1
|
Krug J, Plumeyer C, Davydok A, Dragoun Kolibová S, Fischer N, Le-Phuoc XT, Rauner M, Sihota P, Schweizer M, Busse B, Fiedler IAK, Jähn-Rickert K. Bone-seeking tumor cells alter bone material quality parameters on the nanoscale in mice. BIOMATERIALS ADVANCES 2025; 167:214060. [PMID: 39486241 DOI: 10.1016/j.bioadv.2024.214060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 11/04/2024]
Abstract
Bone metastases related to breast and prostate cancer present with multiple challenges and skeletal related events like fragility fractures impair the quality of life of the patients significantly. To determine local alterations in bone material quality with bone metastasis, we subjected murine tibial specimens, generated after intratibial injections of either RM1 prostate cancer cells or EO771 breast cancer cells into male and female mice respectively, to high-resolution imaging modalities. Small and wide-angle X-ray scattering showed unaltered mineral characteristics in the more osteosclerotic prostate cancer model, while the quantification of calcium weight percentage via backscattered electron microscopy determined minor differences along the perilacunar bone matrix. Further analyses of mineral and collagen characteristics were performed using Raman spectroscopy and focused ion beam electron microscopy. Our study indicates that alterations in nanochannel properties occur due to the presence of bone seeking tumor cells with more prevalent nanopores in the perilacunar matrix.
Collapse
Affiliation(s)
- Johannes Krug
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Christine Plumeyer
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Anton Davydok
- Institute of Material Physics, Hereon Outstation at DESY, Helmholtz Zentrum Hereon, Hamburg, Germany
| | - Sofie Dragoun Kolibová
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Nico Fischer
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xuan-Thanh Le-Phuoc
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Praveer Sihota
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility of Morphology and Electron Microscopy, Center for Molecular Neurobiology, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany.
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Li X, Gao Z, Yang M, Yang C, Yang D, Cui W, Wu D, Zhou J. Unraveling the metastatic niche in breast cancer bone metastasis through single-cell RNA sequencing. Clin Transl Oncol 2025; 27:671-686. [PMID: 39066875 DOI: 10.1007/s12094-024-03594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Breast cancer (BRCA) is characterized by a unique metastatic pattern, often presenting with bone metastasis (BoM), posing significant clinical challenges. Through the study of the immune microenvironment in BRCA BoM offer perspectives for therapeutic interventions targeting this specific metastatic manifestation of BRCA. METHODS This study employs single-cell RNA sequencing and TCGA data analysis to comprehensively compare primary tumors (PT), lymph node metastasis (LN), and BoM. RESULTS AND CONCLUSIONS Our investigation identifies a metastatic niche in BoM marked by an increased abundance of cancer-associated fibroblasts (CAFs) and reduced immune cell presence. A distinct subtype (State 1) of BRCA BoM cells associated with adverse prognosis is identified. State 1, displaying heightened stemness traits, may represent an initiation phase for BoM in BRCA. Complex cell communications involving tumor, stromal, and immune cells are revealed. Interactions of FN1, SPP1, and MDK correlate with elevated immune cells in BoM. CD46, MDK, and PTN interactions drive myofibroblast activation and proliferation, contributing to tissue remodeling. Additionally, MDK, PTN, and FN1 interactions influence FAP+ CAF activation, impacting cell adhesion and migration in BoM. These insights deepen our understanding of the metastatic niche in breast cancer BoM.
Collapse
Affiliation(s)
- Xiangyu Li
- The Stem Cell and Tissue Engineering Research Center, College of Pharmacy, Changzhi Medical College, Changzhi, 046000, Shanxi, People's Republic of China.
| | - Ziyu Gao
- The Stem Cell and Tissue Engineering Research Center, College of Pharmacy, Changzhi Medical College, Changzhi, 046000, Shanxi, People's Republic of China
| | - Meiling Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ciqiu Yang
- Medical Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Dongyang Yang
- Medical Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wenhui Cui
- The Stem Cell and Tissue Engineering Research Center, College of Pharmacy, Changzhi Medical College, Changzhi, 046000, Shanxi, People's Republic of China
| | - Dandan Wu
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Jie Zhou
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|
3
|
Wajda BG, Ferrie LE, Abbott AG, Elmi Assadzadeh G, Monument MJ, Kendal JK. Denosumab vs. Zoledronic Acid for Metastatic Bone Disease: A Comprehensive Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cancers (Basel) 2025; 17:388. [PMID: 39941757 PMCID: PMC11816125 DOI: 10.3390/cancers17030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Metastatic bone disease (MBD) presents significant challenges in patient management, leading to skeletal-related events (SREs), compromised health-related quality of life, and heightened pain experiences. Denosumab (Dmab) and zoledronic acid (ZA) are bone-modifying agents (BMAs) commonly employed to mitigate the sequelae of MBD. Previous meta-analyses have assessed primary outcomes such as overall survival, pathological fractures, radiation to bone, and the time to SREs within studies. However, a single comprehensive analysis comparing their efficacy across multiple primary and secondary outcomes, as well as cost-effectiveness in specific cancer types, has not yet been conducted. Methods: A literature search identified relevant randomized controlled trials (RCTs), and the primary outcomes included overall survival, pathologic fractures, radiation to bone, and the time to SREs within studies. Secondary outcomes included adverse events, pain, analgesia usage, quality of life, and cost. Results: Meta-analysis revealed that Dmab effectively reduced the need for bone-targeted radiation therapy and was superior to ZA in delaying the time to SREs, except in multiple myeloma. Dmab also reduced pathological fracture incidences in breast cancer patients by 39%. Conclusions: Our analysis suggests that while both agents similarly impact overall survival and disease progression, Dmab offers advantages in SRE reduction and improved HRQoL and pain outcomes with lower rates of opioid usage, albeit with higher risks of hypocalcemia and osteonecrosis in some subgroups. The consensus on cost-effectiveness is mixed and varies based on the cancer type and healthcare system, with some studies favoring Dmab's superior efficacy and safety, while others find ZA more cost-effective due to its lower cost. This study underscores the potential of Dmab as a preferred BMA for MBD management, especially for high-risk skeletal complications, while highlighting cancer-specific safety considerations. Further research is warranted to refine cancer-specific BMA use and optimize MBD management strategies.
Collapse
Affiliation(s)
- Benjamin G. Wajda
- Department of Surgery, Section of Orthopaedic Surgery, University of Calgary, Calgary, AB T2N 1N4, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Leah E. Ferrie
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Annalise G. Abbott
- Department of Surgery, Section of Orthopaedic Surgery, University of Calgary, Calgary, AB T2N 1N4, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Golpira Elmi Assadzadeh
- Department of Surgery, Section of Orthopaedic Surgery, University of Calgary, Calgary, AB T2N 1N4, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael J. Monument
- Department of Surgery, Section of Orthopaedic Surgery, University of Calgary, Calgary, AB T2N 1N4, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Bone & Joint Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Joseph K. Kendal
- Department of Surgery, Section of Orthopaedic Surgery, University of Calgary, Calgary, AB T2N 1N4, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Bone & Joint Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
4
|
Sarkar H, Lee E, Lopez-Darwin SL, Kang Y. Deciphering normal and cancer stem cell niches by spatial transcriptomics: opportunities and challenges. Genes Dev 2025; 39:64-85. [PMID: 39496456 PMCID: PMC11789490 DOI: 10.1101/gad.351956.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Cancer stem cells (CSCs) often exhibit stem-like attributes that depend on an intricate stemness-promoting cellular ecosystem within their niche. The interplay between CSCs and their niche has been implicated in tumor heterogeneity and therapeutic resistance. Normal stem cells (NSCs) and CSCs share stemness features and common microenvironmental components, displaying significant phenotypic and functional plasticity. Investigating these properties across diverse organs during normal development and tumorigenesis is of paramount research interest and translational potential. Advancements in next-generation sequencing (NGS), single-cell transcriptomics, and spatial transcriptomics have ushered in a new era in cancer research, providing high-resolution and comprehensive molecular maps of diseased tissues. Various spatial technologies, with their unique ability to measure the location and molecular profile of a cell within tissue, have enabled studies on intratumoral architecture and cellular cross-talk within the specific niches. Moreover, delineation of spatial patterns for niche-specific properties such as hypoxia, glucose deprivation, and other microenvironmental remodeling are revealed through multilevel spatial sequencing. This tremendous progress in technology has also been paired with the advent of computational tools to mitigate technology-specific bottlenecks. Here we discuss how different spatial technologies are used to identify NSCs and CSCs, as well as their associated niches. Additionally, by exploring related public data sets, we review the current challenges in characterizing such niches, which are often hindered by technological limitations, and the computational solutions used to address them.
Collapse
Affiliation(s)
- Hirak Sarkar
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Department of Computer Science, Princeton, New Jersey 08544, USA
| | - Eunmi Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Sereno L Lopez-Darwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA;
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
5
|
Song C, Tong T, Dai B, Zhu Y, Chen E, Zhang M, Zhang W. Osteoimmunology in bone malignancies: a symphony with evil. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:354-368. [PMID: 39735445 PMCID: PMC11674455 DOI: 10.1016/j.jncc.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 12/31/2024] Open
Abstract
Bone marrow is pivotal for normal hematopoiesis and immune responses, yet it is often compromised by malignancies. The bone microenvironment (BME), composed of bone and immune cells, maintains skeletal integrity and blood production. The emergence of primary or metastatic tumors in the skeletal system results in severe complications and contributes significantly to cancer-related mortality. These tumors set off a series of interactions among cancer, bone, and immune cells, and disrupt the BME locally or distantly. However, the drivers, participants, and underlying molecules of these interactions are not fully understood. This review explores the crosstalk between bone metabolism and immune responses, synthesizing current knowledge on the intersection of cancer and osteoimmune biology. It outlines how bone marrow immune cells can either facilitate or hinder tumor progression by interacting with bone cells and pinpoints the molecules responsible for immunosuppression within bone tumors. Moreover, it discusses how primary tumors remotely alter the BME, leading to systemic immune suppression in cancer patients. This knowledge provides critical rationales for emerging immunotherapies in the treatment of bone-related tumors. Taken together, by summarizing the intricate relationship between tumor cells and the BME, this review aims to deepen the understanding of the diversity, complexity, and dynamics at play during bone tumor progression. Ultimately, it highlights the potential of targeting bone-tumor interactions to correct aberrant immune functions, thereby inhibiting tumor growth and metastasis.
Collapse
Affiliation(s)
- Churui Song
- Department of Breast Surgery and Oncology, Cancer Institute, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tie Tong
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Biqi Dai
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yue Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Elina Chen
- College of Natural Sciences, University of Texas at Austin, 110 Inner Campus Drive, Austin, USA
| | - Min Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijie Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, and Department of Orthopaedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Das A, Barry MM, Ernst CA, Dahiya R, Kim M, Rosario SR, Lo HC, Yu C, Dai T, Gugala Z, Zhang J, Dasgupta S, Wang H. Differential bone morphology and hypoxia activity in skeletal metastases of ER + and ER - breast cancer. Commun Biol 2024; 7:1545. [PMID: 39572705 PMCID: PMC11582807 DOI: 10.1038/s42003-024-07247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Bone metastases occur in the majority of advanced breast cancer patients, and the most common complications are osteolytic bone metastases. However, due to the limitations of models and methodologies for bone metastasis studies, the intricacies of bone metastasis have not been fully acknowledged and revealed in prior work. Our earlier study indicated that certain breast cancer cells undergo a pre-osteolytic stage before the establishment of overt metastatic lesions. Here, we further identify a differential bone morphology between ER (estrogen receptor)+ and ER- breast cancer. Specifically, we observe a more pronounced osteolytic phenotype in the bone metastatic lesions of ER- cells investigated, linked to elevated hypoxia signaling that stimulates the secretion of osteolytic inducers from cancer cells. In the in vivo mouse model, the application of the hypoxia-inducible factor (HIF) inhibitor 2-methoxyestradiol demonstrates a promising efficacy in suppressing tumor growth and osteoclast differentiation in the bone lesions established by bone-tropic subpopulation of ER- MDA-MB-231 cell. Overall, our findings explore the complexity of phenotype and morphology in bone metastatic lesions of ER+ and ER- breast cancer, which offers a compelling rationale for leveraging HIF inhibitors to the treatment targeting skeletal complications of breast cancer bone metastases, especially for ER- tumors.
Collapse
Affiliation(s)
- Anindita Das
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Megan M Barry
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Cheyenne A Ernst
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Renuka Dahiya
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Minhyung Kim
- Comparative Oncology Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer R Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hin Ching Lo
- Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Cuijuan Yu
- Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Tao Dai
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Zbigniew Gugala
- Department of Orthopedic Surgery & Rehabilitation, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianmin Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA
| | - Subhamoy Dasgupta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hai Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
7
|
Peng Z, Huang W, Xiao Z, Wang J, Zhu Y, Zhang F, Lan D, He F. Immunotherapy in the Fight Against Bone Metastases: A Review of Recent Developments and Challenges. Curr Treat Options Oncol 2024; 25:1374-1389. [PMID: 39436492 PMCID: PMC11541271 DOI: 10.1007/s11864-024-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 10/23/2024]
Abstract
OPINION STATEMENT Bone metastasis, a frequent and detrimental complication of advanced cancers, often triggers bone deterioration events that severely compromise patient quality of life and prognosis. The past few years have witnessed the emergence and continuous advancements in immunotherapy, ushering in innovative therapeutic prospects for bone metastasis. These advancements include not only the use of immune checkpoint inhibitors (ICIs), both as standalone and combined treatments, but also the investigation of novel targets within immune cells residing in bone metastases. These breakthroughs have instilled fresh optimism for effectively managing patients with bone metastasis. This article endeavors to present an exhaustive review of the recent progress made across a spectrum of immunotherapeutic strategies and targeted therapies specifically designed for individuals battling bone metastasis from malignant tumors. By doing so, it seeks to offer insights that can inform clinical practices and guide further medical research in this domain.
Collapse
Affiliation(s)
- Zhonghui Peng
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Huang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Ziyu Xiao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Jinge Wang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yongzhe Zhu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Fudou Zhang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Dongqiang Lan
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Fengjiao He
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China.
| |
Collapse
|
8
|
Firatligil-Yildirir B, Bati-Ayaz G, Nonappa, Pesen-Okvur D, Yalcin-Ozuysal O. Invasion/chemotaxis- and extravasation-chip models for breast cancer bone metastasis. PLoS One 2024; 19:e0309285. [PMID: 39418263 PMCID: PMC11486417 DOI: 10.1371/journal.pone.0309285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024] Open
Abstract
Bone is one of the most frequently targeted organs in metastatic cancers including the breast. Breast cancer bone metastasis often results in devastating outcomes as limited treatment options are currently available. Therefore, innovative methods are needed to provide earlier detection and thus better treatment and prognosis. Here, we present a new approach to model bone-like microenvironments to detect invasion and extravasation of breast cancer cells using invasion/chemotaxis (IC-) and extravasation (EX-) chips, respectively. Our results show that the behaviors of MDA-MB-231 breast cancer cells on IC- and EX-chip models correlate with their in vivo metastatic potential. Our culture model constitutes cell lines representing osteoblasts, bone marrow stromal cells, and monocytes embedded in three-dimensional (3D) collagen I-based extracellular matrices of varying composition and stiffness. We show that collagen I offers a better bone-like environment for bone cells and matrix composition and stiffness regulate the invasion of breast cancer cells. Using in situ contactless rheological measurements under cell culture conditions, we show that the presence of cells increased the stiffness values of the matrices up to 1200 Pa when monitored for five days. This suggests that the cellular composition has a significant effect on regulating matrix mechanical properties, which in turn contribute to the invasiveness. The platforms we present here enable the investigation of the underlying molecular mechanisms in breast cancer bone metastasis and provide the groundwork of developing preclinical tools for the prediction of bone metastasis risk.
Collapse
Affiliation(s)
- Burcu Firatligil-Yildirir
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkiye
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Gizem Bati-Ayaz
- Izmir Institute of Technology, Biotechnology and Bioengineering Graduate Program, Izmir, Turkiye
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Devrim Pesen-Okvur
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkiye
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkiye
| |
Collapse
|
9
|
Eltit F, Wang Q, Jung N, Munshan S, Xie D, Xu S, Liang D, Mojtahedzadeh B, Liu D, Charest-Morin R, Corey E, True LD, Morrissey C, Wang R, Cox ME. Sclerotic prostate cancer bone metastasis: woven bone lesions with a twist. JBMR Plus 2024; 8:ziae091. [PMID: 39224570 PMCID: PMC11365963 DOI: 10.1093/jbmrpl/ziae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Bone metastases are the most severe and prevalent consequences of prostate cancer (PC), affecting more than 80% of patients with advanced PC. PCBMs generate pain, pathological fractures, and paralysis. As modern therapies increase survival, more patients are suffering from these catastrophic consequences. Radiographically, PCBMs are predominantly osteosclerotic, but the mechanisms of abnormal bone formation and how this pathological increase in bone density is related to fractures are unclear. In this study, we conducted a comprehensive analysis on a cohort of 76 cadaveric PCBM specimens and 12 cancer-free specimens as controls. We used micro-computed tomography to determine 3D organization and quantify bone characteristics, quantitative backscattering electron microscopy to characterize mineral content and details in bone structure, nanoindentation to determine mechanical properties, and histological and immunohistochemical analysis of bone structure and composition. We define 4 PCBM phenotypes: osteolytic, mixed lytic-sclerotic, and 2 subgroups of osteosclerotic lesions-those with residual trabeculae, and others without residual trabeculae. The osteosclerotic lesions are characterized by the presence of abnormal bone accumulated on trabeculae surfaces and within intertrabecular spaces. This abnormal bone is characterized by higher lacunae density, abnormal lacunae morphology, and irregular lacunae orientation. However, mineral content, hardness, and elastic modulus at micron-scale were indistinguishable between this irregular bone and residual trabeculae. The collagen matrix of this abnormal bone presents with irregular organization and a prominent collagen III composition. These characteristics suggest that osteosclerotic PCBMs initiate new bone deposition as woven bone; however, the lack of subsequent bone remodeling, absence of lamellar bone deposition on its surface, and presence of collagen III distinguish this pathologic matrix from conventional woven bone. Although the mineralized matrix retains normal bone hardness and stiffness properties, the lack of fibril anisotropy presents a compromised trabecular structure, which may have clinical implications.
Collapse
Affiliation(s)
- Felipe Eltit
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Qiong Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - Naomi Jung
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Sheryl Munshan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Dennis Xie
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Samuel Xu
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Doris Liang
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
- Centre for Aging SMART, Vancouver, BC V5Z 1M9, Canada
| | - Bita Mojtahedzadeh
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Danmei Liu
- Centre for Aging SMART, Vancouver, BC V5Z 1M9, Canada
| | - Raphaële Charest-Morin
- Department of Orthopaedics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- International Collaboration on Repair Discoveries, Vancouver, BC V5Z 1M9, Canada
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, United States
| | - Lawrence D True
- Department of Urology, University of Washington, Seattle, WA 98195, United States
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, United States
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
- Centre for Aging SMART, Vancouver, BC V5Z 1M9, Canada
| | - Michael E Cox
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Centre for Aging SMART, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
10
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. Collagen Mineralization Decreases NK Cell-Mediated Cytotoxicity of Breast Cancer Cells via Increased Glycocalyx Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311505. [PMID: 38279892 PMCID: PMC11471288 DOI: 10.1002/adma.202311505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
12
|
Wang X, Zhang T, Zheng B, Lu Y, Liang Y, Xu G, Zhao L, Tao Y, Song Q, You H, Hu H, Li X, Sun K, Li T, Zhang Z, Wang J, Lan X, Pan D, Fu YX, Yue B, Zheng H. Lymphotoxin-β promotes breast cancer bone metastasis colonization and osteolytic outgrowth. Nat Cell Biol 2024; 26:1597-1612. [PMID: 39147874 DOI: 10.1038/s41556-024-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/11/2024] [Indexed: 08/17/2024]
Abstract
Bone metastasis is a lethal consequence of breast cancer. Here we used single-cell transcriptomics to investigate the molecular mechanisms underlying bone metastasis colonization-the rate-limiting step in the metastatic cascade. We identified that lymphotoxin-β (LTβ) is highly expressed in tumour cells within the bone microenvironment and this expression is associated with poor bone metastasis-free survival. LTβ promotes tumour cell colonization and outgrowth in multiple breast cancer models. Mechanistically, tumour-derived LTβ activates osteoblasts through nuclear factor-κB2 signalling to secrete CCL2/5, which facilitates tumour cell adhesion to osteoblasts and accelerates osteoclastogenesis, leading to bone metastasis progression. Blocking LTβ signalling with a decoy receptor significantly suppressed bone metastasis in vivo, whereas clinical sample analysis revealed significantly higher LTβ expression in bone metastases than in primary tumours. Our findings highlight LTβ as a bone niche-induced factor that promotes tumour cell colonization and osteolytic outgrowth and underscore its potential as a therapeutic target for patients with bone metastatic disease.
Collapse
Affiliation(s)
- Xuxiang Wang
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Tengjiang Zhang
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Youxue Lu
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Yong Liang
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Guoyuan Xu
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Luyang Zhao
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Yuwei Tao
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Qianhui Song
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Huiwen You
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Haitian Hu
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xuan Li
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Keyong Sun
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Tianqi Li
- School of Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Zian Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianbin Wang
- School of Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Xun Lan
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Deng Pan
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Yang-Xin Fu
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Hanqiu Zheng
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
13
|
Pu D, Zhang HE, Li L. Immune-related osteoblastic bone alterations mimicking bone metastasis in a small-cell lung cancer patient treated with durvalumab: a case report. Transl Lung Cancer Res 2024; 13:2043-2049. [PMID: 39263033 PMCID: PMC11384499 DOI: 10.21037/tlcr-24-461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Background Chemotherapy combined with immunotherapy is currently the standard first-line treatment for advanced small-cell lung cancer (SCLC). Immunotherapy can induce specific adverse events, called immune-related adverse events (irAEs). IrAEs of bones have rarely been reported. However, identifying bone irAEs could be important in avoiding misdiagnosis and ensuring appropriate patient management. This is the first report describing the diagnosis of irAEs of osteoblastic bone changes mimicking bone metastasis in a SCLC patient treated with durvalumab. Case Description In this report, we describe a unique and challenging case in which a 54-year-old female patient with SCLC treated with durvalumab, an immunotherapy drug, exhibited osteoblastic bone changes that appeared similar to bone metastasis on imaging but were actually a side effect of immunotherapy. Before treatment, imaging revealed no bone metastasis. In the third month after treatment with durvalumab, computed tomography (CT) revealed multiple bone alterations, predominantly osteoblastic lesions with minor osteolytic changes. Various imaging tests suggested bone metastasis, but she had no symptoms related to bone disease. Notably, the lesions in the chest had achieved a partial response. Based on a comprehensive analysis of the CT-guided pathological biopsy results, the patient's symptoms, and the biological characteristics of SCLC, we determined that these bone changes were irAEs occurring in the skeletal system. The patient was followed up for 10 months, during which time the bone lesions remained stable. Conclusions IrAEs of bones are rare, and their manifestations vary. Sometimes, the imaging manifestations of bone irAEs are difficult to distinguish from bone metastasis. If patients show variable treatment responses between different lesions, careful evaluation (including a pathological biopsy) is necessary.
Collapse
Affiliation(s)
- Dan Pu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong-E Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Yang Q, Wang W, Cheng D, Wang Y, Han Y, Huang J, Peng X. Non-coding RNA in exosomes: Regulating bone metastasis of lung cancer and its clinical application prospect. Transl Oncol 2024; 46:102002. [PMID: 38797017 PMCID: PMC11153237 DOI: 10.1016/j.tranon.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024] Open
Abstract
Lung cancer is a highly prevalent malignancy with poor prognosis and rapid progression. It most frequently metastasizes to the bone, where it can pose a severe threat to the patient's survival. Once metastasized, the disease is often incurable and can result in severe complications such as hypercalcemia, bone pain, fractures, spinal cord compression, and subsequent paralysis. Exosomes are bilayer vesicle nanoparticles secreted by most of the extracellular vesicles, which can be found in almost all organisms and play an essential role in intercellular communication. Through their ability to regulate related bone cells, exosomes carry bioactive molecules, including proteins, lipids, and non-coding RNAs (ncRNAs), that can be extremely important in bone remodeling. Studies have been conducted on the role play by proteins, lncRNA, and microRNA-all ncRNAs-carried by exosomes in the bone metastases of lung cancer. In this review, the latest progress of the regulatory mechanism of ncRNAs carried by exosomes in lung cancer bone metastasis has been reviewed. The clinical use of exosomes as a promising biomarker, drug transporter, and therapeutic target was highlighted to offer a novel diagnostic and treatment approach for patients with lung cancer bone metastases.
Collapse
Affiliation(s)
- Qing Yang
- Nuclear Medicine Department, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China; Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Dezhou Cheng
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Yiling Wang
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Yukun Han
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Jinbai Huang
- Nuclear Medicine Department, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China.
| |
Collapse
|
15
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Ben Ghedalia Peled N, Hoffman DK, Barsky L, Zer NS, Amar K, Rapaport H, Gheber LA, Zhang XHF, Vago R. Bone Endosteal Mimics Regulates Breast Cancer Development and Phenotype. Biomacromolecules 2024; 25:2338-2347. [PMID: 38499995 DOI: 10.1021/acs.biomac.3c01217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Bone is a frequent site for metastatic development in various cancer types, including breast cancer, with a grim prognosis due to the distinct bone environment. Despite considerable advances, our understanding of the underlying processes leading to bone metastasis progression remains elusive. Here, we applied a bioactive three-dimensional (3D) model capable of mimicking the endosteal bone microenvironment. MDA-MB-231 and MCF7 breast cancer cells were cultured on the scaffolds, and their behaviors and the effects of the biomaterial on the cells were examined over time. We demonstrated that close interactions between the cells and the biomaterial affect their proliferation rates and the expression of c-Myc, cyclin D, and KI67, leading to cell cycle arrest. Moreover, invasion assays revealed increased invasiveness within this microenvironment. Our findings suggest a dual role for endosteal mimicking signals, influencing cell fate and potentially acting as a double-edged sword, shuttling between cell cycle arrest and more active, aggressive states.
Collapse
Affiliation(s)
- Noa Ben Ghedalia Peled
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Dane K Hoffman
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Graduate School of Biomedical Sciences Cancer and Cell Biology Graduate Program (CCB), Baylor College of Medicine, Houston, Texas 77030, United States
| | - Livnat Barsky
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Noy S Zer
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Katya Amar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Levi A Gheber
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Razi Vago
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
17
|
Zhao Y, Ning J, Teng H, Deng Y, Sheldon M, Shi L, Martinez C, Zhang J, Tian A, Sun Y, Nakagawa S, Yao F, Wang H, Ma L. Long noncoding RNA Malat1 protects against osteoporosis and bone metastasis. Nat Commun 2024; 15:2384. [PMID: 38493144 PMCID: PMC10944492 DOI: 10.1038/s41467-024-46602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
MALAT1, one of the few highly conserved nuclear long noncoding RNAs (lncRNAs), is abundantly expressed in normal tissues. Previously, targeted inactivation and genetic rescue experiments identified MALAT1 as a suppressor of breast cancer lung metastasis. On the other hand, Malat1-knockout mice are viable and develop normally. On a quest to discover the fundamental roles of MALAT1 in physiological and pathological processes, we find that this lncRNA is downregulated during osteoclastogenesis in humans and mice. Remarkably, Malat1 deficiency in mice promotes osteoporosis and bone metastasis of melanoma and mammary tumor cells, which can be rescued by genetic add-back of Malat1. Mechanistically, Malat1 binds to Tead3 protein, a macrophage-osteoclast-specific Tead family member, blocking Tead3 from binding and activating Nfatc1, a master regulator of osteoclastogenesis, which results in the inhibition of Nfatc1-mediated gene transcription and osteoclast differentiation. Notably, single-cell transcriptome analysis of clinical bone samples reveals that reduced MALAT1 expression in pre-osteoclasts and osteoclasts is associated with osteoporosis and metastatic bone lesions. Altogether, these findings identify Malat1 as a lncRNA that protects against osteoporosis and bone metastasis.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jingyuan Ning
- Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100010, China
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lei Shi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Annie Tian
- Department of Kinesiology, Rice University, Houston, TX, 77005, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hai Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Yu X, Zhu L. Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges. Int J Nanomedicine 2024; 19:1867-1886. [PMID: 38414525 PMCID: PMC10898486 DOI: 10.2147/ijn.s442768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Although the frequency of bone metastases from breast cancer has increased, effective treatment is lacking, prompting the development of nanomedicine, which involves the use of nanotechnology for disease diagnosis and treatment. Nanocarrier drug delivery systems offer several advantages over traditional drug delivery methods, such as higher reliability and biological activity, improved penetration and retention, and precise targeting and delivery. Various nanoparticles that can selectively target tumor cells without causing harm to healthy cells or organs have been synthesized. Recent advances in nanotechnology have enabled the diagnosis and prevention of metastatic diseases as well as the ability to deliver complex molecular "cargo" particles to metastatic regions. Nanoparticles can modulate systemic biodistribution and enable the targeted accumulation of therapeutic agents. Several delivery strategies are used to treat bone metastases, including untargeted delivery, bone-targeted delivery, and cancer cell-targeted delivery. Combining targeted agents with nanoparticles enhances the selective delivery of payloads to breast cancer bone metastatic lesions, providing multiple delivery advantages for treatment. In this review, we describe recent advances in nanoparticle development for treating breast cancer bone metastases.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
19
|
Wang Y, Hu Y, Wang M, Wang M, Xu Y. The Role of Breast Cancer Cells in Bone Metastasis: Suitable Seeds for Nourishing Soil. Curr Osteoporos Rep 2024; 22:28-43. [PMID: 38206556 DOI: 10.1007/s11914-023-00849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review was to describe the characteristics of breast cancer cells prone to developing bone metastasis and determine how they are regulated by the bone microenvironment. RECENT FINDINGS The bone is a site of frequent breast cancer metastasis. Bone metastasis accounts for 70% of advanced breast cancer cases and remains incurable. It can lead to skeletal-related events, such as bone fracture and pain, and seriously affect the quality of life of patients. Breast cancer cells escape from the primary lesion and spread to the bone marrow in the early stages. They can then enter the dormant state and restore tumourigenicity after several years to develop overt metastasis. In the last few years, an increasing number of studies have reported on the factors promoting bone metastasis of breast cancer cells, both at the primary and metastatic sites. Identifying factors associated with bone metastasis aids in the early recognition of bone metastasis tendency. How to target these factors and minimize the side effects on the bone remains to be further explored.
Collapse
Affiliation(s)
- Yiou Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Hu
- Department of Outpatient, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mozhi Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengshen Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
20
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. COLLAGEN MINERALIZATION DECREASES NK CELL-MEDIATED CYTOTOXICITY OF BREAST CANCER CELLS VIA INCREASED GLYCOCALYX THICKNESS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576377. [PMID: 38328161 PMCID: PMC10849468 DOI: 10.1101/2024.01.20.576377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer, and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow, but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, we have utilized a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. Our results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increased their glycocalyx thickness while enhancing resistance to attack by Natural Killer (NK) cells. These changes were functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, our results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Bradley M, Nichols M, Miles B. Denosumab versus pamidronate in the treatment of osteolytic bone metastases secondary to breast cancer: a multi-institutional analysis. Proc AMIA Symp 2023; 37:26-29. [PMID: 38174029 PMCID: PMC10761147 DOI: 10.1080/08998280.2023.2276623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 01/05/2024] Open
Abstract
Background Breast cancer is the most common cancer in women and most often metastasizes to the bone, resulting in skeletal-related events (SREs). Bone-modifying agents (BMAs) including denosumab, a monoclonal antibody against the receptor activator of nuclear factor kappa-b ligand (RANKL), and pamidronate, a bisphosphonate, are used to prevent these adverse events. Methods To analyze the efficacy of denosumab versus pamidronate, we used the TriNetX research platform and compared the outcomes of pathologic fracture, spinal cord compression, and overall 5-year survival rate between each pharmacotherapy. Results There was no statistical difference for an increased risk in pathological fractures (2.7% vs. 2.8%, P = 0.88), spinal cord compression (2.6% vs. 2.7%, P = 0.88), or 5-year survival rate (45.5% vs. 52.4%, P = 0.78) for the denosumab cohort versus the pamidronate cohort. Conclusion Since neither therapy showed an increased risk in the adverse effects measured in this study, factors such as patient preference, financial costs, and additional side effects of each medication should be taken into consideration when choosing a therapy for bone metastases in patients with breast cancer.
Collapse
Affiliation(s)
- Megan Bradley
- John Sealy School of Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Mabry Nichols
- John Sealy School of Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Brittany Miles
- John Sealy School of Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Radiology, Baylor University Medical Center, Dallas, Texas, USA
| |
Collapse
|
22
|
Hasani S, Fathabadi F, Saeidi S, Mohajernoei P, Hesari Z. The role of NFATc1 in the progression and metastasis of prostate cancer: A review on the molecular mechanisms and signaling pathways. Cell Biol Int 2023; 47:1895-1904. [PMID: 37814550 DOI: 10.1002/cbin.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/27/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
A common type of cancer among men is the prostate cancer that kills many people every year. The multistage of this disease and the involvement of the vital organs of the body have reduced the life span and quality of life of the people involved and turned the treatment process into a complex one. NFATc1 biomarker contributes significantly in the diagnosis and treatment of this disease by increasing its expression in prostate cancer and helping the proliferation, differentiation, and invasion of cancer cells through different signaling pathways. NFATc1 is also able to target the metabolism of cancer cells by inserting specific oncogene molecules such as c-myc that it causes cell growth and proliferation. Bone is a common tissue where prostate cancer cells metastasize. In this regard, the activity of NFATc1, through the regulation of different signaling cascades, including the RANKL/RANK signaling pathway, in turn, increases the activity of osteoclasts, and as a result, bone tissue is gradually ruined. Using Silibinin as a medicinal plant extract can inhibit the activity of osteoclasts related to prostate cancer by targeting NFATc. Undoubtedly, NFATc1 is one of the effective oncogenes related to prostate cancer, which has the potential to put this cancer on the path of progression and metastasis. In this review, we will highlight the role of NFATc1 in the progression and metastasis of prostate cancer. Furthermore, we will summarize signaling pathways and molecular mechanism, through which NFATc1 regulates the process of prostate cancer.
Collapse
Affiliation(s)
- Samaneh Hasani
- Department of Nursing, Faculty of Medical Sciences, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Farshid Fathabadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saman Saeidi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pouya Mohajernoei
- Department of Medicine and Surgery, Università degli Studi di Padova, Padua, Italy
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
23
|
Karno B, Edwards DN, Chen J. Metabolic control of cancer metastasis: role of amino acids at secondary organ sites. Oncogene 2023; 42:3447-3456. [PMID: 37848626 PMCID: PMC11323979 DOI: 10.1038/s41388-023-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most cancer-related deaths are caused by the metastases, which commonly develop at multiple organ sites including the brain, bone, and lungs. Despite longstanding observations that the spread of cancer is not random, our understanding of the mechanisms that underlie metastatic spread to specific organs remains limited. However, metabolism has recently emerged as an important contributor to metastasis. Amino acids are a significant nutrient source to cancer cells and their metabolism which can serve to fuel biosynthetic pathways capable of facilitating cell survival and tumor expansion while also defending against oxidative stress. Compared to the primary tumor, each of the common metastatic sites exhibit vastly different nutrient compositions and environmental stressors, necessitating the need of cancer cells to metabolically thrive in their new environment during colonization and outgrowth. This review seeks to summarize the current literature on amino acid metabolism pathways that support metastasis to common secondary sites, including impacts on immune responses. Understanding the role of amino acids in secondary organ sites may offer opportunities for therapeutic inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Breelyn Karno
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Deanna N Edwards
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jin Chen
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
24
|
Nolan E, Kang Y, Malanchi I. Mechanisms of Organ-Specific Metastasis of Breast Cancer. Cold Spring Harb Perspect Med 2023; 13:a041326. [PMID: 36987584 PMCID: PMC10626265 DOI: 10.1101/cshperspect.a041326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cancer metastasis, or the development of secondary tumors in distant tissues, accounts for the vast majority of fatalities in patients with breast cancer. Breast cancer cells show a striking proclivity to metastasize to distinct organs, specifically the lung, liver, bone, and brain, where they face unique environmental pressures and a wide variety of tissue-resident cells that together create a strong barrier for tumor survival and growth. As a consequence, successful metastatic colonization is critically dependent on reciprocal cross talk between cancer cells and host cells within the target organ, a relationship that shapes the formation of a tumor-supportive microenvironment. Here, we discuss the mechanisms governing organ-specific metastasis in breast cancer, focusing on the intricate interactions between metastatic cells and specific niche cells within a secondary organ, and the remarkable adaptations of both compartments that cooperatively support cancer growth. More broadly, we aim to provide a framework for the microenvironmental prerequisites within each distinct metastatic site for successful breast cancer metastatic seeding and outgrowth.
Collapse
Affiliation(s)
- Emma Nolan
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
| | - Ilaria Malanchi
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| |
Collapse
|
25
|
Affiliation(s)
- Cheyenne Ernst
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hai Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
26
|
Prigol AN, Rode MP, da Luz Efe F, Saleh NA, Creczynski-Pasa TB. The Bone Microenvironment Soil in Prostate Cancer Metastasis: An miRNA Approach. Cancers (Basel) 2023; 15:4027. [PMID: 37627055 PMCID: PMC10452124 DOI: 10.3390/cancers15164027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bone metastatic prostate cancer (PCa) is associated with a high risk of mortality. Changes in the expression pattern of miRNAs seem to be related to early aspects of prostate cancer, as well as its establishment and proliferation, including the necessary steps for metastasis. Here we compiled, for the first time, the important roles of miRNAs in the development, diagnosis, and treatment of bone metastasis, focusing on recent in vivo and in vitro studies. PCa exosomes are proven to promote metastasis-related events, such as osteoblast and osteoclast differentiation and proliferation. Aberrant miRNA expression in PCa may induce abnormal bone remodeling and support tumor development. Furthermore, miRNAs are capable of binding to multiple mRNA targets, a dynamic property that can be harnessed for the development of treatment tools, such as antagomiRs and miRNA mimics, which have emerged as promising candidates in PCa treatment. Finally, miRNAs may serve as noninvasive biomarkers, as they can be detected in tissue and bodily fluids, are highly stable, and show differential expression between nonmetastatic PCa and bone metastatic samples. Taken together, the findings underscore the importance of miRNA expression profiles and miRNA-based tools as rational technologies to increase the quality of life and longevity of patients.
Collapse
Affiliation(s)
| | | | | | | | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina State, Brazil; (A.N.P.); (M.P.R.); (F.d.L.E.); (N.A.S.)
| |
Collapse
|
27
|
Ozer M, Goksu SY, Lin RY, Ayasun R, Kahramangil D, Rogers SC, Fabregas JC, Ramnaraign BH, George TJ, Feely M, Cabrera R, Duarte S, Zarrinpar A, Sahin I. Effects of Clinical and Tumor Characteristics on Survival in Patients with Hepatocellular Carcinoma with Bone Metastasis. J Hepatocell Carcinoma 2023; 10:1129-1141. [PMID: 37489126 PMCID: PMC10363394 DOI: 10.2147/jhc.s417273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Background Advanced hepatocellular carcinoma (HCC) generally has a dismal prognosis. Bone metastases from HCC are infrequent, with a poorer prognosis. However, the survival influencing factors are not yet well understood. Aim The aim of the present study was to assess the clinical features and tumor characteristics of HCC patients with bone metastasis. Methods A cohort of 170,576 adult patients with HCC was studied using the National Cancer Database (NCDB) spanning from 2010 to 2019, and within this group, 5285 patients (3.1%) were diagnosed with bone metastasis. We performed the Kaplan-Meier method to calculate the median overall survival (OS). We included demographics (age at diagnosis, gender, race, insurance status), comorbidity score, and treatment characteristics. Results Of a total of 5285 HCC patients with bone metastasis, 86.2% were male and 61.2% were non-Hispanic white. Most patients (55.1%) were below 65, and 89% had a total Charlson-Deyo comorbidity score of under 3. Among patients with known tumor grade, 24.8% had well-differentiated tumors, and 36.1% had poorly differentiated tumors. Chemotherapy was administrated to 39.5% of patients. In univariate analysis, patients with well-differentiated tumors had better OS compared to poorly differentiated tumors (5.4 months vs 3.0 months, p = 0.001). Patients who received single or multiagent chemotherapy were significantly associated with improved OS compared to patients who did not receive chemotherapy (7.0 and 8.5 months vs 1.94 months, respectively). We also found mortality difference between age, comorbidity scores, facility types and race groups. Conclusion In this cohort analysis of NCDB data, we found better OS in treatment receipt, lower tumor grade, younger age, non-Hispanic Black and Hispanic race, treatment at academic facility and lower comorbidity score in HCC patients with bone metastasis. The study results may have a consequential impact on the treatment decisions for HCC patients with bone metastasis.
Collapse
Affiliation(s)
- Muhammet Ozer
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Suleyman Yasin Goksu
- Division of Hematology/Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rick Y Lin
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Ruveyda Ayasun
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Doga Kahramangil
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Sherise C Rogers
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Jesus C Fabregas
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Brian H Ramnaraign
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Thomas J George
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Michael Feely
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Roniel Cabrera
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, FL, USA
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ilyas Sahin
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| |
Collapse
|
28
|
Hoover MY, Ambrosi TH, Steininger HM, Koepke LS, Wang Y, Zhao L, Murphy MP, Alam AA, Arouge EJ, Butler MGK, Takematsu E, Stavitsky SP, Hu S, Sahoo D, Sinha R, Morri M, Neff N, Bishop J, Gardner M, Goodman S, Longaker M, Chan CKF. Purification and functional characterization of novel human skeletal stem cell lineages. Nat Protoc 2023; 18:2256-2282. [PMID: 37316563 PMCID: PMC10495180 DOI: 10.1038/s41596-023-00836-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/21/2023] [Indexed: 06/16/2023]
Abstract
Human skeletal stem cells (hSSCs) hold tremendous therapeutic potential for developing new clinical strategies to effectively combat congenital and age-related musculoskeletal disorders. Unfortunately, refined methodologies for the proper isolation of bona fide hSSCs and the development of functional assays that accurately recapitulate their physiology within the skeleton have been lacking. Bone marrow-derived mesenchymal stromal cells (BMSCs), commonly used to describe the source of precursors for osteoblasts, chondrocytes, adipocytes and stroma, have held great promise as the basis of various approaches for cell therapy. However, the reproducibility and clinical efficacy of these attempts have been obscured by the heterogeneous nature of BMSCs due to their isolation by plastic adherence techniques. To address these limitations, our group has refined the purity of individual progenitor populations that are encompassed by BMSCs by identifying defined populations of bona fide hSSCs and their downstream progenitors that strictly give rise to skeletally restricted cell lineages. Here, we describe an advanced flow cytometric approach that utilizes an extensive panel of eight cell surface markers to define hSSCs; bone, cartilage and stromal progenitors; and more differentiated unipotent subtypes, including an osteogenic subset and three chondroprogenitors. We provide detailed instructions for the FACS-based isolation of hSSCs from various tissue sources, in vitro and in vivo skeletogenic functional assays, human xenograft mouse models and single-cell RNA sequencing analysis. This application of hSSC isolation can be performed by any researcher with basic skills in biology and flow cytometry within 1-2 days. The downstream functional assays can be performed within a range of 1-2 months.
Collapse
Affiliation(s)
- Malachia Y Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas H Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, USA
| | - Holly M Steininger
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren S Koepke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Matthew P Murphy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alina A Alam
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth J Arouge
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - M Gohazrua K Butler
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eri Takematsu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Suzan P Stavitsky
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Serena Hu
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, USA
| | - Debashis Sahoo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maurizio Morri
- Chan Zuckerberg BioHub, San Francisco, CA, USA
- Altos Labs, Redwood City, CA, USA
| | - Norma Neff
- Chan Zuckerberg BioHub, San Francisco, CA, USA
| | - Julius Bishop
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, USA
| | - Michael Gardner
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, USA
| | - Stuart Goodman
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, USA
| | - Michael Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
29
|
Si H, Esquivel M, Mendoza Mendoza E, Roarty K. The covert symphony: cellular and molecular accomplices in breast cancer metastasis. Front Cell Dev Biol 2023; 11:1221784. [PMID: 37440925 PMCID: PMC10333702 DOI: 10.3389/fcell.2023.1221784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer has emerged as the most commonly diagnosed cancer and primary cause of cancer-related deaths among women worldwide. Although significant progress has been made in targeting the primary tumor, the effectiveness of systemic treatments to prevent metastasis remains limited. Metastatic disease continues to be the predominant factor leading to fatality in the majority of breast cancer patients. The existence of a prolonged latency period between initial treatment and eventual recurrence in certain patients indicates that tumors can both adapt to and interact with the systemic environment of the host, facilitating and sustaining the progression of the disease. In order to identify potential therapeutic interventions for metastasis, it will be crucial to gain a comprehensive framework surrounding the mechanisms driving the growth, survival, and spread of tumor cells, as well as their interaction with supporting cells of the microenvironment. This review aims to consolidate recent discoveries concerning critical aspects of breast cancer metastasis, encompassing the intricate network of cells, molecules, and physical factors that contribute to metastasis, as well as the molecular mechanisms governing cancer dormancy.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Madelyn Esquivel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Erika Mendoza Mendoza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|
30
|
Zhao H, Wang L, Ji X, Zhang L, Li C. Biology of breast cancer brain metastases and novel therapies targeting the blood brain barrier: an updated review. Med Oncol 2023; 40:181. [PMID: 37202575 DOI: 10.1007/s12032-023-02047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Brain metastasis (BM) is a critical cause of morbidity and mortality in patients with breast cancer (BC). Compared with other cancer cells, BC cells (BCs) exhibit special features in the metastatic process. However, the underlying mechanisms are still unclear, especially the crosstalk between tumour cells and the microenvironment. To date, novel therapies for BM, including targeted therapy and antibody‒drug conjugates, have been developed. Due to an improved understanding of the blood‒brain barrier (BBB) and blood-tumour barrier (BTB), the development and testing of therapeutic agents in clinical phases have substantially increased. However, these therapies face a major challenge due to the low penetration of the BBB or BTB. As a result, researchers have increasingly focused on finding ways to promote drug penetration through these barriers. This review provides an updated overview of breast cancer brain metastases (BCBM) and summarizes the newly developed therapies for BCBM, especially drugs targeting the BBB or BTB.
Collapse
Affiliation(s)
- Hongfang Zhao
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Xiaolin Ji
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Lijian Zhang
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Postdoctoral Research Station of Neurosurgery, Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
| | - Chunhui Li
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
| |
Collapse
|
31
|
Huang Y, Wang H, Yue X, Li X. Bone serves as a transfer station for secondary dissemination of breast cancer. Bone Res 2023; 11:21. [PMID: 37085486 PMCID: PMC10121690 DOI: 10.1038/s41413-023-00260-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 04/23/2023] Open
Abstract
Metastasis is responsible for the majority of deaths among breast cancer patients. Although parallel polyclonal seeding has been shown to contribute to organ-specific metastasis, in the past decade, horizontal cross-metastatic seeding (metastasis-to-metastasis spreading) has also been demonstrated as a pattern of distant metastasis to multiple sites. Bone, as the most frequent first destination of breast cancer metastasis, has been demonstrated to facilitate the secondary dissemination of breast cancer cells. In this review, we summarize the clinical and experimental evidence that bone is a transfer station for the secondary dissemination of breast cancer. We also discuss the regulatory mechanisms of the bone microenvironment in secondary seeding of breast cancer, focusing on stemness regulation, quiescence-proliferation equilibrium regulation, epigenetic reprogramming and immune escape of cancer cells. Furthermore, we highlight future research perspectives and strategies for preventing secondary dissemination from bone.
Collapse
Affiliation(s)
- Yufan Huang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Hongli Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaomin Yue
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaoqing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
| |
Collapse
|
32
|
West J, Adler F, Gallaher J, Strobl M, Brady-Nicholls R, Brown J, Roberson-Tessi M, Kim E, Noble R, Viossat Y, Basanta D, Anderson ARA. A survey of open questions in adaptive therapy: Bridging mathematics and clinical translation. eLife 2023; 12:e84263. [PMID: 36952376 PMCID: PMC10036119 DOI: 10.7554/elife.84263] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023] Open
Abstract
Adaptive therapy is a dynamic cancer treatment protocol that updates (or 'adapts') treatment decisions in anticipation of evolving tumor dynamics. This broad term encompasses many possible dynamic treatment protocols of patient-specific dose modulation or dose timing. Adaptive therapy maintains high levels of tumor burden to benefit from the competitive suppression of treatment-sensitive subpopulations on treatment-resistant subpopulations. This evolution-based approach to cancer treatment has been integrated into several ongoing or planned clinical trials, including treatment of metastatic castrate resistant prostate cancer, ovarian cancer, and BRAF-mutant melanoma. In the previous few decades, experimental and clinical investigation of adaptive therapy has progressed synergistically with mathematical and computational modeling. In this work, we discuss 11 open questions in cancer adaptive therapy mathematical modeling. The questions are split into three sections: (1) integrating the appropriate components into mathematical models (2) design and validation of dosing protocols, and (3) challenges and opportunities in clinical translation.
Collapse
Affiliation(s)
- Jeffrey West
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research InstituteTampaUnited States
| | - Fred Adler
- Department of Mathematics, University of UtahSalt Lake CityUnited States
- School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Jill Gallaher
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research InstituteTampaUnited States
| | - Maximilian Strobl
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research InstituteTampaUnited States
| | - Renee Brady-Nicholls
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research InstituteTampaUnited States
| | - Joel Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research InstituteTampaUnited States
| | - Mark Roberson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research InstituteTampaUnited States
| | - Eunjung Kim
- Natural Product Informatics Research Center, Korea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Robert Noble
- Department of Mathematics, University of LondonLondonUnited Kingdom
| | - Yannick Viossat
- Ceremade, Université Paris-Dauphine, Université Paris Sciences et LettresParisFrance
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research InstituteTampaUnited States
| | - Alexander RA Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research InstituteTampaUnited States
| |
Collapse
|
33
|
Zhao Y, Teng H, Deng Y, Sheldon M, Martinez C, Zhang J, Tian A, Sun Y, Nakagawa S, Yao F, Wang H, Ma L. Long noncoding RNA Malat1 inhibits Tead3-Nfatc1-mediated osteoclastogenesis to suppress osteoporosis and bone metastasis. RESEARCH SQUARE 2023:rs.3.rs-2405644. [PMID: 36993303 PMCID: PMC10055520 DOI: 10.21203/rs.3.rs-2405644/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
MALAT1, one of the few highly conserved nuclear long noncoding RNAs (IncRNAs), is abundantly expressed in normal tissues. Previously, targeted inactivation and genetic rescue experiments identified MALAT1 as a suppressor of breast cancer lung metastasis. On the other hand, Malat1-knockout mice are viable and develop normally. On a quest to discover new roles of MALAT1 in physiological and pathological processes, we found that this lncRNA is downregulated during osteoclastogenesis in humans and mice. Notably, Malat1 deficiency in mice promotes osteoporosis and bone metastasis, which can be rescued by genetic add-back of Malat1. Mechanistically, Malat1 binds to Tead3 protein, a macrophage-osteoclast-specific Tead family member, blocking Tead3 from binding and activating Nfatc1, a master regulator of osteoclastogenesis, which results in the inhibition of Nfatc1-mediated gene transcription and osteoclast differentiation. Altogether, these findings identify Malat1 as a lncRNA that suppresses osteoporosis and bone metastasis.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Annie Tian
- Department of Kinesiology, Rice University, Houston, Texas 77005, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Present address: Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hai Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| |
Collapse
|
34
|
Böckelmann LC, Freytag V, Ahlers AK, Maar H, Gosau T, Baranowsky A, Schmitz R, Pantel K, Schumacher U, Haider MT, Lange T. Efficacy of zoledronic acid for the elimination of disseminated tumor cells in a clinically relevant, spontaneously metastatic prostate cancer xenograft model. Bone 2023; 171:116741. [PMID: 36934984 DOI: 10.1016/j.bone.2023.116741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/01/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Bone metastases develop in >90 % of patients with castration-resistant prostate cancer (PCa) through complex interactions between the bone microenvironment and tumor cells. Previous androgen-deprivation therapy (ADT), which is known to cause bone loss, as well as anti-resorptive agents such as zoledronic acid (ZA), used to prevent skeletal complications, may influence these interactions and thereby the growth of disseminated tumor cells (DTC) in the bone marrow (BM). Here, a spontaneously metastatic xenograft tumor model of human PCa was further optimized to mimic the common clinical situation of ADT (castration) combined with primary tumor resection in vivo. The effects of these interventions, alone or in combination with ZA treatment, on tumor cell dissemination to the BM and other distant sites were analyzed. Metastatic burden was quantified by human-specific Alu-qPCR, bioluminescence imaging (BLI), and immunohistochemistry. Further, bone remodeling was assessed by static histomorphometry and serum parameters. Initial comparative analysis between NSG and SCID mice showed that spontaneous systemic dissemination of subcutaneous PC-3 xenograft tumors was considerably enhanced in NSG mice. Primary tumor resection and thereby prolonged observational periods resulted in a higher overall metastatic cell load at necropsy and tumor growth alone caused significant bone loss, which was further augmented by surgical castration. In addition, castrated mice showed a strong trend towards higher bone metastasis loads. Weekly treatment of mice with ZA completely prevented castration- and tumor-induced bone loss but had no effect on bone metastasis burden. Conversely, the total lung metastasis load as determined by BLI was significantly decreased upon ZA treatment. These findings provide a basis for future research on the role of ZA not only in preventing skeletal complications but also in reducing metastasis to other organs.
Collapse
Affiliation(s)
- Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Oncology, Hematology and Bone Marrow Transplantation, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vera Freytag
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Kristin Ahlers
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Anatomy I, Cancer Center Central Germany, Jena University Hospital, Jena, Germany
| | - Tobias Gosau
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rüdiger Schmitz
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Therese Haider
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Anatomy I, Cancer Center Central Germany, Jena University Hospital, Jena, Germany.
| |
Collapse
|
35
|
Chalamgari A, Valle D, Palau Villarreal X, Foreman M, Liu A, Patel A, Dave A, Lucke-Wold B. Vertebral Primary Bone Lesions: Review of Management Options. Curr Oncol 2023; 30:3064-3078. [PMID: 36975445 PMCID: PMC10047554 DOI: 10.3390/curroncol30030232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The assessment and treatment of vertebral primary bone lesions continue to pose a unique yet significant challenge. Indeed, there exists little in the literature in the way of compiling and overviewing the various types of vertebral lesions, which can often have complicated intervention strategies. Given the severe consequences of mismanaged vertebral bone tumors-including the extreme loss of motor function-it is clear that such an overview of spinal lesion care is needed. Thus, in the following paper, we aim to address the assessment of various vertebral primary bone lesions, outlining the relevant nonsurgical and surgical interventional methods. We describe examples of primary benign and malignant tumors, comparing and contrasting their differences. We also highlight emerging treatments and approaches for these tumors, like cryoablation and stereotactic body radiation therapy. Ultimately, we aim to emphasize the need for further guidelines in regard to correlating lesion type with proper therapy, underscoring the innate diversity of vertebral primary bone lesions in the literature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32601, USA
| |
Collapse
|
36
|
Nano-hydroxyapatite radiolabeled with radium dichloride [ 223Ra] RaCl 2 for bone cancer targeted alpha therapy: In vitro assay and radiation effect on the nanostructure. Colloids Surf B Biointerfaces 2023; 223:113174. [PMID: 36746067 DOI: 10.1016/j.colsurfb.2023.113174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The use of targeted alpha therapy (TAT) for bone cancer is increasing each year. Among the alpha radionuclides, radium [223Ra]Ra+2 is the first one approved for bone cancer metastasis therapy. The development of novel radiopharmaceutical based on [223Ra]Ra+2 is essential to continuously increase the arsenal of new TAT drugs. In this study we have developed, characterized, and in vitro evaluated [223Ra] Ra-nano-hydroxyapatite. The results showed that [223Ra] Ra-nano-hydroxyapatite has a dose-response relationship for osteosarcoma cells and a safety profile for human fibroblast cells, corroborating the application as a radiopharmaceutical.
Collapse
|
37
|
Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol 2023; 947:175678. [PMID: 36990262 DOI: 10.1016/j.ejphar.2023.175678] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Transforming growth factor-β (TGFβ) is a pleiotropic secretory cytokine exhibiting both cancer-inhibitory and promoting properties. It transmits its signals via Suppressor of Mother against Decapentaplegic (SMAD) and non-SMAD pathways and regulates cell proliferation, differentiation, invasion, migration, and apoptosis. In non-cancer and early-stage cancer cells, TGFβ signaling suppresses cancer progression via inducing apoptosis, cell cycle arrest, or anti-proliferation, and promoting cell differentiation. On the other hand, TGFβ may also act as an oncogene in advanced stages of tumors, wherein it develops immune-suppressive tumor microenvironments and induces the proliferation of cancer cells, invasion, angiogenesis, tumorigenesis, and metastasis. Higher TGFβ expression leads to the instigation and development of cancer. Therefore, suppressing TGFβ signals may present a potential treatment option for inhibiting tumorigenesis and metastasis. Different inhibitory molecules, including ligand traps, anti-sense oligo-nucleotides, small molecule receptor-kinase inhibitors, small molecule inhibitors, and vaccines, have been developed and clinically trialed for blocking the TGFβ signaling pathway. These molecules are not pro-oncogenic response-specific but block all signaling effects induced by TGFβ. Nonetheless, targeting the activation of TGFβ signaling with maximized specificity and minimized toxicity can enhance the efficacy of therapeutic approaches against this signaling pathway. The molecules that are used to target TGFβ are non-cytotoxic to cancer cells but designed to curtail the over-activation of invasion and metastasis driving TGFβ signaling in stromal and cancer cells. Here, we discussed the critical role of TGFβ in tumorigenesis, and metastasis, as well as the outcome and the promising achievement of TGFβ inhibitory molecules in the treatment of cancer.
Collapse
|
38
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
39
|
Clements ME, Holtslander L, Johnson JR, Johnson RW. Select HDAC Inhibitors Enhance Osteolysis and Bone Metastasis Outgrowth but Can Be Mitigated With Bisphosphonate Therapy. JBMR Plus 2023; 7:e10694. [PMID: 36936362 PMCID: PMC10020917 DOI: 10.1002/jbm4.10694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Breast cancer has a high predilection for spreading to bone with approximately 70% of patients who succumb to disease harboring bone disseminated tumor cells. Despite this high prevalence, treatments for bone metastatic breast cancer predominantly manage morbidities, including pain and hypercalcemia, rather than reducing bone metastasis incidence or growth. Histone deacetylase inhibitors (HDACi), including panobinostat, entinostat, and valproic acid, typically slow primary tumor progression and are currently in clinical trials for the treatment of many cancers, including primary and metastatic breast cancer, but their effects on bone metastatic disease have not been examined in preclinical models. We report that treatment with the HDACi panobinostat, but not entinostat or valproic acid, significantly reduced trabecular bone volume in tumor-naïve mice, consistent with previous reports of HDACi-induced bone loss. Surprisingly, treatment with entinostat or panobinostat, but not valproic acid, increased tumor burden and incidence in an experimental model of breast cancer bone metastasis. In vitro, multiple HDACi stimulated expression of pro-osteolytic genes in breast tumor cells, suggesting this may be a mechanism by which HDACi fuel tumor growth. In support of this, combination therapy of panobinostat or entinostat with the antiresorptive bisphosphonate zoledronic acid prevented bone metastatic progression; however, the addition of zoledronic acid to panobinostat therapy failed to fully correct panobinostat-induced bone loss. Together these data demonstrate that select HDACi fuel bone metastatic growth and provide potential mechanistic and therapeutic avenues to offset these effects. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Miranda E Clements
- Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Lauren Holtslander
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Joshua R Johnson
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Rachelle W Johnson
- Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
40
|
Zhang W, Xu Z, Hao X, He T, Li J, Shen Y, Liu K, Gao Y, Liu J, Edwards D, Muscarella AM, Wu L, Yu L, Xu L, Chen X, Wu YH, Bado IL, Ding Y, Aguirre S, Wang H, Gugala Z, Satcher RL, Wong ST, Zhang XHF. Bone Metastasis Initiation Is Coupled with Bone Remodeling through Osteogenic Differentiation of NG2+ Cells. Cancer Discov 2023; 13:474-495. [PMID: 36287038 PMCID: PMC9905315 DOI: 10.1158/2159-8290.cd-22-0220] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 02/07/2023]
Abstract
The bone microenvironment is dynamic and undergoes remodeling in normal and pathologic conditions. Whether such remodeling affects disseminated tumor cells (DTC) and bone metastasis remains poorly understood. Here, we demonstrated that pathologic fractures increase metastatic colonization around the injury. NG2+ cells are a common participant in bone metastasis initiation and bone remodeling in both homeostatic and fractured conditions. NG2+ bone mesenchymal stem/stromal cells (BMSC) often colocalize with DTCs in the perivascular niche. Both DTCs and NG2+ BMSCs are recruited to remodeling sites. Ablation of NG2+ lineage impaired bone remodeling and concurrently diminished metastatic colonization. In cocultures, NG2+ BMSCs, especially when undergoing osteodifferentiation, enhanced cancer cell proliferation and migration. Knockout of N-cadherin in NG2+ cells abolished these effects in vitro and phenocopied NG2+ lineage depletion in vivo. These findings uncover dual roles of NG2+ cells in metastasis and remodeling and indicate that osteodifferentiation of BMSCs promotes metastasis initiation via N-cadherin-mediated cell-cell interaction. SIGNIFICANCE The bone colonization of cancer cells occurs in an environment that undergoes constant remodeling. Our study provides mechanistic insights into how bone homeostasis and pathologic repair lead to the outgrowth of disseminated cancer cells, thereby opening new directions for further etiologic and epidemiologic studies of tumor recurrences. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhan Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tiancheng He
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Jiasong Li
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Yichao Shen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kai Liu
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Edwards
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron M. Muscarella
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liqun Yu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Longyong Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Igor L. Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yunfeng Ding
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zbigniew Gugala
- Department of Orthopedic Surgery & Rehabilitation, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert L Satcher
- Department of Orthopedic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen T. Wong
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Xiang H.-F. Zhang, mailing address: One Baylor Plaza, BCM 600, Houston, TX 77030; ; TEL: 713-798-6239.
| |
Collapse
|
41
|
Heng BC, Bai Y, Li X, Lim LW, Li W, Ge Z, Zhang X, Deng X. Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204502. [PMID: 36453574 PMCID: PMC9839869 DOI: 10.1002/advs.202204502] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/24/2022] [Indexed: 06/02/2023]
Abstract
Bone degeneration associated with various diseases is increasing due to rapid aging, sedentary lifestyles, and unhealthy diets. Living bone tissue has bioelectric properties critical to bone remodeling, and bone degeneration under various pathological conditions results in significant changes to these bioelectric properties. There is growing interest in utilizing biomimetic electroactive biomaterials that recapitulate the natural electrophysiological microenvironment of healthy bone tissue to promote bone repair. This review first summarizes the etiology of degenerative bone conditions associated with various diseases such as type II diabetes, osteoporosis, periodontitis, osteoarthritis, rheumatoid arthritis, osteomyelitis, and metastatic osteolysis. Next, the diverse array of natural and synthetic electroactive biomaterials with therapeutic potential are discussed. Putative mechanistic pathways by which electroactive biomaterials can mitigate bone degeneration are critically examined, including the enhancement of osteogenesis and angiogenesis, suppression of inflammation and osteoclastogenesis, as well as their anti-bacterial effects. Finally, the limited research on utilization of electroactive biomaterials in the treatment of bone degeneration associated with the aforementioned diseases are examined. Previous studies have mostly focused on using electroactive biomaterials to treat bone traumatic injuries. It is hoped that this review will encourage more research efforts on the use of electroactive biomaterials for treating degenerative bone conditions.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central LaboratoryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- School of Medical and Life SciencesSunway UniversityDarul EhsanSelangor47500Malaysia
| | - Yunyang Bai
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaochan Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Lee Wei Lim
- Neuromodulation LaboratorySchool of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong KongP. R. China
| | - Wang Li
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Zigang Ge
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| |
Collapse
|
42
|
Ollodart J, Contino KF, Deep G, Shiozawa Y. The impacts of exosomes on bone metastatic progression and their potential clinical utility. Bone Rep 2022; 17:101606. [PMID: 35910404 PMCID: PMC9335387 DOI: 10.1016/j.bonr.2022.101606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Bone is one of the most common sites of cancer metastasis. Once cancer metastasizes to the bone, the mortality rate of cancer patients dramatically increases. Although the exact mechanisms for this observation remain elusive, recent studies have revealed that the complex crosstalk between bone marrow microenvironment and bone metastatic cancer cells is responsible for the induction of treatment resistance. Consequently, bone metastasis is currently considered incurable. Bone metastasis not only impairs the patients' survival, but also negatively affects their quality of life by causing painful complications. It has recently been implicated the regulatory role of exosomes in cancer development and/or progression as a delivery biomaterial between cancer cells and tumor microenvironment. However, little is known as to how exosomes contribute to the progression of bone metastasis by impaction on the crosstalk between bone metastatic cancer cells and bone marrow microenvironment. Here, we highlighted the emerging roles of cancer-derived exosomes in (i) the process of dissemination and bone colonization of bone metastatic cancer cells, (ii) the enhancement of crosstalk between bone marrow microenvironment and bone metastatic cancer cells, (iii) the development of its resultant painful complications, and (iv) the clinical applications of exosomes in the bone metastatic setting. Cancer-derived exosomes facilitate cancer dissemination and colonization to bone. Cancer-derived exosomes are crucial for controlling bone metastatic phenotype. Cancer-derived exosomes prime bone marrow microenvironment for further metastasis. Cancer-derived exosomes are involved in development of cancer-induced bone pain. Exosomes can be used as therapies and/or diagnostic tools for bone metastasis.
Collapse
Affiliation(s)
- Jenna Ollodart
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Kelly F Contino
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Gagan Deep
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| |
Collapse
|
43
|
Crippa M, Talò G, Lamouline A, Bolis S, Arrigoni C, Bersini S, Moretti M. A microfluidic model of human vascularized breast cancer metastasis to bone for the study of neutrophil-cancer cell interactions. Mater Today Bio 2022; 17:100460. [PMID: 36278146 PMCID: PMC9583110 DOI: 10.1016/j.mtbio.2022.100460] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
The organ-specific metastatization of breast cancer to bone is driven by specific interactions between the host microenvironment and cancer cells (CCs). However, it is still unclear the role that circulating immune cells, including neutrophils, play during bone colonization (i.e. pro-tumoral vs. anti-tumoral). Here, we aimed at analyzing the migratory behavior of neutrophils when exposed to breast CCs colonizing the bone and their contribution to the growth of breast cancer micrometastases. Based on our previous bone metastasis models, we designed a microfluidic system that allows to independently introduce human vascularized breast cancer metastatic seeds within a bone-mimicking microenvironment containing osteo-differentiated mesenchymal stromal cells and endothelial cells (ECs). ECs self-assembled into microvascular networks and connected the bone-mimicking microenvironment with the metastatic seed. Compared to controls without CCs, metastatic seeds compromised the architecture of microvascular networks resulting in a lower number of junctions (5.7 ± 1.2 vs. 18.8 ± 4.5, p = 0.025) and shorter network length (10.5 ± 1.0 vs. 13.4 ± 0.8 [mm], p = 0.042). Further, vascular permeability was significantly higher with CCs (2.60 × 10-8 ± 3.59 × 10-8 vs. 0.53 × 10-8 ± 0.44 × 10-8 [cm/s], p = 0.05). Following metastatic seed maturation, neutrophils were injected into microvascular networks resulting in a higher extravasation rate when CCs were present (27.9 ± 13.7 vs. 14.7 ± 12.4 [%], p = 0.01). Strikingly, the percentage of dying CCs increased in presence of neutrophils, as confirmed by confocal imaging and flow cytometry on isolated cells from the metastatic seeds. The biofabricated metastatic niche represents a powerful tool to analyze the mechanisms of interaction between circulating immune cells and organ-specific micrometastases and to test novel drug combinations targeting the metastatic microenvironment.
Collapse
Affiliation(s)
- Martina Crippa
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland,Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, 6900, Lugano, Switzerland,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Giuseppe Talò
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Anaïs Lamouline
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland,Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, 6900, Lugano, Switzerland,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Sara Bolis
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland,Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, 6900, Lugano, Switzerland,Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Simone Bersini
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland,Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, 6900, Lugano, Switzerland,Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900, Lugano, Switzerland,Corresponding author. Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland.
| | - Matteo Moretti
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland,Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, 6900, Lugano, Switzerland,Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy,Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900, Lugano, Switzerland,Corresponding author. Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland.
| |
Collapse
|
44
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
45
|
Tian Q, Lu Y, Yan B, Wu C. Integrative Bioinformatics Analysis Reveals That miR-524-5p/MEF2C Regulates Bone Metastasis in Prostate Cancer and Breast Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5211329. [PMID: 36128051 PMCID: PMC9482681 DOI: 10.1155/2022/5211329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Bone metastases are highly prevalent in patients with advanced prostate cancer and breast cancer and have a serious impact on the survival time and quality of life of these patients. It has been reported that microRNAs (miRNAs) are expressed abnormally in different types of cancer and metastases. However, it remains unknown whether the underlying miRNAs are associated with prostate and breast cancer bone metastasis. Differentially expressed miRNAs (DE-miRNAs) and their potential targets in the metastatic process were identified by bioinformatics analysis. Additionally, qPCR confirmed that the miR-524-5p expression was downregulated in prostate and breast cancer cells. The overexpression of miR-524-5p restrained cell proliferation, invasion, and metastasis in prostate and breast cancer cells. Meanwhile, miR-524-5p could target and inhibit the expression of MEF2C, which was verified by a luciferase assay. In conclusion, our data strongly suggest that downregulation of miR-524-5p appears to be a precocious event in prostate and breast cancer, and the miR-524-5p/MEF2C axis plays a novel role in bone metastases from prostate and breast cancers.
Collapse
Affiliation(s)
- QingHua Tian
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - YingYing Lu
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - BiCong Yan
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - ChunGen Wu
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
46
|
Wu YH, Gugala Z, Barry MM, Shen Y, Dasgupta S, Wang H. Optimization and Characterization of a Bone Culture Model to Study Prostate Cancer Bone Metastasis. Mol Cancer Ther 2022; 21:1360-1368. [PMID: 35666809 PMCID: PMC9357208 DOI: 10.1158/1535-7163.mct-21-0684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/29/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023]
Abstract
Nearly 90% of patients with advanced prostate cancer manifest bone metastases. Distinct from the osteolytic metastasis mostly observed in other cancer types, prostate cancer bone metastasis is typically more osteoblastic, which is relatively understudied due to the lack of reliable and efficient models to resemble the indolent cellular growth and complexity of metastatic progression. In our previous studies, we developed bone-in-culture array (BICA) to primarily model the osteoblast-involved, pre-osteolytic stage of breast cancer bone metastasis. Given that the progression of prostate cancer bone metastasis is largely osteoblastic, it is reasonable to speculate that the original BICA model can be adjusted to investigate prostate cancer bone metastases. In this study, we refined BICA by reducing the surgical labor and improving its reproducibility and capacity. The optimized BICA can successfully recapitulate important features of prostate cancer bone metastasis such as the osteoblastic phenotype, indolent growth, cancer-niche interactions, and response to hormones. Our efforts address the long-standing need for reliable and efficient models to study prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Zbigniew Gugala
- Department of Orthopaedic Surgery & Rehabilitation, University of Texas Medical Branch, Galveston, TX 77555
| | - Megan M. Barry
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263
| | - Yichao Shen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Subhamoy Dasgupta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263
| | - Hai Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263
| |
Collapse
|
47
|
Baumann Z, Auf der Maur P, Bentires‐Alj M. Feed-forward loops between metastatic cancer cells and their microenvironment-the stage of escalation. EMBO Mol Med 2022; 14:e14283. [PMID: 35506376 PMCID: PMC9174884 DOI: 10.15252/emmm.202114283] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent cancer among women, and metastases in distant organs are the leading cause of the cancer-related deaths. While survival of early-stage breast cancer patients has increased dramatically, the 5-year survival rate of metastatic patients has barely improved in the last 20 years. Metastases can arise up to decades after primary tumor resection, hinting at microenvironmental factors influencing the sudden outgrowth of disseminated tumor cells (DTCs). This review summarizes how the environment of the most common metastatic sites (lung, liver, bone, brain) is influenced by the primary tumor and by the varying dormancy of DTCs, with a special focus on how established metastases persist and grow in distant organs due to feed-forward loops (FFLs). We discuss in detail the importance of FFL of cancer cells with their microenvironment including the secretome, interaction with specialized tissue-specific cells, nutrients/metabolites, and that novel therapies should target not only the cancer cells but also the tumor microenvironment, which are thick as thieves.
Collapse
Affiliation(s)
- Zora Baumann
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Priska Auf der Maur
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Mohamed Bentires‐Alj
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| |
Collapse
|
48
|
Ahmadian H, Mageswaran P, Walter BA, Blakaj DM, Bourekas EC, Mendel E, Marras WS, Soghrati S. Toward an artificial intelligence-assisted framework for reconstructing the digital twin of vertebra and predicting its fracture response. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3601. [PMID: 35403831 PMCID: PMC9285948 DOI: 10.1002/cnm.3601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/13/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
This article presents an effort toward building an artificial intelligence (AI) assisted framework, coined ReconGAN, for creating a realistic digital twin of the human vertebra and predicting the risk of vertebral fracture (VF). ReconGAN consists of a deep convolutional generative adversarial network (DCGAN), image-processing steps, and finite element (FE) based shape optimization to reconstruct the vertebra model. This DCGAN model is trained using a set of quantitative micro-computed tomography (micro-QCT) images of the trabecular bone obtained from cadaveric samples. The quality of synthetic trabecular models generated using DCGAN are verified by comparing a set of its statistical microstructural descriptors with those of the imaging data. The synthesized trabecular microstructure is then infused into the vertebra cortical shell extracted from the patient's diagnostic CT scans using an FE-based shape optimization approach to achieve a smooth transition between trabecular to cortical regions. The final geometrical model of the vertebra is converted into a high-fidelity FE model to simulate the VF response using a continuum damage model under compression and flexion loading conditions. A feasibility study is presented to demonstrate the applicability of digital twins generated using this AI-assisted framework to predict the risk of VF in a cancer patient with spinal metastasis.
Collapse
Affiliation(s)
- Hossein Ahmadian
- Department of Integrated Systems EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Prasath Mageswaran
- Department of Integrated Systems EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Benjamin A. Walter
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Dukagjin M. Blakaj
- Department of Radiation OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Eric C. Bourekas
- Department of Neurological SurgeryThe Ohio State UniversityColumbusOhioUSA
- Department of RadiologyThe Ohio State UniversityColumbusOhioUSA
- Department of NeurologyThe Ohio State UniversityColumbusOhioUSA
| | - Ehud Mendel
- Department of Radiation OncologyThe Ohio State UniversityColumbusOhioUSA
- Department of Neurological SurgeryThe Ohio State UniversityColumbusOhioUSA
- Department of OrthopedicsThe Ohio State UniversityColumbusOhioUSA
| | - William S. Marras
- Department of Integrated Systems EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Soheil Soghrati
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of Materials Science and EngineeringThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
49
|
EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation. Nat Commun 2022; 13:2543. [PMID: 35538070 PMCID: PMC9091212 DOI: 10.1038/s41467-022-30105-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Bone metastases occur in 50-70% of patients with late-stage breast cancers and effective therapies are needed. The expression of enhancer of zeste homolog 2 (EZH2) is correlated with breast cancer metastasis, but its function in bone metastasis hasn't been well-explored. Here we report that EZH2 promotes osteolytic metastasis of breast cancer through regulating transforming growth factor beta (TGFβ) signaling. EZH2 induces cancer cell proliferation and osteoclast maturation, whereas EZH2 knockdown decreases bone metastasis incidence and outgrowth in vivo. Mechanistically, EZH2 transcriptionally increases ITGB1, which encodes for integrin β1. Integrin β1 activates focal adhesion kinase (FAK), which phosphorylates TGFβ receptor type I (TGFβRI) at tyrosine 182 to enhance its binding to TGFβ receptor type II (TGFβRII), thereby activating TGFβ signaling. Clinically applicable FAK inhibitors but not EZH2 methyltransferase inhibitors effectively inhibit breast cancer bone metastasis in vivo. Overall, we find that the EZH2-integrin β1-FAK axis cooperates with the TGFβ signaling pathway to promote bone metastasis of breast cancer.
Collapse
|
50
|
Abstract
Metastasis is responsible for a large majority of death from malignant solid tumors. Bone is one of the most frequently affected organs in cancer metastasis, especially in breast and prostate cancer. Development of bone metastasis requires cancer cells to successfully complete a number of challenging steps, including local invasion and intravasation, survival in circulation, extravasation and initial seeding, and finally, formation of metastatic colonies after a period of dormancy or indolent growth. During this process, cancer cells often undergo a series of cellular and molecular changes to gain cellular plasticity that helps them adapt to various environments they encounter along the journey of metastasis. Understanding the mechanisms behind cellular plasticity and adaptation during the formation of bone metastasis is crucial for the development of novel therapies.
Collapse
Affiliation(s)
- Cao Fang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|