1
|
Ding X, Yang J, Wei Y, Wang M, Peng Z, He R, Li X, Zhao D, Leng X, Dong H. The Nexus Between Traditional Chinese Medicine and Immunoporosis: Implications in the Treatment and Management of Osteoporosis. Phytother Res 2024. [DOI: 10.1002/ptr.8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/06/2024] [Indexed: 01/06/2025]
Abstract
ABSTRACTOsteoporosis (OP) is a globally prevalent bone disease characterized by reduced bone mass and heightened fracture risk, posing a significant health and economic challenge to aging societies worldwide. Osteoimmunology—an emerging field of study—investigates the intricate relationship between the skeletal and the immune systems, providing insights into the immune system's impact on bone health and disease progression. Recent research has demonstrated the essential roles played by various immune cells (T cells, B cells, macrophages, dendritic cells, mast cells, granulocytes, and innate lymphoid cells) in regulating bone metabolism, homeostasis, formation, and remodeling through interactions with osteoclasts (OC) and osteoblasts (OB). These findings underscore that osteoimmunology provides an essential theoretical framework for understanding the pathogenesis of various skeletal disorders, including OP. Traditional Chinese medicine (TCM) and its active ingredients have significant clinical value in OP treatment. Unfortunately, despite their striking multieffect pathways in the pharmacological field, current research has not yet summarized them in a comprehensive and detailed manner with respect to their interventional roles in immune bone diseases, especially OP. Consequently, this review addresses recent studies on the mechanisms by which immune cells and their communication molecules contribute to OP development. Additionally, it explores the potential therapeutic benefits of TCM and its active components in treating OP from the perspective of osteoimmunology. The objective is to provide a comprehensive framework that enhances the understanding of the therapeutic mechanisms of TCM in treating immune‐related bone diseases and to facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolei Ding
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Jie Yang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Mingyue Wang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Zeyu Peng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Rong He
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Xiangyang Leng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| |
Collapse
|
2
|
Bousch JF, Beyersdorf C, Schultz K, Windolf J, Suschek CV, Maus U. Proinflammatory Cytokines Enhance the Mineralization, Proliferation, and Metabolic Activity of Primary Human Osteoblast-like Cells. Int J Mol Sci 2024; 25:12358. [PMID: 39596421 PMCID: PMC11594863 DOI: 10.3390/ijms252212358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoporosis is a progressive metabolic bone disease characterized by decreased bone density and microarchitectural deterioration, leading to an increased risk of fracture, particularly in postmenopausal women and the elderly. Increasing evidence suggests that inflammatory processes play a key role in the pathogenesis of osteoporosis and are strongly associated with the activation of osteoclasts, the cells responsible for bone resorption. In the present study, we investigated, for the first time, the influence of proinflammatory cytokines on the osteogenic differentiation, proliferation, and metabolic activity of primary human osteoblast-like cells (OBs) derived from the femoral heads of elderly patients. We found that all the proinflammatory cytokines, IL-1β, TNF-α, IL-6, and IL-8, enhanced the extracellular matrix mineralization of OBs under differentiation-induced cell culture conditions. In the cases of IL-1β and TNF-α, increased mineralization was correlated with increased osteoblast proliferation. Additionally, IL-1β- and TNF-α-increased osteogenesis was accompanied by a rise in energy metabolism due to improved glycolysis or mitochondrial respiration. In conclusion, we show here, for the first time, that, in contrast to findings obtained with cell lines, mesenchymal stem cells, or animal models, human OBs obtained from patients exhibited significantly enhanced osteogenesis upon exposure to proinflammatory cytokines, probably in part via a mechanism involving enhanced cellular energy metabolism. This study significantly contributes to the field of osteoimmunology by examining a clinically relevant cell model that can help to develop treatments for inflammation-related metabolic bone diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Uwe Maus
- Department for Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany; (J.F.B.); (C.B.); (K.S.); (J.W.); (C.V.S.)
| |
Collapse
|
3
|
Galliera E, Massaccesi L, Mangiavini L, De Vecchi E, Villa F, Corsi Romanelli MM, Peretti G. Effects of COVID-19 on bone fragility: a new perspective from osteoimmunological biomarkers. Front Immunol 2024; 15:1493643. [PMID: 39582872 PMCID: PMC11582977 DOI: 10.3389/fimmu.2024.1493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction While there is an increasing understanding of COVID-19's effect on different organs, little is known about the effect of the disease on bone turnover and remodeling so far. Osteoimmunological biomarkers have been described as potential indicators of bone remodeling in inflammatory conditions, but their potential role in evaluating the effect of COVID-19 on bone fragility has not been explored so far. Methods The present study aims to measure the osteoimmunological biomarkers in elderly patients undergoing orthopedic surgery, to evaluate the potential effect of COVID-19 on the bone response to the surgery. Results In our patients, the RANKL/OPG ratio indicated an increase of bone resorption in COVID-19-positive patients, confirming a strong diagnostic and prognostic value. RANKL/OPG displays a good correlation with the bone fragility maker FGF23, indicating that this parameter is a reliable maker of bone fragility in COVID-19 patients and could provide useful and comprehensive information about inflammation-induced bone loss. Consistently, the RANKL/OPG ratio showed a good correlation also with the two inflammatory markers IL-6 and sRAGE. Discussion Taken together these results indicate that the use of an osteoimmunological biomarker like the RANKL/OPG ratio could provide a significant improvement in the clinical evaluation of the COVID-19 effect on bone loss. This aspect is extremely important in elderly patients undergoing orthopedic surgery, which can manifest more severe effects of COVID-19 and present an increased level of age-induced bone fragility.
Collapse
Affiliation(s)
- Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Luca Massaccesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Laboratorio sperimentale ricerche Biomarcatori Danno d'Organo, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | | | | | | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Experimental and Clinical Pathology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | |
Collapse
|
4
|
Gomarasca M, Ziemann E, Sansoni V, Flis M, Perego S, Jaworska J, Gerosa L, Faraldi M, Lombardi G. High-Intensity Interval Training, but Not Whole-Body Cryostimulation, Affects Bone-Mechanosensing Markers and Induces the Expression of Differentiation Markers in Osteoblasts Cultured with Sera from Overweight-to-Obese Subjects. J Pers Med 2024; 14:1015. [PMID: 39452523 PMCID: PMC11508578 DOI: 10.3390/jpm14101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Although there have been some clinical observations made, the mechanistic effects on bone metabolism of whole-body cryostimulation and high-intensity interval training (HIIT), either alone or in combination, are still debated. Here, we have investigated their effects on circulating osteo-immune and bone metabolic markers (osteopontin, osteocalcin, sclerostin, dikkopf-related protein 1, and fibroblast-growth factor 23) and their potential effects on osteoblast differentiation and function, in vitro, by treating SaOS-2 osteoblast-like cells with the sera obtained from the subjects who had undergone the different interventions or untreated control subjects. Methods: Sixty-seven inactive, overweight-to-obese participants (body mass index = 31.9 ± 5.0 kg·m-2, 42 ± 13 years old) were recruited and randomly assigned to one group: control (CTRL, n = 14), training (HIIT, 6 sessions, n = 13), WBC (CRYO, 10 sessions, n = 17) or training combined with WBC (CRYO-HIIT, n = 23). The interventions lasted 14 days. Results: While circulating markers analysis revealed more protective potential against resorption in HIIT than in WBC alone or combined, gene expression from in vitro analysis showed an induction of late bone metabolic markers in the HIIT group. Conclusions: These data suggest a potentially protective effect of HIIT in bone against resorption, while WBC maintains homeostasis by preventing any resorptive phenomena and limiting any anabolic activity even when stimulated by intensive exercise.
Collapse
Affiliation(s)
- Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milano, Italy; (M.G.); (S.P.); (L.G.); (M.F.); (G.L.)
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland;
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milano, Italy; (M.G.); (S.P.); (L.G.); (M.F.); (G.L.)
| | - Marta Flis
- Department of Physiology, Gdansk University of Physical Education and Sport, 80-854 Gdansk, Poland;
| | - Silvia Perego
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milano, Italy; (M.G.); (S.P.); (L.G.); (M.F.); (G.L.)
| | - Joanna Jaworska
- Department of Physiology, Medical University of Gdansk, 80-854 Gdansk, Poland;
| | - Laura Gerosa
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milano, Italy; (M.G.); (S.P.); (L.G.); (M.F.); (G.L.)
| | - Martina Faraldi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milano, Italy; (M.G.); (S.P.); (L.G.); (M.F.); (G.L.)
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20157 Milano, Italy; (M.G.); (S.P.); (L.G.); (M.F.); (G.L.)
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland;
| |
Collapse
|
5
|
Yao Y, Cai X, Chen Y, Zhang M, Zheng C. Estrogen deficiency-mediated osteoimmunity in postmenopausal osteoporosis. Med Res Rev 2024. [PMID: 39234932 DOI: 10.1002/med.22081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/03/2023] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Postmenopausal osteoporosis (PMO) is a common disease associated with aging, and estrogen deficiency is considered to be the main cause of PMO. Recently, however, osteoimmunology has been revealed to be closely related to PMO. On the one hand, estrogen deficiency directly affects the activity of bone cells (osteoblasts, osteoclasts, osteocytes). On the other hand, estrogen deficiency-mediated osteoimmunity also plays a crucial role in bone loss in PMO. In this review, we systematically describe the progress of the mechanisms of bone loss in PMO, estrogen deficiency-mediated osteoimmunity, the differences between PMO patients and postmenopausal populations without osteoporosis, and estrogen deficiency-mediated immune cells (T cells, B cells, macrophages, neutrophils, dendritic cells, and mast cells) activity. The comprehensive summary of this paper provides a clear knowledge context for future research on the mechanism of PMO bone loss.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Hu W, Deng J, Su Z, Wang H, Lin S. Advances on T cell immunity in bone remodeling and bone regeneration. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:450-459. [PMID: 39183057 PMCID: PMC11375490 DOI: 10.3724/zdxbyxb-2023-0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Bone remodeling and bone regeneration are essential for preserving skeletal integrity and maintaining mineral homeostasis. T cells, as key members of adaptive immunity, play a pivotal role in bone remodeling and bone regeneration by producing a range of cytokines and growth factors. In the physiological state, T cells are involved in the maintenance of bone homeostasis through interactions with mesenchymal stem cells, osteoblasts, and osteoclasts. In pathological states, T cells participate in the pathological process of different types of osteoporosis through interaction with estrogen, glucocorticoids, and parathyroid hormone. During fracture healing for post-injury repair, T cells play different roles during the inflammatory hematoma phase, the bone callus formation phase and the bone remodeling phase. Targeting T cells thus emerges as a potential strategy for regulating bone homeostasis. This article reviews the research progress on related mechanisms of T cells immunity involved in bone remodeling and bone regeneration, with a view to providing a scientific basis for targeting T cells to regulate bone remodeling and bone regeneration.
Collapse
Affiliation(s)
- Wenhui Hu
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China.
| | - Jinxia Deng
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Zhanpeng Su
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Haixing Wang
- Department of Orthopedics and Traumatology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hongkong 999077, China
| | - Sien Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China.
- Department of Orthopedics and Traumatology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hongkong 999077, China.
| |
Collapse
|
7
|
Luo S, Liu Z, Zhang J, Chen Y, Lei Y, Gao X, Liu C, Chen Y, Liu C, Yan P, Chen Y, Li H, Zhao C, Wang H, Wang K, Wang C, Tian R, Yang P. Three-gene signature revealing the dynamics of lymphocyte infiltration in subchondral bone during osteoarthritis progression. Int Immunopharmacol 2024; 137:112431. [PMID: 38897125 DOI: 10.1016/j.intimp.2024.112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Osteoarthritis (OA), a degenerative joint disorder, has an unclear immune infiltration mechanism in subchondral bone (SCB). Thus, this study aims to discern immune infiltration variations in SCB between early- and late-stages of OA and identify pertinent biomarkers. Utilizing the GSE515188 bulk-seq profile from the Gene Expression Omnibus database, we performed single-sample gene-set enrichment analysis alongside weighted gene co-expression network analysis to identify key cells and immune-related genes (IRGs) involved in SCB at both stages. At the meanwhile, differentially expressed genes (DEGs) were identified in the same dataset and intersected with IRGs to find IR-DEGs. Protein-protein interaction network and enrichment analyses and further gene filtering using LASSO regression led to the discovery of potential biomarkers, which were then validated by ROC curve analysis, single-cell RNA sequencing, qRT-PCR, western blot and immunofluorescence. ScRNA-seq analysis using GSE196678, qRT-PCR, western blot and immunofluorescence results confirmed the upregulation of their expression levels in early-stage OA SCB samples. Our comprehensive analysis revealed lymphocytes infiltration as a major feature in early OA SCB. A total of 13 IR-DEGs were identified, showing significant enrichment in T- or B-cell activation pathways. Three of them (CD247, POU2AF1, and TNFRSF13B) were selected via the LASSO regression analysis, and results from the ROC curve analyses indicated the diagnostic efficacy of these 3 genes as biomarkers. These findings may aid in investigating the mechanisms of SCB immune infiltration in OA, stratifying OA progression, and identifying relevant therapeutic targets.
Collapse
Affiliation(s)
- Sen Luo
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Zeyu Liu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Jiewen Zhang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Yuanyuan Chen
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Yutian Lei
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Xu Gao
- Department of Orthopedics, Honghui Hospital, Xi'an, Shaanxi, China
| | - ChengYan Liu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Yutao Chen
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Chenkun Liu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Peng Yan
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Yang Chen
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Heng Li
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Chuanchuan Zhao
- Department of Operating Room, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Haifan Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Chunsheng Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Run Tian
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China.
| | - Pei Yang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Chen YJ, Jia LH, Han TH, Zhao ZH, Yang J, Xiao JP, Yang HJ, Yang K. Osteoporosis treatment: current drugs and future developments. Front Pharmacol 2024; 15:1456796. [PMID: 39188952 PMCID: PMC11345277 DOI: 10.3389/fphar.2024.1456796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.
Collapse
Affiliation(s)
- Ya-jing Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Li-hua Jia
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Jiangxi, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
9
|
Song C, Liu Y, Tao X, Cheng K, Cai W, Zhou D, Zhou Y, Wang L, Shi H, Hao Q, Liu Z. Immunomodulation Pathogenesis and Treatment of Bone Nonunion. Orthop Surg 2024; 16:1770-1782. [PMID: 38946017 PMCID: PMC11293939 DOI: 10.1111/os.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Fractures and bone nonunion commonly require surgical intervention. Serious outcomes of non-healing in the late stages of fracture place a significant financial burden on society and families. Bone nonunion occurs when a fracture stops healing, for many reasons, and leads to a variety of bad outcomes. Numerous factors, including biomechanics and immunology, are involved in the complicated mechanisms of bone nonunion. The immune-inflammatory response plays a significant part in the emergence of bone nonunion, and the occurrence, control, and remission of inflammation in the bone healing process have a significant influence on the ultimate success of bone tissue repair. In the bone microenvironment, immune cells and associated cytokines control bone repair, which is significantly influenced by macrophages, T cells, and fibroblast growth factor. To limit acute inflammation and balance osteogenesis and osteoblastogenesis for tissue repair and regeneration, immune cells and various cytokines in the local microenvironment must be precisely regulated. As a bad complication of late-stage fractures, bone nonunion has a significant effect on patients' quality of life and socioeconomic development. Therefore, in-depth research on its pathogenesis and treatment methods has important clinical value. To provide more precise, focused therapeutic options for the treatment of bone nonunion, we discuss the regulatory roles of the key immune cells engaged in bone healing within the microenvironment during bone healing and their effect on osteogenesis.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Yong Liu
- Department of Bone and Joint Sports MedicineXingguo People's Hospital, Gannan Medical CollegeXingguoChina
| | - Xingxing Tao
- College of Integrative Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Yang Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Liquan Wang
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Qi Hao
- Orthopedic Surgery, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
- Department of OrthopedicsLuzhou Longmatan District People's HospitalLuzhouChina
| |
Collapse
|
10
|
Yao Q, He L, Bao C, Yan X, Ao J. The role of TNF-α in osteoporosis, bone repair and inflammatory bone diseases: A review. Tissue Cell 2024; 89:102422. [PMID: 39003912 DOI: 10.1016/j.tice.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Tumour necrosis factor alpha (TNF-α) is a pleiotropic cytokine synthesised primarily by mononuclear cells; it has a potent pro-inflammatory effect, playing a crucial role in metabolic, immune, and inflammatory diseases. This cytokine has been studied in various biological systems. In bone tissue, TNF-α plays an integral role in skeletal disorders such as osteoporosis, fracture repair and rheumatoid arthritis through its involvement in regulating the balance between osteoblasts and osteoclasts, mediating inflammatory responses, promoting angiogenesis and exacerbating synovial proliferation. The biological effect TNF-α exerts in this context is determined by a combination of the signalling pathway it activates, the type of receptor it binds, and the concentration and duration of exposure. This review summarises the participation and pathophysiological role of TNF-α in osteoporosis, bone damage repair, chronic immunoinflammatory bone disease and spinal cord injury, and discusses its main mechanisms.
Collapse
Affiliation(s)
| | - Li He
- Affiliated Hospital of Zunyi Medical University, China.
| | | | - Xuhang Yan
- Affiliated Hospital of Zunyi Medical University, China.
| | - Jun Ao
- Affiliated Hospital of Zunyi Medical University, China.
| |
Collapse
|
11
|
Guo Y, Jiang S, Li H, Xie G, Pavel V, Zhang Q, Li Y, Huang C. Obesity induces osteoimmunology imbalance: Molecular mechanisms and clinical implications. Biomed Pharmacother 2024; 177:117139. [PMID: 39018871 DOI: 10.1016/j.biopha.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The notion that obesity can be a protective factor for bone health is a topic of ongoing debate. Increased body weight may have a positive impact on bone health due to its mechanical effects and the production of estrogen by adipose tissue. However, recent studies have found a higher risk of bone fracture and delayed bone healing in elderly obese patients, which may be attributed to the heightened risk of bone immune regulation disruption associated with obesity. The balanced functions of bone cells such as osteoclasts, osteoblasts, and osteocytes, would be subverted by aberrant and prolonged immune responses under obese conditions. This review aims to explore the intricate relationship between obesity and bone health from the perspective of osteoimmunology, elucidate the impact of disturbances in bone immune regulation on the functioning of bone cells, including osteoclasts, osteoblasts, and osteocytes, highlighting the deleterious effects of obesity on various diseases development such as rheumatoid arthritis (RA), osteoarthritis (AS), bone fracture, periodontitis. On the one hand, weight loss may achieve significant therapeutic effects on the aforementioned diseases. On the other hand, for patients who have difficulty in losing weight, the osteoimmunological therapies could potentially serve as a viable approach in halting the progression of these disease. Additional research in the field of osteoimmunology is necessary to ascertain the optimal equilibrium between body weight and bone health.
Collapse
Affiliation(s)
- Yating Guo
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
12
|
Galliera E, Massaccesi L, Suardi V, de Vecchi E, Villa F, Yi Z, Suo G, Lovati AB, Logoluso N, Corsi Romanelli MM, Pellegrini AV. sCD14-ST and Related Osteoimmunological Biomarkers: A New Diagnostic Approach to Osteomyelitis. Diagnostics (Basel) 2024; 14:1588. [PMID: 39125464 PMCID: PMC11312423 DOI: 10.3390/diagnostics14151588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Osteomyelitis (OM) is a major challenge in orthopedic surgery. The diagnosis of OM is based on imaging and laboratory tests, but it still presents some limitations. Therefore, a deeper comprehension of the pathogenetic mechanisms could enhance diagnostic and treatment approaches. OM pathogenesis is based on an inflammatory response to pathogen infection, leading to bone loss. The present study aims to investigate the potential diagnostic role of a panel of osteoimmunological serum biomarkers in the clinical approach to OM. The focus is on the emerging infection biomarker sCD14-ST, along with osteoimmunological and inflammatory serum biomarkers, to define a comprehensive biomarker panel for a multifaced approach to OM. The results, to our knowledge, demonstrate for the first time the diagnostic and early prognostic role of sCD14-ST in OM patients, suggesting that this biomarker could address the limitations of current laboratory tests, such as traditional inflammatory markers, in diagnosing OM. In addition, the study highlights a relevant diagnostic role of SuPAR, the chemokine CCL2, the anti-inflammatory cytokine IL-10, the Wnt inhibitors DKK-1 and Sclerostin, and the RANKL/OPG ratio. Moreover, CCL2 and SuPAR also exhibited early prognostic value.
Collapse
Affiliation(s)
- Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122 Milan, Italy; (L.M.); (M.M.C.R.)
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy;
| | - Luca Massaccesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122 Milan, Italy; (L.M.); (M.M.C.R.)
- Laboratorio Sperimentale Ricerche Biomarcatori Danno d’Organo, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Virginia Suardi
- Chirurgia Ricostruttiva e delle Infezioni Osteoarticolari (C.R.I.O.), IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy (A.V.P.)
| | - Elena de Vecchi
- Laboratorio di Analisi Chimico Cliniche e Microbiologiche, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy
| | - Francesca Villa
- Laboratorio di Analisi Chimico Cliniche e Microbiologiche, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy
| | - Zhang Yi
- Immunoassay Reagent Rand Department, Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen 211111, China (G.S.)
| | - Guorui Suo
- Immunoassay Reagent Rand Department, Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen 211111, China (G.S.)
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy;
| | - Nicola Logoluso
- Chirurgia Ricostruttiva e delle Infezioni Osteoarticolari (C.R.I.O.), IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy (A.V.P.)
| | - Massimiliano M. Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122 Milan, Italy; (L.M.); (M.M.C.R.)
- Department of Experimental and Clinical Pathology, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Antonio V. Pellegrini
- Chirurgia Ricostruttiva e delle Infezioni Osteoarticolari (C.R.I.O.), IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy (A.V.P.)
| |
Collapse
|
13
|
Wu Z, Wang Y, Liu W, Lu M, Shi J. The role of neuropilin in bone/cartilage diseases. Life Sci 2024; 346:122630. [PMID: 38614296 DOI: 10.1016/j.lfs.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Bone remodeling is the balance between osteoblasts and osteoclasts. Bone diseases such as osteoporosis and osteoarthritis are associated with imbalanced bone remodeling. Skeletal injury leads to limited motor function and pain. Neurophilin was initially identified in axons, and its various ligands and roles in bone remodeling, angiogenesis, neuropathic pain and immune regulation were later discovered. Neurophilin promotes osteoblast mineralization and inhibits osteoclast differentiation and its function. Neuropolin-1 provides channels for immune cell chemotaxis and cytokine diffusion and leads to pain. Neuropolin-1 regulates the proportion of T helper type 17 (Th17) and regulatory T cells (Treg cells), and affects bone immunity. Vascular endothelial growth factors (VEGF) combine with neuropilin and promote angiogenesis. Class 3 semaphorins (Sema3a) compete with VEGF to bind neuropilin, which reduces angiogenesis and rejects sympathetic nerves. This review elaborates on the structure and general physiological functions of neuropilin and summarizes the role of neuropilin and its ligands in bone and cartilage diseases. Finally, treatment strategies and future research directions based on neuropilin are proposed.
Collapse
Affiliation(s)
- Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Wei Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Mingcheng Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
14
|
Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol 2024; 133:112151. [PMID: 38685175 DOI: 10.1016/j.intimp.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.
Collapse
Affiliation(s)
- Jiale Hong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xingyue Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fa Xian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
15
|
Li S, Liu G, Hu S. Osteoporosis: interferon-gamma-mediated bone remodeling in osteoimmunology. Front Immunol 2024; 15:1396122. [PMID: 38817601 PMCID: PMC11137183 DOI: 10.3389/fimmu.2024.1396122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
As the world population ages, osteoporosis, the most common disease of bone metabolism, affects more than 200 million people worldwide. The etiology is an imbalance in bone remodeling process resulting in more significant bone resorption than bone remodeling. With the advent of the osteoimmunology field, the immune system's role in skeletal pathologies is gradually being discovered. The cytokine interferon-gamma (IFN-γ), a member of the interferon family, is an important factor in the etiology and treatment of osteoporosis because it mediates bone remodeling. This review starts with bone remodeling process and includes the cellular and key signaling pathways of bone remodeling. The effects of IFN-γ on osteoblasts, osteoclasts, and bone mass are discussed separately, while the overall effects of IFN-γ on primary and secondary osteoporosis are summarized. The net effect of IFN-γ on bone appears to be highly dependent on the environment, dose, concentration, and stage of cellular differentiation. This review focuses on the mechanisms of bone remodeling and bone immunology, with a comprehensive discussion of the relationship between IFN-γ and osteoporosis. Finding the paradoxical balance of IFN-γ in bone immunology and exploring the potential of its clinical application provide new ideas for the clinical treatment of osteoporosis and drug development.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
| |
Collapse
|
16
|
Perin P, Cossellu D, Vivado E, Batti L, Gantar I, Voigt FF, Pizzala R. Temporal bone marrow of the rat and its connections to the inner ear. Front Neurol 2024; 15:1386654. [PMID: 38817550 PMCID: PMC11137668 DOI: 10.3389/fneur.2024.1386654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
Calvarial bone marrow has been found to be central in the brain immune response, being connected to the dura through channels which allow leukocyte trafficking. Temporal bone marrow is thought to play important roles in relation to the inner ear, but is still largely uncharacterized, given this bone complex anatomy. We characterized the geometry and connectivity of rat temporal bone marrow using lightsheet imaging of cleared samples and microCT. Bone marrow was identified in cleared tissue by cellular content (and in particular by the presence of megakaryocytes); since air-filled cavities are absent in rodents, marrow clusters could be recognized in microCT scans by their geometry. In cleared petrosal bone, autofluorescence allowed delineation of the otic capsule layers. Within the endochondral layer, bone marrow was observed in association to the cochlear base and vestibule, and to the cochlear apex. Cochlear apex endochondral marrow (CAEM) was a separated cluster from the remaining endochondral marrow, which was therefore defined as "vestibular endochondral marrow" (VEM). A much larger marrow island (petrosal non-endochondral marrow, PNEM) extended outside the otic capsule surrounding semicircular canal arms. PNEM was mainly connected to the dura, through bone channels similar to those of calvarial bone, and only a few channels were directed toward the canal periosteum. On the contrary, endochondral bone marrow was well connected to the labyrinth through vascular loops (directed to the spiral ligament for CAEM and to the bony labyrinth periosteum for VEM), and to dural sinuses. In addition, CAEM was also connected to the tensor tympani fossa of the middle ear and VEM to the endolymphatic sac. Endochondral marrow was made up of small lobules connected to each other and to other structures by channels lined by elongated macrophages, whereas PNEM displayed larger lobules connected by channels with a sparse macrophage population. Our data suggest that the rat inner ear is surrounded by bone marrow at the junctions with middle ear and brain, most likely with "customs" role, restricting pathogen spread; a second marrow network with different structural features is found within the endochondral bone layer of the otic capsule and may play different functional roles.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behaviour Sciences, University of Pavia, Pavia, Italy
| | - Daniele Cossellu
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Elisa Vivado
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Laura Batti
- Wyss Center for Bio and Neuro Engineering, Geneva, Switzerland
| | - Ivana Gantar
- Wyss Center for Bio and Neuro Engineering, Geneva, Switzerland
| | - Fabian F. Voigt
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
Giannakopoulos A, Efthymiadou A, Kritikou D, Chrysis D. Osteoprotegerin in infection-induced acute inflammatory states in children. Heliyon 2024; 10:e27565. [PMID: 38509997 PMCID: PMC10951505 DOI: 10.1016/j.heliyon.2024.e27565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Background and aims Osteoprotegerin (OPG) is a tumor necrosis factor receptor superfamily member which increases in chronic inflammation and is associated with altered bone turnover and cardiovascular complications. In this study, we investigated whether OPG increases during acute inflammatory states induced by infections in children and correlated its levels with other biomarkers. Materials and methods This is a prospective study that included 59 patients with documented bacterial infections, 20 with viral infections and 20 healthy controls. OPG, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and white blood cells (WBC) were measured. Results OPG serum levels were significantly increased during inflammation induced by a bacterial infection, compared to viral infection and controls (4.17 pmol/l (2.40-12.12) vs 3.2 (1.66-5.33) and 3 pmol/l (2.13-4.76), respectively, p < 0.001). In addition, OPG correlated well with CRP (rho = 0.428, p = 0.0011), ESR (rho = 0.3, p = 0.026), and WBC (rho = 0.266, p = 0.05) only in the group with bacterial infection. The sensitivity of CRP in detecting a bacterial infection was superior to OPG (67.3% vs 38.3%). Conclusion This study provides proof of concept that OPG increases differentially in bacterial infections, although with a lower sensitivity than CRP. Further studies are needed to define the role of OPG during the inflammatory states of infection in pediatric infections.
Collapse
Affiliation(s)
- Aristeidis Giannakopoulos
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| | - Alexandra Efthymiadou
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| | - Dimitra Kritikou
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| | - Dionisios Chrysis
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| |
Collapse
|
18
|
Wang S, Qiu Y, Tang C, Tang H, Liu J, Chen J, Zhang L, Tang G. Early changes of bone metabolites and lymphocyte subsets may participate in osteoporosis onset: a preliminary study of a postmenopausal osteoporosis mouse model. Front Endocrinol (Lausanne) 2024; 15:1323647. [PMID: 38481438 PMCID: PMC10933021 DOI: 10.3389/fendo.2024.1323647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/05/2024] [Indexed: 11/02/2024] Open
Abstract
Purpose Metabolic and immune changes in the early stages of osteoporosis are not well understood. This study aimed to explore the changes in bone metabolites and bone marrow lymphocyte subsets and their relationship during the osteoporosis onset. Methods We established OVX and Sham mouse models. After 5, 15, and 40 days, five mice in each group were sacrificed. Humeri were analyzed by microCT. The bone marrow cells of the left femur and tibia were collected for flow cytometry analysis. The right femur and tibia were analyzed by LC-MS/MS for metabolomics analysis. Results Bone microarchitecture was significantly deteriorated 15 days after OVX surgery. Analysis of bone metabolomics showed that obvious metabolite changes had happened since 5 days after surgery. Lipid metabolism was significant at the early stage of the osteoporosis. The proportion of immature B cells was increased, whereas the proportion of mature B cells was decreased in the OVX group. Metabolites were significantly correlated with the proportion of lymphocyte subsets at the early stage of the osteoporosis. Conclusion Lipid metabolism was significant at the early stage of the osteoporosis. Bone metabolites may influence bone formation by interfering with bone marrow lymphocyte subsets.
Collapse
Affiliation(s)
- Sizhu Wang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyou Qiu
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cuisong Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, China
| | - Huan Tang
- Department of Radiology, Huadong Hospital of Fudan University, Shanghai, China
| | - Jinchuan Liu
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jieying Chen
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
20
|
Liu YCG, Teng AY. Distinct cross talk of IL-17 & TGF-β with the immature CD11c + TRAF6 (-/-) -null myeloid dendritic cell-derived osteoclast precursor (mDDOCp) may engage signaling toward an alternative pathway of osteoclastogenesis for arthritic bone loss in vivo. Immun Inflamm Dis 2024; 12:e1173. [PMID: 38415924 PMCID: PMC10851637 DOI: 10.1002/iid3.1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Dendritic cells (DCs), though borne heterogeneous, are the most potent antigen-presenting cells, whose critical functions include triggering antigen-specific naïve T-cell responses and fine-tuning the innate versus adaptive immunity at the osteo-immune and/or mucosal mesenchyme interface. We previously reported that immature myeloid-CD11c+ DCs/mDCs may act like osteoclast (OC) precursors (OCp/mDDOCp) capable of developing into functional OCs via an alternative pathway of inflammation-induced osteoclastogenesis; however, what are their contribution and signaling interactions with key osteotropic cytokines (i.e., interleukin-17 [IL-17] and transforming growth factor-β [TGF-β]) to bearing such inflammatory bone loss in vivo remain unclear to date. METHODS Herein, we employed mature adult bone marrow-reconstituted C57BL/6 TRAF6(-/-) -null chimeras without the classical monocyte/macrophage (Mo/Mϕ)-derived OCs to address their potential contribution to OCp/mDDOCp-mediated osteoclastogenesis in the chicken type-II-collagen (CC-II)-induced joint inflammation versus arthritic bone loss and parallel associations with the double-positive CD11c+ TRAP+ TRAF6-null(-/-) DC-like OCs detected in vivo via the quantitative dual-immunohistochemistry and digital histomorphometry for analyses. RESULTS The resulting findings revealed the unrecognized novel insight that (i) immature myeloid-CD11c+ TRAF6(-/-) TRAP+ DC-like OCs were involved, co-localized, and strongly associated with joint inflammation and bone loss, independent of the Mo/Mϕ-derived classical OCs, in CC-II-immunized TRAF6(-/-) -null chimeras, and (ii) the osteotropic IL-17 may engage distinct crosstalk with CD11c+ mDCs/mDDOCp before developing the CD11c+ TRAP+ TRAF6(-/-) OCs via a TGF-β-dependent interaction toward inflammation-induced arthritic bone loss in vivo. CONCLUSION These results confirm and substantiate the validity of TRAF6(-/-) -null chimeras to address the significance of immature mCD11c+ TRAP+ DC-like OCs/mDDOCp subset for an alternative pathway of arthritic bone loss in vivo. Such CD11c+ mDCs/mDDOCp-associated osteoclastogenesis through the step-wise twist-in-turns osteo-immune cross talks are thereby theme highlighted to depict a summative re-visitation proposed.
Collapse
Affiliation(s)
- Yen Chun G. Liu
- Department of Oral HygieneCenter for Osteo‐immunology & Biotechnology Research (COBR), College of Dental Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
- School of Oral Hygiene & Nursing, and School of DentistryKanagawa Dental University (KDU)YokosukaKanagawaJapan
| | - Andy Yen‐Tung Teng
- The Eastman Institute for Oral Health (EIOH), School of Medicine & Dentistry, University of RochesterRochesterNew YorkUSA
- Center for Osteo‐immunology & Biotechnology Research (COBR), School of Dentistry, College of Dental Medicine, Kaohsiung Medical University (KMU) and KMU‐HospitalKaohsiungTaiwan
| |
Collapse
|
21
|
Wang X, Sun B, Wang Y, Gao P, Song J, Chang W, Xiao Z, Xi Y, Li Z, An F, Yan C. Research progress of targeted therapy regulating Th17/Treg balance in bone immune diseases. Front Immunol 2024; 15:1333993. [PMID: 38352872 PMCID: PMC10861655 DOI: 10.3389/fimmu.2024.1333993] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Rheumatoid arthritis (RA) and postmenopausal osteoporosis (PMOP) are common bone-immune diseases. The imbalance between helper (Th17) and regulatory T cells (Tregs) produced during differentiation of CD4+ T cells plays a key regulatory role in bone remodelling disorders in RA and PMOP. However, the specific regulatory mechanism of this imbalance in bone remodelling in RA and PMOP has not been clarified. Identifying the regulatory mechanism underlying the Th17/Treg imbalance in RA and PMOP during bone remodelling represents a key factor in the research and development of new drugs for bone immune diseases. In this review, the potential roles of Th17, Treg, and Th17/Treg imbalance in regulating bone remodelling in RA and PMOP have been summarised, and the potential mechanisms by which probiotics, traditional Chinese medicine compounds, and monomers maintain bone remodelling by regulating the Th17/Treg balance are expounded. The maintenance of Th17/Treg balance could be considered as an therapeutic alternative for the treatment of RA and PMOP. This study also summarizes the advantages and disadvantages of conventional treatments and the quality of life and rehabilitation of patients with RA and PMOP. The findings presented her will provide a better understanding of the close relationship between bone immunity and bone remodelling in chronic bone diseases and new ideas for future research, prevention, and treatment of bone immune diseases.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongbin Xi
- Orthopaedics Department, The No.2 People's Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Zhonghong Li
- Pathological Research Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fangyu An
- Teaching Experiment Training Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
22
|
Minaychev VV, Smirnova PV, Kobyakova MI, Teterina AY, Smirnov IV, Skirda VD, Alexandrov AS, Gafurov MR, Shlykov MA, Pyatina KV, Senotov AS, Salynkin PS, Fadeev RS, Komlev VS, Fadeeva IS. Low-Temperature Calcium Phosphate Ceramics Can Modulate Monocytes and Macrophages Inflammatory Response In Vitro. Biomedicines 2024; 12:263. [PMID: 38397865 PMCID: PMC10887285 DOI: 10.3390/biomedicines12020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Creating bioactive materials for bone tissue regeneration and augmentation remains a pertinent challenge. One of the most promising and rapidly advancing approaches involves the use of low-temperature ceramics that closely mimic the natural composition of the extracellular matrix of native bone tissue, such as Hydroxyapatite (HAp) and its phase precursors (Dicalcium Phosphate Dihydrate-DCPD, Octacalcium Phosphate-OCP, etc.). However, despite significant scientific interest, the current knowledge and understanding remain limited regarding the impact of these ceramics not only on reparative histogenesis processes but also on the immunostimulation and initiation of local aseptic inflammation leading to material rejection. Using the stable cell models of monocyte-like (THP-1ATRA) and macrophage-like (THP-1PMA) cells under the conditions of LPS-induced model inflammation in vitro, the influence of DCPD, OCP, and HAp on cell viability, ROS and intracellular NO production, phagocytosis, and the secretion of pro-inflammatory cytokines was assessed. The results demonstrate that all investigated ceramic particles exhibit biological activity toward human macrophage and monocyte cells in vitro, potentially providing conditions necessary for bone tissue restoration/regeneration in the peri-implant environment in vivo. Among the studied ceramics, DCPD appears to be the most preferable for implantation in patients with latent inflammation or unpredictable immune status, as this ceramic had the most favorable overall impact on the investigated cellular models.
Collapse
Affiliation(s)
- Vladislav V. Minaychev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Polina V. Smirnova
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Anastasia Yu. Teterina
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Igor V. Smirnov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Vladimir D. Skirda
- Institute of Physics, Kazan Federal University, Kremlyovskaya St. 18, 420008 Kazan, Russia; (V.D.S.); (M.R.G.)
| | - Artem S. Alexandrov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St. 18, 420008 Kazan, Russia; (V.D.S.); (M.R.G.)
| | - Marat R. Gafurov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St. 18, 420008 Kazan, Russia; (V.D.S.); (M.R.G.)
| | - Mikhail A. Shlykov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Kira V. Pyatina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Anatoliy S. Senotov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Pavel S. Salynkin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Roman S. Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Vladimir S. Komlev
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Irina S. Fadeeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| |
Collapse
|
23
|
Monteiro AC, de Andrade Garcia D, Du Rocher B, Fontão APGA, Nogueira LP, Fidalgo G, Colaço MV, Bonomo A. Cooperation between T and B cells reinforce the establishment of bone metastases in a mouse model of breast cancer. Bone 2024; 178:116932. [PMID: 37832903 DOI: 10.1016/j.bone.2023.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Immune cells educated by the primary breast tumor and their secreted factors support the formation of bone pre-metastatic niche. Indeed, we showed that RANKL+ CD3+ T cells, specific for the 4T1 mammary carcinoma cell line, arrive at the bone marrow before metastatic cells and set the pre-metastatic niche. In the absence of RANKL expressed by T cells, there is no pre-metastatic osteolytic disease and bone metastases are completely blocked. Adding to the role of T cells, we have recently demonstrated that dendritic cells assist RANKL+ T cell activities at bone pre-metastatic niche, by differentiating into potent bone resorbing osteoclast-like cells, keeping their antigen-presenting cell properties, providing a positive feedback loop to the osteolytic profile. Here we are showing that bone marrow-derived CD19+ B cells, from 4T1 tumor-bearing mice, also express the pro-osteoclastogenic cytokine receptor activator of NFκB ligand (RANKL). Analysis of trabecular bone mineral density by conventional histomorphometry and X-ray microtomography (micro-CT) demonstrated that B cells expressing RANKL cooperate with 4T1-primed CD3+ T cells to induce bone loss. Moreover, RANKL expression by B cells depends on T cells activity, since experiments performed with B cells derived from 4T1 tumor-bearing nude BALB/c mice resulted in the maintenance of trabecular bone mass instead of bone loss. Altogether, we believe that 4T1-primed RANKL+ B cells alone are not central mediators of bone loss in vivo but when associated with T cells induce a strong decrease in bone mass, accelerating both breast cancer progression and bone metastases establishment. Although several studies performed in different pathological settings, showed that B cells, positively and negatively impact on osteoclastogenesis, due to their capacity to secret pro or anti-osteoclastogenic cytokines, as far as we know, this is the first report showing the role of RANKL expression by B cells on breast cancer-derived bone metastases scenario.
Collapse
Affiliation(s)
- Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro, Brazil; Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Diego de Andrade Garcia
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro, Brazil; Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Barbara Du Rocher
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Gabriel Fidalgo
- Laboratory of Applied Physics to Biomedical and Environmental Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Vinicius Colaço
- Laboratory of Applied Physics to Biomedical and Environmental Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Lv X, Wang X, Wang X, Han Y, Chen H, Hao Y, Zhang H, Cui C, Gao Q, Zheng Z. Research progress in arthritis treatment with the active components of Herba siegesbeckiae. Biomed Pharmacother 2023; 169:115939. [PMID: 38007937 DOI: 10.1016/j.biopha.2023.115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Arthritis is a group of diseases characterized by joint pain, swelling, stiffness, and limited movement. Osteoarthritis, rheumatoid arthritis, and gouty arthritis are the most common types of arthritis. Arthritis severely affects the quality of life of patients and imposes a heavy financial and medical burden on their families and society at large. As a widely used traditional Chinese medicine, Herba siegesbeckiae has many pharmacological effects such as anti-inflammatory and analgesic, anti-ischemic injury, cardiovascular protection, and hypoglycemic. In addition, it has significant therapeutic effects on arthritis. The rich chemical compositions of H. siegesbeckiae primarily include diterpenoids, sesquiterpenoids, and flavonoids. As one of the main active components of H. siegesbeckiae, kirenol and quercetin play a vital role in reducing arthritis symptoms. In the present study, the research progress in arthritis treatment with the active components of H. siegesbeckiae is reviewed.
Collapse
Affiliation(s)
- Xiaoqian Lv
- Binzhou Medical University, 264003 Yantai, China
| | - Xiaoyu Wang
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Xuelei Wang
- Binzhou Medical University, 264003 Yantai, China
| | - Yunna Han
- Binzhou Medical University, 264003 Yantai, China
| | - Haoyue Chen
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Yuwen Hao
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Hao Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Chao Cui
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China
| | - Qiang Gao
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China.
| | - Zuncheng Zheng
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China.
| |
Collapse
|
25
|
Chen N, Diao CY, Huang X, Tan WX, Chen YB, Qian XY, Gao J, Zhao DB. RhoA Promotes Synovial Proliferation and Bone Erosion in Rheumatoid Arthritis through Wnt/PCP Pathway. Mediators Inflamm 2023; 2023:5057009. [PMID: 38022686 PMCID: PMC10667059 DOI: 10.1155/2023/5057009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Ras homolog gene family member A (RhoA) plays a major role in the Wnt/planar cell polarity (PCP) pathway, which is significantly activated in patients with rheumatoid arthritis (RA). The function of RhoA in RA synovitis and bone erosion is still elusive. Here, we not only explored the impact of RhoA on the proliferation and invasion of RA fibroblast-like synoviocytes (FLSs) but also elucidated its effect on mouse osteoclast and a mouse model of collagen-induced arthritis (CIA). Results showed that RhoA was overexpressed in RA and CIA synovial tissues. Lentivirus-mediated silencing of RhoA increased apoptosis, attenuated invasion, and dramatically upregulated osteoprotegerin/receptor activator of nuclear factor-κB ligand (OPG/RANKL) ratio in RA-FLSs. Additionally, the silencing of RhoA inhibited mouse osteoclast differentiation in vitro and alleviated synovial hyperplasia and bone erosion in the CIA mouse model. These effects in RA-FLSs and osteoclasts were all regulated by RhoA/Rho-associated protein kinase 2 (ROCK2) and might interact with Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Ning Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Rheumatology and Immunology, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Chao-Yue Diao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Xing Tan
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Ya-Bing Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin-Yu Qian
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dong-Bao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
26
|
Qiu X, Peng H, Zhao Y, Yu Y, Yang J, Liu C, Ren S, Miao L. Remodeling periodontal osteoimmune microenvironment through MAPK/NFκB phosphorylation pathway of macrophage via intelligent ROS scavenging. Hum Cell 2023; 36:1991-2005. [PMID: 37695495 DOI: 10.1007/s13577-023-00979-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
Periodontitis is an inflammatory disorder which leads to the defect of tooth-supporting tissue, especially in alveolar bone. During this process, the polarization behavior of macrophages affects immune inflammation and bone regeneration in which reactive oxygen species (ROS) play an essential role. ROS level should be regulated to the physiological level to protect stem cells from the inflammatory immune microenvironment. Our previous study constructed a ROS-responsive nanoplatform (Pssl-NAC), which possessed ROS-responsive antioxidative effect and could be potentially applied in periodontitis. However, the connection among bone regeneration, inflammation and oxidative stress remained in osteoimmune regulation is not clear. To further investigate the mechanism of the way how Pssl-NAC works in the treatment of periodontitis would be meaningful. Here, we investigated the effect of PssL-NAC in the regulation of the osteoimmune microenvironment through macrophage polarization. Results show PssL-NAC regulated the macrophage polarization direction in an inflammatory environment by maintaining an appropriate level of intracellular ROS, in which the MAPK/NFκB phosphorylation pathway is particularly important. In the macrophage-human periodontal ligament stem cells (hPDLSCs) co-culture system, PssL-NAC treatment significantly enhanced the osteogenic differentiation of hPDLSCs. In vivo experiment further confirmed the M2-like macrophages increased in the periodontal tissue of rats, and the expression of iNOS and p65 decreased after PssL-NAC treatment. In conclusion, PssL-NAC regulates the osteoimmune microenvironment and protects stem cells from oxidative stress injury for bone regeneration, which provides a strategy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Xinyi Qiu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haoran Peng
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Zhao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yijun Yu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Yang
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Shuangshuang Ren
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
27
|
Zhang HS, Jiang CX, Ji YT, Zhang YF, Chen Z, Cao ZG, Liu H. Osteoprotective Role of the Mir338 Cluster Ablation during Periodontitis. J Dent Res 2023; 102:1337-1347. [PMID: 37688381 DOI: 10.1177/00220345231187288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease that compromises the integrity of the supporting tissues of the teeth and leads to the loss of the alveolar bone. The Mir338 cluster has been proven to be a potential target for the treatment of osteoporosis and is also enriched in gingival tissues with periodontitis; however, its role in periodontitis remains unknown. Here, we aimed to use periodontitis as a model to expand our understanding of the Mir338 cluster in osteoimmunology and propose a new target to protect against bone loss during periodontitis progression. Significant enrichment of the Mir338 cluster was validated in gingival tissues from patients with chronic periodontitis and a ligature-induced periodontitis mouse model. In vivo, attenuation of alveolar bone loss after 7 d of ligature was observed in the Mir338 cluster knockout (KO) mice. Interestingly, immunofluorescence and RNA sequencing showed that ablation of the Mir338 cluster reduced osteoclast formation and elevated the inflammatory response, with enrichment of IFN-γ and JAK-STAT signaling pathways. Ablation of the Mir338 cluster also skewed macrophages toward the M1 phenotype and inhibited osteoclastogenesis via Stat1 in vitro and in vivo. Furthermore, the local administration of miR-338-3p antagomir prevented alveolar bone loss from periodontitis. In conclusion, the Mir338 cluster balanced M1 macrophage polarization and osteoclastogenesis and could serve as a novel therapeutic target against periodontitis-related alveolar bone loss.
Collapse
Affiliation(s)
- H S Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - C X Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y T Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Y F Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- TaiKang Center for Life and Medical Sciences, Wuhan University, China
| | - Z Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Z G Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- Department of Periodontology, School of Stomatology, Wuhan University, Wuhan, China
| | - H Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- TaiKang Center for Life and Medical Sciences, Wuhan University, China
- Department of Periodontology, School of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Ye Z, Wang Y, Xiang B, Wang H, Tao H, Zhang C, Zhang S, Sun D, Luo F, Song L. Roles of the Siglec family in bone and bone homeostasis. Biomed Pharmacother 2023; 165:115064. [PMID: 37413904 DOI: 10.1016/j.biopha.2023.115064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases.
Collapse
Affiliation(s)
- Zi Ye
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Binqing Xiang
- Department of Surgical Anesthesia, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Heng Wang
- Army Border Defense 331st Brigade, Dandong 118000, China
| | - Haiyan Tao
- Health Management Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Shuai Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
29
|
Zhou C, Shen S, Zhang M, Luo H, Zhang Y, Wu C, Zeng L, Ruan H. Mechanisms of action and synergetic formulas of plant-based natural compounds from traditional Chinese medicine for managing osteoporosis: a literature review. Front Med (Lausanne) 2023; 10:1235081. [PMID: 37700771 PMCID: PMC10493415 DOI: 10.3389/fmed.2023.1235081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disease prevalent in older adults, characterized by substantial bone loss and deterioration of microstructure, resulting in heightened bone fragility and risk of fracture. Traditional Chinese Medicine (TCM) herbs have been widely employed in OP treatment owing to their advantages, such as good tolerance, low toxicity, high efficiency, and minimal adverse reactions. Increasing evidence also reveals that many plant-based compounds (or secondary metabolites) from these TCM formulas, such as resveratrol, naringin, and ginsenoside, have demonstrated beneficial effects in reducing the risk of OP. Nonetheless, the comprehensive roles of these natural products in OP have not been thoroughly clarified, impeding the development of synergistic formulas for optimal OP treatment. In this review, we sum up the pathological mechanisms of OP based on evidence from basic and clinical research; emphasis is placed on the in vitro and preclinical in vivo evidence-based anti-OP mechanisms of TCM formulas and their chemically active plant constituents, especially their effects on imbalanced bone homeostasis regulated by osteoblasts (responsible for bone formation), osteoclasts (responsible for bone resorption), bone marrow mesenchymal stem cells as well as bone microstructure, angiogenesis, and immune system. Furthermore, we prospectively discuss the combinatory ingredients from natural products from these TCM formulas. Our goal is to improve comprehension of the pharmacological mechanisms of TCM formulas and their chemically active constituents, which could inform the development of new strategies for managing OP.
Collapse
Affiliation(s)
- Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Shuchao Shen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Muxin Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuliang Zhang
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lingfeng Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
30
|
Liu M, Wang Y, Shi W, Yang C, Wang Q, Chen J, Li J, Chen B, Sun G. PCDH7 as the key gene related to the co-occurrence of sarcopenia and osteoporosis. Front Genet 2023; 14:1163162. [PMID: 37476411 PMCID: PMC10354703 DOI: 10.3389/fgene.2023.1163162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 07/22/2023] Open
Abstract
Sarcopenia and osteoporosis, two degenerative diseases in older patients, have become severe health problems in aging societies. Muscles and bones, the most important components of the motor system, are derived from mesodermal and ectodermal mesenchymal stem cells. The adjacent anatomical relationship between them provides the basic conditions for mechanical and chemical signals, which may contribute to the co-occurrence of sarcopenia and osteoporosis. Identifying the potential common crosstalk genes between them may provide new insights for preventing and treating their development. In this study, DEG analysis, WGCNA, and machine learning algorithms were used to identify the key crosstalk genes of sarcopenia and osteoporosis; this was then validated using independent datasets and clinical samples. Finally, four crosstalk genes (ARHGEF10, PCDH7, CST6, and ROBO3) were identified, and mRNA expression and protein levels of PCDH7 in clinical samples from patients with sarcopenia, with osteoporosis, and with both sarcopenia and osteoporosis were found to be significantly higher than those from patients without sarcopenia or osteoporosis. PCDH7 seems to be a key gene related to the development of both sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongheng Wang
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Shi
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qidong Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyao Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
31
|
Mauro D, Gandolfo S, Tirri E, Schett G, Maksymowych WP, Ciccia F. The bone marrow side of axial spondyloarthritis. Nat Rev Rheumatol 2023:10.1038/s41584-023-00986-6. [PMID: 37407716 DOI: 10.1038/s41584-023-00986-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Spondyloarthritis (SpA) is characterized by the infiltration of innate and adaptive immune cells into entheses and bone marrow. Molecular, cellular and imaging evidence demonstrates the presence of bone marrow inflammation, a hallmark of SpA. In the spine and the peripheral joints, bone marrow is critically involved in the pathogenesis of SpA. Evidence suggests that bone marrow inflammation is associated with enthesitis and that there are roles for mechano-inflammation and intestinal inflammation in bone marrow involvement in SpA. Specific cell types (including mesenchymal stem cells, innate lymphoid cells and γδ T cells) and mediators (Toll-like receptors and cytokines such as TNF, IL-17A, IL-22, IL-23, GM-CSF and TGFβ) are involved in these processes. Using this evidence to demonstrate a bone marrow rather than an entheseal origin for SpA could change our understanding of the disease pathogenesis and the relevant therapeutic approach.
Collapse
Affiliation(s)
- Daniele Mauro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Saviana Gandolfo
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Enrico Tirri
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Francesco Ciccia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
32
|
Kaifu T, Maruhashi T, Chung SH, Shimizu K, Nakamura A, Iwakura Y. DCIR suppresses osteoclastic proliferation and resorption by downregulating M-CSF and RANKL signaling. Front Immunol 2023; 14:1159058. [PMID: 37266426 PMCID: PMC10230091 DOI: 10.3389/fimmu.2023.1159058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Dendritic cell immunoreceptor (DCIR) is an inhibitory C-type lectin receptor that acts as a negative regulator in the immune system and bone metabolism. We previously revealed that DCIR deficiency enhanced osteoclastogenesis and antigen presentation of dendritic cells, and that asialo-biantennary N-glycan (NA2) functions as a ligand for DCIR. NA2 binding to DCIR suppressed murine and human osteoclastogenesis that occurs in the presence of M-CSF and RANKL. The DCIR-NA2 axis, therefore, plays an important role in regulating osteoclastogenesis in both mice and humans, although the underlying mechanisms remain unclear. Here we found that Dcir -/- bone marrow-derived macrophages (BMMs) exhibited greater proliferative and differentiation responses to M-CSF and RANKL, respectively, than wild-type (WT) BMMs. Moreover, Dcir -/- osteoclasts (OCs) increased resorptive activity and cell fusion more significantly than WT OCs. DCIR deficiency affects gene expression patterns in OCs, and we found that the expression of neuraminidase 4 was increased in Dcir -/- OCs. Furthermore, DCIR-NA2 interaction in WT BMMs, but not Dcir -/- BMMs, decreased Akt phosphorylation in response to M-CSF and RANKL. These data suggest that DCIR regulates osteoclastogenesis by downregulating M-CSF and RANKL signaling, and that DCIR-mediated signaling may contribute to the terminal modification of oligosaccharides by controlling the expression of glycosylation enzymes.
Collapse
Affiliation(s)
- Tomonori Kaifu
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Takumi Maruhashi
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Kenji Shimizu
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
33
|
Matsuda K, Shiba N, Hiraoka K. New Insights into the Role of Synovial Fibroblasts Leading to Joint Destruction in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24065173. [PMID: 36982247 PMCID: PMC10049180 DOI: 10.3390/ijms24065173] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is characterized by multiple-joint synovitis with subsequent destruction of bone and cartilage. The excessive autoimmune responses cause an imbalance in bone metabolism, promoting bone resorption and inhibiting bone formation. Preliminary studies have revealed that receptor activator of NF-κB ligand (RANKL)-mediated osteoclast induction is an important component of bone destruction in RA. Synovial fibroblasts are the crucial producers of RANKL in the RA synovium; novel analytical techniques, primarily, single-cell RNA sequencing, have confirmed that synovial fibroblasts include heterogeneous subsets of both pro-inflammatory and tissue-destructive cell types. The heterogeneity of immune cells in the RA synovium and the interaction of synovial fibroblasts with immune cells have recently received considerable attention. The current review focused on the latest findings regarding the crosstalk between synovial fibroblasts and immune cells, and the pivotal role played by synovial fibroblasts in joint destruction in RA.
Collapse
Affiliation(s)
- Kotaro Matsuda
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Koji Hiraoka
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| |
Collapse
|
34
|
Meng B, Yang B, Qu Y, Liu Y, Wu D, Fu C, He Y, Chen X, Liu C, Kou X, Cao Y. Dual Role of Interleukin-20 in Different Stages of Osteoclast Differentiation and Its Osteoimmune Regulation during Alveolar Bone Remodeling. Int J Mol Sci 2023; 24:ijms24043810. [PMID: 36835229 PMCID: PMC9961846 DOI: 10.3390/ijms24043810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Osteoimmunology mediators are critical to balance osteoblastogenesis and osteoclastogenesis to maintain bone homeostasis. A lot of the osteoimmunology mediators are regulated by interleukin-20 (IL-20). However, little is known about the role of IL-20 in bone remodeling. Here, we showed that IL-20 expression was correlated with osteoclast (OC) activity in remodeled alveolar bone during orthodontic tooth movement (OTM). Ovariectomize (OVX) in rats promoted OC activity and enhanced IL-20 expression, while blocking OC inhibited IL-20 expression in osteoclasts. In vitro, IL-20 treatment promoted survival, inhibited apoptosis of the preosteoclast at the early stages of osteoclast differentiation, and boosted the formation of osteoclasts and their bone resorption function at the late stages. More importantly, anti-IL-20 antibody treatment blocked IL-20-induced osteoclastogenesis and the subsequent bone resorption function. Mechanistically, we showed that IL-20 synergistically acts with RANKL to activate the NF-κB signaling pathway to promote the expression of c-Fos and NFATc1 to promote osteoclastogenesis. Moreover, we found that local injection of IL-20 or anti-IL-20 antibody enhanced osteoclast activity and accelerated OTM in rats, while blocking IL-20 reversed this phenomenon. This study revealed a previously unknown role of IL-20 in regulating alveolar bone remodeling and implies the application of IL-20 to accelerated OTM.
Collapse
Affiliation(s)
- Bowen Meng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Benyi Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yan Qu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yuanbo Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Dongle Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chaoran Fu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xi Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510260, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| | - Yang Cao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| |
Collapse
|
35
|
Lu J, Hu D, Zhang Y, Ma C, Shen L, Shuai B. Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials. Front Oncol 2023; 13:1133828. [PMID: 36860316 PMCID: PMC9969102 DOI: 10.3389/fonc.2023.1133828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Denosumab, a fully humanized monoclonal neutralizing antibody, inhibits activation of the RANK/RANKL/OPG signaling pathway through competitive binding with RANKL, thereby inhibiting osteoclast-mediated bone resorption. Denosumab inhibits bone loss; therefore, it is used to treat metabolic bone diseases (including postmenopausal osteoporosis, male osteoporosis, and glucocorticoid-induced osteoporosis), in clinical practice. Since then, multiple effects of denosumab have been discovered. A growing body of evidence suggests that denosumab has a variety of pharmacological activities and broad potential in clinical diseases such as osteoarthritis, bone tumors, and other autoimmune diseases. Currently, Denosumab is emerging as a treatment for patients with malignancy bone metastases, and it also shows direct or indirect anti-tumor effects in preclinical models and clinical applications. However, as an innovative drug, its clinical use for bone metastasis of malignant tumors is still insufficient, and its mechanism of action needs to be further investigated. This review systematically summarizes the pharmacological mechanism of action of denosumab and the current understanding and clinical practice of the use of denosumab for bone metastasis of malignant tumors to help clinicians and researchers deepen their understanding of denosumab.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Shen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Bo Shuai,
| |
Collapse
|
36
|
Yang W, Pan Q, Huang F, Hu H, Shao Z. Research progress of bone metastases: From disease recognition to clinical practice. Front Oncol 2023; 12:1105745. [PMID: 36761418 PMCID: PMC9905420 DOI: 10.3389/fonc.2022.1105745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Bone metastases, as one of the common types of metastatic tumors, have a great impact on the survival period and quality of life of patients. Bone metastases are usually characterized by bone destruction. Skeletal related events caused by bone destruction often lead to pain, pathological fractures and even paralysis. In this review, we provide a detailed explanation of bone metastases from the epidemiology, clinical features, pathogenesis, and recently developed clinical treatment viewpoints. We concluded that the incidence of bone metastases is increasing gradually, with serious clinical symptoms, complex pathogenesis and diverse clinical treatment. Tumor cells, immune cells, osteoblasts/osteoclasts and other cells as well as cytokines and enzymes all play a key role in the pathogenesis of bone metastases. We believe that the future treatment of bone metastases will be diversified and comprehensive. Some advanced technologies, such as nanomedicine, could be used for treatment, but this depends on understanding how disease occurs. With the development of treatment, the survival time and quality of life of patients will be improved.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Hu
- *Correspondence: Hongzhi Hu, ; Zengwu Shao,
| | | |
Collapse
|
37
|
Yin M, Wang J, Zhang J, Wang W, Lu W, Xu F, Ma X, Lyu S, Chen L, Zhang L, Dong Z, Xiao Y. Transcription analyses of differentially expressed mRNAs, lncRNAs, circRNAs, and miRNAs in the growth plate of rats with glucocorticoid-induced growth retardation. PeerJ 2023; 11:e14603. [PMID: 36684670 PMCID: PMC9851049 DOI: 10.7717/peerj.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/29/2022] [Indexed: 01/17/2023] Open
Abstract
Background Glucocorticoids (GCs) are commonly used to treat autoimmune diseases and malignancies in children and adolescents. Growth retardation is a common adverse effect of GC treatment in pediatric patients. Accumulating evidence indicates that non-coding RNAs (ncRNAs) are involved in the pathogenesis of glucocorticoid-induced growth retardation (GIGR), but the roles of specific ncRNAs in growth remain largely unknown. Methods In this study, 2-week-old male Sprague-Dawley rats had been treated with 2 mg/kg/d of dexamethasone for 7 or 14 days, after which the growth plate tissues were collected for high-throughput RNA sequencing to identify differentially expressed mRNAs, lncRNAs, circRNAs, and miRNAs in GIGR rats. Results Transcriptomic analysis identified 1,718 mRNAs, 896 lncRNAs, 60 circRNAs, and 72 miRNAs with different expression levels in the 7d group. In the 14d group, 1,515 mRNAs, 880 lncRNAs, 46 circRNAs, and 55 miRNAs with differential expression were identified. Four mRNAs and four miRNAs that may be closely associated with the development of GIGR were further validated by real-time quantitative fluorescence PCR. Function enrichment analysis indicated that the PI3K-Akt signaling pathway, NF-kappa B signaling pathway, and TGF-β signaling pathway participated in the development of the GIGR. Moreover, the constructed ceRNA networks suggested that several miRNAs (including miR-140-3p and miR-127-3p) might play an important role in the pathogenesis of GIGR. Conclusions These results provide new insights and important clues for exploring the molecular mechanisms underlying GIGR.
Collapse
Affiliation(s)
- Mingyue Yin
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Juanjuan Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fei Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China,Department of Pediatrics, Liqun Hospital, Putuo District, Shanghai, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Sheng Lyu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lifen Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lidan Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Yang YJ, Li Y, Gao L. Postmenopausal osteoporosis: Effect of moderate-intensity treadmill exercise on bone proteomics in ovariectomized rats. Front Surg 2023; 9:1000464. [PMID: 36684175 PMCID: PMC9852312 DOI: 10.3389/fsurg.2022.1000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/13/2022] [Indexed: 01/09/2023] Open
Abstract
Objectives This study aimed to identify the key proteins in the bone mass of ovariectomized (OVX) rats after a period of regular moderate-intensity treadmill exercise and to investigate their effects using tag mass spectrometry and quantitative proteomics with a view to improving the understanding and treatment of postmenopausal osteoporosis. Methods Sixty three-month-old female Sprague-Dawley tats of specific-pathogen-free grade were randomly and equally divided into a sham operation group, ovariectomized group (OVX) and ovariectomized combined exercise (OVX + EX) group, and the latter took moderate-intensity treadmill exercise for 17 weeks. After this period of time, body composition and bone density were measured using dual-energy x-ray absorptiometry, and serum bone metabolism indicators were measured using an enzyme immunoassay. In addition, the bone microstructure was examined using micro-computed tomography and scanning of the femur, and femur proteins were subject to proteomic analysis. Results Compared with the rats in the OVX group, the bone metabolism indicators in the OVX + EX group decreased significantly, femur bone density increased significantly, the number of the trabeculae increased, and continuity was higher. In the OVX + EX group, 17 proteins were significantly upregulated and 33 significantly downregulated. The main gene ontology and signaling pathways enriched by the proteins were identified as the tumor necrosis factor-mediated signaling pathways. The protein-protein interaction network identified the key proteins, and the correlation analysis of these proteins and the bone parameters found histone deacetylase 8(HDAC8) and leucine-rich transmembrane and O-methyltransferase domain containing (LRTOMT) and trimethylguanosine synthase 1(TGS1) and ankyrin repeat domain 46(ANKRD46) to be the key targets of exercise in relation to postmenopausal osteoporosis. Conclusion Moderate-intensity treadmill exercise significantly improved the bone mass of OVX rats, and differentially expressed proteins, such as HDAC8 and LRTOMT and TGS1 and ANKRD46, could be the target of moderate-intensity treadmill exercise.
Collapse
|
39
|
Regulatory effects of autoantibody IgG on osteoclastogenesis. Clin Immunol 2023; 246:109200. [PMID: 36435446 DOI: 10.1016/j.clim.2022.109200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Inflammatory arthritis is common in both systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), and eventually leads to bone homeostasis disorders. However, RA patients generally have severe bone destruction, which is rare in SLE patients. Recent studies have demonstrated that anti-citrullinated protein antibodies are important factors leading to bone destruction in RA. On the other hand, SLE patients present deposition of autoantibodies in the joints, which plays an important role in bone protection. These different phenomena occur because of the effects of the autoantibodies on the monocytes/macrophages during osteoclastogenesis, and the mechanisms underlying these effects differ between SLE and RA patients.
Collapse
|
40
|
Inhibitory effect of infliximab on orthodontic tooth movement in male rats. Arch Oral Biol 2022; 144:105573. [DOI: 10.1016/j.archoralbio.2022.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022]
|
41
|
[Research progress of immune cells regulating the occurrence and development of osteonecrosis of the femoral head]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1428-1433. [PMID: 36382463 PMCID: PMC9681590 DOI: 10.7507/1002-1892.202204106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To summarize the characteristics of the occurrence and development of osteonecrosis of the femoral head (ONFH), and to review the important regulatory role of immune cells in the progression of ONFH. METHODS The domestic and foreign literature on the immune regulation of ONFH was reviewed, and the relationship between immune cells and the occurrence and development of ONFH was analyzed. RESULTS The ONFH region has a chronic inflammatory reaction and an imbalance between osteoblast and osteoclast, while innate immune cells such as macrophages, neutrophils, dendritic cells, and immune effector cells such as T cells and B cells are closely related to the maintenance of bone homeostasis. CONCLUSION Immunotherapy targeting the immune cells in the ONFH region and the key factors and proteins in their regulatory pathways may be a feasible method to delay the occurrence, development, and even reverse the pathology of ONFH.
Collapse
|
42
|
Nakanishi-Matsui M, Matsumoto N. V-ATPase a3 Subunit in Secretory Lysosome Trafficking in Osteoclasts. Biol Pharm Bull 2022; 45:1426-1431. [PMID: 36184499 DOI: 10.1248/bpb.b22-00371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vacuolar-type ATPase (V-ATPase) shares its structure and rotational catalysis with F-type ATPase (F-ATPase, ATP synthase). However, unlike subunits of F-ATPase, those of V-ATPase have tissue- and/or organelle-specific isoforms. Structural diversity of V-ATPase generated by different combinations of subunit isoforms enables it to play diverse physiological roles in mammalian cells. Among these various roles, this review focuses on the functions of lysosome-specific V-ATPase in bone resorption by osteoclasts. Lysosomes remain in the cytoplasm in most cell types, but in osteoclasts, secretory lysosomes move toward and fuse with the plasma membrane to secrete lysosomal enzymes, which is essential for bone resorption. Through this process, lysosomal V-ATPase harboring the a3 isoform of the a subunit is relocated to the plasma membrane, where it transports protons from the cytosol to the cell exterior to generate the acidic extracellular conditions required for secreted lysosomal enzymes. In addition to this role as a proton pump, we recently found that the lysosomal a3 subunit of V-ATPase is essential for anterograde trafficking of secretory lysosomes. Specifically, a3 interacts with Rab7, a member of the Rab guanosine 5'-triphosphatase (GTPase) family that regulates organelle trafficking, and recruits it to the lysosomal membrane. These findings revealed the multifunctionality of lysosomal V-ATPase in osteoclasts; V-ATPase is responsible not only for the formation of the acidic environment by transporting protons, but also for intracellular trafficking of secretory lysosomes by recruiting organelle trafficking factors. Herein, we summarize the molecular mechanism underlying secretory lysosome trafficking in osteoclasts, and discuss the possible regulatory role of V-ATPase in organelle trafficking.
Collapse
Affiliation(s)
| | - Naomi Matsumoto
- Division of Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
43
|
Litak J, Czyżewski W, Szymoniuk M, Sakwa L, Pasierb B, Litak J, Hoffman Z, Kamieniak P, Roliński J. Biological and Clinical Aspects of Metastatic Spinal Tumors. Cancers (Basel) 2022; 14:cancers14194599. [PMID: 36230523 PMCID: PMC9559304 DOI: 10.3390/cancers14194599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Spine metastases are a common life-threatening complication of advanced-stage malignancies and often result in poor prognosis. Symptomatic spine metastases develop in the course of about 10% of malignant neoplasms. Therefore, it is essential for contemporary medicine to understand metastatic processes in order to find appropriate, targeted therapeutic options. Our literature review aimed to describe the up-to-date knowledge about the molecular pathways and biomarkers engaged in the spine’s metastatic processes. Moreover, we described current data regarding bone-targeted treatment, the emerging targeted therapies, radiotherapy, and immunotherapy used for the treatment of spine metastases. We hope that knowledge comprehensively presented in our review will contribute to the development of novel drugs targeting specific biomarkers and pathways. The more we learn about the molecular aspects of cancer metastasis, the easier it will be to look for treatment methods that will allow us to precisely kill tumor cells. Abstract Spine metastases are a common life-threatening complication of advanced-stage malignancies and often result in poor prognosis. Symptomatic spine metastases develop in the course of about 10% of malignant neoplasms. Therefore, it is essential for contemporary medicine to understand metastatic processes in order to find appropriate, targeted therapeutic options. Thanks to continuous research, there appears more and more detailed knowledge about cancer and metastasis, but these transformations are extremely complicated, e.g., due to the complexity of reactions, the variety of places where they occur, or the participation of both tumor cells and host cells in these transitions. The right target points in tumor metastasis mechanisms are still being researched; that will help us in the proper diagnosis as well as in finding the right treatment. In this literature review, we described the current knowledge about the molecular pathways and biomarkers engaged in metastatic processes involving the spine. We also presented a current bone-targeted treatment for spine metastases and the emerging therapies targeting the discussed molecular mechanisms.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Technologies and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, Lekarska 4, 26-600 Radom, Poland
- Correspondence:
| | - Joanna Litak
- St. John’s Cancer Center in Lublin, Jaczewskiego 7, 20-090 Lublin, Poland
| | - Zofia Hoffman
- Student Scientific Society, Medical University of Lublin, Al. Racławickie 1, 20-059 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| |
Collapse
|
44
|
Wu Y, Liu Y, Zhang L, Wen L, Xie Y. Aconiti lateralis radix praeparata total alkaloids exert anti-RA effects by regulating NF-κB and JAK/STAT signaling pathways and promoting apoptosis. Front Pharmacol 2022; 13:980229. [PMID: 36120302 PMCID: PMC9478898 DOI: 10.3389/fphar.2022.980229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/14/2022] Open
Abstract
Aconiti Lateralis Radix Praeparata (“Fuzi” in Chinese) is one of the traditional herbs widely used to intervene rheumatoid arthritis (RA), while Fuzi total alkaloids (FTAs) are the main bioactive components. However, the treatment targets and specific mechanisms of FTAs against RA have not been fully elucidated. The purpose of the present study was to confirm the anti-rheumatism effects of FTAs and reveal its potential molecular mechanisms. In TNF-α-induced MH7A cells model, we found that FTAs showed inhibitory effects on proliferation. While, FTAs significantly decreased the expression levels of IL-1β, IL-6, MMP-1, MMP-3, PGE2, TGF-β, and VEGF. FTAs also enhanced the progress of apoptosis and arrested the cell cycle at G0/G1 phase to prevent excessive cell proliferation. In addition, FTAs inhibited the hyperactivity of NF-κB and JAK/STAT signaling pathways, and regulated the cascade reaction of mitochondrial apoptosis signaling pathway. The results suggested that FTAs exerted anti-inflammatory effects by inhibiting NF-κB and JAK/STAT signaling pathways, promoted apoptosis by stimulating mitochondrial apoptosis signaling pathway, and inhibited cell proliferation by modulating cell cycle progression.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Pharmacy, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Lele Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan, China
| | - Lan Wen
- Department of Digestion and Endocrinology, Sichuan Provincial People’s Hospital Jinniu Hospital, Chengdu, Sichuan, China
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- *Correspondence: Yunfei Xie,
| |
Collapse
|
45
|
Engineered extracellular vesicles: Regulating the crosstalk between the skeleton and immune system. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
46
|
Jin X, Wang H, Liang X, Ru K, Deng X, Gao S, Qiu W, Huai Y, Zhang J, Lai L, Li F, Miao Z, Zhang W, Qian A. Calycosin prevents bone loss induced by hindlimb unloading. NPJ Microgravity 2022; 8:23. [PMID: 35794112 PMCID: PMC9259590 DOI: 10.1038/s41526-022-00210-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Bone loss induced by microgravity exposure seriously endangers the astronauts' health, but its countermeasures still have certain limitations. The study aims to find potential protective drugs for the prevention of the microgravity-induced bone loss. Here, we utilized the network pharmacology approach to discover a natural compound calycosin by constructing the compound-target interaction network and analyzing the topological characteristics of the network. Furthermore, the hind limb unloading (HLU) rats' model was conducted to investigate the potential effects of calycosin in the prevention of bone loss induced by microgravity. The results indicated that calycosin treatment group significantly increased the bone mineral density (BMD), ameliorated the microstructure of femoral trabecular bone, the thickness of cortical bone and the biomechanical properties of the bone in rats, compared that in the HLU group. The analysis of bone turnover markers in serum showed that both the bone formation markers and bone resorption markers decreased after calycosin treatment. Moreover, we found that bone remodeling-related cytokines in serum including IFN-γ, IL-6, IL-8, IL-12, IL-4, IL-10 and TNF-α were partly recovered after calycosin treatment compared with HLU group. In conclusion, calycosin partly recovered hind limb unloading-induced bone loss through the regulation of bone remodeling. These results provided the evidence that calycosin might play an important role in maintaining bone mass in HLU rats, indicating its promising application in the treatment of bone loss induced by microgravity.
Collapse
Affiliation(s)
- Xiang Jin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hong Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for toxicological and biological effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Xuechao Liang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Kang Ru
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiaoni Deng
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Shuo Gao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wuxia Qiu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jiaqi Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Linbin Lai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fan Li
- Hospital of Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
47
|
Ahmadzadeh K, Vanoppen M, Rose CD, Matthys P, Wouters CH. Multinucleated Giant Cells: Current Insights in Phenotype, Biological Activities, and Mechanism of Formation. Front Cell Dev Biol 2022; 10:873226. [PMID: 35478968 PMCID: PMC9035892 DOI: 10.3389/fcell.2022.873226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Monocytes and macrophages are innate immune cells with diverse functions ranging from phagocytosis of microorganisms to forming a bridge with the adaptive immune system. A lesser-known attribute of macrophages is their ability to fuse with each other to form multinucleated giant cells. Based on their morphology and functional characteristics, there are in general three types of multinucleated giant cells including osteoclasts, foreign body giant cells and Langhans giant cells. Osteoclasts are bone resorbing cells and under physiological conditions they participate in bone remodeling. However, under pathological conditions such as rheumatoid arthritis and osteoporosis, osteoclasts are responsible for bone destruction and bone loss. Foreign body giant cells and Langhans giant cells appear only under pathological conditions. While foreign body giant cells are found in immune reactions against foreign material, including implants, Langhans giant cells are associated with granulomas in infectious and non-infectious diseases. The functionality and fusion mechanism of osteoclasts are being elucidated, however, our knowledge on the functions of foreign body giant cells and Langhans giant cells is limited. In this review, we describe and compare the phenotypic aspects, biological and functional activities of the three types of multinucleated giant cells. Furthermore, we provide an overview of the multinucleation process and highlight key molecules in the different phases of macrophage fusion.
Collapse
Affiliation(s)
- Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- *Correspondence: Kourosh Ahmadzadeh, ; Carine Helena Wouters,
| | - Margot Vanoppen
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
| | - Carlos D. Rose
- Division of Pediatric Rheumatology Nemours Children’s Hospital, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patrick Matthys
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
| | - Carine Helena Wouters
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- Division Pediatric Rheumatology, UZ Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
- *Correspondence: Kourosh Ahmadzadeh, ; Carine Helena Wouters,
| |
Collapse
|
48
|
Yang B, Fu C, Wu Y, Liu Y, Zhang Z, Chen X, Wu D, Gan Z, Chen Z, Cao Y. γ-secretase inhibitors suppress IL-20-mediated osteoclastogenesis via Notch signaling and are affected by Notch2 in vitro. Scand J Immunol 2022; 96:e13169. [PMID: 35384009 DOI: 10.1111/sji.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune disease involving the small joints, which often causes irreversible damage. In recent years, elevated interleukin 20 (IL-20) has been observed in synovial fluid, while IL-20 receptor overexpression has been observed in synovial cells. IL-20 is a pleiotropic cytokine that participates in various immune diseases. Further understanding of the relationship between IL-20 and RA can help to identify a potential clinical treatment for RA. This study demonstrated that IL-20 can regulate osteoclast differentiation and function in a dose-dependent manner, while influencing the expression of Notch signaling. Quantitative reverse transcription polymerase chain reaction and western blotting showed that γ-secretase-inhibiting drugs can reverse the effects of IL-20. The effects of Notch2 on IL-20-induced osteoclastogenesis were investigated by immunofluorescence and Notch2 gene silencing via transfection of small interfering RNA; the results showed that Notch2 obviously affected the expression levels of the key protein NFATc1 and downstream osteoclastic proteins. In conclusion, we found that IL-20 regulated the osteoclastogenesis in a dose-dependent manner via Notch signaling, primarily by means of Notch2 activity. This study may help to find new targets for RA treatment.
Collapse
Affiliation(s)
- Benyi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Chaoran Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yilin Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yuanbo Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhen Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xin Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Dongle Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ziqi Gan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhengyuan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
49
|
Maeda K, Yoshida K, Nishizawa T, Otani K, Yamashita Y, Okabe H, Hadano Y, Kayama T, Kurosaka D, Saito M. Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. Int J Mol Sci 2022; 23:2871. [PMID: 35270012 PMCID: PMC8911191 DOI: 10.3390/ijms23052871] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease characterized by a variety of symptoms and pathologies often presenting with polyarthritis. The primary symptom in the initial stage is joint swelling due to synovitis. With disease progression, cartilage and bone are affected to cause joint deformities. Advanced osteoarticular destruction and deformation can cause irreversible physical disabilities. Physical disabilities not only deteriorate patients' quality of life but also have substantial medical economic effects on society. Therefore, prevention of the progression of osteoarticular destruction and deformation is an important task. Recent studies have progressively improved our understanding of the molecular mechanism by which synovitis caused by immune disorders results in activation of osteoclasts; activated osteoclasts in turn cause bone destruction and para-articular osteoporosis. In this paper, we review the mechanisms of bone metabolism under physiological and RA conditions, and we describe the effects of therapeutic intervention against RA on bone.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Ken Yoshida
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Tetsuro Nishizawa
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Kazuhiro Otani
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Yu Yamashita
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Hinako Okabe
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Yuka Hadano
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Tomohiro Kayama
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| |
Collapse
|
50
|
Zhang W, Gao R, Rong X, Zhu S, Cui Y, Liu H, Li M. Immunoporosis: Role of immune system in the pathophysiology of different types of osteoporosis. Front Endocrinol (Lausanne) 2022; 13:965258. [PMID: 36147571 PMCID: PMC9487180 DOI: 10.3389/fendo.2022.965258] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a skeletal system disease characterized by low bone mass and altered bone microarchitecture, with an increased risk of fractures. Classical theories hold that osteoporosis is essentially a bone remodeling disorder caused by estrogen deficiency/aging (primary osteoporosis) or secondary to diseases/drugs (secondary osteoporosis). However, with the in-depth understanding of the intricate nexus between both bone and the immune system in recent decades, the novel field of "Immunoporosis" was proposed by Srivastava et al. (2018, 2022), which delineated and characterized the growing importance of immune cells in osteoporosis. This review aimed to summarize the response of the immune system (immune cells and inflammatory factors) in different types of osteoporosis. In postmenopausal osteoporosis, estrogen deficiency-mediated alteration of immune cells stimulates the activation of osteoclasts in varying degrees. In senile osteoporosis, aging contributes to continuous activation of the immune system at a low level which breaks immune balance, ultimately resulting in bone loss. Further in diabetic osteoporosis, insulin deficiency or resistance-induced hyperglycemia could lead to abnormal regulation of the immune cells, with excessive production of proinflammatory factors, resulting in osteoporosis. Thus, we reviewed the pathophysiology of osteoporosis from a novel insight-immunoporosis, which is expected to provide a specific therapeutic target for different types of osteoporosis.
Collapse
Affiliation(s)
- Weidong Zhang
- Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Ruihan Gao
- Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Xing Rong
- Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Siqi Zhu
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
- Affiliated Hospital 2, Jinzhou Medical University, Jinzhou, China
| | - Yajun Cui
- Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Hongrui Liu
- Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
- *Correspondence: Minqi Li, ; Hongrui Liu,
| | - Minqi Li
- Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
- *Correspondence: Minqi Li, ; Hongrui Liu,
| |
Collapse
|