenbo Lv
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Yong Yang
- Division of Clinical Neuroscience Chiba University Center for Forensic Mental Health Chiba Japan
| | - Juan Yang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Haiqing Zhang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Zucai Xu
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University Zunyi Guizhou China
| |
Collapse
|
26
|
Fukushi I, Ikeda K, Takeda K, Yoshizawa M, Kono Y, Hasebe Y, Pokorski M, Okada Y. Minocycline prevents hypoxia-induced seizures. Front Neural Circuits 2023; 17:1006424. [PMID: 37035503 PMCID: PMC10073501 DOI: 10.3389/fncir.2023.1006424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Severe hypoxia induces seizures, which reduces ventilation and worsens the ictal state. It is a health threat to patients, particularly those with underlying hypoxic respiratory pathologies, which may be conducive to a sudden unexpected death in epilepsy (SUDEP). Recent studies provide evidence that brain microglia are involved with both respiratory and ictal processes. Here, we investigated the hypothesis that microglia could interact with hypoxia-induced seizures. To this end, we recorded electroencephalogram (EEG) and acute ventilatory responses to hypoxia (5% O2 in N2) in conscious, spontaneously breathing adult mice. We compared control vehicle pre-treated animals with those pre-treated with minocycline, an inhibitory modulator of microglial activation. First, we histologically confirmed that hypoxia activates microglia and that pre-treatment with minocycline blocks hypoxia-induced microglial activation. Then, we analyzed the effects of minocycline pre-treatment on ventilatory responses to hypoxia by plethysmography. Minocycline alone failed to affect respiratory variables in room air or the initial respiratory augmentation in hypoxia. The comparative results showed that hypoxia caused seizures, which were accompanied by the late phase ventilatory suppression in all but one minocycline pre-treated mouse. Compared to the vehicle pre-treated, the minocycline pre-treated mice showed a delayed occurrence of seizures. Further, minocycline pre-treated mice tended to resist post-ictal respiratory arrest. These results suggest that microglia are conducive to seizure activity in severe hypoxia. Thus, inhibition of microglial activation may help suppress or prevent hypoxia-induced ictal episodes.
Collapse
Affiliation(s)
- Isato Fukushi
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
- *Correspondence: Isato Fukushi
| | - Keiko Ikeda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Masashi Yoshizawa
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Yosuke Kono
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Yohei Hasebe
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | | | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
27
|
Rajeswarie RT, Aravinda HR, Arivazhagan A, Bevinahalli NN, Rao MB, Mahadevan A. Evaluating the Role of Perilesional Tissue in Pathobiology of Epileptogenesis of Vascular Malformations of the Central Nervous System. J Epilepsy Res 2022; 12:53-61. [PMID: 36685742 PMCID: PMC9830028 DOI: 10.14581/jer.22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Background and Purpose Seizures are common presentation of cerebral vascular malformation (CVM). Topography and haemodynamic alterations are proposed as mechanisms for epileptogenesis, but the role of glial/neuronal alterations in perilesional tissue has not received much attention. Identification of the exact pathophysiologic basis could have therapeutic implications. To evaluate whether angioarchitectural factors of CVM or alterations in neuroglial/stroma of the adjacent cortex contribute to seizures. Method The clinical, imaging and histological characteristics of arteriovenous malformation (AVM) and cerebral cavernous malformation (CCM) with and without seizures was evaluated using neuroimaging imaging and digital subtraction angiography parameters and histopathology by morphology and immunohistochemistry. Results Fifty-six cases of CVM were diagnosed over a 2-year study period. Of these, 32 had adequate perilesional tissue for evaluation (AVM, 24; CCM, 8). Seizures at presentation was seen in 12/24 (50%) of AVM and 5/8 (62.5%) CCM. In AVM, hemosiderin deposition and gliosis in parenchyma (p=0.01) had significant association with seizure. Siderotic vessels in the adjacent cortex was exclusively seen only in CCM with seizures (p=0.018). Angioarchitectural features of CVM on imaging and neuronal alterations in adjacent cortex on histology failed to show any statistically significant difference between the two groups (p>0.05). Conclusions We propose that changes in adjacent cortex appear to be epileptogenic rather than the malformation per se. Reactive gliosis and hemosiderin deposits in perilesional tissue in AVM and siderotic vessels in CCM were associated with seizure. This explains the better outcomes following extended lesionectomy that includes epileptogenic perilesional tissues.
Collapse
Affiliation(s)
- RT Rajeswarie
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore,
India
| | - HR Aravinda
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health & Neurosciences, Bangalore,
India
| | - A Arivazhagan
- Department of Neurosurgery, National Institute of Mental Health & Neurosciences, Bangalore,
India
| | - N Nandeesh Bevinahalli
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore,
India
| | - Malla Bhaskara Rao
- Department of Neurosurgery, National Institute of Mental Health & Neurosciences, Bangalore,
India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore,
India
| |
Collapse
|
28
|
Yuan Y, Wu Q, Huo L, Wang H, Liu X. Case report: Alexander's disease with "head drop" as the main symptom and literature review. Front Neurol 2022; 13:1002527. [PMID: 36601294 PMCID: PMC9807021 DOI: 10.3389/fneur.2022.1002527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Alexander's disease (AxD) is a rare autosomal dominant hereditary disorder that is caused by the mutations in the GFAP gene, which encodes the glial fibrillary acidic protein (GFAP). This neurogenerative disease has many clinical manifestations, and the onset of disease spans a wide range of ages, from newborns to children, adults, and even the elderly. An overaccumulation of the expression of GFAP has a close causal relationship with the pathogenesis of Alexander's disease. Usually, the disease has severe morbidity and high mortality, and can be divided into three distinct subgroups that are based on the age of clinical presentation: infantile (0-2 years), juvenile (2-13 years), and adult (>13 years). Children often present with epilepsy, macrocephaly, and psychomotor retardation, while adolescents and adults mainly present with muscle weakness, spasticity, and bulbar symptoms. Atonic seizures are a type of epilepsy that often appears in the Lennox-Gastaut syndrome and myoclonic-astatic epilepsy in early childhood; however, the prognosis is often poor. Atonic episodes are characterized by a sudden or frequent reduction in muscle tone that can be local (such as head, neck, or limb) or generalized. Here, we report a 4-year-old girl whose main symptoms were intermittent head drop movements, which could break the frontal frame and even bleed in severe conditions. A video-encephalography (VEEG) showed that the nodding movements were atonic seizures. A head magnetic resonance imaging (MRI) revealed abnormal signals in the bilateral paraventricular and bilateral subfrontal cortex. The gene detection analyses indicated that the GFAP gene exon 1 c.262 C>T was caused by a heterozygous mutation, as both her parents were of the wild-type. The girl had no other abnormal manifestations except atonic seizures. She could communicate normally and go to kindergarten. After an oral administration of sodium valproate, there were no atonic attacks. Although epilepsy is a common symptom of Alexander's disease, atonic seizures have not been reported to date. Therefore, we report a case of Alexander's disease with atonic seizures as the main symptom and provide a review of the literature.
Collapse
|
29
|
Broekaart DWM, Zimmer TS, Cohen ST, Tessers R, Anink JJ, de Vries HE, Gorter JA, Prades R, Aronica E, van Vliet EA. The Gelatinase Inhibitor ACT-03 Reduces Gliosis in the Rapid Kindling Rat Model of Epilepsy, and Attenuates Inflammation and Loss of Barrier Integrity In Vitro. Biomedicines 2022; 10:biomedicines10092117. [PMID: 36140216 PMCID: PMC9495904 DOI: 10.3390/biomedicines10092117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases responsible for the cleavage of intra- and extracellular proteins. Several brain MMPs have been implicated in neurological disorders including epilepsy. We recently showed that the novel gelatinase inhibitor ACT-03 has disease-modifying effects in models of epilepsy. Here, we studied its effects on neuroinflammation and blood–brain barrier (BBB) integrity. Using the rapid kindling rat model of epilepsy, we examined whether ACT-03 affected astro- and microgliosis in the brain using immunohistochemistry. Cellular and molecular alterations were further studied in vitro using human fetal astrocyte and brain endothelial cell (hCMEC/D3) cultures, with a focus on neuroinflammatory markers as well as on barrier permeability using an endothelial and astrocyte co-culture model. We observed less astro- and microgliosis in the brains of kindled animals treated with ACT-03 compared to control vehicle-treated animals. In vitro, ACT-03 treatment attenuated stimulation-induced mRNA expression of several pro-inflammatory factors in human fetal astrocytes and brain endothelial cells, as well as a loss of barrier integrity in endothelial and astrocyte co-cultures. Since ACT-03 has disease-modifying effects in epilepsy models, possibly via limiting gliosis, inflammation, and barrier integrity loss, it is of interest to further evaluate its effects in a clinical trial.
Collapse
Affiliation(s)
- Diede W. M. Broekaart
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Till S. Zimmer
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sophie T. Cohen
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rianne Tessers
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jasper J. Anink
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Jan A. Gorter
- Swammerdam Institute for Life Sciences Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Roger Prades
- Accure Therapeutics S.L., 08028 Barcelona, Spain
| | - Eleonora Aronica
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Correspondence: (E.A.); (E.A.v.V.)
| | - Erwin A. van Vliet
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Correspondence: (E.A.); (E.A.v.V.)
| |
Collapse
|
30
|
Agnew-Svoboda W, Ubina T, Figueroa Z, Wong YC, Vizcarra EA, Roebini B, Wilson EH, Fiacco TA, Riccomagno MM. A genetic tool for the longitudinal study of a subset of post-inflammatory reactive astrocytes. CELL REPORTS METHODS 2022; 2:100276. [PMID: 36046623 PMCID: PMC9421582 DOI: 10.1016/j.crmeth.2022.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/01/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
Abstract
Astrocytes are vital support cells that ensure proper brain function. In brain disease, astrocytes reprogram into a reactive state that alters many of their cellular roles. A long-standing question in the field is whether downregulation of reactive astrocyte (RA) markers during resolution of inflammation is because these astrocytes revert back to a non-reactive state or die and are replaced. This has proven difficult to answer mainly because existing genetic tools cannot distinguish between healthy versus RAs. Here we describe the generation of an inducible genetic tool that can be used to specifically target and label a subset of RAs. Longitudinal analysis of an acute inflammation model using this tool revealed that the previously observed downregulation of RA markers after inflammation is likely due to changes in gene expression and not because of cell death. Our findings suggest that cellular changes associated with astrogliosis after acute inflammation are largely reversible.
Collapse
Affiliation(s)
- William Agnew-Svoboda
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Teresa Ubina
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Zoe Figueroa
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Yiu-Cheung Wong
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Edward A. Vizcarra
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Biomedical Sciences Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Bryan Roebini
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Emma H. Wilson
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Biomedical Sciences Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Todd A. Fiacco
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
- Biomedical Sciences Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Martin M. Riccomagno
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
- Biomedical Sciences Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
31
|
Aussel A, Ranta R, Aron O, Colnat-Coulbois S, Maillard L, Buhry L. Cell to network computational model of the epileptic human hippocampus suggests specific roles of network and channel dysfunctions in the ictal and interictal oscillations. J Comput Neurosci 2022; 50:519-535. [PMID: 35971033 DOI: 10.1007/s10827-022-00829-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
The mechanisms underlying the generation of hippocampal epileptic seizures and interictal events and their interactions with the sleep-wake cycle are not yet fully understood. Indeed, medial temporal lobe epilepsy is associated with hippocampal abnormalities both at the neuronal (channelopathies, impaired potassium and chloride dynamics) and network level (neuronal and axonal loss, mossy fiber sprouting), with more frequent seizures during wakefulness compared with slow-wave sleep. In this article, starting from our previous computational modeling work of the hippocampal formation based on realistic topology and synaptic connectivity, we study the role of micro- and mesoscale pathological conditions of the epileptic hippocampus in the generation and maintenance of seizure-like theta and interictal oscillations. We show, through the simulations of hippocampal activity during slow-wave sleep and wakefulness that: (i) both mossy fiber sprouting and sclerosis account for seizure-like theta activity, (ii) but they have antagonist effects (seizure-like activity occurrence increases with sprouting but decreases with sclerosis), (iii) though impaired potassium and chloride dynamics have little influence on the generation of seizure-like activity, they do play a role on the generation of interictal patterns, and (iv) seizure-like activity and fast ripples are more likely to occur during wakefulness and interictal spikes during sleep.
Collapse
Affiliation(s)
- Amélie Aussel
- Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA UMR 7503), University of Lorraine, 54506, Nancy, France. .,Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.
| | - Radu Ranta
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France
| | - Olivier Aron
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Sophie Colnat-Coulbois
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Louise Maillard
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Laure Buhry
- Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA UMR 7503), University of Lorraine, 54506, Nancy, France
| |
Collapse
|
32
|
Salamone A, Terrone G, Di Sapia R, Balosso S, Ravizza T, Beltrame L, Craparotta I, Mannarino L, Cominesi SR, Rizzi M, Pauletti A, Marchini S, Porcu L, Zimmer TS, Aronica E, During M, Abrahams B, Kondo S, Nishi T, Vezzani A. Cholesterol 24-hydroxylase is a novel pharmacological target for anti-ictogenic and disease modification effects in epilepsy. Neurobiol Dis 2022; 173:105835. [PMID: 35932989 DOI: 10.1016/j.nbd.2022.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Therapies for epilepsy mainly provide symptomatic control of seizures since most of the available drugs do not target disease mechanisms. Moreover, about one-third of patients fail to achieve seizure control. To address the clinical need for disease-modifying therapies, research should focus on targets which permit interventions finely balanced between optimal efficacy and safety. One potential candidate is the brain-specific enzyme cholesterol 24-hydroxylase. This enzyme converts cholesterol to 24S-hydroxycholesterol, a metabolite which among its biological roles modulates neuronal functions relevant for hyperexcitability underlying seizures. To study the role of cholesterol 24-hydroxylase in epileptogenesis, we administered soticlestat (TAK-935/OV935), a potent and selective brain-penetrant inhibitor of the enzyme, during the early disease phase in a mouse model of acquired epilepsy using a clinically relevant dose. During soticlestat treatment, the onset of epilepsy was delayed and the number of ensuing seizures was decreased by about 3-fold compared to vehicle-treated mice, as assessed by EEG monitoring. Notably, the therapeutic effect was maintained 6.5 weeks after drug wash-out when seizure number was reduced by about 4-fold and their duration by 2-fold. Soticlestat-treated mice showed neuroprotection of hippocampal CA1 neurons and hilar mossy cells as assessed by post-mortem brain histology. High throughput RNA-sequencing of hippocampal neurons and glia in mice treated with soticlestat during epileptogenesis showed that inhibition of cholesterol 24-hydroxylase did not directly affect the epileptogenic transcriptional network, but rather modulated a non-overlapping set of genes that might oppose the pathogenic mechanisms of the disease. In human temporal lobe epileptic foci, we determined that cholesterol 24-hydroxylase expression trends higher in neurons, similarly to epileptic mice, while the enzyme is ectopically induced in astrocytes compared to control specimens. Soticlestat reduced significantly the number of spontaneous seizures in chronic epileptic mice when was administered during established epilepsy. Data show that cholesterol 24-hydroxylase contributes to spontaneous seizures and is involved in disease progression, thus it represents a novel target for chronic seizures inhibition and disease-modification therapy in epilepsy.
Collapse
Affiliation(s)
- Alessia Salamone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Gaetano Terrone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Luca Beltrame
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Ilaria Craparotta
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Laura Mannarino
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Sara Raimondi Cominesi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Massimo Rizzi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Alberto Pauletti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Sergio Marchini
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Luca Porcu
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Till S Zimmer
- Department of Neuropathology, Amsterdam UMC, 1105 Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam UMC, 1105 Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), 2103 Heemstede, the Netherlands
| | | | - Brett Abrahams
- Ovid Therapeutics, 10036 New York, NY, USA; Departments of Genetics and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 10461 Bronx, USA
| | - Shinichi Kondo
- Takeda Pharmaceutical Company Limited, 251-8555 Fujisawa, Japan
| | - Toshiya Nishi
- Takeda Pharmaceutical Company Limited, 251-8555 Fujisawa, Japan
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.
| |
Collapse
|
33
|
Patel DC, Thompson EG, Sontheimer H. Brain-Derived Neurotrophic Factor Inhibits the Function of Cation-Chloride Cotransporter in a Mouse Model of Viral Infection-Induced Epilepsy. Front Cell Dev Biol 2022; 10:961292. [PMID: 35874836 PMCID: PMC9304572 DOI: 10.3389/fcell.2022.961292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Well over 100 different viruses can infect the brain and cause brain inflammation. In the developing world, brain inflammation is a leading cause for epilepsy and often refractory to established anti-seizure drugs. Epilepsy generally results from an imbalance in excitatory glutamatergic and inhibitory GABAergic neurotransmission. GABAergic inhibition is determined by the intracellular Cl− concentration which is established through the opposing action of two cation chloride cotransporters namely NKCC1 and KCC2. Brain-derived neurotrophic factor (BDNF) signaling is known to regulate expression of KCC2. Hence we hypothesized that viral induced epilepsy may result from aberrant BDNF signaling. We tested this hypothesis using a mouse model of Theiler’s murine encephalomyelitis virus (TMEV) infection-induced epilepsy. We found that BDNF levels in the hippocampus from TMEV-infected mice with seizures was increased at the onset of acute seizures and continued to increase during the peak of acute seizure as well as in latent and chronic phases of epilepsy. During the acute phase of epilepsy, we found significant reduction in the expression of KCC2 in hippocampus, whereas the level of NKCC1 was unaltered. Importantly, inhibiting BDNF using scavenging bodies of BDNF in live brain slices from TMEV-infected mice with seizures normalized the level of KCC2 in hippocampus. Our results suggest that BDNF can directly decrease the relative expression of NKCC1 and KCC2 such as to favor accumulation of chloride intracellularly which in turn causes hyperexcitability by reversing GABA-mediated inhibition. Although our attempt to inhibit the BDNF signaling mediated through tyrosine kinase B–phospholipase Cγ1 (TrkB-PLCγ1) using a small peptide did not change the course of seizure development following TMEV infection, alternative strategies for controlling the BDNF signaling could be useful in preventing seizure generation and development of epilepsy in this model.
Collapse
Affiliation(s)
- Dipan C. Patel
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
| | - Emily G. Thompson
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Harald Sontheimer,
| |
Collapse
|
34
|
Szu JI, Binder DK. Mechanisms Underlying Aquaporin-4 Subcellular Mislocalization in Epilepsy. Front Cell Neurosci 2022; 16:900588. [PMID: 35734218 PMCID: PMC9207308 DOI: 10.3389/fncel.2022.900588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a chronic brain disorder characterized by unprovoked seizures. Mechanisms underlying seizure activity have been intensely investigated. Alterations in astrocytic channels and transporters have shown to be a critical player in seizure generation and epileptogenesis. One key protein involved in such processes is the astrocyte water channel aquaporin-4 (AQP4). Studies have revealed that perivascular AQP4 redistributes away from astrocyte endfeet and toward the neuropil in both clinical and preclinical studies. This subcellular mislocalization significantly impacts neuronal hyperexcitability and understanding how AQP4 becomes dysregulated in epilepsy is beginning to emerge. In this review, we evaluate the role of AQP4 dysregulation and mislocalization in epilepsy.
Collapse
|
35
|
Li EC, Zheng Y, Cai MT, Lai QL, Fang GL, Du BQ, Shen CH, Zhang YX, Wu LJ, Ding MP. Seizures and epilepsy in multiple sclerosis, aquaporin 4 antibody-positive neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody-associated disease. Epilepsia 2022; 63:2173-2191. [PMID: 35652436 DOI: 10.1111/epi.17315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Seizure is one of the manifestations of central nervous system (CNS) inflammatory demyelinating diseases, which mainly include multiple sclerosis (MS), aquaporin 4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). "Acute symptomatic seizures secondary to MS / AQP4-NMOSD / MOGAD" occur in the acute phase of the diseases, and are more frequent in MOGAD. In contrast, recurrent non-provoked seizures, mainly attributed to "autoimmune-associated epilepsy", occur in the non-acute phase of the diseases. Seizures in MS / AQP4-NMOSD / MOGAD mostly have a focal-onset. MS patients with concomitant systemic infections, an earlier onset and a higher disease activity are more likely to have seizures, whereas factors such as higher MS severity, the presence of status epilepticus and cortical damage indicate a greater risk of developing epilepsy. In MOGAD, cerebral cortical encephalitis, acute disseminated encephalomyelitis (ADEM)-like phenotypes (predominately ADEM and multiphasic disseminated encephalomyelitis) indicate a higher seizure risk. Multiple relapses with ADEM-like phenotypes predict epilepsy in pediatrics with MOGAD. Pathophysiologically, acute symptomatic seizures in MS are associated with neuronal hyperexcitability secondary to inflammation and demyelination. Chronic epilepsy in MS is largely due to gliosis, neuronal dysfunction and synaptic abnormalities. The mainstay of treatment for seizures secondary to MS / AQP4-NMOSD / MOGAD include immunotherapy along with antiseizure medications. This critical review discusses the most-updated evidence on epidemiology, clinical correlates, and inflammatory mechanisms underlying seizures and epilepsy in MS / AQP4-NMOSD / MOGAD. Treatment cautions including drug-drug interactions and the impact of treatments on the other are outlined. We also highlight pitfalls and challenges in managing such patients and future research perspectives to address unsolved questions.
Collapse
Affiliation(s)
- Er-Chuang Li
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Zheng
- Department of Neurology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng-Ting Cai
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi-Lun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Gao-Li Fang
- Department of Neurology, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Bing-Qing Du
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun-Hong Shen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Mei-Ping Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022; 10:1206. [PMID: 35625943 PMCID: PMC9138510 DOI: 10.3390/biomedicines10051206] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are essential for normal brain development and functioning. They respond to brain injury and disease through a process referred to as reactive astrogliosis, where the reactivity is highly heterogenous and context-dependent. Reactive astrocytes are active contributors to brain pathology and can exert beneficial, detrimental, or mixed effects following brain insults. Transforming growth factor-β (TGF-β) has been identified as one of the key factors regulating astrocyte reactivity. The genetic and pharmacological manipulation of the TGF-β signaling pathway in animal models of central nervous system (CNS) injury and disease alters pathological and functional outcomes. This review aims to provide recent understanding regarding astrocyte reactivity and TGF-β signaling in brain injury, aging, and neurodegeneration. Further, it explores how TGF-β signaling modulates astrocyte reactivity and function in the context of CNS disease and injury.
Collapse
Affiliation(s)
- Jian Luo
- Palo Alto Veterans Institute for Research, VAPAHCS, Palo Alto, CA 94304, USA
| |
Collapse
|
37
|
Lee HHC, McGinty GE, Pearl PL, Rotenberg A. Understanding the Molecular Mechanisms of Succinic Semialdehyde Dehydrogenase Deficiency (SSADHD): Towards the Development of SSADH-Targeted Medicine. Int J Mol Sci 2022; 23:2606. [PMID: 35269750 PMCID: PMC8910003 DOI: 10.3390/ijms23052606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare genetic disorder caused by inefficient metabolic breakdown of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Pathologic brain accumulation of GABA and γ-hydroxybutyrate (GHB), a neuroactive by-product of GABA catabolism, leads to a multitude of molecular abnormalities beginning in early life, culminating in multifaceted clinical presentations including delayed psychomotor development, intellectual disability, hypotonia, and ataxia. Paradoxically, over half of patients with SSADHD also develop epilepsy and face a significant risk of sudden unexpected death in epilepsy (SUDEP). Here, we review some of the relevant molecular mechanisms through which impaired synaptic inhibition, astrocytic malfunctions and myelin defects might contribute to the complex SSADHD phenotype. We also discuss the gaps in knowledge that need to be addressed for the implementation of successful gene and enzyme replacement SSADHD therapies. We conclude with a description of a novel SSADHD mouse model that enables 'on-demand' SSADH restoration, allowing proof-of-concept studies to fine-tune SSADH restoration in preparation for eventual human trials.
Collapse
Affiliation(s)
- Henry H. C. Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Gabrielle E. McGinty
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
| | - Phillip L. Pearl
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA;
| |
Collapse
|
38
|
Herrmann T, Gerth M, Dittmann R, Pensold D, Ungelenk M, Liebmann L, Hübner CA. Disruption of KCC2 in Parvalbumin-Positive Interneurons Is Associated With a Decreased Seizure Threshold and a Progressive Loss of Parvalbumin-Positive Interneurons. Front Mol Neurosci 2022; 14:807090. [PMID: 35185464 PMCID: PMC8850922 DOI: 10.3389/fnmol.2021.807090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
GABAA receptors are ligand-gated ion channels, which are predominantly permeable for chloride. The neuronal K-Cl cotransporter KCC2 lowers the intraneuronal chloride concentration and thus plays an important role for GABA signaling. KCC2 loss-of-function is associated with seizures and epilepsy. Here, we show that KCC2 is expressed in the majority of parvalbumin-positive interneurons (PV-INs) of the mouse brain. PV-INs receive excitatory input from principle cells and in turn control principle cell activity by perisomatic inhibition and inhibitory input from other interneurons. Upon Cre-mediated disruption of KCC2 in mice, the polarity of the GABA response of PV-INs changed from hyperpolarization to depolarization for the majority of PV-INs. Reduced excitatory postsynaptic potential-spike (E-S) coupling and increased spontaneous inhibitory postsynaptic current (sIPSC) frequencies further suggest that PV-INs are disinhibited upon disruption of KCC2. In vivo, PV-IN-specific KCC2 knockout mice display a reduced seizure threshold and develop spontaneous sometimes fatal seizures. We further found a time dependent loss of PV-INs, which was preceded by an up-regulation of pro-apoptotic genes upon disruption of KCC2.
Collapse
|
39
|
You J, Huang H, Chan CTY, Li L. Pathological Targets for Treating Temporal Lobe Epilepsy: Discoveries From Microscale to Macroscale. Front Neurol 2022; 12:779558. [PMID: 35069411 PMCID: PMC8777077 DOI: 10.3389/fneur.2021.779558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common and severe types of epilepsy, characterized by intractable, recurrent, and pharmacoresistant seizures. Histopathology of TLE is mostly investigated through observing hippocampal sclerosis (HS) in adults, which provides a robust means to analyze the related histopathological lesions. However, most pathological processes underlying the formation of these lesions remain elusive, as they are difficult to detect and observe. In recent years, significant efforts have been put in elucidating the pathophysiological pathways contributing to TLE epileptogenesis. In this review, we aimed to address the new and unrecognized neuropathological discoveries within the last 5 years, focusing on gene expression (miRNA and DNA methylation), neuronal peptides (neuropeptide Y), cellular metabolism (mitochondria and ion transport), cellular structure (microtubule and extracellular matrix), and tissue-level abnormalities (enlarged amygdala). Herein, we describe a range of biochemical mechanisms and their implication for epileptogenesis. Furthermore, we discuss their potential role as a target for TLE prevention and treatment. This review article summarizes the latest neuropathological discoveries at the molecular, cellular, and tissue levels involving both animal and patient studies, aiming to explore epileptogenesis and highlight new potential targets in the diagnosis and treatment of TLE.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Haiyan Huang
- Department of Nutrition and Food Science, Texas Women University, Denton, TX, United States
| | - Clement T Y Chan
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
40
|
A unified physiological framework of transitions between seizures, sustained ictal activity and depolarization block at the single neuron level. J Comput Neurosci 2022; 50:33-49. [PMID: 35031915 PMCID: PMC8818009 DOI: 10.1007/s10827-022-00811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/10/2021] [Accepted: 01/03/2022] [Indexed: 10/29/2022]
Abstract
The majority of seizures recorded in humans and experimental animal models can be described by a generic phenomenological mathematical model, the Epileptor. In this model, seizure-like events (SLEs) are driven by a slow variable and occur via saddle node (SN) and homoclinic bifurcations at seizure onset and offset, respectively. Here we investigated SLEs at the single cell level using a biophysically relevant neuron model including a slow/fast system of four equations. The two equations for the slow subsystem describe ion concentration variations and the two equations of the fast subsystem delineate the electrophysiological activities of the neuron. Using extracellular K+ as a slow variable, we report that SLEs with SN/homoclinic bifurcations can readily occur at the single cell level when extracellular K+ reaches a critical value. In patients and experimental models, seizures can also evolve into sustained ictal activity (SIA) and depolarization block (DB), activities which are also parts of the dynamic repertoire of the Epileptor. Increasing extracellular concentration of K+ in the model to values found during experimental status epilepticus and DB, we show that SIA and DB can also occur at the single cell level. Thus, seizures, SIA, and DB, which have been first identified as network events, can exist in a unified framework of a biophysical model at the single neuron level and exhibit similar dynamics as observed in the Epileptor.Author Summary: Epilepsy is a neurological disorder characterized by the occurrence of seizures. Seizures have been characterized in patients in experimental models at both macroscopic and microscopic scales using electrophysiological recordings. Experimental works allowed the establishment of a detailed taxonomy of seizures, which can be described by mathematical models. We can distinguish two main types of models. Phenomenological (generic) models have few parameters and variables and permit detailed dynamical studies often capturing a majority of activities observed in experimental conditions. But they also have abstract parameters, making biological interpretation difficult. Biophysical models, on the other hand, use a large number of variables and parameters due to the complexity of the biological systems they represent. Because of the multiplicity of solutions, it is difficult to extract general dynamical rules. In the present work, we integrate both approaches and reduce a detailed biophysical model to sufficiently low-dimensional equations, and thus maintaining the advantages of a generic model. We propose, at the single cell level, a unified framework of different pathological activities that are seizures, depolarization block, and sustained ictal activity.
Collapse
|
41
|
Corvace F, Faustmann TJ, Faustmann PM, Ismail FS. Anti-inflammatory properties of lacosamide in an astrocyte-microglia co-culture model of inflammation. Eur J Pharmacol 2022; 915:174696. [PMID: 34902360 DOI: 10.1016/j.ejphar.2021.174696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE Understanding the effects of antiepileptic drugs on glial cells and glia-mediated inflammation is a new approach to future treatment of epilepsy. Little is known about direct effects of the antiepileptic drug lacosamide (LCM) on glial cells. Therefore, we aimed to study the LCM effects on glial viability, microglial activation, expression of gap-junctional (GJ) protein Cx43 as well as intercellular communication in an in vitro astrocyte-microglia co-culture model of inflammation. METHODS Primary rat astrocytes co-cultures containing 5% (M5, "physiological" conditions) or 30% (M30, "pathological inflammatory" conditions) of microglia were treated with different concentrations of LCM [5, 15, 30, and 90 μg/ml] for 24 h. Glial cell viability was measured by MTT assay. Immunocytochemistry was performed to analyze the microglial activation state. Western blot analysis was used to quantify the astroglial Cx43 expression. The GJ cell communication was studied via Scrape Loading. RESULTS A concentration-dependent incubation with LCM did not affect the glial cell viability both under physiological and pathological conditions. LCM induced a significant concentration-dependent decrease of activated microglia with parallel increase of ramified microglia under pathological inflammatory conditions. This correlated with an increase in astroglial Cx43 expression. Nevertheless, the functional coupling via GJs was significantly reduced after incubation with LCM. CONCLUSION LCM has not shown effects on the glial cell viability. The reduced GJ coupling by LCM could be related to its anti-epileptic activity. The anti-inflammatory glial features of LCM with inhibition of microglial activation under inflammatory conditions support beneficial role in epilepsy associated with neuroinflammation.
Collapse
Affiliation(s)
- Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
42
|
Ismail FS, Corvace F, Faustmann PM, Faustmann TJ. Pharmacological Investigations in Glia Culture Model of Inflammation. Front Cell Neurosci 2022; 15:805755. [PMID: 34975415 PMCID: PMC8716582 DOI: 10.3389/fncel.2021.805755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes and microglia are the main cell population besides neurons in the central nervous system (CNS). Astrocytes support the neuronal network via maintenance of transmitter and ion homeostasis. They are part of the tripartite synapse, composed of pre- and postsynaptic neurons and perisynaptic astrocytic processes as a functional unit. There is an increasing evidence that astroglia are involved in the pathophysiology of CNS disorders such as epilepsy, autoimmune CNS diseases or neuropsychiatric disorders, especially with regard to glia-mediated inflammation. In addition to astrocytes, investigations on microglial cells, the main immune cells of the CNS, offer a whole network approach leading to better understanding of non-neuronal cells and their pathological role in CNS diseases and treatment. An in vitro astrocyte-microglia co-culture model of inflammation was developed by Faustmann et al. (2003), which allows to study the endogenous inflammatory reaction and the cytokine expression under drugs in a differentiated manner. Commonly used antiepileptic drugs (e.g., levetiracetam, valproic acid, carbamazepine, phenytoin, and gabapentin), immunomodulatory drugs (e.g., dexamethasone and interferon-beta), hormones and psychotropic drugs (e.g., venlafaxine) were already investigated, contributing to better understanding mechanisms of actions of CNS drugs and their pro- or anti-inflammatory properties concerning glial cells. Furthermore, the effects of drugs on glial cell viability, proliferation and astrocytic network were demonstrated. The in vitro astrocyte-microglia co-culture model of inflammation proved to be suitable as unique in vitro model for pharmacological investigations on astrocytes and microglia with future potential (e.g., cancer drugs, antidementia drugs, and toxicologic studies).
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
43
|
The Endocannabinoid System in Glial Cells and Their Profitable Interactions to Treat Epilepsy: Evidence from Animal Models. Int J Mol Sci 2021; 22:ijms222413231. [PMID: 34948035 PMCID: PMC8709154 DOI: 10.3390/ijms222413231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is one of the most common neurological conditions. Yearly, five million people are diagnosed with epileptic-related disorders. The neuroprotective and therapeutic effect of (endo)cannabinoid compounds has been extensively investigated in several models of epilepsy. Therefore, the study of specific cell-type-dependent mechanisms underlying cannabinoid effects is crucial to understanding epileptic disorders. It is estimated that about 100 billion neurons and a roughly equal number of glial cells co-exist in the human brain. The glial population is in charge of neuronal viability, and therefore, their participation in brain pathophysiology is crucial. Furthermore, glial malfunctioning occurs in a wide range of neurological disorders. However, little is known about the impact of the endocannabinoid system (ECS) regulation over glial cells, even less in pathological conditions such as epilepsy. In this review, we aim to compile the existing knowledge on the role of the ECS in different cell types, with a particular emphasis on glial cells and their impact on epilepsy. Thus, we propose that glial cells could be a novel target for cannabinoid agents for treating the etiology of epilepsy and managing seizure-like disorders.
Collapse
|
44
|
Hotz AL, Jamali A, Rieser NN, Niklaus S, Aydin E, Myren‐Svelstad S, Lalla L, Jurisch‐Yaksi N, Yaksi E, Neuhauss SCF. Loss of glutamate transporter eaat2a leads to aberrant neuronal excitability, recurrent epileptic seizures, and basal hypoactivity. Glia 2021; 70:196-214. [PMID: 34716961 PMCID: PMC9297858 DOI: 10.1002/glia.24106] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022]
Abstract
Astroglial excitatory amino acid transporter 2 (EAAT2, GLT‐1, and SLC1A2) regulates the duration and extent of neuronal excitation by removing glutamate from the synaptic cleft. Hence, an impairment in EAAT2 function could lead to an imbalanced brain network excitability. Here, we investigated the functional alterations of neuronal and astroglial networks associated with the loss of function in the astroglia predominant eaat2a gene in zebrafish. We observed that eaat2a−/− mutant zebrafish larvae display recurrent spontaneous and light‐induced seizures in neurons and astroglia, which coincide with an abrupt increase in extracellular glutamate levels. In stark contrast to this hyperexcitability, basal neuronal and astroglial activity was surprisingly reduced in eaat2a−/− mutant animals, which manifested in decreased overall locomotion. Our results reveal an essential and mechanistic contribution of EAAT2a in balancing brain excitability, and its direct link to epileptic seizures.
Collapse
Affiliation(s)
- Adriana L. Hotz
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nicolas N. Rieser
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Stephanie Niklaus
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Present address:
EraCal TherapeuticsSchlierenSwitzerland
| | - Ecem Aydin
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Sverre Myren‐Svelstad
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Laetitia Lalla
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nathalie Jurisch‐Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | | |
Collapse
|
45
|
Potential of Multiscale Astrocyte Imaging for Revealing Mechanisms Underlying Neurodevelopmental Disorders. Int J Mol Sci 2021; 22:ijms221910312. [PMID: 34638653 PMCID: PMC8508625 DOI: 10.3390/ijms221910312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Astrocytes provide trophic and metabolic support to neurons and modulate circuit formation during development. In addition, astrocytes help maintain neuronal homeostasis through neurovascular coupling, blood-brain barrier maintenance, clearance of metabolites and nonfunctional proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed, astrocyte dysfunction during development has been implicated in Rett disease, Alexander's disease, epilepsy, and autism, among other disorders. Numerous disease model mice have been established to investigate these diseases, but important preclinical findings on etiology and pathophysiology have not translated into clinical interventions. A multidisciplinary approach is required to elucidate the mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity, morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive investigations of brain structure and function at multiple spatiotemporal scales, and these technologies are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to mesoscopic scale.
Collapse
|
46
|
A dynamics model of neuron-astrocyte network accounting for febrile seizures. Cogn Neurodyn 2021; 16:411-423. [PMID: 35401866 PMCID: PMC8934847 DOI: 10.1007/s11571-021-09706-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 06/03/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022] Open
Abstract
Febrile seizure (FS) is a full-body convulsion caused by a high body temperature that affect young kids, however, how these most common of human seizures are generated by fever has not been known. One common observation is that cortical neurons become overexcited with abnormal running of sodium and potassium ions cross membrane in raised body temperature condition, Considering that astrocyte Kir4.1 channel play a critical role in maintaining extracellular homeostasis of ionic concentrations and electrochemical potentials of neurons by fast depletion of extracellular potassium ions, we examined here the potential role of temperature-dependent Kir4.1 channel in astrocytes in causing FS. We first built up a temperature-dependent computational model of the Kir4.1 channel in astrocytes and validated with experiments. We have then built up a neuron-astrocyte network and examine the role of the Kir4.1 channel in modulating neuronal firing dynamics as temperature increase. The numerical experiment demonstrated that the Kir4.1 channel function optimally in the body temperature around 37 °C in cleaning 'excessive' extracellular potassium ions during neuronal firing process, however, higher temperature deteriorates its cleaning function, while lower temperature slows down its cleaning efficiency. With the increase of temperature, neurons go through different stages of spiking dynamics from spontaneous slow oscillations, to tonic spiking, fast bursting oscillations, and eventually epileptic bursting. Thus, our study may provide a potential new mechanism that febrile seizures may be happened due to temperature-dependent functional disorders of Kir4.1 channel in astrocytes. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-021-09706-w.
Collapse
|
47
|
Sinha M, Narayanan R. Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience 2021; 489:111-142. [PMID: 34506834 PMCID: PMC7612676 DOI: 10.1016/j.neuroscience.2021.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/27/2022]
Abstract
Neurons and glial cells are endowed with membranes that express a rich repertoire of ion channels, transporters, and receptors. The constant flux of ions across the neuronal and glial membranes results in voltage fluctuations that can be recorded from the extracellular matrix. The high frequency components of this voltage signal contain information about the spiking activity, reflecting the output from the neurons surrounding the recording location. The low frequency components of the signal, referred to as the local field potential (LFP), have been traditionally thought to provide information about the synaptic inputs that impinge on the large dendritic trees of various neurons. In this review, we discuss recent computational and experimental studies pointing to a critical role of several active dendritic mechanisms that can influence the genesis and the location-dependent spectro-temporal dynamics of LFPs, spanning different brain regions. We strongly emphasize the need to account for the several fast and slow dendritic events and associated active mechanisms - including gradients in their expression profiles, inter- and intra-cellular spatio-temporal interactions spanning neurons and glia, heterogeneities and degeneracy across scales, neuromodulatory influences, and activitydependent plasticity - towards gaining important insights about the origins of LFP under different behavioral states in health and disease. We provide simple but essential guidelines on how to model LFPs taking into account these dendritic mechanisms, with detailed methodology on how to account for various heterogeneities and electrophysiological properties of neurons and synapses while studying LFPs.
Collapse
Affiliation(s)
- Manisha Sinha
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
48
|
Takano T, Ota H, Ohishi H, Hata K, Furukawa R, Nakabayashi K. Adult acampomelic campomelic dysplasia and disorders of sex development due to a reciprocal translocation involving chromosome 17q24.3 upstream of the SOX9 gene. Eur J Med Genet 2021; 64:104332. [PMID: 34481091 DOI: 10.1016/j.ejmg.2021.104332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022]
Abstract
Balanced chromosomal rearrangements with a breakpoint located upstream of the sex determining region Y-box 9 (SOX9) gene on chromosome 17q24.3 are associated with skeletal abnormalities, campomelic dysplasia (CMPD), or acampomelic campomelic dysplasia (ACMPD). We report on a female patient with a reciprocal translocation of t (11; 17) (p15.4; q24.3), who was diagnosed with acampomelic campomelic dysplasia. The 34-year-old Japanese patient presented with distinct skeletal abnormalities, profound intellectual disability, and female phenotype despite the presence of Y chromosome and the sex determining region Y (SRY) gene. Her menarche started at 33 years and 4 months after hormone therapy of estrogen therapy followed by estrogen progesterone therapy. By conducting whole genome sequencing followed by Sanger sequencing validation, we determined the precise breakpoint positions of the reciprocal translocation, one of which was located 203 kb upstream of the SOX9 gene. Considering the phenotypic variations previously reported among the CMPD/ACMPD patients with a chromosomal translocation in the vicinity of SOX9, the identified translocation was concluded to be responsible for all major phenotypes observed in the patient.
Collapse
Affiliation(s)
- Takako Takano
- Department of Child Health, Tokyo Kasei University, Tokyo, Japan; Department of Pediatrics, Tokyo Metropolitan Tobu Medical Center for Children with Developmental Disabilities, Tokyo, Japan.
| | - Hideomi Ota
- Department of Pediatrics, Tokyo Metropolitan Tobu Medical Center for Children with Developmental Disabilities, Tokyo, Japan
| | - Hajime Ohishi
- Department of Obstetrics and Gynecology, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Rieko Furukawa
- Department of Pediatric Medical Imaging, Jichi Children's Medical Center, Tochigi, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
49
|
Di Sapia R, Zimmer TS, Kebede V, Balosso S, Ravizza T, Sorrentino D, Castillo MAM, Porcu L, Cattani F, Ruocco A, Aronica E, Allegretti M, Brandolini L, Vezzani A. CXCL1-CXCR1/2 signaling is induced in human temporal lobe epilepsy and contributes to seizures in a murine model of acquired epilepsy. Neurobiol Dis 2021; 158:105468. [PMID: 34358616 DOI: 10.1016/j.nbd.2021.105468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
CXCL1, a functional murine orthologue of the human chemokine CXCL8 (IL-8), and its CXCR1 and CXCR2 receptors were investigated in a murine model of acquired epilepsy developing following status epilepticus (SE) induced by intra-amygdala kainate. CXCL8 and its receptors were also studied in human temporal lobe epilepsy (TLE). The functional involvement of the chemokine in seizure generation and neuronal cell loss was assessed in mice using reparixin (formerly referred to as repertaxin), a non-competitive allosteric inhibitor of CXCR1/2 receptors. We found a significant increase in hippocampal CXCL1 level within 24 h of SE onset that lasted for at least 1 week. No changes were measured in blood. In analogy with human TLE, immunohistochemistry in epileptic mice showed that CXCL1 and its two receptors were increased in hippocampal neuronal cells. Additional expression of these molecules was found in glia in human TLE. Mice were treated with reparixin or vehicle during SE and for additional 6 days thereafter, using subcutaneous osmotic minipumps. Drug-treated mice showed a faster SE decay, a reduced incidence of acute symptomatic seizures during 48 h post-SE, and a delayed time to spontaneous seizures onset compared to vehicle controls. Upon reparixin discontinuation, mice developed spontaneous seizures similar to vehicle mice, as shown by EEG monitoring at 14 days and 2.5 months post-SE. In the same epileptic mice, reparixin reduced neuronal cell loss in the hippocampus vs vehicle-injected mice, as assessed by Nissl staining at completion of EEG monitoring. Reparixin administration for 2 weeks in mice with established chronic seizures, reduced by 2-fold on average seizure number vs pre-treatment baseline, and this effect was reversible upon drug discontinuation. No significant changes in seizure number were measured in vehicle-injected epileptic mice that were EEG monitored in parallel. Data show that CXCL1-IL-8 signaling is activated in experimental and human epilepsy and contributes to acute and chronic seizures in mice, therefore representing a potential new target to attain anti-ictogenic effects.
Collapse
Affiliation(s)
- Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Till S Zimmer
- Department of Neuropathology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Valentina Kebede
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Diletta Sorrentino
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | | | - Luca Porcu
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Franca Cattani
- R&D Department, Dompé farmaceutici S.p.A., L'Aquila, Italy
| | - Anna Ruocco
- R&D Department, Dompé farmaceutici S.p.A., L'Aquila, Italy
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | | | | | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| |
Collapse
|
50
|
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res 2021; 14:3367-3392. [PMID: 34305404 PMCID: PMC8298823 DOI: 10.2147/jir.s287740] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022] Open
Abstract
Treatment of epilepsy remains a clinical challenge, with >30% of patients not responding to current antiseizure drugs (ASDs). Moreover, currently available ASDs are merely symptomatic without altering significantly the progression of the disease. Inflammation is increasingly recognized as playing an important role during the generation of hyperexcitable networks in the brain. Accordingly, the suppression of chronic inflammation has been suggested as a promising therapeutic strategy to prevent epileptogenesis and to treat drug-refractory epilepsy. As a consequence, a strong focus of ongoing research is identification of the mechanisms that contribute to sustained inflammation in the brain during epilepsy and whether these can be targeted. ATP is released in response to several pathological stimuli, including increased neuronal activity within the central nervous system, where it functions as a neuro- and gliotransmitter. Once released, ATP activates purinergic P2 receptors, which are divided into metabotropic P2Y and ionotropic P2X receptors, driving inflammatory processes. Evidence from experimental models and patients demonstrates widespread expression changes of both P2Y and P2X receptors during epilepsy, and critically, drugs targeting both receptor subtypes, in particular the P2Y1 and P2X7 subtypes, have been shown to possess both anticonvulsive and antiepileptic potential. This review provides a detailed summary of the current evidence suggesting ATP-gated receptors as novel drug targets for epilepsy and discusses how P2 receptor–driven inflammation may contribute to the generation of seizures and the development of epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| |
Collapse
|