1
|
Snowball JM, Jarrold BB, DeAngelis Y, Li C, Rovito HA, Hare MC, Laughlin T, Evdokiou AL, Oblong JE. Integration of transcriptomics and spatial biology analyses reveals Galactomyces ferment filtrate promotes epidermal interconnectivity via induction of keratinocyte differentiation, proliferation and cellular bioenergetics. Int J Cosmet Sci 2024; 46:927-940. [PMID: 38924095 DOI: 10.1111/ics.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Human skin is the first line of defence from environmental factors such as solar radiation and is susceptible to premature ageing, including a disruption in epidermal differentiation and homeostasis. We evaluated the impact of a Galactomyces Ferment Filtrate (GFF) on epidermal differentiation and response to oxidative stress. METHODS We used transcriptomics, both spatial and traditional, to assess the impact of GFF on epidermal biology and homeostasis in keratinocytes (primary or immortalized) and in ex vivo skin explant tissue. The effect of GFF on cell adhesion rates, cellular ATP levels and proliferation rates were quantitated. Oxidative phosphorylation and glycolytic rates were measured under normal and stress-induced conditions. RESULTS Transcriptomics from keratinocytes and ex vivo skin explants from multiple donors show GFF induces keratinocyte differentiation, skin barrier development and cell adhesion while simultaneously repressing cellular stress and inflammatory related processes. Spatial transcriptomics profiling of ex vivo skin indicated basal keratinocytes at the epidermal-dermal junction and cornifying keratinocytes in the top layer of the epidermis as the primary cell types influenced by GFF treatment. Additionally, GFF significantly increases crosstalk between suprabasal and basal keratinocytes. To support these findings, we show that GFF can significantly increase cell adhesion and proliferation in keratinocytes. GFF also protected overall cellular bioenergetics under metabolic or oxidative stress conditions. CONCLUSION Our findings provide novel insights into cellular differences and epidermal spatial localization in response to GFF, supporting previous findings that this filtrate has a significant impact on epidermal biology and homeostasis, particularly on spatially defined crosstalk. We propose that GFF can help maintain epidermal health by enhancing keratinocyte crosstalk and differentiation/proliferation balance as well as promoting an enhanced response to stress.
Collapse
Affiliation(s)
| | | | | | - Chuiying Li
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
2
|
Petersen M, Reyes-Vigil F, Campo M, Brusés JL. Classical cadherins evolutionary constraints in primates is associated with their expression in the central nervous system. PLoS One 2024; 19:e0313428. [PMID: 39570883 PMCID: PMC11581309 DOI: 10.1371/journal.pone.0313428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Classical cadherins (CDH) comprise a family of single-pass transmembrane glycoproteins that contribute to tissue morphogenesis by regulating cell-cell adhesion, cytoskeletal dynamics, and cell signaling. CDH are grouped into type I (CDH 1, 2, 3, 4 and 15) and type II (CDH 5, 6, 7, 8, 9, 10, 11, 12, 18, 20, 22 and 24), based on the folding of the cadherin binding domain involved in trans-dimer formation. CDH are exclusively found in metazoans, and the origin and expansion of the gene family coincide with the emergence of multicellularity and vertebrates respectively. This study examined the evolutionary changes of CDH orthologs in primates and the factors that influence selective pressure to investigate the varying constraints exerted among CDH. Pairwise comparisons of the number of amino acid substitutions and of the ratio of non-synonymous substitutions per non-synonymous sites (dN) over synonymous substitutions per synonymous sites (dS), show that CDH2, CDH4, and most type II CDH have been under significantly higher negative selective pressure as compared to CDH1, CDH3, CDH5 and CDH19. Evaluation of gene essentiality as determined by the effect of germline deletion on animal viability, morphogenic phenotype, and reproductive fitness, show no correlation with the with extent of negative selection observed on CDH. Spearman's correlation analysis shows a positive correlation between CDH expression levels (E) in mouse and human tissues and their rate of evolution (R), as observed in most proteins expressed on the cell surface. However, CDH expression in the CNS show a significant E-R negative correlation, indicating that the strong negative selection exerted on CDH2, CDH4, and most type II CDH is associated with their expression in the CNS. CDH participate in a variety of cellular processes in the CNS including neuronal migration and functional assembly of neural circuits, which could profoundly influence animal fitness. Therefore, our findings suggest that the unusually high negative selective pressure exerted on CDH2, CDH4 and most type II CDH is due to their role in CNS formation and function and may have contributed to shape the evolution of the CNS in primates.
Collapse
Affiliation(s)
- Max Petersen
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Fredy Reyes-Vigil
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Marc Campo
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Juan L. Brusés
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| |
Collapse
|
3
|
Nanavati BN, Noordstra I, Lwin AKO, Brooks JW, Rae J, Parton RG, Verma S, Duszyc K, Green KJ, Yap AS. The desmosome-intermediate filament system facilitates mechanotransduction at adherens junctions for epithelial homeostasis. Curr Biol 2024; 34:4081-4090.e5. [PMID: 39153481 PMCID: PMC11387132 DOI: 10.1016/j.cub.2024.07.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 12/04/2023] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Epithelial homeostasis can be critically influenced by how cells respond to mechanical forces, both local changes in force balance between cells and altered tissue-level forces.1 Coupling of specialized cell-cell adhesions to their cytoskeletons provides epithelia with diverse strategies to respond to mechanical stresses.2,3,4 Desmosomes confer tissue resilience when their associated intermediate filaments (IFs)2,3 stiffen in response to strain,5,6,7,8,9,10,11 while mechanotransduction associated with the E-cadherin apparatus12,13 at adherens junctions (AJs) actively modulates actomyosin by RhoA signaling. Although desmosomes and AJs make complementary contributions to mechanical homeostasis in epithelia,6,8 there is increasing evidence to suggest that these cytoskeletal-adhesion systems can interact functionally and biochemically.8,14,15,16,17,18,19,20 We now report that the desmosome-IF system integrated by desmoplakin (DP) facilitates active tension sensing at AJs for epithelial homeostasis. DP function is necessary for mechanosensitive RhoA signaling at AJs to be activated when tension was applied to epithelial monolayers. This effect required DP to anchor IFs to desmosomes and recruit the dystonin (DST) cytolinker to apical junctions. DP RNAi reduced the mechanical load that was applied to the cadherin complex by increased monolayer tension. Consistent with reduced mechanical signal strength, DP RNAi compromised assembly of the Myosin VI-E-cadherin mechanosensor that activates RhoA. The integrated DP-IF system therefore supports AJ mechanotransduction by enhancing the mechanical load of tissue tension that is transmitted to E-cadherin. This crosstalk was necessary for efficient elimination of apoptotic epithelial cells by apical extrusion, demonstrating its contribution to epithelial homeostasis.
Collapse
Affiliation(s)
- Bageshri Naimish Nanavati
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Angela K O Lwin
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - John W Brooks
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - James Rae
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert G Parton
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Suzie Verma
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kinga Duszyc
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 06011, USA
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
4
|
Mueller EJ, Rahimi S, Sauta P, Shojaeian T, Durrer L, Quinche S, Francois M, Locher E, Edler M, Illi M, Gentinetta T, Lau K, Pojer F, Borradori L, Hariton WVJ. Standardized Production of Anti-Desmoglein 3 Antibody AK23 for Translational Pemphigus Vulgaris Research. Curr Protoc 2024; 4:e1118. [PMID: 39169810 DOI: 10.1002/cpz1.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Antibody-mediated receptor activation is successfully used to develop medical treatments. If the activation induces a pathological response, such antibodies are also excellent tools for defining molecular mechanisms of target receptor malfunction and designing rescue therapies. Prominent examples are naturally occurring autoantibodies inducing the severe blistering disease pemphigus vulgaris (PV). In the great majority of patients, the antibodies bind to the adhesion receptor desmoglein 3 (Dsg3) and interfere with cell signaling to provoke severe blistering in the mucous membranes and/or skin. The identification of a comprehensive causative signaling network downstream of antibody-targeted Dsg3 receptors (e.g., shown by pharmacological activators or inhibitors) is currently being discussed as a basis to develop urgently needed first-line treatments for PV patients. Although polyclonal PV IgG antibodies have been used as proof of principle for pathological signal activation, monospecific anti-Dsg3 antibodies are necessary and have been developed to identify pathological Dsg3 receptor-mediated signal transduction. The experimental monospecific PV antibody AK23, produced from hybridoma cells, was extensively tested in our laboratory in both in vitro and in vivo models for PV and proved to recapitulate the clinicopathological features of PV when generated using the standardized production and purification protocols described herein. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Bovine IgG stripping from FBS and quality control Basic Protocol 2: AK23 hybridoma expansion and IgG production Basic Protocol 3: AK23 IgG purification Basic Protocol 4: AK23 IgG quality control Support Protocol 1: Detection of endotoxin levels Support Protocol 2: Detection and removal of mycoplasma.
Collapse
Affiliation(s)
- Eliane J Mueller
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Siavash Rahimi
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patrizia Sauta
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Taravat Shojaeian
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laurence Durrer
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Soraya Quinche
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Michael Francois
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Elisabeth Locher
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Monika Edler
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Marlies Illi
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Thomas Gentinetta
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - William V J Hariton
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Müller L, Keil R, Glaß M, Hatzfeld M. Plakophilin 4 controls the spatio-temporal activity of RhoA at adherens junctions to promote cortical actin ring formation and tissue tension. Cell Mol Life Sci 2024; 81:291. [PMID: 38970683 PMCID: PMC11335210 DOI: 10.1007/s00018-024-05329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Plakophilin 4 (PKP4) is a component of cell-cell junctions that regulates intercellular adhesion and Rho-signaling during cytokinesis with an unknown function during epidermal differentiation. Here we show that keratinocytes lacking PKP4 fail to develop a cortical actin ring, preventing adherens junction maturation and generation of tissue tension. Instead, PKP4-depleted cells display increased stress fibers. PKP4-dependent RhoA localization at AJs was required to activate a RhoA-ROCK2-MLCK-MLC2 axis and organize actin into a cortical ring. AJ-associated PKP4 provided a scaffold for the Rho activator ARHGEF2 and the RhoA effectors MLCK and MLC2, facilitating the spatio-temporal activation of RhoA signaling at cell junctions to allow cortical ring formation and actomyosin contraction. In contrast, association of PKP4 with the Rho suppressor ARHGAP23 reduced ARHGAP23 binding to RhoA which prevented RhoA activation in the cytoplasm and stress fiber formation. These data identify PKP4 as an AJ component that transduces mechanical signals into cytoskeletal organization.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany.
| | - René Keil
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| |
Collapse
|
7
|
Antiguas A, Dunnwald M. A novel noncanonical function for IRF6 in the recycling of E-cadherin. Mol Biol Cell 2024; 35:ar102. [PMID: 38809584 PMCID: PMC11244161 DOI: 10.1091/mbc.e23-11-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Interferon Regulatory Factor 6 (IRF6) is a transcription factor essential for keratinocyte cell-cell adhesions. Previously, we found that recycling of E-cadherin was defective in the absence of IRF6, yet total E-cadherin levels were not altered, suggesting a previously unknown, nontranscriptional function for IRF6. IRF6 protein contains a DNA binding domain (DBD) and a protein binding domain (PBD). The transcriptional function of IRF6 depends on its DBD and PBD, however, whether the PBD is necessary for the interaction with cytoplasmic proteins has yet to be demonstrated. Here, we show that an intact PBD is required for recruitment of cell-cell adhesion proteins at the plasma membrane, including the recycling of E-cadherin. Colocalizations and coimmunoprecipitations reveal that IRF6 forms a complex in recycling endosomes with Rab11, Myosin Vb, and E-cadherin, and that the PBD is required for this interaction. These data indicate that IRF6 is a novel effector of the endosomal recycling of E-cadherin and demonstrate a non-transcriptional function for IRF6 in regulating cell-cell adhesions.
Collapse
Affiliation(s)
- Angelo Antiguas
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52245
| | - Martine Dunnwald
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52245
| |
Collapse
|
8
|
Marino M, Rendine M, Venturi S, Porrini M, Gardana C, Klimis-Zacas D, Riso P, Del Bo' C. Red raspberry ( Rubus idaeus) preserves intestinal barrier integrity and reduces oxidative stress in Caco-2 cells exposed to a proinflammatory stimulus. Food Funct 2024; 15:6943-6954. [PMID: 38855989 DOI: 10.1039/d4fo01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Growing evidence showed the capacity of (poly)phenols to exert a protective role on intestinal health. Nevertheless, the existing findings are still heterogeneous and the underlying mechanisms remain unclear. This study investigated the potential benefits of a red raspberry (Rubus idaeus) powder on the integrity of the intestinal barrier, focusing on its ability to mitigate the effects of tumor necrosis factor-α (TNF-α)-induced intestinal permeability. Human colorectal adenocarcinoma cells (i.e., Caco-2 cells) were used as a model to assess the impact of red raspberry on intestinal permeability, tight junction expression, and oxidative stress. The Caco-2 cells were differentiated into polarized monolayers and treated with interferon-γ (IFN-γ) (10 ng mL-1) for 24 hours, followed by exposure to TNF-α (10 ng mL-1) in the presence or absence of red raspberry extract (1-5 mg mL-1). The integrity of the intestinal monolayer was evaluated using transepithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran (FITC-D) efflux assay. Markers of intestinal permeability (claudin-1, occludin, and zonula occludens-1 (ZO-1)) and oxidative stress (8-hydroxy-2-deoxyguanosine (8-OHdG) and protein carbonyl) were assessed using ELISA kits. Treatment with red raspberry resulted in a significant counteraction of TEER value loss (41%; p < 0.01) and a notable reduction in the efflux of FITC-D (-2.5 times; p < 0.01). Additionally, red raspberry attenuated the levels of 8-OHdG (-48.8%; p < 0.01), mitigating the detrimental effects induced by TNF-α. Moreover, red raspberry positively influenced the expression of the integral membrane protein claudin-1 (+18%; p < 0.01), an essential component of tight junctions. These findings contribute to the growing understanding of the beneficial effects of red raspberry in the context of the intestinal barrier. The effect of red raspberry against TNF-α-induced intestinal permeability observed in our in vitro model suggests, for the first time, its potential as a dietary strategy to promote gastrointestinal health.
Collapse
Affiliation(s)
- Mirko Marino
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Marco Rendine
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Samuele Venturi
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Marisa Porrini
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Claudio Gardana
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | | | - Patrizia Riso
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Cristian Del Bo'
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
9
|
Perl AL, Pokorny JL, Green KJ. Desmosomes at a glance. J Cell Sci 2024; 137:jcs261899. [PMID: 38940346 PMCID: PMC11234380 DOI: 10.1242/jcs.261899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.
Collapse
Affiliation(s)
- Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jenny L. Pokorny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Piccinno E, Scalavino V, Labarile N, De Marinis L, Armentano R, Giannelli G, Serino G. Identification of a Novel miR-195-5p/PNN Axis in Colorectal Cancer. Int J Mol Sci 2024; 25:5980. [PMID: 38892168 PMCID: PMC11172886 DOI: 10.3390/ijms25115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Pinin (PNN) is a desmosome-associated protein that reinforces the organization of keratin intermediate filaments and stabilizes the anchoring of the cytoskeleton network to the lateral surface of the plasma membrane. The aberrant expression of PNN affects the strength of cell adhesion as well as modifies the intracellular signal transduction pathways leading to the onset of CRC. In our previous studies, we characterized the role of miR-195-5p in the regulation of desmosome junctions and in CRC progression. Here, with the aim of investigating additional mechanisms related to the desmosome complex, we identified PNN as a miR-195-5p putative target. Using a public data repository, we found that PNN was a negative prognostic factor and was overexpressed in colon cancer tissues from stage 1 of the disease. Then, we assessed PNN expression in CRC tissue specimens, confirming the overexpression of PNN in tumor sections. The increase in intracellular levels of miR-195-5p revealed a significant decrease in PNN at the mRNA and protein levels. As a consequence of PNN regulation by miR-195-5p, the expression of KRT8 and KRT19, closely connected to PNN, was affected. Finally, we investigated the in vivo effect of miR-195-5p on PNN expression in the colon of AOM/DSS-treated mice. In conclusion, we have revealed a new mechanism driven by miR-195-5p in the regulation of desmosome components, suggesting a potential pharmacological target for CRC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy; (E.P.); (V.S.); (N.L.); (L.D.M.); (R.A.); (G.G.)
| |
Collapse
|
11
|
Maor-Landaw K, Smirnov M, Lotan T. The Tilapia Cyst Tissue Enclosing the Proliferating Myxobolus bejeranoi Parasite Exhibits Cornified Structure and Immune Barrier Function. Int J Mol Sci 2024; 25:5683. [PMID: 38891869 PMCID: PMC11171596 DOI: 10.3390/ijms25115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Myxozoa, a unique group of obligate endoparasites within the phylum Cnidaria, can cause emerging diseases in wild and cultured fish populations. Recently, the myxozoan Myxobolus bejeranoi has been identified as a prevalent pathogen infecting the gills of cultured hybrid tilapia, leading to systemic immune suppression and considerable mortality. Here, we employed a proteomic approach to examine the impact of M. bejeranoi infection on fish gills, focusing on the structure of the granulomata, or cyst, formed around the proliferating parasite to prevent its spread to surrounding tissue. Enrichment analysis showed increased immune response and oxidative stress in infected gill tissue, most markedly in the cyst's wall. The intense immune reaction included a consortium of endopeptidase inhibitors, potentially combating the myxozoan arsenal of secreted proteases. Analysis of the cyst's proteome and histology staining indicated that keratin intermediate filaments contribute to its structural rigidity. Moreover, we uncovered skin-specific proteins, including a grainyhead-like transcription factor and a teleost-specific S100 calcium-binding protein that may play a role in epithelial morphogenesis and cysts formation. These findings deepen our understanding of the proteomic elements that grant the cyst its distinctive nature at the critical interface between the fish host and myxozoan parasite.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel;
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 1080300, Israel;
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel;
| |
Collapse
|
12
|
Liu YQ, Xu YW, Zheng ZT, Li D, Hong CQ, Dai HQ, Wang JH, Chu LY, Liao LD, Zou HY, Li EM, Xie JJ, Fang WK. Serine/threonine-protein kinase D2-mediated phosphorylation of DSG2 threonine 730 promotes esophageal squamous cell carcinoma progression. J Pathol 2024; 263:99-112. [PMID: 38411280 DOI: 10.1002/path.6264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yin-Qiao Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, PR China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, PR China
| | - Zheng-Tan Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Die Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Chao-Qun Hong
- Department of Oncological Laboratory Research, The Cancer Hospital of Shantou University Medical College, Shantou, PR China
| | - Hao-Qiang Dai
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Jun-Hao Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Ling-Yu Chu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, PR China
| | - Lian-Di Liao
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, PR China
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Shantou Academy Medical Sciences, Shantou, PR China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| |
Collapse
|
13
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
14
|
Biggs LC, Miroshnikova YA. Nuclear mechanotransduction on skin stem cell fate regulation. Curr Opin Cell Biol 2024; 87:102328. [PMID: 38340567 DOI: 10.1016/j.ceb.2024.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Mammalian skin is a highly dynamic and regenerative organ that has long been recognized as a mechanically active composite of tissues withstanding daily compressive and tensile forces that arise from body movement. Importantly, cell- and tissue-scale mechanical signals are critical regulators of skin morphogenesis and homeostasis. These signals are sensed at the cellular periphery and transduced by mechanosensitive proteins within the plasma membrane to the cytoskeletal networks, and eventually into the nucleus to regulate chromatin organization and gene expression. The role of each of these nodes in producing a coherent mechanoresponse at both cell- and tissue-scales is emerging. Here we focus on the key cytoplasmic and nuclear mechanosensitive structures that are critical for the mammalian skin development and homeostatic maintenance. We propose that the mechanical state of the skin, in particular of its nuclear compartment, is a critical rheostat that fine-tunes developmental and homeostatic processes essential for the proper function of the organ.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Cammarota C, Dawney NS, Bellomio PM, Jüng M, Fletcher AG, Finegan TM, Bergstralh DT. The mechanical influence of densification on epithelial architecture. PLoS Comput Biol 2024; 20:e1012001. [PMID: 38557605 PMCID: PMC11008847 DOI: 10.1371/journal.pcbi.1012001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/11/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Epithelial tissues are the most abundant tissue type in animals, lining body cavities and generating compartment barriers. The function of a monolayered epithelial tissue-whether protective, secretory, absorptive, or filtrative-relies on the side-by-side arrangement of its component cells. The mechanical parameters that determine the shape of epithelial cells in the apical-basal plane are not well-understood. Epithelial tissue architecture in culture is intimately connected to cell density, and cultured layers transition between architectures as they proliferate. This prompted us to ask to what extent epithelial architecture emerges from two mechanical considerations: A) the constraints of densification and B) cell-cell adhesion, a hallmark feature of epithelial cells. To address these questions, we developed a novel polyline cell-based computational model and used it to make theoretical predictions about epithelial architecture upon changes to density and cell-cell adhesion. We tested these predictions using cultured cell experiments. Our results show that the appearance of extended lateral cell-cell borders in culture arises as a consequence of crowding-independent of cell-cell adhesion. However, cadherin-mediated cell-cell adhesion is associated with a novel architectural transition. Our results suggest that this transition represents the initial appearance of a distinctive epithelial architecture. Together our work reveals the distinct mechanical roles of densification and adhesion to epithelial layer formation and provides a novel theoretical framework to understand the less well-studied apical-basal plane of epithelial tissues.
Collapse
Affiliation(s)
- Christian Cammarota
- Department of Physics and Astronomy, University of Rochester, Rochester, New York, United States of America
| | - Nicole S. Dawney
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Philip M. Bellomio
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Maren Jüng
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Alexander G. Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Tara M. Finegan
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Dan T. Bergstralh
- Department of Physics and Astronomy, University of Rochester, Rochester, New York, United States of America
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
16
|
Mehl J, Farahani SK, Brauer E, Klaus‐Bergmann A, Thiele T, Ellinghaus A, Bartels‐Klein E, Koch K, Schmidt‐Bleek K, Petersen A, Gerhardt H, Vogel V, Duda GN. External Mechanical Stability Regulates Hematoma Vascularization in Bone Healing Rather than Endothelial YAP/TAZ Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307050. [PMID: 38273642 PMCID: PMC10987120 DOI: 10.1002/advs.202307050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.
Collapse
Affiliation(s)
- Julia Mehl
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Saeed Khomeijani Farahani
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Erik Brauer
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Alexandra Klaus‐Bergmann
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Tobias Thiele
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Agnes Ellinghaus
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Eireen Bartels‐Klein
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Koch
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Schmidt‐Bleek
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Ansgar Petersen
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Holger Gerhardt
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Viola Vogel
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Georg N. Duda
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
17
|
Estrach S, Vivier CM, Féral CC. ECM and epithelial stem cells: the scaffold of destiny. Front Cell Dev Biol 2024; 12:1359585. [PMID: 38572486 PMCID: PMC10987781 DOI: 10.3389/fcell.2024.1359585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Adult stem cells play a critical role in maintaining tissue homeostasis and promoting longevity. The intricate organization and presence of common markers among adult epithelial stem cells in the intestine, lung, and skin serve as hallmarks of these cells. The specific location pattern of these cells within their respective organs highlights the significance of the niche in which they reside. The extracellular matrix (ECM) not only provides physical support but also acts as a reservoir for various biochemical and biophysical signals. We will consider differences in proliferation, repair, and regenerative capacities of the three epithelia and review how environmental cues emerging from the niche regulate cell fate. These cues are transduced via mechanosignaling, regulating gene expression, and bring us to the concept of the fate scaffold. Understanding both the analogies and discrepancies in the mechanisms that govern stem cell fate in various organs can offer valuable insights for rejuvenation therapy and tissue engineering.
Collapse
Affiliation(s)
- Soline Estrach
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| | | | - Chloé C. Féral
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| |
Collapse
|
18
|
Kasper JY, Laschke MW, Koch M, Alibardi L, Magin T, Niessen CM, del Campo A. Actin-templated Structures: Nature's Way to Hierarchical Surface Patterns (Gecko's Setae as Case Study). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303816. [PMID: 38145336 PMCID: PMC10933612 DOI: 10.1002/advs.202303816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/10/2023] [Indexed: 12/26/2023]
Abstract
The hierarchical design of the toe pad surface in geckos and its reversible adhesiveness have inspired material scientists for many years. Micro- and nano-patterned surfaces with impressive adhesive performance have been developed to mimic gecko's properties. While the adhesive performance achieved in some examples has surpassed living counterparts, the durability of the fabricated surfaces is limited and the capability to self-renew and restore function-inherent to biological systems-is unimaginable. Here the morphogenesis of gecko setae using skin samples from the Bibron´s gecko (Chondrodactylus bibronii) is studied. Gecko setae develop as specialized apical differentiation structures at a distinct cell-cell layer interface within the skin epidermis. A primary role for F-actin and microtubules as templating structural elements is necessary for the development of setae's hierarchical morphology, and a stabilization role of keratins and corneus beta proteins is identified. Setae grow from single cells in a bottom layer protruding into four neighboring cells in the upper layer. The resulting multicellular junction can play a role during shedding by facilitating fracture of the cell-cell interface and release of the high aspect ratio setae. The results contribute to the understanding of setae regeneration and may inspire future concepts to bioengineer self-renewable patterned adhesive surfaces.
Collapse
Affiliation(s)
- Jennifer Y. Kasper
- INM‐Leibniz Institute for New MaterialsCampus D2 266123SaarbrueckenGermany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland University66421HomburgGermany
| | - Marcus Koch
- INM‐Leibniz Institute for New MaterialsCampus D2 266123SaarbrueckenGermany
| | - Lorenzo Alibardi
- Comparative AnatomyDepartment of BiologyUniversity of Bologna& Comparative Histolab40126BolognaItaly
| | - Thomas Magin
- Division of Cell and Developmental BiologyInstitute of BiologyLeipzig University04103LeipzigGermany
| | - Carien M. Niessen
- Department Cell Biology of the SkinCologne Excellence Cluster for Stress Responses in Ageing‐associated diseases (CECAD)Center for Molecular Medicine Cologne (CMMC)University Hospital CologneUniversity of Cologne50931CologneGermany
| | - Aránzazu del Campo
- INM‐Leibniz Institute for New MaterialsCampus D2 266123SaarbrueckenGermany
- Chemistry DepartmentSaarland University66123SaarbrueckenGermany
| |
Collapse
|
19
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
20
|
Lawson-Keister E, Zhang T, Nazari F, Fagotto F, Manning ML. Differences in boundary behavior in the 3D vertex and Voronoi models. PLoS Comput Biol 2024; 20:e1011724. [PMID: 38181065 PMCID: PMC10796063 DOI: 10.1371/journal.pcbi.1011724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/18/2024] [Accepted: 11/30/2023] [Indexed: 01/07/2024] Open
Abstract
An important open question in the modeling of biological tissues is how to identify the right scale for coarse-graining, or equivalently, the right number of degrees of freedom. For confluent biological tissues, both vertex and Voronoi models, which differ only in their representation of the degrees of freedom, have effectively been used to predict behavior, including fluid-solid transitions and cell tissue compartmentalization, which are important for biological function. However, recent work in 2D has hinted that there may be differences between the two models in systems with heterotypic interfaces between two tissue types, and there is a burgeoning interest in 3D tissue models. Therefore, we compare the geometric structure and dynamic sorting behavior in mixtures of two cell types in both 3D vertex and Voronoi models. We find that while the cell shape indices exhibit similar trends in both models, the registration between cell centers and cell orientation at the boundary are significantly different between the two models. We demonstrate that these macroscopic differences are caused by changes to the cusp-like restoring forces introduced by the different representations of the degrees of freedom at the boundary, and that the Voronoi model is more strongly constrained by forces that are an artifact of the way the degrees of freedom are represented. This suggests that vertex models may be more appropriate for 3D simulations of tissues with heterotypic contacts.
Collapse
Affiliation(s)
- Elizabeth Lawson-Keister
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, New York, United States of America
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fatemeh Nazari
- School of Biomedical Engineering, Ecole Centrale de Lille, Villeneuve-d’Ascq, France
- Centre de Recherche en Biologie cellulaire de Montpellier, University of Montpellier and CNRS, Montpellier, France
| | - François Fagotto
- Centre de Recherche en Biologie cellulaire de Montpellier, University of Montpellier and CNRS, Montpellier, France
| | - M. Lisa Manning
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
21
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
22
|
Hariton WV, Schulze K, Rahimi S, Shojaeian T, Feldmeyer L, Schwob R, Overmiller AM, Sayar BS, Borradori L, Mahoney MG, Galichet A, Müller EJ. A desmosomal cadherin controls multipotent hair follicle stem cell quiescence and orchestrates regeneration through adhesion signaling. iScience 2023; 26:108568. [PMID: 38162019 PMCID: PMC10755723 DOI: 10.1016/j.isci.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Stem cells (SCs) are critical to maintain tissue homeostasis. However, it is currently not known whether signaling through cell junctions protects quiescent epithelial SC reservoirs from depletion during disease-inflicted damage. Using the autoimmune model disease pemphigus vulgaris (PV), this study reveals an unprecedented role for a desmosomal cadherin in governing SC quiescence and regeneration through adhesion signaling in the multipotent mouse hair follicle compartment known as the bulge. Autoantibody-mediated, mechanical uncoupling of desmoglein (Dsg) 3 transadhesion activates quiescent bulge SC which lose their multipotency and stemness, become actively cycling, and finally delaminate from their epithelial niche. This then initiates a self-organized regenerative program which restores Dsg3 function and bulge morphology including SC quiescence and multipotency. These profound changes are triggered by the sole loss of functional Dsg3, resemble major signaling events in Dsg3-/- mice, and are driven by SC-relevant EGFR activation and Wnt modulation requiring longitudinal repression of Hedgehog signaling.
Collapse
Affiliation(s)
- William V.J. Hariton
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Katja Schulze
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Siavash Rahimi
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Taravat Shojaeian
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Laurence Feldmeyer
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Roman Schwob
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Andrew M. Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Beyza S. Sayar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Mỹ G. Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Arnaud Galichet
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Eliane J. Müller
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
23
|
Peng H, Kaplan N, Liu M, Jiang H, Lavker RM. Keeping an Eye Out for Autophagy in the Cornea: Sample Preparation for Single-Cell RNA-Sequencing. Methods Mol Biol 2023:10.1007/7651_2023_502. [PMID: 37930627 PMCID: PMC11162605 DOI: 10.1007/7651_2023_502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Single-cell RNA-sequencing (scRNA-seq) is a powerful technique that can barcode individual cells and thus used to obtain a gene expression profile for every individual cell within a tissue. This makes scRNA-seq an excellent method for characterizing rare cell populations such as stem cells. We describe how scRNA-seq can be utilized to examine limbal epithelial stem cell population as well as investigate the contribution of autophagy to the function of limbal epithelial stem cells. To accomplish this, we used the Beclin1 heterozygous (Beclin1 het) mouse, a well-established model of autophagy deficiency. We provide a protocol that we developed for the isolation of viable, single-cell suspensions of limbal/corneal tissues, as well as the analysis of scRNA-seq data.
Collapse
Affiliation(s)
- Han Peng
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Min Liu
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Huimin Jiang
- Department of Dermatology, Northwestern University, Chicago, IL, USA
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
24
|
de Carvalho ACW, Paiva NF, Demonari IK, Duarte MPF, do Couto RO, de Freitas O, Vicentini FTMDC. The Potential of Films as Transmucosal Drug Delivery Systems. Pharmaceutics 2023; 15:2583. [PMID: 38004562 PMCID: PMC10675688 DOI: 10.3390/pharmaceutics15112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 11/26/2023] Open
Abstract
Pharmaceutical films are polymeric formulations used as a delivery platform for administration of small and macromolecular drugs for local or systemic action. They can be produced by using synthetic, semi-synthetic, or natural polymers through solvent casting, electrospinning, hot-melt extrusion, and 3D printing methods, and depending on the components and the manufacturing methods used, the films allow the modulation of drug release. Moreover, they have advantages that have drawn interest in the development and evaluation of film application on the buccal, nasal, vaginal, and ocular mucosa. This review aims to provide an overview of and critically discuss the use of films as transmucosal drug delivery systems. For this, aspects such as the composition of these formulations, the theories of mucoadhesion, and the methods of production were deeply considered, and an analysis of the main transmucosal pathways for which there are examples of developed films was conducted. All of this allowed us to point out the most relevant characteristics and opportunities that deserve to be taken into account in the use of films as transmucosal drug delivery systems.
Collapse
Affiliation(s)
- Ana Clara Wada de Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Natália Floriano Paiva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Isabella Kriunas Demonari
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Maíra Peres Ferreira Duarte
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Renê Oliveira do Couto
- Campus Centro-Oeste Dona Lindu (CCO), Universidade Federal de São João del-Rei (UFSJ), Divinópolis 35501-296, MG, Brazil
| | - Osvaldo de Freitas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | | |
Collapse
|
25
|
Kollmann C, Buerkert H, Meir M, Richter K, Kretzschmar K, Flemming S, Kelm M, Germer CT, Otto C, Burkard N, Schlegel N. Human organoids are superior to cell culture models for intestinal barrier research. Front Cell Dev Biol 2023; 11:1223032. [PMID: 37849736 PMCID: PMC10577213 DOI: 10.3389/fcell.2023.1223032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Loss of intestinal epithelial barrier function is a hallmark in digestive tract inflammation. The detailed mechanisms remain unclear due to the lack of suitable cell-based models in barrier research. Here we performed a detailed functional characterization of human intestinal organoid cultures under different conditions with the aim to suggest an optimized ex-vivo model to further analyse inflammation-induced intestinal epithelial barrier dysfunction. Differentiated Caco2 cells as a traditional model for intestinal epithelial barrier research displayed mature barrier functions which were reduced after challenge with cytomix (TNFα, IFN-γ, IL-1ß) to mimic inflammatory conditions. Human intestinal organoids grown in culture medium were highly proliferative, displayed high levels of LGR5 with overall low rates of intercellular adhesion and immature barrier function resembling conditions usually found in intestinal crypts. WNT-depletion resulted in the differentiation of intestinal organoids with reduced LGR5 levels and upregulation of markers representing the presence of all cell types present along the crypt-villus axis. This was paralleled by barrier maturation with junctional proteins regularly distributed at the cell borders. Application of cytomix in immature human intestinal organoid cultures resulted in reduced barrier function that was accompanied with cell fragmentation, cell death and overall loss of junctional proteins, demonstrating a high susceptibility of the organoid culture to inflammatory stimuli. In differentiated organoid cultures, cytomix induced a hierarchical sequence of changes beginning with loss of cell adhesion, redistribution of junctional proteins from the cell border, protein degradation which was accompanied by loss of epithelial barrier function. Cell viability was observed to decrease with time but was preserved when initial barrier changes were evident. In summary, differentiated intestinal organoid cultures represent an optimized human ex-vivo model which allows a comprehensive reflection to the situation observed in patients with intestinal inflammation. Our data suggest a hierarchical sequence of inflammation-induced intestinal barrier dysfunction starting with loss of intercellular adhesion, followed by redistribution and loss of junctional proteins resulting in reduced barrier function with consecutive epithelial death.
Collapse
Affiliation(s)
- Catherine Kollmann
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Hannah Buerkert
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Meir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Konstantin Richter
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Kai Kretzschmar
- Mildred-Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Sven Flemming
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Matthias Kelm
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Natalie Burkard
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
26
|
Li W, Gurdziel K, Pitchaikannu A, Gupta N, Hazlett LD, Xu S. The miR-183/96/182 cluster is a checkpoint for resident immune cells and shapes the cellular landscape of the cornea. Ocul Surf 2023; 30:17-41. [PMID: 37536656 PMCID: PMC10834862 DOI: 10.1016/j.jtos.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE The conserved miR-183/96/182 cluster (miR-183C) regulates both corneal sensory innervation and corneal resident immune cells (CRICs). This study is to uncover its role in CRICs and in shaping the corneal cellular landscape at a single-cell (sc) level. METHODS Corneas of naïve, young adult [2 and 6 months old (mo)], female miR-183C knockout (KO) mice and wild-type (WT) littermates were harvested and dissociated into single cells. Dead cells were removed using a Dead Cell Removal kit. CD45+ CRICs were enriched by Magnetic Activated Cell Sorting (MACS). scRNA libraries were constructed and sequenced followed by comprehensive bioinformatic analyses. RESULTS The composition of major cell types of the cornea stays relatively stable in WT mice from 2 to 6 mo, however the compositions of subtypes of corneal cells shift with age. Inactivation of miR-183C disrupts the stability of the major cell-type composition and age-related transcriptomic shifts of subtypes of corneal cells. The diversity of CRICs is enhanced with age. Naïve mouse cornea contains previously-unrecognized resident fibrocytes and neutrophils. Resident macrophages (ResMφ) adopt cornea-specific function by expressing abundant extracellular matrix (ECM) and ECM organization-related genes. Naïve cornea is endowed with partially-differentiated proliferative ResMφ and contains microglia-like Mφ. Resident lymphocytes, including innate lymphoid cells (ILCs), NKT and γδT cells, are the major source of innate IL-17a. miR-183C limits the diversity and polarity of ResMφ. CONCLUSION miR-183C serves as a checkpoint for CRICs and imposes a global regulation of the cellular landscape of the cornea.
Collapse
Affiliation(s)
- Weifeng Li
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, USA; Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
27
|
Vielmuth F, Radeva MY, Yeruva S, Sigmund AM, Waschke J. cAMP: A master regulator of cadherin-mediated binding in endothelium, epithelium and myocardium. Acta Physiol (Oxf) 2023; 238:e14006. [PMID: 37243909 DOI: 10.1111/apha.14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Regulation of cadherin-mediated cell adhesion is crucial not only for maintaining tissue integrity and barrier function in the endothelium and epithelium but also for electromechanical coupling within the myocardium. Therefore, loss of cadherin-mediated adhesion causes various disorders, including vascular inflammation and desmosome-related diseases such as the autoimmune blistering skin dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regulating cadherin-mediated binding contribute to the pathogenesis of diseases and may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 3',5'-monophosphate (cAMP) has emerged as one of the master regulators of cell adhesion in endothelium and, more recently, also in epithelial cells as well as in cardiomyocytes. A broad spectrum of experimental models from vascular physiology and cell biology applied by different generations of researchers provided evidence that not only cadherins of endothelial adherens junctions (AJ) but also desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs are central targets in this scenario. The molecular mechanisms involve protein kinase A- and exchange protein directly activated by cAMP-mediated regulation of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adaptor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as apremilast have been proposed as a therapeutic strategy to stabilize cadherin-mediated adhesion in pemphigus and may also be effective to treat other disorders where cadherin-mediated binding is compromised.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna M Sigmund
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
28
|
Vu R, Dragan M, Sun P, Werner S, Dai X. Epithelial-Mesenchymal Plasticity and Endothelial-Mesenchymal Transition in Cutaneous Wound Healing. Cold Spring Harb Perspect Biol 2023; 15:a041237. [PMID: 36617638 PMCID: PMC10411868 DOI: 10.1101/cshperspect.a041237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial and endothelial cells possess the inherent plasticity to undergo morphological, cellular, and molecular changes leading to their resemblance of mesenchymal cells. A prevailing notion has been that cutaneous wound reepithelialization involves partial epithelial-to-mesenchymal transition (EMT) of wound-edge epidermal cells to enable their transition from a stationary state to a migratory state. In this review, we reflect on past findings that led to this notion and discuss recent studies that suggest a refined view, focusing predominantly on in vivo results using mammalian excisional wound models. We highlight the concept of epithelial-mesenchymal plasticity (EMP), which emphasizes a reversible conversion of epithelial cells across multiple intermediate states within the epithelial-mesenchymal spectrum, and discuss the critical importance of restricting EMT for effective wound reepithelialization. We also outline the current state of knowledge on EMP in pathological wound healing, and on endothelial-to-mesenchymal transition (EndMT), a process similar to EMT, as a possible mechanism contributing to wound fibrosis and scar formation. Harnessing epithelial/endothelial-mesenchymal plasticity may unravel opportunities for developing new therapeutics to treat human wound healing pathologies.
Collapse
Affiliation(s)
- Remy Vu
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Morgan Dragan
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, 8093 ETH Zurich, Switzerland
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
29
|
Rath T, Atreya R, Neurath MF. A spotlight on intestinal permeability and inflammatory bowel diseases. Expert Rev Gastroenterol Hepatol 2023; 17:893-902. [PMID: 37606514 DOI: 10.1080/17474124.2023.2242772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION The intestinal barrier is a multi-faced structure lining the surface of the intestinal mucosa of the GI tract. To exert its main functions as a physical and immunological defense barrier, several components of the intestinal barrier act in a concerted and cooperative manner. AREAS COVERED Herein, we first introduce to the basic organization of the intestinal barrier and then summarize different methods to assess barrier function in and ex vivo. Finally, we provide an in-depth overview of the relevance of intestinal barrier dysfunction in inflammatory bowel diseases. EXPERT OPINION In parallel to a more fundamental understanding of the intestinal barrier as a key component for intestinal integrity is the notion that intestinal barrier defects are associated with a variety of diseases such as inflammatory bowel diseases. Recent research has fueled and perpetuated the concept that barrier defects are critical components of disease development, disease behavior, and potentially also an area of therapeutic intervention in IBD patients. Although being far away from standard, new technologies can be used to easily assess barrier healing in IBD and to derive clinical consequences from these findings such as more accurate forecasting of future disease behavior or the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Timo Rath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Raja Atreya
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie DZI, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| |
Collapse
|
30
|
Rübsam M, Püllen R, Tellkamp F, Bianco A, Peskoller M, Bloch W, Green KJ, Merkel R, Hoffmann B, Wickström SA, Niessen CM. Polarity signaling balances epithelial contractility and mechanical resistance. Sci Rep 2023; 13:7743. [PMID: 37173371 PMCID: PMC10182030 DOI: 10.1038/s41598-023-33485-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelia maintain a functional barrier during tissue turnover while facing varying mechanical stress. This maintenance requires both dynamic cell rearrangements driven by actomyosin-linked intercellular adherens junctions and ability to adapt to and resist extrinsic mechanical forces enabled by keratin filament-linked desmosomes. How these two systems crosstalk to coordinate cellular movement and mechanical resilience is not known. Here we show that in stratifying epithelia the polarity protein aPKCλ controls the reorganization from stress fibers to cortical actomyosin during differentiation and upward movement of cells. Without aPKC, stress fibers are retained resulting in increased contractile prestress. This aberrant stress is counterbalanced by reorganization and bundling of keratins, thereby increasing mechanical resilience. Inhibiting contractility in aPKCλ-/- cells restores normal cortical keratin networks but also normalizes resilience. Consistently, increasing contractile stress is sufficient to induce keratin bundling and enhance resilience, mimicking aPKC loss. In conclusion, our data indicate that keratins sense the contractile stress state of stratified epithelia and balance increased contractility by mounting a protective response to maintain tissue integrity.
Collapse
Affiliation(s)
- Matthias Rübsam
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany.
| | - Robin Püllen
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Frederik Tellkamp
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Alessandra Bianco
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marc Peskoller
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University of Cologne, Cologne, Germany
| | - Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Sara A Wickström
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Carien M Niessen
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
31
|
Thüring EM, Hartmann C, Schwietzer YA, Ebnet K. TMIGD1: Emerging functions of a tumor supressor and adhesion receptor. Oncogene 2023:10.1038/s41388-023-02696-5. [PMID: 37087524 DOI: 10.1038/s41388-023-02696-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The development of multicellular organisms depends on cell adhesion molecules (CAMs) that connect cells to build tissues. The immunoglobulin superfamily (IgSF) constitutes one of the largest families of CAMs. Members of this family regulate such diverse processes like synapse formation, spermatogenesis, leukocyte-endothelial interactions, or epithelial cell-cell adhesion. Through their extracellular domains, they undergo homophilic and heterophilic interactions in cis and trans. Their cytoplasmic domains frequently bind scaffolding proteins to assemble signaling complexes. Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is a IgSF member with two Ig-like domains and a short cytoplasmic tail that contains a PDZ domain-binding motif. Recent observations indicate that TMIGD1 has pleiotropic functions in epithelial cells and has a critical role in suppressing malignant cell behavior. Here, we review the molecular characteristics of TMIGD1, its interaction with cytoplasmic scaffolding proteins, the regulation of its expression, and its downregulation in colorectal and renal cancers.
Collapse
Affiliation(s)
- Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Ysabel A Schwietzer
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
| |
Collapse
|
32
|
Perrin L, Matic Vignjevic D. The emerging roles of the cytoskeleton in intestinal epithelium homeostasis. Semin Cell Dev Biol 2023:S1084-9521(23)00071-X. [PMID: 36948998 DOI: 10.1016/j.semcdb.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The intestinal epithelium must absorb many nutrients and water while forming a barrier that is impermeable to pathogens present in the external environment. Concurrently to fulfill this dual role, the intestinal epithelium is challenged by a rapid renewal of cells and forces resulting from digestion. Hence, intestinal homeostasis requires precise control of tissue integrity, tissue renewal, cell polarity, and force generation/transmission. In this review, we highlight the contribution of the cell cytoskeleton- actin, microtubules, and intermediate filaments- to intestinal epithelium homeostasis. With a focus on enterocytes, we first discuss the role of these networks in the formation and maintenance of cell-cell and cell-matrix junctions. Then, we cover their role in intracellular trafficking related to the apicobasal polarity of enterocytes. Finally, we report on the cytoskeletal changes that occur during tissue renewal. In conclusion, the importance of the cytoskeleton in maintaining intestinal homeostasis is emerging, and we think this field will keep evolving.
Collapse
Affiliation(s)
- Louisiane Perrin
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
33
|
Moghimianavval H, Patel C, Mohapatra S, Hwang SW, Kayikcioglu T, Bashirzadeh Y, Liu AP, Ha T. Engineering Functional Membrane-Membrane Interfaces by InterSpy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202104. [PMID: 35618485 PMCID: PMC9789529 DOI: 10.1002/smll.202202104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Engineering synthetic interfaces between membranes has potential applications in designing non-native cellular communication pathways and creating synthetic tissues. Here, InterSpy is introduced as a synthetic biology tool consisting of a heterodimeric protein engineered to form and maintain membrane-membrane interfaces between apposing synthetic as well as cell membranes through the SpyTag/SpyCatcher interaction. The inclusion of split fluorescent protein fragments in InterSpy allows tracking of the formation of a membrane-membrane interface and reconstitution of functional fluorescent protein in the space between apposing membranes. First, InterSpy is demonstrated by testing split protein designs using a mammalian cell-free expression (CFE) system. By utilizing co-translational helix insertion, cell-free synthesized InterSpy fragments are incorporated into the membrane of liposomes and supported lipid bilayers with the desired topology. Functional reconstitution of split fluorescent protein between the membranes is strictly dependent on SpyTag/SpyCatcher. Finally, InterSpy is demonstrated in mammalian cells by detecting fluorescence reconstitution of split protein at the membrane-membrane interface between two cells each expressing a component of InterSpy. InterSpy demonstrates the power of CFE systems in the functional reconstitution of synthetic membrane interfaces via proximity-inducing proteins. This technology may also prove useful where cell-cell contacts and communication are recreated in a controlled manner using minimal components.
Collapse
Affiliation(s)
- Hossein Moghimianavval
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Chintan Patel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sonisilpa Mohapatra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Tunc Kayikcioglu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Nanavati BN, Noordstra I, Verma S, Duszyc K, Green KJ, Yap AS. Desmosome-anchored intermediate filaments facilitate tension-sensitive RhoA signaling for epithelial homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529786. [PMID: 36865131 PMCID: PMC9980054 DOI: 10.1101/2023.02.23.529786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Epithelia are subject to diverse forms of mechanical stress during development and post-embryonic life. They possess multiple mechanisms to preserve tissue integrity against tensile forces, which characteristically involve specialized cell-cell adhesion junctions coupled to the cytoskeleton. Desmosomes connect to intermediate filaments (IF) via desmoplakin (DP)1,2, while the E-cadherin complex links to the actomyosin cytoskeleton in adherens junctions (AJ)3. These distinct adhesion-cytoskeleton systems support different strategies to preserve epithelial integrity, especially against tensile stress. IFs coupled to desmosomes can passively respond to tension by strain-stiffening4-10, whereas for AJs a variety of mechanotransduction mechanisms associated with the E-cadherin apparatus itself11,12, or proximate to the junctions13, can modulate the activity of its associated actomyosin cytoskeleton by cell signaling. We now report a pathway where these systems collaborate for active tension-sensing and epithelial homeostasis. We found that DP was necessary for epithelia to activate RhoA at AJ on tensile stimulation, an effect that required its capacity to couple IF to desmosomes. DP exerted this effect by facilitating the association of Myosin VI with E-cadherin, the mechanosensor for the tension-sensitive RhoA pathway at AJ12. This connection between the DP-IF system and AJ-based tension-sensing promoted epithelial resilience when contractile tension was increased. It further facilitated epithelial homeostasis by allowing apoptotic cells to be eliminated by apical extrusion. Thus, active responses to tensile stress in epithelial monolayers reflect an integrated response of the IF- and actomyosin-based cell-cell adhesion systems.
Collapse
Affiliation(s)
- Bageshri Naimish Nanavati
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Suzie Verma
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Kinga Duszyc
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Kathleen J. Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago IL 06011 USA
| | - Alpha S. Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| |
Collapse
|
35
|
Lechuga S, Braga-Neto MB, Naydenov NG, Rieder F, Ivanov AI. Understanding disruption of the gut barrier during inflammation: Should we abandon traditional epithelial cell lines and switch to intestinal organoids? Front Immunol 2023; 14:1108289. [PMID: 36875103 PMCID: PMC9983034 DOI: 10.3389/fimmu.2023.1108289] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Disruption of the intestinal epithelial barrier is a hallmark of mucosal inflammation. It increases exposure of the immune system to luminal microbes, triggering a perpetuating inflammatory response. For several decades, the inflammatory stimuli-induced breakdown of the human gut barrier was studied in vitro by using colon cancer derived epithelial cell lines. While providing a wealth of important data, these cell lines do not completely mimic the morphology and function of normal human intestinal epithelial cells (IEC) due to cancer-related chromosomal abnormalities and oncogenic mutations. The development of human intestinal organoids provided a physiologically-relevant experimental platform to study homeostatic regulation and disease-dependent dysfunctions of the intestinal epithelial barrier. There is need to align and integrate the emerging data obtained with intestinal organoids and classical studies that utilized colon cancer cell lines. This review discusses the utilization of human intestinal organoids to dissect the roles and mechanisms of gut barrier disruption during mucosal inflammation. We summarize available data generated with two major types of organoids derived from either intestinal crypts or induced pluripotent stem cells and compare them to the results of earlier studies with conventional cell lines. We identify research areas where the complementary use of colon cancer-derived cell lines and organoids advance our understanding of epithelial barrier dysfunctions in the inflamed gut and identify unique questions that could be addressed only by using the intestinal organoid platforms.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Manuel B. Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
36
|
Boylan LW, Biggs LC. Wound Healing Goes Viral. J Invest Dermatol 2023; 143:685-687. [PMID: 36739198 DOI: 10.1016/j.jid.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Affiliation(s)
- Louis W Boylan
- Cell and Tissue Dynamics, Max Planck Institute Muenster, Muenster, Germany
| | - Leah C Biggs
- Cell and Tissue Dynamics, Max Planck Institute Muenster, Muenster, Germany.
| |
Collapse
|
37
|
Müller L, Keil R, Hatzfeld M. Plakophilin 3 facilitates G1/S phase transition and enhances proliferation by capturing RB protein in the cytoplasm and promoting EGFR signaling. Cell Rep 2023; 42:112031. [PMID: 36689330 DOI: 10.1016/j.celrep.2023.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/26/2022] [Accepted: 01/10/2023] [Indexed: 01/23/2023] Open
Abstract
Plakophilin 3 (PKP3) is a component of desmosomes and is frequently overexpressed in cancer. Using keratinocytes either lacking or overexpressing PKP3, we identify a signaling axis from ERK to the retinoblastoma (RB) protein and the E2F1 transcription factor that is controlled by PKP3. RB and E2F1 are key components controlling G1/S transition in the cell cycle. We show that PKP3 stimulates the activity of ERK and its target RSK1. This inhibits expression of the transcription factor RUNX3, a positive regulator of the CDK inhibitor CDKN1A/p21, which is also downregulated by PKP3. Elevated CDKN1A prevents RB phosphorylation and E2F1 target gene expression, leading to delayed S phase entry and reduced proliferation in PKP3-depleted cells. Elevated PKP3 expression not only increases ERK activity but also captures phosphorylated RB (phospho-RB) in the cytoplasm to promote E2F1 activity and cell-cycle progression. These data identify a mechanism by which PKP3 promotes proliferation and acts as an oncogene.
Collapse
Affiliation(s)
- Lisa Müller
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany.
| | - René Keil
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
| | - Mechthild Hatzfeld
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany.
| |
Collapse
|
38
|
Hegazy M, Koetsier JL, Huffine AL, Broussard JA, Godsel BM, Cohen-Barak E, Sprecher E, Wolfgeher DJ, Kron SJ, Godsel LM, Green KJ. Epidermal stratification requires retromer-mediated desmoglein-1 recycling. Dev Cell 2022; 57:2683-2698.e8. [PMID: 36495876 PMCID: PMC9973369 DOI: 10.1016/j.devcel.2022.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/12/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
Sorting transmembrane cargo is essential for tissue development and homeostasis. However, mechanisms of intracellular trafficking in stratified epidermis are poorly understood. Here, we identify an interaction between the retromer endosomal trafficking component, VPS35, and the desmosomal cadherin, desmoglein-1 (Dsg1). Dsg1 is specifically expressed in stratified epidermis and, when properly localized on the plasma membrane of basal keratinocytes, promotes stratification. We show that the retromer drives Dsg1 recycling from the endo-lysosomal system to the plasma membrane to support human keratinocyte stratification. The retromer-enhancing chaperone, R55, promotes the membrane localization of Dsg1 and a trafficking-deficient mutant associated with a severe inflammatory skin disorder, enhancing its ability to promote stratification. In the absence of Dsg1, retromer association with and expression of the glucose transporter GLUT1 increases, exposing a potential link between Dsg1 deficiency and epidermal metabolism. Our work provides evidence for retromer function in epidermal regeneration, identifying it as a potential therapeutic target.
Collapse
Affiliation(s)
- Marihan Hegazy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jennifer L Koetsier
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amber L Huffine
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua A Broussard
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Brendan M Godsel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eran Cohen-Barak
- Department of Dermatology, Emek Medical Center, Afula, Israel; Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Lisa M Godsel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
39
|
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022; 13:1035387. [PMID: 36408244 PMCID: PMC9672938 DOI: 10.3389/fphar.2022.1035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
According to the World Health Organization, the neoplasm is one of the main reasons for morbidity and mortality worldwide. At the same time, application of cytostatic drugs like an independent type of cancer treatment and in combination with surgical methods, is often associated with the development of cardiovascular complications both in the early and in the delayed period of treatment. Doxorubicin (DOX) is the most commonly used cytotoxic anthracycline antibiotic. DOX can cause both acute and delayed side effects. The problem is still not solved, as evidenced by the continued activity of researchers in terms of developing approaches for the prevention and treatment of cardiovascular complications. It is known, the heart muscle consists of cardiomyocytes connected by intercalated discs (ID), which ensure the structural, electrical, metabolic unity of the heart. Various defects in the ID proteins can lead to the development of cardiovascular diseases of various etiologies, including DOX-induced cardiomyopathy. The search for ways to influence the functioning of ID proteins of the cardiac muscle can become the basis for the creation of new therapeutic approaches to the treatment and prevention of cardiac pathologies. SIRT1 may be an interesting cardioprotective variant due to its wide functional significance. SIRT1 activation triggers nuclear transcription programs that increase the efficiency of cellular, mitochondrial metabolism, increases resistance to oxidative stress, and promotes cell survival. It can be assumed that SIRT1 can not only provide a protective effect at the cardiomyocytes level, leading to an improvement in mitochondrial and metabolic functions, reducing the effects of oxidative stress and inflammatory processes, but also have a protective effect on the functioning of IDs structures of the cardiac muscle.
Collapse
|
40
|
Moch M, Schieren J, Leube RE. Cortical tension regulates desmosomal morphogenesis. Front Cell Dev Biol 2022; 10:946190. [PMID: 36268507 PMCID: PMC9577410 DOI: 10.3389/fcell.2022.946190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Mechanical stability is a fundamental and essential property of epithelial cell sheets. It is in large part determined by cell-cell adhesion sites that are tightly integrated by the cortical cytoskeleton. An intimate crosstalk between the adherens junction-associated contractile actomyosin system and the desmosome-anchored keratin intermediate filament system is decisive for dynamic regulation of epithelial mechanics. A major question in the field is whether and in which way mechanical stress affects junctional plasticity. This is especially true for the desmosome-keratin scaffold whose role in force-sensing is virtually unknown. To examine this question, we inactivated the actomyosin system in human keratinocytes (HaCaT) and canine kidney cells (MDCK) and monitored changes in desmosomal protein turnover. Partial inhibition of myosin II by para-nitro-blebbistatin led to a decrease of the cells' elastic modulus and to reduced desmosomal protein turnover in regions where nascent desmosomes are formed and, to a lower degree, in regions where larger, more mature desmosomes are present. Interestingly, desmosomal proteins are affected differently: a significant decrease in turnover was observed for the desmosomal plaque protein desmoplakin I (DspI), which links keratin filaments to the desmosomal core, and the transmembrane cadherin desmoglein 2 (Dsg2). On the other hand, the turnover of another type of desmosomal cadherin, desmocollin 2 (Dsc2), was not significantly altered under the tested conditions. Similarly, the turnover of the adherens junction-associated E-cadherin was not affected by the low doses of para-nitro-blebbistatin. Inhibition of actin polymerization by low dose latrunculin B treatment and of ROCK-driven actomyosin contractility by Y-27632 treatment also induced a significant decrease in desmosomal DspI turnover. Taken together, we conclude that changes in the cortical force balance affect desmosome formation and growth. Furthermore, they differentially modulate desmosomal protein turnover resulting in changes of desmosome composition. We take the observations as evidence for a hitherto unknown desmosomal mechanosensing and mechanoresponse pathway responding to an altered force balance.
Collapse
|
41
|
Ivanov AI, Lechuga S, Marino‐Melendez A, Naydenov NG. Unique and redundant functions of cytoplasmic actins and nonmuscle myosin II isoforms at epithelial junctions. Ann N Y Acad Sci 2022; 1515:61-74. [PMID: 35673768 PMCID: PMC9489603 DOI: 10.1111/nyas.14808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The integrity and functions of epithelial barriers depend on the formation of adherens junctions (AJs) and tight junctions (TJs). A characteristic feature of AJs and TJs is their association with the cortical cytoskeleton composed of actin filaments and nonmuscle myosin II (NM-II) motors. Mechanical forces generated by the actomyosin cytoskeleton are essential for junctional assembly, stability, and remodeling. Epithelial cells express two different actin proteins and three NM-II isoforms, all known to be associated with AJs and TJs. Despite their structural similarity, different actin and NM-II isoforms have distinct biochemical properties, cellular distribution, and functions. The diversity of epithelial actins and myosin motors could be essential for the regulation of different steps of junctional formation, maturation, and disassembly. This review focuses on the roles of actin and NM-II isoforms in controlling the integrity and barrier properties of various epithelia. We discuss the effects of the depletion of individual actin isoforms and NM-II motors on the assembly and barrier function of AJs and TJs in model epithelial monolayers in vitro. We also describe the functional consequences of either total or tissue-specific gene knockout of different actins and NM-II motors, with a focus on the development and integrity of different epithelia in vivo.
Collapse
Affiliation(s)
- Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Armando Marino‐Melendez
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
42
|
Nishimura R, Kato K, Saida M, Kamei Y, Takeda M, Miyoshi H, Yamagata Y, Amano Y, Yonemura S. Appropriate tension sensitivity of α-catenin ensures rounding morphogenesis of epithelial spheroids. Cell Struct Funct 2022; 47:55-73. [PMID: 35732428 PMCID: PMC10511042 DOI: 10.1247/csf.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022] Open
Abstract
The adherens junction (AJ) is an actin filament-anchoring junction. It plays a central role in epithelial morphogenesis through cadherin-based recognition and adhesion among cells. The stability and plasticity of AJs are required for the morphogenesis. An actin-binding α-catenin is an essential component of the cadherin-catenin complex and functions as a tension transducer that changes its conformation and induces AJ development in response to tension. Despite much progress in understanding molecular mechanisms of tension sensitivity of α-catenin, its significance on epithelial morphogenesis is still unknown. Here we show that the tension sensitivity of α-catenin is essential for epithelial cells to form round spheroids through proper multicellular rearrangement. Using a novel in vitro suspension culture model, we found that epithelial cells form round spheroids even from rectangular-shaped cell masses with high aspect ratios without using high tension and that increased tension sensitivity of α-catenin affected this morphogenesis. Analyses of AJ formation and cellular tracking during rounding morphogenesis showed cellular rearrangement, probably through AJ remodeling. The rearrangement occurs at the cell mass level, but not single-cell level. Hypersensitive α-catenin mutant-expressing cells did not show cellular rearrangement at the cell mass level, suggesting that the appropriate tension sensitivity of α-catenin is crucial for the coordinated round morphogenesis.Key words: α-catenin, vinculin, adherens junction, morphogenesis, mechanotransduction.
Collapse
Affiliation(s)
- Ryosuke Nishimura
- Department of Cell Biology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Kagayaki Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Misako Saida
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Masahiro Takeda
- Ultra High Precision Optics Technology Team/Advanced Manufacturing Support Team, RIKEN, Wako, Saitama, Japan
- Center for Advanced Photonics, RIKEN, Wako, Saitama, Japan
| | - Hiromi Miyoshi
- Ultra High Precision Optics Technology Team/Advanced Manufacturing Support Team, RIKEN, Wako, Saitama, Japan
- Center for Advanced Photonics, RIKEN, Wako, Saitama, Japan
- Applied Mechanobiology Laboratory, Faculty of Systems Design, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Yutaka Yamagata
- Ultra High Precision Optics Technology Team/Advanced Manufacturing Support Team, RIKEN, Wako, Saitama, Japan
- Center for Advanced Photonics, RIKEN, Wako, Saitama, Japan
| | - Yu Amano
- Department of Bioscience, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Shigenobu Yonemura
- Department of Cell Biology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Tokushima, Japan
- Ultrastructural Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| |
Collapse
|
43
|
Anillin governs mitotic rounding during early epidermal development. BMC Biol 2022; 20:145. [PMID: 35710398 PMCID: PMC9205045 DOI: 10.1186/s12915-022-01345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background The establishment of tissue architecture requires coordination between distinct processes including basement membrane assembly, cell adhesion, and polarity; however, the underlying mechanisms remain poorly understood. The actin cytoskeleton is ideally situated to orchestrate tissue morphogenesis due to its roles in mechanical, structural, and regulatory processes. However, the function of many pivotal actin-binding proteins in mammalian development is poorly understood. Results Here, we identify a crucial role for anillin (ANLN), an actin-binding protein, in orchestrating epidermal morphogenesis. In utero RNAi-mediated silencing of Anln in mouse embryos disrupted epidermal architecture marked by adhesion, polarity, and basement membrane defects. Unexpectedly, these defects cannot explain the profoundly perturbed epidermis of Anln-depleted embryos. Indeed, even before these defects emerge, Anln-depleted epidermis exhibits abnormalities in mitotic rounding and its associated processes: chromosome segregation, spindle orientation, and mitotic progression, though not in cytokinesis that was disrupted only in Anln-depleted cultured keratinocytes. We further show that ANLN localizes to the cell cortex during mitotic rounding, where it regulates the distribution of active RhoA and the levels, activity, and structural organization of the cortical actomyosin proteins. Conclusions Our results demonstrate that ANLN is a major regulator of epidermal morphogenesis and identify a novel role for ANLN in mitotic rounding, a near-universal process that governs cell shape, fate, and tissue morphogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01345-9.
Collapse
|
44
|
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol 2022; 15:1127-1142. [PMID: 36180582 PMCID: PMC9705259 DOI: 10.1038/s41385-022-00565-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Collapse
Affiliation(s)
- Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK.
| |
Collapse
|
45
|
Green KJ, Niessen CM, Rübsam M, Perez White BE, Broussard JA. The Desmosome-Keratin Scaffold Integrates ErbB Family and Mechanical Signaling to Polarize Epidermal Structure and Function. Front Cell Dev Biol 2022; 10:903696. [PMID: 35686051 PMCID: PMC9171019 DOI: 10.3389/fcell.2022.903696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
While classic cadherin-actin connections in adherens junctions (AJs) have ancient origins, intermediate filament (IF) linkages with desmosomal cadherins arose in vertebrate organisms. In this mini-review, we discuss how overlaying the IF-desmosome network onto the existing cadherin-actin network provided new opportunities to coordinate tissue mechanics with the positioning and function of chemical signaling mediators in the ErbB family of receptor tyrosine kinases. We focus in particular on the complex multi-layered outer covering of the skin, the epidermis, which serves essential barrier and stress sensing/responding functions in terrestrial vertebrates. We will review emerging data showing that desmosome-IF connections, AJ-actin interactions, ErbB family members, and membrane tension are all polarized across the multiple layers of the regenerating epidermis. Importantly, their integration generates differentiation-specific roles in each layer of the epidermis that dictate the form and function of the tissue. In the basal layer, the onset of the differentiation-specific desmosomal cadherin desmoglein 1 (Dsg1) dials down EGFR signaling while working with classic cadherins to remodel cortical actin cytoskeleton and decrease membrane tension to promote cell delamination. In the upper layers, Dsg1 and E-cadherin cooperate to maintain high tension and tune EGFR and ErbB2 activity to create the essential tight junction barrier. Our final outlook discusses the emerging appreciation that the desmosome-IF scaffold not only creates the architecture required for skin's physical barrier but also creates an immune barrier that keeps inflammation in check.
Collapse
Affiliation(s)
- Kathleen J. Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| | - Carien M. Niessen
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Matthias Rübsam
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Bethany E. Perez White
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| |
Collapse
|
46
|
Vanslembrouck B, Chen JH, Larabell C, van Hengel J. Microscopic Visualization of Cell-Cell Adhesion Complexes at Micro and Nanoscale. Front Cell Dev Biol 2022; 10:819534. [PMID: 35517500 PMCID: PMC9065677 DOI: 10.3389/fcell.2022.819534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Considerable progress has been made in our knowledge of the morphological and functional varieties of anchoring junctions. Cell-cell adhesion contacts consist of discrete junctional structures responsible for the mechanical coupling of cytoskeletons and allow the transmission of mechanical signals across the cell collective. The three main adhesion complexes are adherens junctions, tight junctions, and desmosomes. Microscopy has played a fundamental role in understanding these adhesion complexes on different levels in both physiological and pathological conditions. In this review, we discuss the main light and electron microscopy techniques used to unravel the structure and composition of the three cell-cell contacts in epithelial and endothelial cells. It functions as a guide to pick the appropriate imaging technique(s) for the adhesion complexes of interest. We also point out the latest techniques that have emerged. At the end, we discuss the problems investigators encounter during their cell-cell adhesion research using microscopic techniques.
Collapse
Affiliation(s)
- Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| | - Jian-hua Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| |
Collapse
|
47
|
Ndiaye AB, Koenderink GH, Shemesh M. Intermediate Filaments in Cellular Mechanoresponsiveness: Mediating Cytoskeletal Crosstalk From Membrane to Nucleus and Back. Front Cell Dev Biol 2022; 10:882037. [PMID: 35478961 PMCID: PMC9035595 DOI: 10.3389/fcell.2022.882037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The mammalian cytoskeleton forms a mechanical continuum that spans across the cell, connecting the cell surface to the nucleus via transmembrane protein complexes in the plasma and nuclear membranes. It transmits extracellular forces to the cell interior, providing mechanical cues that influence cellular decisions, but also actively generates intracellular forces, enabling the cell to probe and remodel its tissue microenvironment. Cells adapt their gene expression profile and morphology to external cues provided by the matrix and adjacent cells as well as to cell-intrinsic changes in cytoplasmic and nuclear volume. The cytoskeleton is a complex filamentous network of three interpenetrating structural proteins: actin, microtubules, and intermediate filaments. Traditionally the actin cytoskeleton is considered the main contributor to mechanosensitivity. This view is now shifting owing to the mounting evidence that the three cytoskeletal filaments have interdependent functions due to cytoskeletal crosstalk, with intermediate filaments taking a central role. In this Mini Review we discuss how cytoskeletal crosstalk confers mechanosensitivity to cells and tissues, with a particular focus on the role of intermediate filaments. We propose a view of the cytoskeleton as a composite structure, in which cytoskeletal crosstalk regulates the local stability and organization of all three filament families at the sub-cellular scale, cytoskeletal mechanics at the cellular scale, and cell adaptation to external cues at the tissue scale.
Collapse
Affiliation(s)
| | | | - Michal Shemesh
- *Correspondence: Michal Shemesh, ; Gijsje H. Koenderink,
| |
Collapse
|
48
|
Neel BL, Nisler CR, Walujkar S, Araya-Secchi R, Sotomayor M. Elastic versus brittle mechanical responses predicted for dimeric cadherin complexes. Biophys J 2022; 121:1013-1028. [PMID: 35151631 PMCID: PMC8943749 DOI: 10.1016/j.bpj.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Cadherins are a superfamily of adhesion proteins involved in a variety of biological processes that include the formation of intercellular contacts, the maintenance of tissue integrity, and the development of neuronal circuits. These transmembrane proteins are characterized by ectodomains composed of a variable number of extracellular cadherin (EC) repeats that are similar but not identical in sequence and fold. E-cadherin, along with desmoglein and desmocollin proteins, are three classical-type cadherins that have slightly curved ectodomains and engage in homophilic and heterophilic interactions through an exchange of conserved tryptophan residues in their N-terminal EC1 repeat. In contrast, clustered protocadherins are straighter than classical cadherins and interact through an antiparallel homophilic binding interface that involves overlapped EC1 to EC4 repeats. Here we present molecular dynamics simulations that model the adhesive domains of these cadherins using available crystal structures, with systems encompassing up to 2.8 million atoms. Simulations of complete classical cadherin ectodomain dimers predict a two-phased elastic response to force in which these complexes first softly unbend and then stiffen to unbind without unfolding. Simulated α, β, and γ clustered protocadherin homodimers lack a two-phased elastic response, are brittle and stiffer than classical cadherins and exhibit complex unbinding pathways that in some cases involve transient intermediates. We propose that these distinct mechanical responses are important for function, with classical cadherin ectodomains acting as molecular shock absorbers and with stiffer clustered protocadherin ectodomains facilitating overlap that favors binding specificity over mechanical resilience. Overall, our simulations provide insights into the molecular mechanics of single cadherin dimers relevant in the formation of cellular junctions essential for tissue function.
Collapse
Affiliation(s)
- Brandon L Neel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Collin R Nisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
49
|
Neel BL, Nisler CR, Walujkar S, Araya-Secchi R, Sotomayor M. Collective mechanical responses of cadherin-based adhesive junctions as predicted by simulations. Biophys J 2022; 121:991-1012. [PMID: 35150618 PMCID: PMC8943820 DOI: 10.1016/j.bpj.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cadherin-based adherens junctions and desmosomes help stabilize cell-cell contacts with additional function in mechano-signaling, while clustered protocadherin junctions are responsible for directing neuronal circuits assembly. Structural models for adherens junctions formed by epithelial cadherin (CDH1) proteins indicate that their long, curved ectodomains arrange to form a periodic, two-dimensional lattice stabilized by tip-to-tip trans interactions (across junction) and lateral cis contacts. Less is known about the exact architecture of desmosomes, but desmoglein (DSG) and desmocollin (DSC) cadherin proteins are also thought to form ordered junctions. In contrast, clustered protocadherin (PCDH)-based cell-cell contacts in neuronal tissues are thought to be responsible for self-recognition and avoidance, and structural models for clustered PCDH junctions show a linear arrangement in which their long and straight ectodomains form antiparallel overlapped trans complexes. Here, we report all-atom molecular dynamics simulations testing the mechanics of minimalistic adhesive junctions formed by CDH1, DSG2 coupled to DSC1, and PCDHγB4, with systems encompassing up to 3.7 million atoms. Simulations generally predict a favored shearing pathway for the adherens junction model and a two-phased elastic response to tensile forces for the adhesive adherens junction and the desmosome models. Complexes within these junctions first unbend at low tensile force and then become stiff to unbind without unfolding. However, cis interactions in both the CDH1 and DSG2-DSC1 systems dictate varied mechanical responses of individual dimers within the junctions. Conversely, the clustered protocadherin PCDHγB4 junction lacks a distinct two-phased elastic response. Instead, applied tensile force strains trans interactions directly, as there is little unbending of monomers within the junction. Transient intermediates, influenced by new cis interactions, are observed after the main rupture event. We suggest that these collective, complex mechanical responses mediated by cis contacts facilitate distinct functions in robust cell-cell adhesion for classical cadherins and in self-avoidance signaling for clustered PCDHs.
Collapse
Affiliation(s)
- Brandon L Neel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Collin R Nisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Facultad de Ingenieria y Tecnologia, Universidad San Sebastian, Santiago, Chile
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
50
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|