1
|
Alibeigian Y, Kalantari N, Ebrahimi Sadrabadi A, Kamali A, Raminfard S, Baghaban Eslaminejad M, Hosseini S. Incorporation of calcium phosphate cement into decellularized extracellular matrix enhances its bone regenerative properties. Colloids Surf B Biointerfaces 2024; 244:114175. [PMID: 39216442 DOI: 10.1016/j.colsurfb.2024.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Decellularized extracellular matrix (dECM) hydrogels are engineered constructs that are widely-used in the field of regenerative medicine. However, the development of ECM-based hydrogels for bone tissue engineering requires enhancement in its osteogenic properties. For this purpose, we initially employed bone-derived dECM hydrogel (dECM-Hy) in combination with calcium phosphate cement (CPC) paste to improve the biological and structural properties of the dECM hydrogel. A decellularization protocol for bovine bone was developed to prepare dECM-Hy, and the mechanically-tuned dECM/CPC-Hy was built based on both rheological and mechanical characteristics. The dECM/CPC-Hy displayed a double swelling ratio and compressive strength. An interconnected structure with distinct hydroxyapatite crystals was evident in dECM/CPC-Hy. The expression levels of Alp, Runx2 and Ocn genes were upregulated in dECM/CPC-Hy compared to the dECM-Hy. A 14-day follow-up of the rats receiving subcutaneous implanted dECM-Hy, dECM/CPC-Hy and mesenchymal stem cells (MSCs)-embedded (dECM/CPC/MSCs-Hy) showed no toxicity, inflammatory factor expression or pathological changes. Radiography and computed tomography (CT) of the calvarial defects revealed new bone formation and elevated number of osteoblasts-osteocytes and osteons in dECM/CPC-Hy and dECM/CPC/MSCs-Hy compared to the control groups. These findings indicate that the dECM/CPC-Hy has substantial potential for bone tissue engineering.
Collapse
Affiliation(s)
- Yalda Alibeigian
- University of Science and Culture, Faculty of Science & Advanced Technologies in Biology, Tehran, Islamic Republic of Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloofar Kalantari
- University of Science and Culture, Faculty of Science & Advanced Technologies in Biology, Tehran, Islamic Republic of Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Tissue Engineering, Faculty of Basic Sciences and Advanced Technologies in Medicine, Royan Institute, ACECR, Tehran, Islamic Republic of Iran
| | - Amir Kamali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Samira Raminfard
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran.
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran.
| |
Collapse
|
2
|
Alghamdi SA, Alissa M, Alsuwat MA. Dermal derived matrix hydrogel loaded with curcumin improved wound healing in a diabetic rat model. Tissue Cell 2024; 90:102495. [PMID: 39094367 DOI: 10.1016/j.tice.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
There is a need in clinical practice for new wound healing techniques to address full thickness skin injuries, particularly in individuals with diabetes. Herein we investigated whether dermal derived matrix hydrogel (DMH) loaded with curcumin (Cur) could promote healing in diabetic rats. Sixty diabetic rats were randomly assigned into the non-treated group, DMH group, Cur group, and DMH+Cur group. According to the phases of wound healing, sampling was done on days 7, 14, and 21 for further assessments. Our results indicated that the wound contraction rate, new epidermal length and thickness, number of fibroblasts and vascular length, collagen deposition, and strength properties of the healed wounds were meaningfully increased in the treatment groups than in the non-treated group, and these changes were more obvious in the DMH+Cur ones. In addition, the expression of VEGF and IL-10 genes were meaningfully upregulated in all treatment groups compared to the non-treated group and were greater in the DMH+Cur group. This is while the number of neutrophils and expression levels of TNF-α and IL-1β genes decreased more significantly in the DMH+Cur group compared to the other groups. In conclusion, it was found that using both DMH and curcumin has a greater impact on diabetic wound healing.
Collapse
Affiliation(s)
- Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
Le LTT, Pham NC, Trinh XT, Nguyen NG, Nguyen VL, Nam SY, Heo CY. Supercritical Carbon Dioxide Decellularization of Porcine Nerve Matrix for Regenerative Medicine. Tissue Eng Part A 2024; 30:447-459. [PMID: 38205627 DOI: 10.1089/ten.tea.2023.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Tissue engineering scaffolds are often made from the decellularization of tissues. The decellularization of tissues caused by prolonged contact with aqueous detergents might harm the microstructure and leave cytotoxic residues. In this research, we developed a new technique to use supercritical carbon dioxide (Sc-CO2)-based decellularization for porcine nerve tissue. The effect of decellularization was analyzed by histological examination, including Hematoxylin and Eosin, Masson's Trichrome staining, and 4',6-diamidino-2-phenylindole staining. Moreover, biochemical analysis of the decellularized tissues was also performed by measuring DNA content, amount of collagen, and glycosaminoglycans (GAGs) after decellularization. The results showed that the tissue structure was preserved, cells were removed, and the essential components of extracellular matrix, such as collagen fibers, elastin fibers, and GAG fibers, remained after decellularization. In addition, the DNA content was decreased compared with native tissue, and the concentration of collagen and GAGs in the decellularized nerve tissue was the same as in native tissue. The in vivo experiment in the rat model showed that after 6 months of decellularized nerve implantation, the sciatic function index was confirmed to recover in decellularized nerve. Morphological analysis displayed a range of infiltrated cells in the decellularized nerve, similar to that in native tissue, and the number of Schwann cells that play essential for motor function and sensory in the decellularized nerve was confirmed. These findings indicate that tissue decellularization using Sc-CO2 has been successfully used in tissue engineering.
Collapse
Affiliation(s)
- Linh Thi Thuy Le
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ngoc Chien Pham
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Xuan-Tung Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ngan Giang Nguyen
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study Center, Seongnam, Republic of Korea
| | - Van Long Nguyen
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chan-Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study Center, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Alghamdi A, Hjazi A, Alghamdi SA, Aloraini GS, Alshehri MA, Alsuwat MA, Albelasi A, Alissa M. Experimental study on the effects of human amniotic membrane in combination with menstrual blood-derived stem cells on wound healing in a diabetic rat model. Tissue Cell 2024; 88:102419. [PMID: 38810349 DOI: 10.1016/j.tice.2024.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
One of the serious challenges in diabetic patients is the occurrence of complications caused by the disease. One of the most important side effects is wounding in limbs. Due to the multifactorial nature of these wounds, treatments require a multifaceted approach. Therefore, the aim of the present study was whether the human amniotic membrane (HAM) in combination with menstrual blood-derived stem cells (MenSCs) could promote wound healing in diabetic rats. Thirty days after induction of diabetes, the animals were randomly allocated into four equal groups (n=15): the control group, HAM group, MenSC group, and HAM+MenSC group. Sampling was done on days 7, 14, and 21 for histological, molecular, and tensiometrical evaluations. The results showed that the wound healing rate, collagen deposition, volumes of new epidermis and dermis, as well as tensiometrical characteristics were significantly increased in the treatment groups compared to the control group, and these changes were more obvious in the HAM+MenSC ones (P<0.05). Moreover, the expression levels of TGF-β, bFGF, and VEGF genes were considerably increased in treatment groups compared to the control group and were greater in the HAM+MenSC group (P<0.05). This is while expression levels of TNF-α and IL-1β decreased more significantly in the HAM+MenSC group than the other groups (P<0.05). We concluded that the combined use of HAM and MenSCs has a more significant effect on diabetic wound healing.
Collapse
Affiliation(s)
- Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ghfren S Aloraini
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Abdullah Albelasi
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
5
|
Bartolacci JG, Behun MN, Warunek JP, Li T, Sahu A, Dwyer GK, Lucas A, Rong J, Ambrosio F, Turnquist HR, Badylak SF. Matrix-bound nanovesicle-associated IL-33 supports functional recovery after skeletal muscle injury by initiating a pro-regenerative macrophage phenotypic transition. NPJ Regen Med 2024; 9:7. [PMID: 38280914 PMCID: PMC10821913 DOI: 10.1038/s41536-024-00346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/04/2024] [Indexed: 01/29/2024] Open
Abstract
Injuries to skeletal muscle are among the most common injuries in civilian and military populations, accounting for nearly 60% of extremity injuries. The standard of care for severe extremity injury has been focused upon limb salvage procedures and the utilization of tissue grafts or orthotics in conjunction with rehabilitation to avoid amputation. Nonetheless, many patients have persistent strength and functional deficits that permanently impact their quality of life. Preclinical and clinical studies have shown that partial restoration of functional skeletal muscle tissue following injury can be achieved by the implantation of a biologic scaffold composed of extracellular matrix (ECM). These favorable outcomes are mediated, at least in part, through local immunomodulation. The mechanisms underlying this immunomodulatory effect, however, are poorly understood. The present study investigates a potential mechanistic driver of the immunomodulatory effects; specifically, the effect of selected ECM components upon inflammation resolution and repair. Results show that the host response to skeletal muscle injury is profoundly altered and functional recovery decreased in il33-/- mice compared to age- and sex-matched wildtype counterparts by 14 days post-injury. Results also show that IL-33, contained within matrix-bound nanovesicles (MBV), supports skeletal muscle regeneration by regulating local macrophage activation toward a pro-remodeling phenotype via canonical and non-canonical pathways to improve functional recovery from injury compared to untreated il33-/- counterparts. Taken together, these data suggest that MBV and their associated IL-33 cargo represent a novel homeostatic signaling mechanism that contributes to skeletal muscle repair.
Collapse
Affiliation(s)
- J G Bartolacci
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - M N Behun
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - J P Warunek
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - T Li
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - A Sahu
- Department of Physical Medicine and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - G K Dwyer
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - A Lucas
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J Rong
- McGowan Institute for Regenerative Medicine, Pittsburgh, USA
| | - F Ambrosio
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, USA
| | - H R Turnquist
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, Pittsburgh, USA.
| | - S F Badylak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Departments of Surgery and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, Pittsburgh, USA.
| |
Collapse
|
6
|
Anjum S, Li T, Saeed M, Ao Q. Exploring polysaccharide and protein-enriched decellularized matrix scaffolds for tendon and ligament repair: A review. Int J Biol Macromol 2024; 254:127891. [PMID: 37931866 DOI: 10.1016/j.ijbiomac.2023.127891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Tissue engineering (TE) has become a primary research topic for the treatment of diseased or damaged tendon/ligament (T/L) tissue. T/L injuries pose a severe clinical burden worldwide, necessitating the development of effective strategies for T/L repair and tissue regeneration. TE has emerged as a promising strategy for restoring T/L function using decellularized extracellular matrix (dECM)-based scaffolds. dECM scaffolds have gained significant prominence because of their native structure, relatively high bioactivity, low immunogenicity, and ability to function as scaffolds for cell attachment, proliferation, and differentiation, which are difficult to imitate using synthetic materials. Here, we review the recent advances and possible future prospects for the advancement of dECM scaffolds for T/L tissue regeneration. We focus on crucial scaffold properties and functions, as well as various engineering strategies employed for biomaterial design in T/L regeneration. dECM provides both the physical and mechanical microenvironments required by cells to survive and proliferate. Various decellularization methods and sources of allogeneic and xenogeneic dECM in T/L repair and regeneration are critically discussed. Additionally, dECM hydrogels, bio-inks in 3D bioprinting, and nanofibers are briefly explored. Understanding the opportunities and challenges associated with dECM-based scaffold development is crucial for advancing T/L repairs in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mohammad Saeed
- Dr. A.P.J Abdul Kalam Technical University, Lucknow 226031, India
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
7
|
Khalatbary AR, Omraninava M, Nasiry D, Akbari M, Taghiloo S, Poorhassan M, Ebrahimpour-Malekshah R, Asadzadeh M, Raoofi A. Exosomes derived from human adipose mesenchymal stem cells loaded bioengineered three-dimensional amniotic membrane-scaffold-accelerated diabetic wound healing. Arch Dermatol Res 2023; 315:2853-2870. [PMID: 37644140 DOI: 10.1007/s00403-023-02709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
The occurrence of wounds and defects in the healing process is one of the main challenges in diabetic patients. Herein, we investigated whether adipose-derived stem cells (ADSCs)-derived exosomes loaded bioengineered micro-porous three-dimensional amniotic membrane-scaffold (AMS) could promote healing in diabetic rats. Sixty diabetic rats were randomly allocated into the control group, exosome group, AMS group, and AMS + Exo group. On days 7, 14, and 21, five rats from each group were sampled for stereological, immunohistochemical, molecular, and tensiometrical assessments. Our results indicated that the wound closure rate, the total volumes of newly formed epidermis and dermis, the numerical densities of fibroblasts and proliferating cells, the length density blood vessels, collagen density as well as tensiometrical parameters of the healed wounds were considerably greater in the treated groups than in the control group, and these changes were more obvious in the AMS + Exo ones. Furthermore, the expression of TGF-β, bFGF, and VEGF genes was meaningfully upregulated in all treated groups compared to the control group and were greater in the AMS + Exo group. This is while expression of TNF-α and IL-1β, as well as cell numerical densities of neutrophils, M1 macrophages, and mast cells decreased more considerably in the AMS + Exo group in comparison with the other groups. Generally, it was found that using both AMS transplantation and ADSCs-derived exosomes has more effect on diabetic wound healing.
Collapse
Affiliation(s)
- Ali Reza Khalatbary
- Cellular and Molecular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melody Omraninava
- Health Reproductive Research Center, Islamic Azad University, Sari, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mitra Akbari
- Eye Research Center, Eye Department, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran.
| | - Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahnaz Poorhassan
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | | | - Mahdiyeh Asadzadeh
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
8
|
Yin H, Mao K, Huang Y, Guo A, Shi L. Tendon stem/progenitor cells are promising reparative cell sources for multiple musculoskeletal injuries of concomitant articular cartilage lesions associated with ligament injuries. J Orthop Surg Res 2023; 18:869. [PMID: 37968672 PMCID: PMC10647040 DOI: 10.1186/s13018-023-04313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Trauma-related articular cartilage lesions usually occur in conjunction with ligament injuries. Torn ligaments are frequently reconstructed with tendon autograft and has been proven to achieve satisfactory clinical outcomes. However, treatments for the concomitant articular cartilage lesions are still very insufficient. The current study was aimed to evaluate whether stem cells derived from tendon tissue can be considered as an alternative reparative cell source for cartilage repair. METHODS Primary human tendon stem/progenitor cells (hTSPCs) were isolated from 4 male patients (32 ± 8 years) who underwent ACL reconstruction surgery with autologous semitendinosus and gracilis tendons. The excessive tendon tissue after graft preparation was processed for primary cell isolation with an enzyme digestion protocol. Decellularization cartilage matrix (DCM) was used to provide a chondrogenic microenvironment for hTSPCs. Cell viability, cell morphology on the DCM, as well as their chondrogenic differentiation were evaluated. RESULTS DAPI staining and DNA quantitative analysis (61.47 μg per mg dry weight before and 2.64 μg/mg after decellularization) showed that most of the cells in the cartilage lacuna were removed after decellularization process. Whilst, the basic structure of the cartilage tissue was preserved and the main ECM components, collagen type II and sGAG were retained after decellularization, which were revealed by DMMB assay and histology. Live/dead staining and proliferative assay demonstrated that DCM supported attachment, survival and proliferation of hTSPCs with an excellent biocompatibility. Furthermore, gene expression analysis indicated that chondrogenic differentiation of hTSPC was induced by the DCM microenvironment, with upregulation of chondrogenesis-related marker genes, COL 2 and SOX9, without the use of exogenous growth factors. CONCLUSION DCM supported hTSPCs attachment and proliferation with high biocompatibility. Moreover, TSPCs underwent a distinct chondrogenesis after the induction of a chondrogenic microenvironment provided by DCM. These results indicated that TSPCs are promising reparative cell sources for promoting cartilage repair. Particularly, in the cohort that articular cartilage lesions occur in conjunction with ligament injuries, autologous TSPCs can be isolated from a portion of the tendon autograph harvested for ligaments reconstruction. In future clinical practice, combined ligament reconstruction with TSPCs- based therapy for articular cartilage repair can to be considered to achieve superior repair of these associated injuries, in which autologous TSPCs can be isolated from a portion of the tendon autograph harvested for ligaments reconstruction.
Collapse
Affiliation(s)
- Heyong Yin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Kelei Mao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Yufu Huang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lin Shi
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
9
|
Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. MedComm (Beijing) 2023; 4:e291. [PMID: 37337579 PMCID: PMC10276889 DOI: 10.1002/mco2.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/21/2023] Open
Abstract
Regeneration is a complex process affected by many elements independent or combined, including inflammation, proliferation, and tissue remodeling. Stem cells is a class of primitive cells with the potentiality of differentiation, regenerate with self-replication, multidirectional differentiation, and immunomodulatory functions. Stem cells and their cytokines not only inextricably linked to the regeneration of ectodermal and skin tissues, but also can be used for the treatment of a variety of chronic wounds. Stem cells can produce exosomes in a paracrine manner. Stem cell exosomes play an important role in tissue regeneration, repair, and accelerated wound healing, the biological properties of which are similar with stem cells, while stem cell exosomes are safer and more effective. Skin and bone tissues are critical organs in the body, which are essential for sustaining life activities. The weak repairing ability leads a pronounced impact on the quality of life of patients, which could be alleviated by stem cell exosomes treatment. However, there are obstacles that stem cells and stem cells exosomes trough skin for improved bioavailability. This paper summarizes the applications and mechanisms of stem cells and stem cells exosomes for skin and bone healing. We also propose new ways of utilizing stem cells and their exosomes through different nanoformulations, liposomes and nanoliposomes, polymer micelles, microspheres, hydrogels, and scaffold microneedles, to improve their use in tissue healing and regeneration.
Collapse
Affiliation(s)
- Ye Jin
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Shuangyang Li
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Qixuan Yu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Tianli Chen
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Da Liu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| |
Collapse
|
10
|
Zhu T, Chen X, Jiang S. Progress and obstacles in transplantation of brown adipose tissue or engineered cells with thermogenic potential for metabolic benefits. Front Endocrinol (Lausanne) 2023; 14:1191278. [PMID: 37265692 PMCID: PMC10230949 DOI: 10.3389/fendo.2023.1191278] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Transplantation of brown adipose tissue (BAT), engineered thermogenic progenitor cells, and adipocytes have received much attention for the improvement of obesity and metabolic disorders. However, even though the thermogenic and metabolic potential exists early after transplantation, the whitening of the brown fat graft occurs with metabolic function significantly impaired. In this review, specific experiment designs, graft outcomes, and metabolic benefits for the transplantation of BAT or engineered cells will be discussed. The current advancements will offer guidance to further investigation, and the obstacles appearing in previous studies will require innovation of BAT transplantation methods.
Collapse
|
11
|
Morrison RA, Brookes S, Puls TJ, Cox A, Gao H, Liu Y, Voytik-Harbin SL. Engineered collagen polymeric materials create noninflammatory regenerative microenvironments that avoid classical foreign body responses. Biomater Sci 2023; 11:3278-3296. [PMID: 36942875 PMCID: PMC10152923 DOI: 10.1039/d3bm00091e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
The efficacy and longevity of medical implants and devices is largely determined by the host immune response, which extends along a continuum from pro-inflammatory/pro-fibrotic to anti-inflammatory/pro-regenerative. Using a rat subcutaneous implantation model, along with histological and transcriptomics analyses, we characterized the tissue response to a collagen polymeric scaffold fabricated from polymerizable type I oligomeric collagen (Oligomer) in comparison to commercial synthetic and collagen-based products. In contrast to commercial biomaterials, no evidence of an immune-mediated foreign body reaction, fibrosis, or bioresorption was observed with Oligomer scaffolds for beyond 60 days. Oligomer scaffolds were noninflammatory, eliciting minimal innate inflammation and immune cell accumulation similar to sham surgical controls. Genes associated with Th2 and regulatory T cells were instead upregulated, implying a novel pathway to immune tolerance and regenerative remodeling for biomaterials.
Collapse
Affiliation(s)
- Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Sarah Brookes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Hongyu Gao
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Xiao H, Chen X, Liu X, Wen G, Yu Y. Recent advances in decellularized biomaterials for wound healing. Mater Today Bio 2023; 19:100589. [PMID: 36880081 PMCID: PMC9984902 DOI: 10.1016/j.mtbio.2023.100589] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The skin is one of the most essential organs in the human body, interacting with the external environment and shielding the body from diseases and excessive water loss. Thus, the loss of the integrity of large portions of the skin due to injury and illness may lead to significant disabilities and even death. Decellularized biomaterials derived from the extracellular matrix of tissues and organs are natural biomaterials with large quantities of bioactive macromolecules and peptides, which possess excellent physical structures and sophisticated biomolecules, and thus, promote wound healing and skin regeneration. Here, we highlighted the applications of decellularized materials in wound repair. First, the wound-healing process was reviewed. Second, we elucidated the mechanisms of several extracellular matrix constitutes in facilitating wound healing. Third, the major categories of decellularized materials in the treatment of cutaneous wounds in numerous preclinical models and over decades of clinical practice were elaborated. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues for research on decellularized biomaterials-based wound treatment.
Collapse
Affiliation(s)
- Huimin Xiao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
13
|
A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. Int J Mol Sci 2023; 24:ijms24054312. [PMID: 36901743 PMCID: PMC10001544 DOI: 10.3390/ijms24054312] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Bone defects characterized by limited regenerative properties are considered a priority in surgical practice, as they are associated with reduced quality of life and high costs. In bone tissue engineering, different types of scaffolds are used. These implants represent structures with well-established properties that play an important role as delivery vectors or cellular systems for cells, growth factors, bioactive molecules, chemical compounds, and drugs. The scaffold must provide a microenvironment with increased regenerative potential at the damage site. Magnetic nanoparticles are linked to an intrinsic magnetic field, and when they are incorporated into biomimetic scaffold structures, they can sustain osteoconduction, osteoinduction, and angiogenesis. Some studies have shown that combining ferromagnetic or superparamagnetic nanoparticles and external stimuli such as an electromagnetic field or laser light can enhance osteogenesis and angiogenesis and even lead to cancer cell death. These therapies are based on in vitro and in vivo studies and could be included in clinical trials for large bone defect regeneration and cancer treatments in the near future. We highlight the scaffolds' main attributes and focus on natural and synthetic polymeric biomaterials combined with magnetic nanoparticles and their production methods. Then, we underline the structural and morphological aspects of the magnetic scaffolds and their mechanical, thermal, and magnetic properties. Great attention is devoted to the magnetic field effects on bone cells, biocompatibility, and osteogenic impact of the polymeric scaffolds reinforced with magnetic nanoparticles. We explain the biological processes activated due to magnetic particles' presence and underline their possible toxic effects. We present some studies regarding animal tests and potential clinical applications of magnetic polymeric scaffolds.
Collapse
|
14
|
Kasravi M, Ahmadi A, Babajani A, Mazloomnejad R, Hatamnejad MR, Shariatzadeh S, Bahrami S, Niknejad H. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res 2023; 27:10. [PMID: 36759929 PMCID: PMC9912640 DOI: 10.1186/s40824-023-00348-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue-engineered decellularized extracellular matrix (ECM) scaffolds hold great potential to address the donor shortage as well as immunologic rejection attributed to cells in conventional tissue/organ transplantation. Decellularization, as the key process in manufacturing ECM scaffolds, removes immunogen cell materials and significantly alleviates the immunogenicity and biocompatibility of derived scaffolds. However, the application of these bioscaffolds still confronts major immunologic challenges. This review discusses the interplay between damage-associated molecular patterns (DAMPs) and antigens as the main inducers of innate and adaptive immunity to aid in manufacturing biocompatible grafts with desirable immunogenicity. It also appraises the impact of various decellularization methodologies (i.e., apoptosis-assisted techniques) on provoking immune responses that participate in rejecting allogenic and xenogeneic decellularized scaffolds. In addition, the key research findings regarding the contribution of ECM alterations, cytotoxicity issues, graft sourcing, and implantation site to the immunogenicity of decellularized tissues/organs are comprehensively considered. Finally, it discusses practical solutions to overcome immunogenicity, including antigen masking by crosslinking, sterilization optimization, and antigen removal techniques such as selective antigen removal and sequential antigen solubilization.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran ,grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Amirhesam Babajani
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Radman Mazloomnejad
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Mohammad Reza Hatamnejad
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- grid.19006.3e0000 0000 9632 6718Department of Surgery, University of California Los Angeles, Los Angeles, California USA
| | - Soheyl Bahrami
- grid.454388.60000 0004 6047 9906Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran.
| |
Collapse
|
15
|
Kort-Mascort J, Flores-Torres S, Peza-Chavez O, Jang JH, Pardo LA, Tran SD, Kinsella J. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater Sci 2023; 11:400-431. [PMID: 36484344 DOI: 10.1039/d2bm01273a] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Tissue development, wound healing, pathogenesis, regeneration, and homeostasis rely upon coordinated and dynamic spatial and temporal remodeling of extracellular matrix (ECM) molecules. ECM reorganization and normal physiological tissue function, require the establishment and maintenance of biological, chemical, and mechanical feedback mechanisms directed by cell-matrix interactions. To replicate the physical and biological environment provided by the ECM in vivo, methods have been developed to decellularize and solubilize tissues which yield organ and tissue-specific bioactive hydrogels. While these biomaterials retain several important traits of the native ECM, the decellularizing process, and subsequent sterilization, and solubilization result in fragmented, cleaved, or partially denatured macromolecules. The final product has decreased viscosity, moduli, and yield strength, when compared to the source tissue, limiting the compatibility of isolated decellularized ECM (dECM) hydrogels with fabrication methods such as extrusion bioprinting. This review describes the physical and bioactive characteristics of dECM hydrogels and their role as biomaterials for biofabrication. In this work, critical variables when selecting the appropriate tissue source and extraction methods are identified. Common manual and automated fabrication techniques compatible with dECM hydrogels are described and compared. Fabrication and post-manufacturing challenges presented by the dECM hydrogels decreased mechanical and structural stability are discussed as well as circumvention strategies. We further highlight and provide examples of the use of dECM hydrogels in tissue engineering and their role in fabricating complex in vitro 3D microenvironments.
Collapse
Affiliation(s)
| | | | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Joyce H Jang
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Kato A, Go T, Otsuki Y, Yokota N, Soo CS, Misaki N, Yajima T, Yokomise H. Perpendicular implantation of porcine trachea extracellular matrix for enhanced xenogeneic scaffold surface epithelialization in a canine model. Front Surg 2023; 9:1089403. [PMID: 36713663 PMCID: PMC9877415 DOI: 10.3389/fsurg.2022.1089403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Objective The availability of clinically applied medical materials in thoracic surgery remains insufficient, especially materials for treating tracheal defects. Herein, the potential of porcine extracellular matrix (P-ECM) as a new airway reconstruction material was explored by xenotransplanting it into a canine trachea. Methods P-ECM was first transplanted into the buttocks of Narc Beagle dogs (n = 3) and its overall immuno-induced effects were evaluated. Subsequently, nine dogs underwent surgery to create a tracheal defect that was 1 × 2 cm. In group A, the P-ECM was implanted parallel to the tracheal axis (n = 3), whereas in group B the P-ECM was implanted perpendicular to the tracheal axis (n = 6). The grafts were periodically observed by bronchoscopy and evaluated postoperatively at 1 and 3 months through macroscopic and microscopic examinations. Immunosuppressants were not administered. Statistical evaluation was performed for Bronchoscopic stenosis rate, graft epithelialization rate, shrinkage rate and ECM live-implantation rate. Results No sign of P-ECM rejection was observed after its implantation in the buttocks. Bronchoscopic findings showed no improvement concerning stenosis in group A until 3 months after surgery; epithelialization of the graft site was not evident, and the ECM site appeared scarred and faded. In contrast, stenosis gradually improved in group B, with continuous epithelium within the host tissues and P-ECM. Histologically, the graft site contracted longitudinally and no epithelialization was observed in group A, whereas full epithelialization was observed on the P-ECM in group B. No sign of cartilage regeneration was confirmed in both groups. No statistically significant differences were found in bronchoscopic stenosis rate, shrinkage rate and ECM live-implantation rate, but graft epithelialization rate showed a statistically significant difference (G-A; sporadic (25%) 3, vs. G-B; full covered (100%) 3; p = 0.047). Conclusions P-ECM can support full re-epithelialization without chondrocyte regeneration, with perpendicular implantation facilitating epithelialization of the ECM. Our results showed that our decellularized tracheal matrix holds clinical potential as a biological xenogeneic material for airway defect repair.
Collapse
|
17
|
Hoshiba T, Yunoki S. Comparison of decellularization protocols for cultured cell-derived extracellular matrix-Effects on decellularization efficacy, extracellular matrix retention, and cell functions. J Biomed Mater Res B Appl Biomater 2023; 111:85-94. [PMID: 35852254 DOI: 10.1002/jbm.b.35135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 12/27/2022]
Abstract
The in vitro reconstruction of the extracellular matrix (ECM) is required in tissue engineering and regenerative medicine because the ECM can regulate cell functions in vivo. For ECM reconstruction, a decellularization technique is used. ECM reconstructed by decellularization (dECM) is prepared from tissues/organs and cultured cells. Although decellularization methods have been optimized for tissue-/organ-derived dECM, the methods for cultured cell-derived dECM have not yet been optimized. Here, two physical (osmotic shocks) and five chemical decellularization methods are compared. The decellularization efficacies were changed according to the decellularization methods used. Among them, only the Triton X-100 and Tween 20 treatments could not decellularize completely. Additionally, when the efficacies were compared among different types of cells (monolayered cells with/without strong cell adhesion, multilayered cells), the efficacies were decreased for multilayered cells or cells with strong cell adhesion. Retained ECM contents tended to be greater in the dECM prepared by osmotic shocks than in those prepared by chemical methods. The contents impacted cell adhesion, shapes, growth and intracellular signal activation on the dECM. The comparison would be helpful for the optimization of decellularization methods for cultured cells, and it could also provide new insights into developing milder decellularization methods for tissues and organs.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
| | - Shunji Yunoki
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
| |
Collapse
|
18
|
Xenograft-decellularized adipose tissue supports adipose remodeling in rabbit. Biochem Biophys Res Commun 2022; 635:187-193. [DOI: 10.1016/j.bbrc.2022.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
19
|
Wang B, Sierad LN, Mercuri JJ, Simionescu A, Simionescu DT, Williams LN, Vela R, Bajona P, Peltz M, Ramaswamy S, Hong Y, Liao J. Structural and biomechanical characterizations of acellular porcine mitral valve scaffolds: anterior leaflets, posterior leaflets, and chordae tendineae. ENGINEERED REGENERATION 2022; 3:374-386. [PMID: 38362305 PMCID: PMC10869114 DOI: 10.1016/j.engreg.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mitral valve (MV) tissue engineering is still in its early stage, and one major challenge in MV tissue engineering is to identify appropriate scaffold materials. With the potential of acellular MV scaffolds being demonstrated recently, it is important to have a full understanding of the biomechanics of the native MV components and their acellular scaffolds. In this study, we have successfully characterized the structural and mechanical properties of porcine MV components, including anterior leaflet (AL), posterior leaflet (PL), strut chordae, and basal chordae, before and after decellularization. Quantitative DNA assay showed more than 90% reduction in DNA content, and Griffonia simplicifolia (GS) lectin immunohistochemistry confirmed the complete lack of porcine α-Gal antigen in the acellular MV components. In the acellular AL and PL, the atrialis, spongiosa, and fibrosa trilayered structure, along with its ECM constitutes, i.e., collagen fibers, elastin fibers, and portion of GAGs, were preserved. Nevertheless, the ECM of both AL and PL experienced a certain degree of disruption, exhibiting a less dense, porous ECM morphology. The overall anatomical morphology of the strut and basal chordae were also maintained after decellularization, with longitudinal morphology experiencing minimum disruption, but the cross-sectional morphology exhibiting evenly-distributed porous structure. In the acellular AL and PL, the nonlinear anisotropic biaxial mechanical behavior was overall preserved; however, uniaxial tensile tests showed that the removal of cellular content and the disruption of structural ECM did result in small decreases in maximum tensile modulus, tissue extensibility, failure stress, and failure strain for both MV leaflets and chordae.
Collapse
Affiliation(s)
- Bo Wang
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI 53226, United States
| | - Leslie N. Sierad
- Department of Bioengineering, Clemson University, Clemson, SC 29634, United States
| | - Jeremy J. Mercuri
- Department of Bioengineering, Clemson University, Clemson, SC 29634, United States
| | - Agneta Simionescu
- Department of Bioengineering, Clemson University, Clemson, SC 29634, United States
| | - Dan T. Simionescu
- Department of Bioengineering, Clemson University, Clemson, SC 29634, United States
| | - Lakiesha N. Williams
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Ryan Vela
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Pietro Bajona
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
- Allegheny Health Network-Drexel University College of Medicine, Pittsburgh, PA 15212, United States
| | - Matthias Peltz
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, United States
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, United States
| |
Collapse
|
20
|
Sklenářová R, Akla N, Latorre MJ, Ulrichová J, Franková J. Collagen as a Biomaterial for Skin and Corneal Wound Healing. J Funct Biomater 2022; 13:jfb13040249. [PMID: 36412890 PMCID: PMC9680244 DOI: 10.3390/jfb13040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
The cornea and the skin are two organs that form the outer barrier of the human body. When either is injured (e.g., from surgery, physical trauma, or chemical burns), wound healing is initiated to restore integrity. Many cells are activated during wound healing. In particular, fibroblasts that are stimulated often transition into repair fibroblasts or myofibroblasts that synthesize extracellular matrix (ECM) components into the wound area. Control of wound ECM deposition is critical, as a disorganized ECM can block restoration of function. One of the most abundant structural proteins in the mammalian ECM is collagen. Collagen type I is the main component in connective tissues. It can be readily obtained and purified, and short analogs have also been developed for tissue engineering applications, including modulating the wound healing response. This review discusses the effect of several current collagen implants on the stimulation of corneal and skin wound healing. These range from collagen sponges and hydrogels to films and membranes.
Collapse
Affiliation(s)
- Renáta Sklenářová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University in Olomouc, 775 15 Olomouc, Czech Republic
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada
| | - Naoufal Akla
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University in Olomouc, 775 15 Olomouc, Czech Republic
| | - Jana Franková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University in Olomouc, 775 15 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
21
|
Barbulescu GI, Bojin FM, Ordodi VL, Goje ID, Barbulescu AS, Paunescu V. Decellularized Extracellular Matrix Scaffolds for Cardiovascular Tissue Engineering: Current Techniques and Challenges. Int J Mol Sci 2022; 23:13040. [PMID: 36361824 PMCID: PMC9658138 DOI: 10.3390/ijms232113040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global mortality. Over the past two decades, researchers have tried to provide novel solutions for end-stage heart failure to address cardiac transplantation hurdles such as donor organ shortage, chronic rejection, and life-long immunosuppression. Cardiac decellularized extracellular matrix (dECM) has been widely explored as a promising approach in tissue-regenerative medicine because of its remarkable similarity to the original tissue. Optimized decellularization protocols combining physical, chemical, and enzymatic agents have been developed to obtain the perfect balance between cell removal, ECM composition, and function maintenance. However, proper assessment of decellularized tissue composition is still needed before clinical translation. Recellularizing the acellular scaffold with organ-specific cells and evaluating the extent of cardiomyocyte repopulation is also challenging. This review aims to discuss the existing literature on decellularized cardiac scaffolds, especially on the advantages and methods of preparation, pointing out areas for improvement. Finally, an overview of the state of research regarding the application of cardiac dECM and future challenges in bioengineering a human heart suitable for transplantation is provided.
Collapse
Affiliation(s)
- Greta Ionela Barbulescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Department of Clinical Practical Skills, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Florina Maria Bojin
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Valentin Laurentiu Ordodi
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
- Faculty of Industrial Chemistry and Environmental Engineering, “Politehnica” University Timisoara, No 2 Victoriei Square, 300006 Timisoara, Romania
| | - Iacob Daniel Goje
- Department of Medical Semiology I, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Advanced Cardiology and Hemostaseology Research Center, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Andreea Severina Barbulescu
- Center for Advanced Research in Gastroenterology and Hepatology, Department of Internal Medicine II, Division of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Virgil Paunescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
| |
Collapse
|
22
|
Cramer M, Pineda Molina C, Hussey G, Turnquist HR, Badylak SF. Transcriptomic Regulation of Macrophages by Matrix-Bound Nanovesicle-Associated Interleukin-33. Tissue Eng Part A 2022; 28:867-878. [PMID: 35770892 PMCID: PMC9634988 DOI: 10.1089/ten.tea.2022.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The innate immune response, particularly the phenotype of responding macrophages, has significant clinical implications in the remodeling outcome following implantation of biomaterials and engineered tissues. In general, facilitation of an anti-inflammatory (M2-like) phenotype is associated with tissue repair and favorable outcomes, whereas pro-inflammatory (M1-like) activation can contribute to chronic inflammation and a classic foreign body response. Biologic scaffolds composed of extracellular matrix (ECM) and, more recently, matrix-bound nanovesicles (MBV) embedded within the ECM are known to direct macrophages toward an anti-inflammatory phenotype and stimulate a constructive remodeling outcome. The mechanisms of MBV-mediated macrophage activation are not fully understood, but interleukin-33 (IL-33) within the MBV appears critical for M2-like activation. Previous work has shown that IL-33 is encapsulated within the lumen of MBV and stimulates phenotypical changes in macrophages independent of its canonical surface receptor stimulation-2 (ST2). In the present study, we used next-generation RNA sequencing to determine the gene signature of macrophages following exposure to MBV with and without intraluminal IL-33. MBV-associated IL-33 instructed an anti-inflammatory phenotype in both wild-type and st2-/- macrophages by upregulating M2-like and downregulating M1-like genes. The repertoire of genes regulated by ST2-independent IL-33 signaling were broadly related to the inflammatory response and crosstalk between cells of both the innate and adaptive immune systems. These results signify the importance of the MBV intraluminal protein IL-33 in stimulating a pro-remodeling M2-like phenotype in macrophages and provides guidance for the designing of next-generation biomaterials and tissue engineering strategies. Impact statement The phenotype of responding macrophages is predictive of the downstream remodeling response to an implanted biomaterial. The clinical impact of macrophage phenotype has motivated studies to investigate the factors that regulate macrophage activation. Matrix-bound nanovesicles (MBV) embedded within the extracellular matrix direct macrophages toward an anti-inflammatory (M2)-like phenotype that is indicative of a favorable remodeling response. Although the mechanisms of MBV-mediated macrophage activation are not fully understood, the intraluminal protein interleukin-33 (IL-33) is clearly a contributing signaling molecule. The present study identifies those genes regulated by MBV-associated IL-33 that promote a pro-remodeling M2-like macrophage activation state and can guide future therapies in regenerative medicine.
Collapse
Affiliation(s)
- Madeline Cramer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heth R. Turnquist
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen F. Badylak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
25
|
Rahman G, Frazier TP, Gimble JM, Mohiuddin OA. The Emerging Use of ASC/Scaffold Composites for the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2022; 10:893992. [PMID: 35845419 PMCID: PMC9280640 DOI: 10.3389/fbioe.2022.893992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Articular cartilage is composed of chondrocytes surrounded by a porous permeable extracellular matrix. It has a limited spontaneous healing capability post-injury which, if left untreated, can result in severe osteochondral disease. Currently, osteochondral (OC) defects are treated by bone marrow stimulation, artificial joint replacement, or transplantation of bone, cartilage, and periosteum, while autologous osteochondral transplantation is also an option; it carries the risk of donor site damage and is limited only to the treatment of small defects. Allografts may be used for larger defects; however, they have the potential to elicit an immune response. A possible alternative solution to treat osteochondral diseases involves the use of stromal/stem cells. Human adipose-derived stromal/stem cells (ASCs) can differentiate into cartilage and bone cells. The ASC can be combined with both natural and synthetic scaffolds to support cell delivery, growth, proliferation, migration, and differentiation. Combinations of both types of scaffolds along with ASCs and/or growth factors have shown promising results for the treatment of OC defects based on in vitro and in vivo experiments. Indeed, these findings have translated to several active clinical trials testing the use of ASC-scaffold composites on human subjects. The current review critically examines the literature describing ASC-scaffold composites as a potential alternative to conventional therapies for OC tissue regeneration.
Collapse
Affiliation(s)
- Gohar Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | - Omair A. Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
26
|
Liu K, He Y, Lu F. Research Progress on the Immunogenicity and Regeneration of Acellular Adipose Matrix: A Mini Review. Front Bioeng Biotechnol 2022; 10:881523. [PMID: 35733521 PMCID: PMC9207478 DOI: 10.3389/fbioe.2022.881523] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acellular adipose matrix (AAM) has received increasing attention for soft tissue reconstruction, due to its abundant source, high long-term retention rate and in vivo adipogenic induction ability. However, the current decellularization methods inevitably affect native extracellular matrix (ECM) properties, and the residual antigens can trigger adverse immune reactions after transplantation. The behavior of host inflammatory cells mainly decides the regeneration of AAM after transplantation. In this review, recent knowledge of inflammatory cells for acellular matrix regeneration will be discussed. These advancements will inform further development of AAM products with better properties.
Collapse
|
27
|
Parekh M, Wongvisavavit R, Cubero Cortes ZM, Wojcik G, Romano V, Tabernero SS, Ferrari S, Ahmad S. Alternatives to endokeratoplasty: an attempt towards reducing global demand of human donor corneas. Regen Med 2022; 17:461-475. [PMID: 35481361 DOI: 10.2217/rme-2021-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cornea is an anterior transparent tissue of the eye that enables the transmission of surrounding light to the back of the eye, which is essential for maintaining clear vision. Corneal endothelial diseases can lead to partial or total blindness; hence, surgical replacement of the diseased corneal tissue with a healthy cadaveric donor graft becomes necessary when the endothelium is damaged. Keratoplasties face a huge challenge due to a worldwide shortage in the supply of human donor corneas. Hence, alternative solutions such as cell or tissue engineering-based therapies have been investigated for reducing the global demand of donor corneas. This review aims at highlighting studies that have been successful at replacing partial or total endothelial keratoplasty.
Collapse
Affiliation(s)
- Mohit Parekh
- Institute of Ophthalmology, University College London, London, EC1V 9EL,UK
| | - Rintra Wongvisavavit
- Institute of Ophthalmology, University College London, London, EC1V 9EL,UK.,Faculty of Medicine & Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Gabriela Wojcik
- International Center for Ocular Physiopathology, Fondazione Banca degli Occhi del Veneto Onlus, Venice, 30174, Italy
| | - Vito Romano
- St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK.,Department of Ageing & Chronic Diseases, University of Liverpool, Liverpool, L7 8XL, UK
| | - Sara Sanchez Tabernero
- Cornea & external eye disease, Moorfields Eye Hospital NHS Trust Foundation, London, EC1V 2PD, UK
| | - Stefano Ferrari
- International Center for Ocular Physiopathology, Fondazione Banca degli Occhi del Veneto Onlus, Venice, 30174, Italy
| | - Sajjad Ahmad
- Institute of Ophthalmology, University College London, London, EC1V 9EL,UK.,Cornea & external eye disease, Moorfields Eye Hospital NHS Trust Foundation, London, EC1V 2PD, UK
| |
Collapse
|
28
|
Interdisciplinary Methods for Zoonotic Tissue Acellularization for Natural Heart Valve Substitute of Biomimetic Materials. MATERIALS 2022; 15:ma15072594. [PMID: 35407927 PMCID: PMC9000896 DOI: 10.3390/ma15072594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023]
Abstract
The goal of this work was to create a bioactive tissue-based scaffold using multi-disciplinary engineering materials and tissue engineering techniques. Materials & methods: Physical techniques such as direct laser interference lithography and proton radiation were selected as alternative methods of enzymatic and chemical decellularization to remove cells from a tissue without degradation of the extracellular matrix nor its protein structure. This study was an attempt to prepare a functional scaffold for cell culture from tissue of animal origin using new physical methods that have not been considered before. The work was carried out under full control of the histological and molecular analysis. Results & conclusions: The most important finding was that the physical methods used to obtain the decellularized tissue scaffold differed in the efficiency of cell removal from the tissue in favour of the laser method. Both the laser method and the proton method exhibited a destructive effect on tissue structure and the genetic material in cell nuclei. This effect was visible on histology images as blurred areas within the cell nucleus. The finite element 3D simulation of decellularization process of the three-layer tissue of animal origin sample reflected well the mechanical response of tissue described by hyperelastic material models and provided results comparable to the experimental ones.
Collapse
|
29
|
Batista VF, de Sá Schiavo Matias G, Carreira ACO, Smith LC, Rodrigues R, Araujo MS, Souza Silva DR, Moraes FDJ, Garcia JM, Miglino MA. Recellularized rat testis scaffolds with embryoid bodies cells: a promising approach for tissue engineering. Syst Biol Reprod Med 2022; 68:44-54. [PMID: 35086406 DOI: 10.1080/19396368.2021.2007554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tissue engineering is gaining use to investigate the application of its techniques for infertility treatment. The use of pluripotent embryonic cells for in vitro production of viable spermatozoa in testicular scaffolds is a promising strategy that could solve male infertility. Due to cell-extracellular matrix (ECM) interactions, here we aim to investigate the differentiation of embryoid bodies (EBs) in cultured into decellularized rat testis scaffolds. Decellularized testis (P = 0.019) with a low concentration of gDNA (30.58 mg/ng tissue) was obtained by sodium dodecyl sulfate perfusion. The structural proteins (collagens type I and III) and the adhesive glycoproteins of ECM (laminin and fibronectin) were preserved according to histological and scanning electron microscopy (SEM) analyses. Then, decellularized rat testis were cultured for 7 days with EB, and EB mixed with retinoic acid (RA) in non-adherent plates. By SEM, we observe that embryonic stem cells adhered in the decellularized testis ECM. By immunofluorescence, we verified the positive expression of HSD17B3, GDNF, ACRV-1, and TRIM-36, indicating their differentiation using RA in vitro, reinforcing the possibility of EB in male germ cell differentiation. Finally, recellularized testis ECM may be a promising tool for future new approaches for testicular cell differentiation applied to assisted reproduction techniques and infertility treatment.Abbreviations: ACRV-1: Acrosomal vesicle protein 1; ATB: Penicillin-streptomycin; DAPI: 4,6-Diamidino-2-phenylindole; EB: Embryoid bodies; ECM: Extracellular matrix; ESCs: Pluripotent embryonic stem cells; GAGs: Glycosaminoglycans; gDNA: Genomic DNA; GDNF: Glial cell line-derived neurotrophic factor; H&E: Hematoxylin and eosin; HSD17B3: 17-beta-Hydroxysteroid dehydrogenase type 3; PBS: Phosphate-buffered saline; PGCLCs: Primordial germ-cell-like cells; RA: Retinoic acid; SDS: Sodium dodecyl sulfate; SEM: Scanning electron microscopy; SSCs: Spermatogonial stem cells; TRIM-36: Tripartite Motif Containing 36.
Collapse
Affiliation(s)
- Vitória Frias Batista
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Lawrence Charles Smith
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Centre de Recherche En Reproduction Et Fertilité, Université de Montréal), Saint-Hyacinthe, Canada
| | - Rafaela Rodrigues
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Michelle Silva Araujo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Dara Rubia Souza Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Felipe de Jesus Moraes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joaquim Mansano Garcia
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Reproduction (Reproduction), São Paulo State University (UNESP), São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Cao Y, Jiang J, Jiang Y, Li Z, Hou J, Li Q. Biodegradable highly porous interconnected poly(ε‐caprolactone)/poly(L‐lactide‐co‐ε‐caprolactone) scaffolds by supercritical foaming for small‐diameter vascular tissue engineering. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yongjun Cao
- School of Materials Science & Engineering Zhengzhou University Zhengzhou China
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Jing Jiang
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
- School of Mechanical & Power Engineering Zhengzhou University Zhengzhou China
| | - Yufan Jiang
- School of Materials Science & Engineering Zhengzhou University Zhengzhou China
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Zihui Li
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Jianhua Hou
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Qian Li
- School of Materials Science & Engineering Zhengzhou University Zhengzhou China
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| |
Collapse
|
31
|
Machałowski T, Idaszek J, Chlanda A, Heljak M, Piasecki A, Święszkowski W, Jesionowski T. Naturally prefabricated 3D chitinous skeletal scaffold of marine demosponge origin, biomineralized ex vivo as a functional biomaterial. Carbohydr Polym 2022; 275:118750. [PMID: 34742446 DOI: 10.1016/j.carbpol.2021.118750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023]
Abstract
Solutions developed by nature for structural and functional optimization of three-dimensional (3D) skeletal structures provide unique windows not only into the evolutionary pathways of organisms, but also into bioinspired materials science and biomimetics. Great examples are naturally formed 3D chitinous scaffolds of marine sponge remain a focus of modern biomedicine and tissue engineering. Due to its properties like renewability, bioactivity, and biodegradability such constructs became very interesting players as components of organic-inorganic biocomposites. Herein, we developed chitin-based biocomposites by biomimetic ex vivo deposition of calcium carbonate particles using hemolymph from the cultivated mollusk Cornu aspersum and chitinous matrix from the marine demosponge Aplysina fistularis. The biological potential of the developed biofunctionalized scaffolds for bone tissue engineering was evaluated by investigating the spreading and viability of a human fetal osteoblast cell line has been determined for the first time. Performed analyses like dynamic mechanical analysis and atomic force microscopy shown that biofunctionalized scaffold possess about 4 times higher mechanical resistance. Moreover, several topographical changes have been observed, as e.g., surface roughness (Rq) increased from 31.75 ± 2.7 nm to 120.7 ± 0.3 nm. The results are indicating its potential for use in the modification of cell delivery systems in future biomedical applications.
Collapse
Affiliation(s)
- Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland
| | - Joanna Idaszek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Adrian Chlanda
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Department of Chemical Synthesis and Flake Graphene, 02-668 Warsaw, Poland
| | - Marcin Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Adam Piasecki
- Institute of Materials Science and Engineering, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-965, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland.
| |
Collapse
|
32
|
Hoshiba T. A decellularized extracellular matrix derived from keratinocytes can suppress cellular senescence induced by replicative and oxidative stresses. Biomater Sci 2022; 10:6828-6835. [DOI: 10.1039/d2bm00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Keratinocyte senescence is suppressed on a keratinocyte-derived decellularized ECM (dECM) through the increase of antioxidant activity. Keratinocyte function is also increased on this dECM, suggesting that this dECM is useful to establish epidermal models.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
33
|
Potekaev NN, Borzykh OB, Medvedev GV, Pushkin DV, Petrova MM, Petrov AV, Dmitrenko DV, Karpova EI, Demina OM, Shnayder NA. The Role of Extracellular Matrix in Skin Wound Healing. J Clin Med 2021; 10:jcm10245947. [PMID: 34945243 PMCID: PMC8706213 DOI: 10.3390/jcm10245947] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
Impaired wound healing is one of the unsolved problems of modern medicine, affecting patients’ quality of life and causing serious economic losses. Impaired wound healing can manifest itself in the form of chronic skin wounds or hypertrophic scars. Research on the biology and physiology of skin wound healing disorders is actively continuing, but, unfortunately, a single understanding has not been developed. The attention of clinicians to the biological and physiological aspects of wound healing in the skin is necessary for the search for new and effective methods of prevention and treatment of its consequences. In addition, it is important to update knowledge about genetic and non-genetic factors predisposing to impaired wound healing in order to identify risk levels and develop personalized strategies for managing such patients. Wound healing is a very complex process involving several overlapping stages and involving many factors. This thematic review focuses on the extracellular matrix of the skin, in particular its role in wound healing. The authors analyzed the results of fundamental research in recent years, finding promising potential for their transition into real clinical practice.
Collapse
Affiliation(s)
- Nikolai N. Potekaev
- Department of Skin Disease and Cosmetology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (N.N.P.); (E.I.K.); (O.M.D.)
| | - Olga B. Borzykh
- Shared Core Facilities “Molecular and Cell Technologies”, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (A.V.P.); (D.V.D.)
- Correspondence: (O.B.B.); (N.A.S.); Tel.: +7-(812)-670-02-20-78-14 (N.A.S.)
| | - German V. Medvedev
- Department of Hand Surgery with Microsurgical Equipment, R. R. Vreden National Medical Research Centre for Traumatology and Orthopedics, 195427 Saint Petersburg, Russia;
| | - Denis V. Pushkin
- Medical Faculty, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (A.V.P.); (D.V.D.)
| | - Artem V. Petrov
- Shared Core Facilities “Molecular and Cell Technologies”, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (A.V.P.); (D.V.D.)
| | - Diana V. Dmitrenko
- Shared Core Facilities “Molecular and Cell Technologies”, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (A.V.P.); (D.V.D.)
| | - Elena I. Karpova
- Department of Skin Disease and Cosmetology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (N.N.P.); (E.I.K.); (O.M.D.)
| | - Olga M. Demina
- Department of Skin Disease and Cosmetology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (N.N.P.); (E.I.K.); (O.M.D.)
| | - Natalia A. Shnayder
- Shared Core Facilities “Molecular and Cell Technologies”, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (A.V.P.); (D.V.D.)
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V. M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (O.B.B.); (N.A.S.); Tel.: +7-(812)-670-02-20-78-14 (N.A.S.)
| |
Collapse
|
34
|
Abstract
The extracellular matrix (ECM) is an architecture that supports the cells in our bodies and regulates various cell functions. The ECM is composed of many proteins and carbohydrates, and these molecules activate various intracellular signaling pathways orchestrated to decide cell fates. Therefore, it is not enough to study the role of single ECM molecules to understand the roles of the ECM in the regulation of cell functions; it is necessary to understand how the ECM, as an assembly of various molecules, regulates cell functions as a whole. For this purpose, in vitro ECM models mimicking native ECM are required. Here, a decellularization technique is presented to reconstitute native ECM in vitro. In this article, methods for preparing decellularized ECM (dECM) are described for use in tumor and stem cell biology. Additionally, a method for confirmation of decellularization and a dECM modification method are described. These dECM types will be useful for comprehensive studies of ECM roles. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of in vitro extracellular matrix (ECM) models mimicking native ECM in different malignant tumor tissues Basic Protocol 2: Preparation of in vitro ECM models mimicking native ECM surrounding myoblasts differentiating into myotubes at each myogenic stage Support Protocol 1: Confirmation of myogenic stages by myogenic stages by myogenic gene expression analysis Basic Protocol 3: Confirmation of cell removal Basic Protocol 4: Reduction of chondroitin sulfate chains in cultured cell-derived decellularized ECM Support Protocol 2: Quantification of chondroitin sulfate chain amounts in the decellularized ECM.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, Aomi, Koto-ku, Tokyo, Japan
| |
Collapse
|
35
|
Translational considerations for adipose-derived biological scaffolds for soft tissue repair. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Carvalho CMF, Leonel LCPC, Cañada RR, Barreto RSN, Maria DA, Del Sol M, Miglino MA, Lobo SE. Comparison between placental and skeletal muscle ECM: in vivo implantation. Connect Tissue Res 2021; 62:629-642. [PMID: 33106052 DOI: 10.1080/03008207.2020.1834540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF THE STUDY Several tissues have been decellularized and their extracellular matrices used as allogeneic or xenogeneic scaffolds, either in orthotopic or heterotopic implantations, for tissue engineering purposes. Placentas have abundant matrix, extensive microvascular structure, immunomodulatory properties, growth factors and are discarded after birth, representing an interesting source of extracellular matrix. This study aimed at comparing decellularized canine placentas and murine skeletal muscles to regenerate skeletal muscles in a rat model. MATERIALS AND METHODS Muscle pockets were created at the posterior limbs of male Wistar rats, where the muscle- and placenta-derived extracellular matrices were implanted. Macroscopic, histological, and immunohistochemical analyses were performed after 3, 15, and 45 days of surgeries. RESULTS On the third day, intense inflammatory reaction, with macrophages (CD163+) and proliferative cells (PCNA+) being observed in control group and adjacent to the decellularized matrices. The percentage of proliferative cells was higher in placenta than in muscle matrices. Macrophages CD163+ high were higher in muscles than in placentas, whereas CD163+ low were higher in placentas than in muscle ECM, at days 3 and 15. Placental matrices were not completely degraded at day 15, as opposed to the muscular ones. After 45 days, both matrices were resorbed and morphologically normal myofibers, with reduction of cell infiltration, were observed. CONCLUSIONS These results demonstrated that xenogeneic placental ECM, implanted heterotopically (representing a biologically critical and challenging microenvironment), induced local inflammatory reactions similar to the allogeneic muscle ECM, implanted orthotopically. Thus, placenta-derived extracellular matrix must be further explored in regenerative medicine.
Collapse
Affiliation(s)
- Carla Maria F Carvalho
- Department of Surgery, Sector of Anatomy, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Luciano C P C Leonel
- Department of Surgery, Sector of Anatomy, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Rafael R Cañada
- Biological Science, University São Judas Tadeu, São Paulo, Brazil
| | - Rodrigo S N Barreto
- Department of Surgery, Sector of Anatomy, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Durvanei A Maria
- Molecular BIology Laboratory, Butantan Institute, São Paulo, Brazil
| | | | - Maria Angélica Miglino
- Department of Surgery, Sector of Anatomy, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Sonja E Lobo
- Department of Surgery, Sector of Anatomy, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Egorikhina MN, Bronnikova II, Rubtsova YP, Charykova IN, Bugrova ML, Linkova DD, Aleynik DY. Aspects of In Vitro Biodegradation of Hybrid Fibrin-Collagen Scaffolds. Polymers (Basel) 2021; 13:polym13203470. [PMID: 34685229 PMCID: PMC8539699 DOI: 10.3390/polym13203470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
The success of the regenerative process resulting from the implantation of a scaffold or a tissue-engineered structure into damaged tissues depends on a series of factors, including, crucially, the biodegradability of the implanted materials. The selection of a scaffold with appropriate biodegradation characteristics allows for synchronization of the degradation of the construct with the processes involved in new tissue formation. Thus, it is extremely important to characterize the biodegradation properties of potential scaffold materials at the stage of in vitro studies. We have analyzed the biodegradation of hybrid fibrin–collagen scaffolds in both PBS solution and in trypsin solution and this has enabled us to describe the processes of both their passive and enzymatic degradation. It was found that the specific origin of the collagen used to form part of the hybrid scaffolds could have a significant effect on the nature of the biodegradation process. It was also established, during comparative studies of acellular scaffolds and scaffolds containing stem cells, that the cells, too, make a significant contribution to changes in the biodegradation and structural properties of such scaffolds. The study results also provided evidence indicating the dependency between the pre-cultivation period for the cellular scaffolds and the speed and extent of their subsequent biodegradation. Our discussion of results includes an attempt to explain the mechanisms of the changes found. We hope that the said results will make a significant contribution to the understanding of the processes affecting the differences in the biodegradation properties of hybrid, biopolymer, and hydrogel scaffolds.
Collapse
|
38
|
Toma AI, Fuller JM, Willett NJ, Goudy SL. Oral wound healing models and emerging regenerative therapies. Transl Res 2021; 236:17-34. [PMID: 34161876 PMCID: PMC8380729 DOI: 10.1016/j.trsl.2021.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
Following injury, the oral mucosa undergoes complex sequences of biological healing processes to restore homeostasis. While general similarities exist, there are marked differences in the genomics and kinetics of wound healing between the oral cavity and cutaneous epithelium. The lack of successful therapy for oral mucosal wounds has influenced clinicians to explore alternative treatments and potential autotherapies to enhance intraoral healing. The present in-depth review discusses current gold standards for oral mucosal wound healing and compares endogenous factors that dictate the quality of tissue remodeling. We conducted a review of the literature on in vivo oral wound healing models and emerging regenerative therapies published during the past twenty years. Studies were evaluated by injury models, therapy interventions, and outcome measures. The success of therapeutic approaches was assessed, and research outcomes were compared based on current hallmarks of oral wound healing. By leveraging therapeutic advancements, particularly within in cell-based biomaterials and immunoregulation, there is great potential for translational therapy in oral tissue regeneration.
Collapse
Affiliation(s)
- Afra I Toma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Julia M Fuller
- Department of Biology, Emory University, Atlanta, GA, USA.
| | - Nick J Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Orthopedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - Steven L Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Otolaryngology, Emory University, Atlanta, GA, USA; Department of Pediatric Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
39
|
Abstract
One of the most important functions of the skin, i.e., protection from mechanical damage, is ensured by collagen fibers and their interaction with other elements in the extracellular matrix. Collagen fiber turnover is a complex multi-stage process. At each stage, a disruption may occur, leading to a decrease in the mechanical properties of the connective tissue. Clinically, collagen formation disorders manifest themselves as increased flabbiness and looseness of the skin and as early signs of facial aging. In addition to the clinical picture, it is important for cosmetologists and dermatologists to understand the etiology and pathogenesis of collagenopathies. In our review, we summarized and systematized the available information concerning the role of genetic and epigenetic factors in skin collagen fiber turnover. Furthermore, we focused on the functions of different types of collagens present in the skin. Understanding the etiology of impaired collagen formation can allow doctors to prescribe pathogenetically based treatments, achieve the most effective results, and minimize adverse reactions.
Collapse
|
40
|
Al-Qurayshi Z, Wafa EI, Rossi Meyer MK, Owen S, Salem AK. Tissue Engineering the Pinna: Comparison and Characterization of Human Decellularized Auricular Biological Scaffolds. ACS APPLIED BIO MATERIALS 2021; 4:7234-7242. [PMID: 34568774 PMCID: PMC8456428 DOI: 10.1021/acsabm.1c00766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/17/2021] [Indexed: 12/03/2022]
Abstract
Decellularization is one of the promising techniques in tissue engineering used to create a biological scaffold for subsequent repopulation with the patient's own cells. This study aims to compare two different decellularization protocols to optimize the process of auricle decellularization by assessing and characterizing the decellularization effects on human auricular cartilage. Herein, 12 pairs (8 females, 4 males) of freshly frozen adult human cadaveric auricles were de-epithelialized and defatted leaving only the cartilaginous framework. An auricle from each pair was randomly assigned to either protocol A (latrunculin B-based decellularization) or protocol B (trypsin-based decellularization). Gross examination of the generated scaffolds demonstrated preservation of the auricles' contours and a change in color from pinkish-white to yellowish-white. Hematoxylin and eosin staining demonstrated empty cartilaginous lacunae in both study groups, which confirms the depletion of cells. However, there was greater preservation of the extracellular matrix in auricles decellularized with protocol A as compared to protocol B. Comparing protocol A to protocol B, Masson's trichrome and Safranin-O stains also demonstrated noticeable preservation of collagen and proteoglycans, respectively. Additionally, scanning electron micrographs demonstrated preservation of the cartilaginous microtopography in both study groups. Biomechanical testing demonstrated a substantial decrease in Young's modulus after decellularization using protocol B (1.3 MPa), albeit not significant (P-value > 0.05) when compared to Young's modulus prior to decellularization (2.6 MPa) or after decellularization with protocol A (2.7 MPa). A DNA quantification assay demonstrated a significant drop (P-value < 0.05) in the DNA content after decellularization with protocol A (111.0 ng/mg) and protocol B (127.6 ng/mg) in comparison to before decellularization (865.3 ng/mg). Overall, this study demonstrated effective decellularization of human auricular cartilage, and it is concluded that protocol A provided greater preservation of the extracellular matrix and biomechanical characteristics. These findings warrant proceeding with the assessment of inflammation and cell migration in a decellularized scaffold using an animal model.
Collapse
Affiliation(s)
- Zaid Al-Qurayshi
- Department
of Otolaryngology − Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, United States
| | - Emad I. Wafa
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Monica K. Rossi Meyer
- Department
of Otolaryngology − Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, United States
| | - Scott Owen
- Department
of Otolaryngology − Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, United States
| | - Aliasger K. Salem
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Holden
Comprehensive Cancer Center, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
41
|
Wang Y, Liu Y, Xiang L, Han L, Yao X, Hu Y, Wu F. Cyclin D1b induces changes in the macrophage phenotype resulting in promotion of tumor metastasis. Exp Biol Med (Maywood) 2021; 246:2559-2569. [PMID: 34514884 DOI: 10.1177/15353702211038511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In breast cancer, tumor-associated macrophages with activated phenotypes promote tumor invasion and metastasis. The more aggressive mesenchymal-like breast cancer cells have a selective advantage, skewing macrophages toward the more immunosuppressive subtype. However, the mechanism underlying this shift is poorly understood. Cyclin D1b is a highly oncogenic variant of cyclin D1. Our previous study showed that non-metastatic epithelial-like breast cancer cells were highly metastatic in vivo when cyclin D1b was overexpressed. The present study determined whether cyclin D1b contributed to the interaction between breast cancer cells and macrophages. The results showed that cyclin D1b promoted the invasion of breast cancer cells in vitro. Specifically, through overexpression of cyclin D1b, breast cancer cells regulated the differentiation of macrophages into a more immunosuppressive M2 phenotype. Notably, tumor cells overexpressing cyclin D1b activated macrophages and induced migration of breast cancer cells. Further investigations indicated that SDF-1 mediated macrophage activation through breast cancer cells overexpressing cyclin D1b. These results revealed a previously unknown link between aggressive breast cancer cells and Tumor-associated macrophages, and highlighted the importance of cyclin D1b activity in the breast cancer microenvironment.
Collapse
Affiliation(s)
- Yuxue Wang
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Yi Liu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Lei Xiang
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Lintao Han
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Xiaowei Yao
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Yibing Hu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Fenghua Wu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| |
Collapse
|
42
|
Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater 2021; 6:2412-2438. [PMID: 33553825 PMCID: PMC7847813 DOI: 10.1016/j.bioactmat.2021.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) is a rapidly growing interdisciplinary field, which aims to restore or improve lost tissue function. Despite that TE was introduced more than 20 years ago, innovative and more sophisticated trends and technologies point to new challenges and development. Current challenges involve the demand for multifunctional bioscaffolds which can stimulate tissue regrowth by biochemical curves, biomimetic patterns, active agents and proper cell types. For those purposes especially promising are carefully chosen primary cells or stem cells due to its high proliferative and differentiation potential. This review summarized a variety of recently reported advanced bioscaffolds which present new functions by combining polymers, nanomaterials, bioactive agents and cells depending on its desired application. In particular necessity of study biomaterial-cell interactions with in vitro cell culture models, and studies using animals with in vivo systems were discuss to permit the analysis of full material biocompatibility. Although these bioscaffolds have shown a significant therapeutic effect in nervous, cardiovascular and muscle, tissue engineering, there are still many remaining unsolved challenges for scaffolds improvement.
Collapse
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Marta J. Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel·lí Domingo s/n, Tarragona, 43007, Spain
| |
Collapse
|
43
|
Baru A, Sharma S, Purakayastha BPD, Khan S, Mazumdar S, Gupta R, Kundu PK, Arora NM. AXTEX-4D: A Three-Dimensional Ex Vivo Platform for Preclinical Investigations of Immunotherapy Agents. Assay Drug Dev Technol 2021; 19:361-372. [PMID: 34319797 DOI: 10.1089/adt.2021.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The latest advancements in oncology are majorly focused on immuno-oncology (I-O) therapies. However, only ∼7% of drugs are being approved from the preclinical discovery phase to phase 1. The most challenging issues in I-O are the development of active and efficient drugs in an economically feasible way and in a comparatively short time for testing and validation. This mandates an urgent need for the upgradation of preclinical screening models that closely mimic the in vivo tumor microenvironment (TME). The established and most common methods for investigating the tumoricidal activity of I-O drugs are either two-dimensional systems or primary tumor cells in standard tissue culture vessels. Unfortunately, they do not mimic the TME. Consequently, the more in vivo-like three-dimensional (3D) multicellular tumor spheroids are quickly becoming the favored model to examine immune cell-mediated responses in reaction to the administration of I-O drugs. Despite many advantages of multicellular spheroids, challenges (e.g., incompatibility of quantitative assays with spheroid platforms) are still involved in the tedious procedures required for the spheroid culture that is holding back the biological community from adapting the well-recognized spheroid tissue models for studying drug delivery more widely. To this end, we have demonstrated the utility of the 3D ex vivo oncology model, developed on our novel AXTEX-4D™ platform to assess therapeutic efficacies of I-O drugs by investigating immune cell proliferation, migration, infiltration, cytokine profiling, and cytotoxicity of tumor tissueoids. The platform eliminates the need for additional biomolecules such as hydrogels and instead relies on the cancer cells themselves to create their own gradients and microenvironmental factors. In effect, the more comprehensive and ex vivo-like immune-oncology model developed on AXTEX-4D platform can be utilized for high-throughput screening of immunotherapeutic drugs.
Collapse
Affiliation(s)
- Ambica Baru
- Mammalian Cell Culture Lab, Premas Biotech Pvt, Ltd., Sector IV, IMT, Manesar, India
| | - Swati Sharma
- Mammalian Cell Culture Lab, Premas Biotech Pvt, Ltd., Sector IV, IMT, Manesar, India
| | | | - Sameena Khan
- Mammalian Cell Culture Lab, Premas Biotech Pvt, Ltd., Sector IV, IMT, Manesar, India
| | - Saumyabrata Mazumdar
- Mammalian Cell Culture Lab, Premas Biotech Pvt, Ltd., Sector IV, IMT, Manesar, India
| | - Reeshu Gupta
- Mammalian Cell Culture Lab, Premas Biotech Pvt, Ltd., Sector IV, IMT, Manesar, India
| | - Prabuddha K Kundu
- Mammalian Cell Culture Lab, Premas Biotech Pvt, Ltd., Sector IV, IMT, Manesar, India
| | - Nupur Mehrotra Arora
- Mammalian Cell Culture Lab, Premas Biotech Pvt, Ltd., Sector IV, IMT, Manesar, India
| |
Collapse
|
44
|
Sykova E, Cizkova D, Kubinova S. Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:695900. [PMID: 34295897 PMCID: PMC8290345 DOI: 10.3389/fcell.2021.695900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
Preclinical and clinical studies with various stem cells, their secretomes, and extracellular vesicles (EVs) indicate their use as a promising strategy for the treatment of various diseases and tissue defects, including neurodegenerative diseases such as spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS). Autologous and allogenic mesenchymal stem cells (MSCs) are so far the best candidates for use in regenerative medicine. Here we review the effects of the implantation of MSCs (progenitors of mesodermal origin) in animal models of SCI and ALS and in clinical studies. MSCs possess multilineage differentiation potential and are easily expandable in vitro. These cells, obtained from bone marrow (BM), adipose tissue, Wharton jelly, or even other tissues, have immunomodulatory and paracrine potential, releasing a number of cytokines and factors which inhibit the proliferation of T cells, B cells, and natural killer cells and modify dendritic cell activity. They are hypoimmunogenic, migrate toward lesion sites, induce better regeneration, preserve perineuronal nets, and stimulate neural plasticity. There is a wide use of MSC systemic application or MSCs seeded on scaffolds and tissue bridges made from various synthetic and natural biomaterials, including human decellularized extracellular matrix (ECM) or nanofibers. The positive effects of MSC implantation have been recorded in animals with SCI lesions and ALS. Moreover, promising effects of autologous as well as allogenic MSCs for the treatment of SCI and ALS were demonstrated in recent clinical studies.
Collapse
Affiliation(s)
- Eva Sykova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dasa Cizkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Sarka Kubinova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
45
|
Naturally Formed Chitinous Skeleton Isolated from the Marine Demosponge Aplysina fistularis as a 3D Scaffold for Tissue Engineering. MATERIALS 2021; 14:ma14112992. [PMID: 34205950 PMCID: PMC8198059 DOI: 10.3390/ma14112992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Tissue engineering (TE) is a field of regenerative medicine that has been experiencing a special boom in recent years. Among various materials used as components of 3D scaffolds, naturally formed chitinous materials seem to be especially attractive because of their abundance, non-toxic and eco-friendly character. In this study, chitinous skeleton isolated from the marine sponge Aplysina fistularis (phylum: Porifera) was used for the first time as a support for the cultivation of murine fibroblasts (Balb/3T3), human dermal fibroblasts (NHDF), human keratinocyte (HaCaT), and human neuronal (SH-SY5Y) cells. Characterization techniques such as ATR FTIR, TGA, and μCT, clearly indicate that an interconnected macro-porous, thermostable, pure α-chitin scaffold was obtained after alkali–acid treatment of air-dried marine sponge. The biocompatibility of the naturally formed chitin scaffolds was confirmed by cell attachment and proliferation determined by various microscopic methods (e.g., SEM, TEM, digital microscopy) and specific staining. Our observations show that fibroblasts and keratinocytes form clusters on scaffolds that resemble a skin structure, including the occurrence of desmosomes in keratinocyte cells. The results obtained here suggest that the chitinous scaffold from the marine sponge A. fistularis is a promising biomaterial for future research about tissues regeneration.
Collapse
|
46
|
Yazdanpanah G, Shah R, Raghurama R Somala S, Anwar KN, Shen X, An S, Omidi M, Rosenblatt MI, Shokuhfar T, Djalilian AR. In-situ porcine corneal matrix hydrogel as ocular surface bandage. Ocul Surf 2021; 21:27-36. [PMID: 33895367 DOI: 10.1016/j.jtos.2021.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Bioactive substrates can be used therapeutically to enhance wound healing. Here, we evaluated the effect of an in-situ thermoresponsive hydrogel from decellularized porcine cornea ECM, COMatrix (COrnea Matrix), for application as an ocular surface bandage for corneal epithelial defects. METHODS COMatrix hydrogel was fabricated from decellularized porcine corneas. The effects of COMatrix hydrogel on attachment and proliferation of human corneal epithelial cells (HCECs) were evaluated in vitro. The effect of COMatrix on the expressions of the inflammatory genes, IL-1β, TNF-α, and IL-6 was assessed by RT-PCR. The in-situ application and also repairing effects of COMatrix hydrogel as an ocular bandage was studied in a murine model of corneal epithelial wound. The eyes were examined by optical coherence tomography (OCT) and slit-lamp microscopy in vivo and by histology and immunofluorescence post-mortem. RESULTS In vitro, COMatrix hydrogel significantly enhanced the attachment and proliferation of HCECs relative to control. HCECs exposed to COMatrix had less induced expression of TNF-α (P < 0.05). In vivo, COMatrix formed a uniform hydrogel that adhered to the murine ocular surface after in-situ curing. Corneal epithelial wound closure was significantly accelerated by COMatrix hydrogel compared to control (P < 0.01). There was significant increase in the expression of proliferation marker Ki-67 in wounded corneal epithelium by COMatrix hydrogel compared to control (P < 0.05). CONCLUSIONS COMatrix hydrogel is a naturally derived bioactive material with potential application as an ocular surface bandage to enhance epithelial wound healing.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ritu Shah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Sri Raghurama R Somala
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Seungwon An
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
47
|
Goldman SM, Janakiram NB, Valerio MS, Dearth CL. Evaluation of licofelone as an adjunct anti-inflammatory therapy to biologic scaffolds in the treatment of volumetric muscle loss. Cell Tissue Res 2021; 385:149-159. [PMID: 33852076 DOI: 10.1007/s00441-021-03449-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
Biologic scaffolds (BS) are the most widely studied therapeutics for the treatment of volumetric muscle loss (VML) owing to their purported effects on cell proliferation, chemotaxis, migration, and differentiation. Despite these claims, variability in reports on the nature of the immune response to their implantation suggests that BS-associated inflammation may be limiting their regenerative efficacy. To address this shortcoming, this study sought to evaluate licofelone (ML3000), a dual 5-LOX/COX inhibitor, as an anti-inflammatory adjunct therapy to a BS in the treatment of VML. Utilizing a well-established rat VML model, a micronized BS was used to treat the VML injury, with or without administration of licofelone. Functional, molecular, and histological outcomes were assessed at both 7- and 28-day post-injury time points. While the BS + licofelone group exhibited decreased transcription of pro-inflammatory markers (Tnf, Ccl5, Nos2) relative to the BS only control group, no differences in expression profile of a panel of inflammatory-related soluble factors were observed between groups. A modest reduction in type I collagen was observed in the licofelone-treated group, but no meaningful differences in histologic presentation of repaired tissue were observed between groups. Furthermore, no differences in end organ functional capacity were observed between groups. Moving forward, efforts related to modulating the wound healing environment of VML should focus on polypharmaceutical strategies that target multiple aspects of the early pathophysiology of VML so as to provide an environment that is sufficiently permissive for local regenerative therapies to promote restoration of myofiber number.
Collapse
Affiliation(s)
- Stephen M Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Naveena Basa Janakiram
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Michael S Valerio
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA. .,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA.
| |
Collapse
|
48
|
Zaminy A, Sayad-Fathi S, Kasmaie FM, Jahromi Z, Zendedel A. Decellularized peripheral nerve grafts by a modified protocol for repair of rat sciatic nerve injury. Neural Regen Res 2021; 16:1086-1092. [PMID: 33269754 PMCID: PMC8224104 DOI: 10.4103/1673-5374.300449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that acellular nerve xenografts do not require immunosuppression and use of acellular nerve xenografts for repair of peripheral nerve injury is safe and effective. However, there is currently no widely accepted standard chemical decellularization method. The purpose of this study is to investigate the efficiency of bovine-derived nerves decellularized by the modified Hudson’s protocol in the repair of rat sciatic nerve injury. In the modified Hudson’s protocol, Triton X-200 was replaced by Triton X-100, and DNase and RNase were used to prepare accelular nerve xenografts. The efficiency of bovine-derived nerves decellularized by the modified Hudson’s protocol was tested in vitro by hematoxylin & eosin, Alcian blue, Masson’s trichrome, and Luxol fast blue staining, immunohistochemistry, and biochemical assays. The decellularization approach excluded cells, myelin, and axons of nerve xenografts, without affecting the organization of nerve xenografts. The decellularized nerve xenograft was used to bridge a 7 mm-long sciatic nerve defect to evaluate its efficiency in the repair of peripheral nerve injury. At 8 weeks after transplantation, sciatic function index in rats subjected to transplantation of acellular nerve xenograft was similar to that in rats undergoing transplantation of nerve allograft. Morphological analysis revealed that there were a large amount of regenerated myelinated axons in acellular nerve xenograft; the number of Schwann cells in the acellular nerve xenograft was similar to that in the nerve allograft. These findings suggest that acellular nerve xenografts prepared by the modified Hudson’s protocol can be used for repair of peripheral nerve injury. This study was approved by the Research Ethics Committee, Research and Technology Chancellor of Guilan University of Medical Sciences, Iran (approval No. IR.GUMS.REC.1395.332) on February 11, 2017.
Collapse
Affiliation(s)
- Arash Zaminy
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Sayad-Fathi
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zohreh Jahromi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
49
|
Lin Y, Chen L, Zhang M, Xie S, Du L, Zhang X, Li H. Eccrine Sweat Gland and Its Regeneration: Current Status and Future Directions. Front Cell Dev Biol 2021; 9:667765. [PMID: 34395417 PMCID: PMC8355620 DOI: 10.3389/fcell.2021.667765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/09/2021] [Indexed: 02/05/2023] Open
Abstract
Eccrine sweat glands (ESGs) play an important role in temperature regulation by secreting sweat. Insufficiency or dysfunction of ESGs in a hot environment or during exercise can lead to hyperthermia, heat exhaustion, heatstroke, and even death, but the ability of ESGs to repair and regenerate themselves is very weak and limited. Repairing the damaged ESGs and regenerating the lost or dysfunctional ESGs poses a challenge for dermatologists and bum surgeons. To promote and accelerate research on the repair and regeneration of ESGs, we summarized the development, structure and function of ESGs, and current strategies to repair and regenerate ESGs based on stem cells, scaffolds, and possible signaling pathways involved.
Collapse
Affiliation(s)
- Yao Lin
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Mingjun Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sitian Xie
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiang Zhang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haihong Li
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Haihong Li,
| |
Collapse
|
50
|
The Role of Scaffolds in Tendon Tissue Engineering. J Funct Biomater 2020; 11:jfb11040078. [PMID: 33139620 PMCID: PMC7712651 DOI: 10.3390/jfb11040078] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Tendons are unique forms of connective tissue aiming to transmit the mechanical force of muscle contraction to the bones. Tendon injury may be due to direct trauma or might be secondary to overuse injury and age-related degeneration, leading to inflammation, weakening and subsequent rupture. Current traditional treatment strategies focus on pain relief, reduction of the inflammation and functional restoration. Tendon repair surgery can be performed in people with tendon injuries to restore the tendon's function, with re-rupture being the main potential complication. Novel therapeutic approaches that address the underlying pathology of the disease is warranted. Scaffolds represent a promising solution to the challenges associated with tendon tissue engineering. The ideal scaffold for tendon tissue engineering needs to exhibit physiologically relevant mechanical properties and to facilitate functional graft integration by promoting the regeneration of the native tissue.
Collapse
|