1
|
Frericks N, Klöhn M, Lange F, Pottkämper L, Carpentier A, Steinmann E. Host-targeting antivirals for chronic viral infections of the liver. Antiviral Res 2025; 234:106062. [PMID: 39716667 DOI: 10.1016/j.antiviral.2024.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Infection with one or several of the five known hepatitis viruses is a leading cause of liver disease and poses a high risk of developing hepatocellular carcinoma upon chronic infection. Chronicity is primarily caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) and poses a significant health burden worldwide. Co-infection of chronic HBV infected patients with hepatitis D virus (HDV) is less common but is marked as the most severe form of chronic viral hepatitis. Hepatitis A virus (HAV) and hepatitis E virus (HEV) primarily cause self-limiting acute hepatitis. However, studies have also reported chronic progression of HEV disease in immunocompromised patients. While considerable progress has been made in the treatment of HCV and HBV through the development of direct-acting antivirals (DAAs), challenges including drug resistance, incomplete viral suppression resulting in failure to achieve clearance and the lack of effective treatment options for HDV and HEV remain. Host-targeting antivirals (HTAs) have emerged as a promising alternative approach to DAAs and aim to disrupt virus-host interactions by modulating host cell pathways that are hijacked during the viral replication cycle. The aim of this review is to provide a comprehensive overview about the major milestones in research and development of HTAs for chronic HBV/HDV and HCV infections. It also summarizes the current state of knowledge on promising host-targeting therapeutic options against HEV infection.
Collapse
Affiliation(s)
- Nicola Frericks
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Frauke Lange
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Lilli Pottkämper
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
2
|
Hafkesbrink M, Schemmerer M, Wenzel JJ, Isenmann S. Acute hepatitis E virus infection presenting as meningo-encephalitis. Infection 2025; 53:475-479. [PMID: 39143435 DOI: 10.1007/s15010-024-02361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Acute hepatitis E infection (HEV), with its high incidence in Europe, should be considered as a differential diagnosis of acute viral hepatitis and can in some cases manifest with pronounced neurological symptoms. CLINICAL CASE We report on a 33-year-old female patient with severe arthralgia, myalgia, headache and psychomotor deterioration. Laboratory analyses showed elevated transaminases without signs of cholestasis. Acute hepatitis E virus infection was detected in serum. She reported fatigue and dysesthesias not responsive to analgesics. Cerebrospinal fluid (CSF) analysis revealed an inflammatory syndrome. HEV RNA was detected in the CSF. The infection remained mild, but dysesthesias persisted. Eight weeks after the first admission, the symptoms worsened again. Complete and sustained remission was achieved following intravenous corticosteroid treatment. CONCLUSION In patients with acute neurological symptoms and liver enzyme elevation, HEV infection should be considered. Neurologic symptoms such as fatigue, arthralgia, myalgia and dysesthesia along with psychomotor retardation should prompt CSF analysis.
Collapse
Affiliation(s)
- Moritz Hafkesbrink
- Department of Neurology and Clinical Neurophysiology, GFO Kliniken Niederrhein, St. Josef Hospital, Moers, Germany.
| | - M Schemmerer
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, Regensburg, Germany
| | - J J Wenzel
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, Regensburg, Germany
| | - S Isenmann
- Department of Neurology and Clinical Neurophysiology, GFO Kliniken Niederrhein, St. Josef Hospital, Moers, Germany
| |
Collapse
|
3
|
Borghi M, Graziani A, Marini D, Madonna E, Villano U, Suffredini E, Vicenza T, Mataj E, Bruni R, Ciccaglione AR, Camilloni B, Bozza S. Case of Fatal Hepatitis Related to HEV-3 Infection in Central Italy. Viruses 2024; 16:1869. [PMID: 39772179 PMCID: PMC11680277 DOI: 10.3390/v16121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatitis E virus (HEV) is a global health problem, causing an estimated 20 million infections annually. Thus, the management of HEV requires special consideration. In developed countries, hepatitis E is mainly recognized as a foodborne disease (mainly transmitted via undercooked meat consumption) that is generally caused by genotype 3 and 4 circulating in various animals, including pigs and wild boars. The current absence of officially recognized protocols for the analysis of HEV in foods and the lack of awareness of this disease among healthcare workers, together with the high percentage of asymptomatic cases, make HEV infection highly underestimated. Most HEV-3 infections in immunocompetent individuals are self-limited. Nevertheless, the possibility of serious forms of liver disease, especially in patients with co-morbidities, should be considered because it can lead to a fatal outcome. Here, we report a case of fatal hepatitis related to HEV-3 infection in a 67-year-old male patient with underlying chronic liver disease (CLD) and living in a region where a high prevalence and genetic heterogeneity of HEV-3 in wild boar has been recently demonstrated. Our case report describes the interdisciplinary approach used (from the diagnosis to the virus phylogenetic characterization) in order to improve epidemiologic HEV surveillance in central Italy.
Collapse
Affiliation(s)
- Monica Borghi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, 06126 Perugia, Italy;
| | - Alessandro Graziani
- Microbiology and Clinical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.); (S.B.)
| | - Daniele Marini
- Microbiology Unit, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy;
| | - Elisabetta Madonna
- Department of Infectious Diseases, Unit of Viral Hepatitis and Oncovirus and Retrovirus Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.M.); (U.V.); (R.B.); (A.R.C.)
| | - Umbertina Villano
- Department of Infectious Diseases, Unit of Viral Hepatitis and Oncovirus and Retrovirus Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.M.); (U.V.); (R.B.); (A.R.C.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (T.V.)
| | - Teresa Vicenza
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (T.V.)
| | - Elida Mataj
- Institute of Public Health (ISHP), 1000 Tirana, Albania;
| | - Roberto Bruni
- Department of Infectious Diseases, Unit of Viral Hepatitis and Oncovirus and Retrovirus Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.M.); (U.V.); (R.B.); (A.R.C.)
| | - Anna Rita Ciccaglione
- Department of Infectious Diseases, Unit of Viral Hepatitis and Oncovirus and Retrovirus Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.M.); (U.V.); (R.B.); (A.R.C.)
| | - Barbara Camilloni
- Microbiology and Clinical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.); (S.B.)
- Microbiology Unit, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy;
| | - Silvia Bozza
- Microbiology and Clinical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.); (S.B.)
- Microbiology Unit, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy;
| |
Collapse
|
4
|
Brüggemann Y, Klöhn M, Wedemeyer H, Steinmann E. Hepatitis E virus: from innate sensing to adaptive immune responses. Nat Rev Gastroenterol Hepatol 2024; 21:710-725. [PMID: 39039260 DOI: 10.1038/s41575-024-00950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Hepatitis E virus (HEV) infections are a major cause of acute viral hepatitis in humans worldwide. In immunocompetent individuals, the majority of HEV infections remain asymptomatic and lead to spontaneous clearance of the virus, and only a minority of individuals with infection (5-16%) experience symptoms of acute viral hepatitis. However, HEV infections can cause up to 30% mortality in pregnant women, become chronic in immunocompromised patients and cause extrahepatic manifestations. A growing body of evidence suggests that the host immune response to infection with different HEV genotypes is a critical determinant of distinct HEV infection outcomes. In this Review, we summarize key components of the innate and adaptive immune responses to HEV, including the underlying immunological mechanisms of HEV associated with acute and chronic liver failure and interactions between T cell and B cell responses. In addition, we discuss the current status of vaccines against HEV and raise outstanding questions regarding the immune responses induced by HEV and treatment of the disease, highlighting areas for future investigation.
Collapse
Affiliation(s)
- Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.
- German Center for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
5
|
Yadav KK, Boley PA, Lee CM, Khatiwada S, Jung K, Laocharoensuk T, Hofstetter J, Wood R, Hanson J, Kenney SP. Rat hepatitis E virus cross-species infection and transmission in pigs. PNAS NEXUS 2024; 3:pgae259. [PMID: 39035038 PMCID: PMC11259135 DOI: 10.1093/pnasnexus/pgae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Strains of Rocahepevirus ratti, an emerging hepatitis E virus (HEV), have recently been found to be infectious to humans. Rats are a primary reservoir of the virus; thus, it is referred to as "rat HEV". Rats are often found on swine farms in close contact with pigs. Our goal was to determine whether swine may serve as a transmission host for zoonotic rat HEV by characterizing an infectious cDNA clone of a zoonotic rat HEV, strain LCK-3110, in vitro and in vivo. RNA transcripts of LCK-3110 were constructed and assessed for their replicative capacity in cell culture and in gnotobiotic pigs. Fecal suspension from rat HEV-positive gnotobiotic pigs was inoculated into conventional pigs co-housed with naïve pigs. Our results demonstrated that capped RNA transcripts of LCK-3110 rat HEV replicated in vitro and successfully infected conventional pigs that transmit the virus to co-housed animals. The infectious clone of rat HEV may afford an opportunity to study the genetic mechanisms of rat HEV cross-species infection and tissue tropism.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Patricia A Boley
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Carolyn M Lee
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Saroj Khatiwada
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Kwonil Jung
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Thamonpan Laocharoensuk
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Jake Hofstetter
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Ronna Wood
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Juliette Hanson
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Scott P Kenney
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Zahmanova G, Takova K, Lukov GL, Andonov A. Hepatitis E Virus in Domestic Ruminants and Virus Excretion in Milk-A Potential Source of Zoonotic HEV Infection. Viruses 2024; 16:684. [PMID: 38793568 PMCID: PMC11126035 DOI: 10.3390/v16050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The hepatitis E virus is a serious health concern worldwide, with 20 million cases each year. Growing numbers of autochthonous HEV infections in industrialized nations are brought on via the zoonotic transmission of HEV genotypes 3 and 4. Pigs and wild boars are the main animal reservoirs of HEV and play the primary role in HEV transmission. Consumption of raw or undercooked pork meat and close contact with infected animals are the most common causes of hepatitis E infection in industrialized countries. However, during the past few years, mounting data describing HEV distribution has led experts to believe that additional animals, particularly domestic ruminant species (cow, goat, sheep, deer, buffalo, and yak), may also play a role in the spreading of HEV. Up to now, there have not been enough studies focused on HEV infections associated with animal milk and the impact that they could have on the epidemiology of HEV. This critical analysis discusses the role of domestic ruminants in zoonotic HEV transmissions. More specifically, we focus on concerns related to milk safety, the role of mixed farming in cross-species HEV infections, and what potential consequences these may have on public health.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Georgi L. Lukov
- Faculty of Sciences, Brigham Young University–Hawaii, Laie, HI 96762, USA
| | - Anton Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
7
|
Zicker M, Pinho JRR, Welter EAR, Guardia BD, da Silva PGTM, da Silveira LB, Camargo LFA. The Risk of Reinfection or Primary Hepatitis E Virus Infection at a Liver Transplant Center in Brazil: An Observational Cohort Study. Viruses 2024; 16:301. [PMID: 38400077 PMCID: PMC10893537 DOI: 10.3390/v16020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The hepatitis E virus is a major etiological agent of chronic hepatitis in immunosuppressed individuals. Seroprevalence in the liver transplantation setting varies according to the seroprevalence of the general population in different countries. This was a prospective cohort study of liver transplant recipients in southeastern Brazil. Recipients were systematically followed for one year, with the objective of determining the prevalence, incidence, and natural history of HEV infection in this population. We included 107 liver transplant recipients and 83 deceased donors. Positivity for anti-HEV IgG was detected in 10.2% of the recipients and in 9.7% of the donors. None of the patients tested positive for HEV RNA at baseline or during follow-up. There were no episodes of reactivation or seroconversion, even in cases of serological donor-recipient mismatch or in recipients with acute hepatitis. Acute and chronic HEV infections seem to be rare events in the region studied. That could be attributable to social, economic, and environmental factors. Our data indicate that, among liver transplant recipients, hepatitis E should be investigated only when there are elevated levels of transaminases with no defined cause, as part of the differential diagnosis of seronegative hepatitis after transplantation.
Collapse
Affiliation(s)
- Michelle Zicker
- Division of Infectious Diseases, Department of Internal Medicine, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - João R. R. Pinho
- Research and Development Sector, Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Eliane A. R. Welter
- Research and Development Sector, Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Bianca D. Guardia
- Liver Transplant Program, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | | | | | - Luís F. A. Camargo
- Division of Infectious Diseases, Department of Internal Medicine, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo 05653-120, Brazil
| |
Collapse
|
8
|
Orozco-Cordoba J, Mazas C, Du Pont G, Lamoyi E, Cárdenas G, Fierro NA. Viral Biology and Immune Privilege in the Development of Extrahepatic Manifestations During Hepatitis E Virus Infection. Viral Immunol 2023; 36:627-641. [PMID: 38064537 DOI: 10.1089/vim.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Hepatitis E virus (HEV) exhibits tropism toward hepatocytes and thus affects the liver; however, HEV may also affect other tissues, including the heart, kidneys, intestines, testicles, and central nervous system. To date, the pathophysiological links between HEV infection and extrahepatic manifestations have not yet been established. Considering that HEV infects multiple types of cells, the direct effects of virus replication in peripheral tissues represent a plausible explanation for extrahepatic manifestations. In addition, since the immune response is crucial in the development of the disease, the immune characteristics of affected tissues should be revisited to identify commonalities explaining the effects of the virus. This review summarizes the most recent advances in understanding the virus biology and immune-privileged status of specific tissues as major elements for HEV replication in diverse organs. These discoveries may open avenues to explain the multiple extrahepatic manifestations associated with HEV infection and ultimately to design effective strategies for infection control.
Collapse
Affiliation(s)
- Javier Orozco-Cordoba
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Camila Mazas
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Gisela Du Pont
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Edmundo Lamoyi
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Graciela Cárdenas
- Departamento de Neuroinfectología, Instituto Nacional de Neurología Manuel Velasco Suárez, Mexico City, Mexico
| | - Nora A Fierro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
9
|
Das A, Rivera-Serrano EE, Yin X, Walker CM, Feng Z, Lemon SM. Cell entry and release of quasi-enveloped human hepatitis viruses. Nat Rev Microbiol 2023; 21:573-589. [PMID: 37185947 PMCID: PMC10127183 DOI: 10.1038/s41579-023-00889-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Infectious hepatitis type A and type E are caused by phylogenetically distinct single-stranded, positive-sense RNA viruses that were once considered to be non-enveloped. However, studies show that both are released nonlytically from hepatocytes as 'quasi-enveloped' virions cloaked in host membranes. These virion types predominate in the blood of infected individuals and mediate virus spread within the liver. They lack virally encoded proteins on their surface and are resistant to neutralizing anti-capsid antibodies induced by infection, yet they efficiently enter cells and initiate new rounds of virus replication. In this Review, we discuss the mechanisms by which specific peptide sequences in the capsids of these quasi-enveloped virions mediate their endosomal sorting complexes required for transport (ESCRT)-dependent release from hepatocytes through multivesicular endosomes, what is known about how they enter cells, and the impact of capsid quasi-envelopment on host immunity and pathogenesis.
Collapse
Affiliation(s)
- Anshuman Das
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lentigen Technology, Inc., Gaithersburg, MD, USA
| | - Efraín E Rivera-Serrano
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, Elon University, Elon, NC, USA
| | - Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Zahmanova G, Takova K, Tonova V, Koynarski T, Lukov LL, Minkov I, Pishmisheva M, Kotsev S, Tsachev I, Baymakova M, Andonov AP. The Re-Emergence of Hepatitis E Virus in Europe and Vaccine Development. Viruses 2023; 15:1558. [PMID: 37515244 PMCID: PMC10383931 DOI: 10.3390/v15071558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Valeria Tonova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetoslav Koynarski
- Department of Animal Genetics, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Laura L Lukov
- Faculty of Sciences, Brigham Young University-Hawaii, Laie, HI 96762, USA
| | - Ivan Minkov
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | - Maria Pishmisheva
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Stanislav Kotsev
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| | - Anton P Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
11
|
Golkocheva-Markova E, Ismailova C, Kevorkyan A, Raycheva R, Zhelyazkova S, Kotsev S, Pishmisheva M, Rangelova V, Stoyanova A, Yoncheva V, Tenev T, Gladnishka T, Trifonova I, Christova I, Dimitrov R, Bruni R, Ciccaglione AR. Age and Gender Trends in the Prevalence of Markers for Hepatitis E Virus Exposure in the Heterogeneous Bulgarian Population. Life (Basel) 2023; 13:1345. [PMID: 37374127 PMCID: PMC10301971 DOI: 10.3390/life13061345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The prevalence of hepatitis E virus (HEV) in the Bulgarian population remains underestimated. The aim of the present study was to evaluate age and gender trends in HEV prevalence in the heterogeneous Bulgarian population. Stored serum samples from blood donors and different patient sub-populations-kidney recipients (KR), patients with Guillain-Barre syndrome (GBS), Lyme disease (LD), patients with liver involvement and a clinical diagnosis other than viral hepatitis A and E (non-AE), hemodialysis (HD) and HIV-positive patients (HIV)-were retrospectively investigated for markers of past and recent/ongoing HEV infection. The estimated overall seroprevalence of past infection was 10.6%, ranging from 5.9% to 24.5% for the sub-populations evaluated, while the seroprevalence of recent/ongoing HEV infection was 7.5%, ranging from 2.1% to 20.4%. The analysis of the individual sub-populations showed a different prevalence with respect to sex. In regard to age, the cohort effect was preserved, as a multimodal pattern was observed only for the GBS sub-population. Molecular analysis revealed HEV 3f and 3e. The type of the population is one of the main factors on which the anti-HEV prevalence depends, highlighting the need for the development of guidelines related to the detection and diagnosis of HEV infection with regard to specific patient populations.
Collapse
Affiliation(s)
- Elitsa Golkocheva-Markova
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (C.I.); (T.T.)
| | - Chiydem Ismailova
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (C.I.); (T.T.)
| | - Ani Kevorkyan
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University, 4002 Plovdiv, Bulgaria; (A.K.)
| | - Ralitsa Raycheva
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University, 4002 Plovdiv, Bulgaria;
| | - Sashka Zhelyazkova
- Clinic of Nervous Diseases, University Hospital “Alexandrovska”, Medical University, 1431 Sofia, Bulgaria;
| | - Stanislav Kotsev
- Department Infectious Diseases, Regional Hospital, 4400 Pazardzhik, Bulgaria; (S.K.); (M.P.)
| | - Maria Pishmisheva
- Department Infectious Diseases, Regional Hospital, 4400 Pazardzhik, Bulgaria; (S.K.); (M.P.)
| | - Vanya Rangelova
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University, 4002 Plovdiv, Bulgaria; (A.K.)
| | - Asya Stoyanova
- NRL Enteroviruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria;
| | - Viliana Yoncheva
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (C.I.); (T.T.)
| | - Tencho Tenev
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (C.I.); (T.T.)
| | - Teodora Gladnishka
- NRL of Vector-Borne Infections, Listeria and Leptospires, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (T.G.); (I.C.)
| | - Iva Trifonova
- NRL of Vector-Borne Infections, Listeria and Leptospires, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (T.G.); (I.C.)
| | - Iva Christova
- NRL of Vector-Borne Infections, Listeria and Leptospires, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (T.G.); (I.C.)
| | - Roumen Dimitrov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria;
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (R.B.); (A.R.C.)
| | - Anna Rita Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (R.B.); (A.R.C.)
| |
Collapse
|
12
|
Meester M, Tobias TJ, van den Broek J, Meulenbroek CB, Bouwknegt M, van der Poel WH, Stegeman A. Farm biosecurity measures to prevent hepatitis E virus infection in finishing pigs on endemically infected pig farms. One Health 2023; 16:100570. [PMID: 37363225 PMCID: PMC10288132 DOI: 10.1016/j.onehlt.2023.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Hepatitis E virus (HEV) can be transmitted from pigs to humans and cause liver inflammation. Pigs are a major reservoir of HEV and most slaughter pigs show evidence of infection by presence of antibodies (ELISA) or viral RNA (PCR). Reducing the number of HEV infected pigs at slaughter would likely reduce human exposure, yet how this can be achieved, is unknown. We aimed to identify and quantify the effect of biosecurity measures to deliver HEV negative batches of pigs to slaughter. A case-control study was performed with Dutch pig farms selected based on results of multiple slaughter batches. Case farms delivered at least one PCR and ELISA negative batch to slaughter (PCR-ELISA-), indicating absence of HEV infection, and control farms had the highest proportion of PCR and/or ELISA positive batches (PCR+ELISA+), indicating high within-farm transmission. Data about biosecurity and housing were collected via a questionnaire and an audit. Variables were selected by regularization (LASSO regression) and ranked, based the frequency of variable selection. The odds ratios (OR) for the relation between case-control status and the highest ranked variables were determined via grouped logistic regression. Thirty-five case farms, with 10 to 60% PCR-ELISA- batches, and 38 control farms with on average 40% PCR+ELISA+ batches, were included. Rubber and steel floor material in fattening pens had the highest ranking and increased the odds of a PCR-ELISA- batch by 5.87 (95%CI 3.03-11.6) and 7.13 (95%CI 3.05-16.9) respectively. Cleaning pig driving boards weekly (OR 1.99 (95%CI 1.07-3.80)), and fly control with predatory flies (OR 4.52 (95%CI 1.59-13.5)) were protective, whereas a long fattening period was a risk. This study shows that cleaning and cleanability of floors and fomites and adequate fly control are measures to consider for HEV control in infected farms. Yet, intervention studies are needed to confirm the robustness of these outcomes.
Collapse
Affiliation(s)
- Marina Meester
- Farm Animal Health Unit, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tijs J. Tobias
- Farm Animal Health Unit, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Royal GD, Deventer, the Netherlands
| | - Jan van den Broek
- Farm Animal Health Unit, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Carmijn B. Meulenbroek
- Farm Animal Health Unit, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | | | - Arjan Stegeman
- Farm Animal Health Unit, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
13
|
Primadharsini PP, Nagashima S, Tanaka T, Jirintai S, Takahashi M, Murata K, Okamoto H. Development and Characterization of Efficient Cell Culture Systems for Genotype 1 Hepatitis E Virus and Its Infectious cDNA Clone. Viruses 2023; 15:v15040845. [PMID: 37112827 PMCID: PMC10146093 DOI: 10.3390/v15040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis globally. Genotype 1 HEV (HEV-1) is responsible for multiple outbreaks in developing countries, causing high mortality rates in pregnant women. However, studies on HEV-1 have been hindered by its poor replication in cultured cells. The JE04-1601S strain recovered from a Japanese patient with fulminant hepatitis E who contracted HEV-1 while traveling to India was serially passaged 12 times in human cell lines. The cell-culture-generated viruses (passage 12; p12) grew efficiently in human cell lines, but the replication was not fully supported in porcine cells. A full-length cDNA clone was constructed using JE04-1601S_p12 as a template. It was able to produce an infectious virus, and viral protein expression was detectable in the transfected PLC/PRF/5 cells and culture supernatants. Consistently, HEV-1 growth was also not fully supported in the cell culture of cDNA-derived JE04-1601S_p12 progenies, potentially recapitulating the narrow tropism of HEV-1 observed in vivo. The availability of an efficient cell culture system for HEV-1 and its infectious cDNA clone will be useful for studying HEV species tropism and mechanisms underlying severe hepatitis in HEV-1-infected pregnant women as well as for discovering and developing safer treatment options for this condition.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
| | - Toshinori Tanaka
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
- Division of Pathology, Department of Basic Veterinary Medicine, Inner Mongolia Agricultural University College of Veterinary Medicine, Hohhot 010018, China
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
- Correspondence: ; Tel.: +81-285-58-7404
| |
Collapse
|
14
|
Galipó E, Zoche-Golob V, Sassu EL, Prigge C, Sjölund M, Tobias T, Rzeżutka A, Smith RP, Burow E. Prioritization of pig farm biosecurity for control of Salmonella and hepatitis E virus infections: results of a European expert opinion elicitation. Porcine Health Manag 2023; 9:8. [PMID: 36872376 PMCID: PMC9987137 DOI: 10.1186/s40813-023-00306-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/31/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND In the literature, there is absent or weak evidence on the effectiveness of biosecurity measures to the control of Salmonella spp. and hepatitis E virus (HEV) on pig farms. Therefore, the present study aimed to collect, weigh, and compare opinions from experts on the relevance of several biosecurity measures. An online questionnaire was submitted to selected experts, from multiple European countries, knowledgeable on either HEV or Salmonella spp., in either indoor or outdoor pig farming systems (settings). The experts ranked the relevance of eight biosecurity categories with regards to effectiveness in reducing the two pathogens separately, by assigning a score from a total of 80, and within each biosecurity category they scored the relevance of specific biosecurity measures (scale 1-5). Agreement among experts was analysed across pathogens and across settings. RESULTS After filtering for completeness and expertise, 46 responses were analysed, with 52% of the experts identified as researchers/scientists, whereas the remaining 48% consisted of non-researchers, veterinary practitioners and advisors, governmental staff, and consultant/industrial experts. The experts self-declared their level of knowledge but neither Multidimensional Scaling nor k-means cluster analyses produced evidence of an association between expertise and the biosecurity answers, and so all experts' responses were analysed together without weighting or adaptation. Overall, the top-ranked biosecurity categories were pig mixing; cleaning and disinfection; feed, water and bedding; and purchase of pigs or semen, while the lowest ranked categories were transport, equipment, animals (other than pigs and including wildlife) and humans. Cleaning and disinfection was ranked highest for both pathogens in the indoor setting, whereas pig mixing was highest for outdoor settings. Several (94/222, 42.3%) measures across all four settings were considered highly relevant. Measures with high disagreement between the respondents were uncommon (21/222, 9.6%), but more frequent for HEV compared to Salmonella spp. CONCLUSIONS The implementation of measures from multiple biosecurity categories was considered important to control Salmonella spp. and HEV on farms, and pig mixing activities, as well as cleaning and disinfection practices, were perceived as consistently more important than others. Similarities and differences in the prioritised biosecurity measures were identified between indoor and outdoor systems and pathogens. The study identified the need for further research especially for control of HEV and for biosecurity in outdoor farming.
Collapse
Affiliation(s)
- Erika Galipó
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - Veit Zoche-Golob
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Elena Lucia Sassu
- Division for Animal Health, Austrian Agency for Health and Food Safety, Robert-Koch-Gasse 17, 2340, Mödling, Austria
| | - Christopher Prigge
- Division for Animal Health, Austrian Agency for Health and Food Safety, Robert-Koch-Gasse 17, 2340, Mödling, Austria.,Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Marie Sjölund
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89, Uppsala, Sweden.,Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 750 07, Uppsala, Sweden
| | - Tijs Tobias
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Richard Piers Smith
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Elke Burow
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
15
|
Majeed R, Khalid M, Sherazi M, Faisal MJ, Waheed MA. A Rare Case of Chronic Liver Disease in a Patient Who Previously Presented With Hepatitis E. Cureus 2023; 15:e35474. [PMID: 37007339 PMCID: PMC10051036 DOI: 10.7759/cureus.35474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2023] [Indexed: 02/27/2023] Open
Abstract
Hepatitis E virus (HEV) is among the most common causes of acute viral hepatitis. It typically causes acute infection, but some cases of chronic infection have also been recorded. These cases were particularly seen in developed countries, in patients who were immunocompromised, organ transplant recipients, or those with underlying hematological malignancy. However, we encountered a case of hepatitis E presenting as a chronic liver disease in an immunocompetent patient from a developing country. Therefore, more underlying risk factors need to be studied, which may lead to such a rare presentation of hepatitis E.
Collapse
|
16
|
Oral Zinc Supplementation in Chronically HEV-Infected Patients Not Responding to Ribavirin Monotherapy. HEPATITIS MONTHLY 2023. [DOI: 10.5812/hepatmon-130865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Background: Chronic hepatitis E virus (HEV) infection may progress to end-stage liver disease in immunosuppressed individuals. Ribavirin therapy is efficient in most chronic HEV patients, but 10% remain without a sustained virological response (SVR). Objectives: We aimed to study whether zinc supplementation could represent a therapeutic approach in these patients. Methods: Antiviral properties of zinc salts were studied in vitro (subgenomic-replicon system), in vivo (rabbit model), and retrospectively in patients with chronic hepatitis E who did not achieve SVR under ribavirin monotherapy. Results: Zinc inhibited HEV genotype-3 replication in vitro. In a model of acute HEV infection in immunocompetent rabbits, zinc + ribavirin did not improve viral clearance compared to ribavirin monotherapy. In chronically HEV-infected patients not responding to ribavirin (n = 12), viral clearance was observed in 4/12 (33%) patients receiving additional zinc supplementation. Conclusions: Oral zinc, an inexpensive, harmless dietary supplement, could potentially represent a rescue treatment option for a few patients with chronic hepatitis E without SVR under ribavirin monotherapy. Further studies are needed to elucidate the role of zinc in HEV further.
Collapse
|
17
|
Hui W, Wei L. Treatment of Hepatitis E. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:215-226. [PMID: 37223869 DOI: 10.1007/978-981-99-1304-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) infections are the most common cause of acute hepatitis, but they can also take a chronic course. There is no specific therapy for acute hepatitis, and current treatment is supportive. Choosing ribavirin as the first-line therapy for chronic HEV is advisable, especially immunosuppressed individuals. Moreover, ribavirin therapy in the acute phase of infection provides major benefits for those at high risk of acute liver failure (ALF)/acute-on-chronic liver failure (ACLF). Pegylated interferon α has been used successfully for treatment of hepatitis E but is associated with major side effects. Cholestasis is one of the most common, but devastating, manifestations in hepatitis E. Current therapy for HEV aims to treat symptoms. Therapy generally involves several measures, such as vitamins, albumin, and plasma for supporting treatment, symptomatic treatment for cutaneous pruritus, ursodeoxycholic acid, Obeticholic acid, S-adenosylmethionine, etc. for removing jaundice. HEV infection during pregnancy and patients with underlying liver disease may develop liver failure. For these patients, active monitoring, standard care, and supportive treatment are the foundations. Ribavirin has successfully been used to prevent liver transplantation (LT). Prevention and treatment of complications are important for treatment of liver failure. Liver support devices are intended to support liver function until such time as native liver function recovers, or until LT. LT is widely considered as irreplaceable and definitive treatment for liver failure, particularly for patients who do not improve with supportive measures to sustain life.
Collapse
Affiliation(s)
- Wei Hui
- Chronic Disease Management Center, Youan Hospital, Capital Medical University, Beijing, China
| | - Linlin Wei
- The Second Department of Liver Disease Center, Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Hepatitis E virus infects brain microvascular endothelial cells, crosses the blood-brain barrier, and invades the central nervous system. Proc Natl Acad Sci U S A 2022; 119:e2201862119. [PMID: 35671427 PMCID: PMC9214495 DOI: 10.1073/pnas.2201862119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis E virus (HEV) causes not only acute and chronic hepatitis but also neurological disorders. To delineate the mechanism of HEV-associated neurological diseases, we showed that both quasi-enveloped and nonenveloped HEVs can cross the blood–brain barrier model in a tumor necrosis factor alpha (TNF-α)-independent manner and productively infect brain microvascular endothelial cells in vitro. Furthermore, we showed that HEV was detected in brain and spinal cord from HEV-infected pigs and that pigs with detectable HEV in central nervous system (CNS) tissues had histological lesions in brain and spinal cord and significantly higher levels of proinflammatory cytokines TNF-α and interleukin 18 than pigs without detectable HEV in CNS tissues. The results shed light on a potential mechanism of HEV-associated neuroinvasion. Hepatitis E virus (HEV) is an important but understudied zoonotic virus causing both acute and chronic viral hepatitis. A proportion of HEV-infected individuals also developed neurological diseases such as Guillain–Barré syndrome, neuralgic amyotrophy, encephalitis, and myelitis, although the mechanism remains unknown. In this study, by using an in vitro blood–brain barrier (BBB) model, we first investigated whether HEV can cross the BBB and whether the quasi-enveloped HEV virions are more permissible to the BBB than the nonenveloped virions. We found that both quasi-enveloped and nonenveloped HEVs can similarly cross the BBB and that addition of proinflammatory cytokine tumor necrosis factor alpha (TNF-α) has no significant effect on the ability of HEV to cross the BBB in vitro. To explore the possible mechanism of HEV entry across the BBB, we tested the susceptibility of human brain microvascular endothelial cells lining the BBB to HEV infection and showed that brain microvascular endothelial cells support productive HEV infection. To further confirm the in vitro observation, we conducted an experimental HEV infection study in pigs and showed that both quasi-enveloped and nonenveloped HEVs invade the central nervous system (CNS) in pigs, as HEV RNA was detected in the brain and spinal cord of infected pigs. The HEV-infected pigs with detectable viral RNA in CNS tissues had histological lesions in brain and spinal cord and significantly higher levels of proinflammatory cytokines TNF-α and interleukin 18 than the HEV-infected pigs without detectable viral RNA in CNS tissues. The findings suggest a potential mechanism of HEV-associated neuroinvasion.
Collapse
|
19
|
Subclinical hepatitis E virus (HEV) infection detected by nucleic acid amplification test on blood donation: short-term positivity for immunoglobulin G class of antibody against HEV. Clin J Gastroenterol 2022; 15:750-754. [PMID: 35507275 DOI: 10.1007/s12328-022-01635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
A case of subclinical hepatitis E virus (HEV) infection was detected by nucleic acid amplification test on blood donation. The patient was followed-up until day 220 after the blood donation but showed no symptoms throughout the observation period. Aspartate aminotransferase and alanine aminotransferase levels reached the maximum values on day 37 with a slight increase but remained in normal ranges from day 67 to 220. The quantity of HEV RNA at the initial examination on day 13 was 1.1 × 102 copies/mL, which increased to 2.8 × 103 copies/mL by day 37. It was not detected from day 67 to 220. Immunoglobulin G class antibody to HEV (anti-HEV IgG) was below the cut-off value until day 37 and exceeded the cut-off value to positive on day 67, accompanied by normalization of liver function and negative conversion of HEV RNA. Thereafter, the titer decreased gradually, falling below the cut-off value on day 163, and continuing negative until day 220. Although the persistent duration of anti-HEV IgG positive is believed to be generally long, it was within only 126 days for this subclinical case. Further investigation is needed to determine whether short-term positivity for anti-HEV IgG is typical in subclinical HEV infection.
Collapse
|
20
|
Dynamic of Hepatitis E Virus (HEV) Shedding in Pigs. Animals (Basel) 2022; 12:ani12091063. [PMID: 35565491 PMCID: PMC9101398 DOI: 10.3390/ani12091063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Hepatitis E virus (HEV) is an emerging pathogen, causing an increasing number of autochthonous cases in industrialized countries. In Europe, infections are associated with the zoonotic HEV-3 and HEV-4 genotypes and pigs and wild boars are the main reservoirs. A major concern of infections is linked to its foodborne transmission, due to consumption of raw or undercooked pork products infected by HEV-3 or HEV-4. HEV-3 is widespread in farmed pigs, mainly aged 3–4 months. Besides a decline with age, infected pigs have been observed at slaughterhouses, representing a risk for both the consumers and the workers of the pig industry. HEV is transmitted by the fecal–oral route and shed in feces in large amounts. The risk of viral spreading in farm and presence of infected pigs at slaughtering was evaluated by assessing the quantity and the duration of HEV-3 shedding in feces of infected pigs. Feces of 23 HEV-3 positive pigs were assayed during their fattening, shortly before their slaughtering. Results confirmed a long period of viral shedding in feces with a large amount of the virus released in the environment (mean 105 GC/g). Prevalence and quantity of the virus declines with the age of animals. The study provides information on the dynamic of the infection in pigs, important to prevent HEV occurrence and circulation in farms. Abstract Genotype 3 of hepatitis E virus (HEV-3) is the most common in Europe in both humans and pigs. HEV-3 strains are zoonotic, and foodborne cases associated with consumption of raw and undercooked pork products, mainly liver sausages, have been described. HEV-3 circulates largely in European pig farms, maybe due to its long persistence in the environment. Animals get infected around 3–4 months of age; shortly after, the infection starts to decline up to the age of slaughtering (8–9 months of age in Italy). With the purpose to understand the duration in farmed pigs of the shedding of the virus and its quantity, HEV-RNA detection was performed by Real-time RT-PCR from feces collected individually from two groups of 23 pigs. Sampling was conducted for 4 months shortly before slaughtering age. At 4-months-old, all animals were shedding HEV-3 to high load around 105 genome copies per gram (GC/g). Prevalence was higher in growers than in fatteners, with most of the pigs still positive around 166 days of age. Beyond some difference among individual pigs, the amount of HEV in feces decreased with the age of animals. The longest fattening period should ensure a lower risk of HEV shedder animals at slaughter, reducing the risk of food contamination.
Collapse
|
21
|
Raji YE, Toung OP, Taib NM, Sekawi ZB. Hepatitis E Virus: An emerging enigmatic and underestimated pathogen. Saudi J Biol Sci 2022; 29:499-512. [PMID: 35002446 PMCID: PMC8716866 DOI: 10.1016/j.sjbs.2021.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is an RNA virus causing hepatitis E disease. The virus is of one serotype but has diverse genotypes infecting both humans and animals. Based on evidence from seroprevalence studies, about 2 billion people are estimated to have been infected with HEV globally. HEV, therefore, poses a significant public health and economic challenge worldwide. HEV was discovered in the 1980s and was traced back to the 1955 - 1956 outbreak of hepatitis that occurred in India. Subsequently, several HEV epidemics involving thousands of individuals have occurred nearly annually in different countries in Asia and Africa. Initially, the virus was thought to be only enterically transmitted, and endemic in developing countries. Due to the environmental hygiene and sanitation challenges in those parts of the world. However, recent studies have suggested otherwise with the report of autochthonous cases in industrialised countries with no history of travel to the so-called endemic countries. Thus, suggesting that HEV has a global distribution with endemicity in both developing and industrialised nations. Studies have also revealed that HEV has multiple risk factors, and modes of transmission as well as zoonotic potentials. Additionally, recent findings have shown that HEV leads to severe disease, particularly among pregnant women. In contrast to the previous narration of a strictly mild and self-limiting infection. Studies have likewise demonstrated chronic HEV infection among immunocompromised persons. Consequent to these recent discoveries, this pathogen is considered a re - emerging virus, particularly in the developed nations. However, despite the growing public health challenges of this pathogen, the burden is still underestimated. The underestimation is often attributed to poor awareness among clinicians and a lack of routine checks for the disease in the hospitals. Thus, leading to misdiagnosis and underdiagnosis. Hence, this review provides a concise overview of epidemiology, diagnosis, and prevention of hepatitis E.
Collapse
Affiliation(s)
- Yakubu Egigogo Raji
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
- Faculty of Natural and Applied Sciences Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Ooi Peck Toung
- Department of Veterinary Clinical Studies Faculty of Veterinary Medicine, Universiti Putra Malaysia 2, Malaysia
| | - Niazlin Mohd Taib
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
| | - Zamberi Bin Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
| |
Collapse
|
22
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
23
|
The Viral ORF3 Protein Is Required for Hepatitis E Virus Apical Release and Efficient Growth in Polarized Hepatocytes and Humanized Mice. J Virol 2021; 95:e0058521. [PMID: 34523963 DOI: 10.1128/jvi.00585-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hepatitis E virus (HEV), an enterically transmitted RNA virus, is a major cause of acute hepatitis worldwide. Additionally, HEV genotype 3 (gt3) can frequently persist in immunocompromised individuals with an increased risk for developing severe liver disease. Currently, no HEV-specific treatment is available. The viral open reading frame 3 (ORF3) protein facilitates HEV egress in vitro and is essential for establishing productive infection in macaques. Thus, ORF3, which is unique to HEV, has the potential to be explored as a target for antiviral therapy. However, significant gaps exist in our understanding of the critical functions of ORF3 in HEV infection in vivo. Here, we utilized a polarized hepatocyte culture model and a human liver chimeric mouse model to dissect the roles of ORF3 in gt3 HEV release and persistent infection. We show that ORF3's absence substantially decreased HEV replication and virion release from the apical surface but not the basolateral surface of polarized hepatocytes. While wild-type HEV established a persistent infection in humanized mice, mutant HEV lacking ORF3 (ORF3null) failed to sustain the infection despite transient replication in the liver and was ultimately cleared. Strikingly, mice inoculated with the ORF3null virus displayed no fecal shedding throughout the 6-week experiment. Overall, our results demonstrate that ORF3 is required for HEV fecal shedding and persistent infection, providing a rationale for targeting ORF3 as a treatment strategy for HEV infection. IMPORTANCE HEV infections are associated with significant morbidity and mortality. HEV gt3 additionally can cause persistent infection, which can rapidly progress to liver cirrhosis. Currently, no HEV-specific treatments are available. The poorly understood HEV life cycle hampers the development of antivirals for HEV. Here, we investigated the role of the viral ORF3 protein in HEV infection in polarized hepatocyte cultures and human liver chimeric mice. We found that two major aspects of the HEV life cycle require ORF3: fecal virus shedding and persistent infection. These results provide a rationale for targeting ORF3 to treat HEV infection.
Collapse
|
24
|
Mikulska M, Penack O, Wendel L, Knelange N, Cornelissen JJ, Blijlevens N, Passweg J, Kroger N, Bruns A, Koenecke C, Bierings M, Piñana JL, Labussiere-Wallet H, Ghesquieres H, Diaz MA, Sampol A, Averbuch D, de la Camara R, Styczynski J. HEV infection in stem cell transplant recipients-retrospective study of EBMT Infectious Diseases Working Party. Bone Marrow Transplant 2021; 57:167-175. [PMID: 34689177 DOI: 10.1038/s41409-021-01497-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
HEV infection is an emerging cause of acute and chronic hepatitis in stem cell transplant (SCT) recipients. We performed a retrospective observational study among EBMT centers with the aim of describing characteristics, management and outcome of HEV after SCT. There were 34 cases of HEV infection from 12 centers in 6 countries, diagnosed in median 4.5 months after SCT; 20 of acute and 14 of chronic infection. Non-hepatic findings possibly associated with HEV infection were present in 9 (26%). Patients with chronic infection had more characteristics associated with severely immunocompromised status. Ribavirin was provided to 16 patients (47%; 40% with acute and 57% with chronic infection), in median for 75 days. Three (19%) patients discontinued it due to side effects. HEV-RNA clearance occurred in 29 patients (85%; 85% in acute and 86% in chronic infection). HEV was considered a cause of death in 3 (9%), with 2 cases with late diagnosis. Reduction of immunosuppression in those receiving it, and ribavirin treatment in those with chronic infection were associated with shorter time to HEV-RNA clearance. Policy on HEV testing varied between the centers. In conclusion, acute and chronic HEV hepatitis should be promptly diagnosed and managed in SCT recipients.
Collapse
Affiliation(s)
- Malgorzata Mikulska
- Division of Infectious Diseases, University of Genoa (DISSAL) and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Olaf Penack
- Department of Department of Hematology, Oncology and Tumorimmunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Lotus Wendel
- EBMT Data Office, Dept. Medical Statistics & Bioinformatics, Leiden, The Netherlands
| | - Nina Knelange
- EBMT Data Office, Dept. Medical Statistics & Bioinformatics, Leiden, The Netherlands
| | - Jan J Cornelissen
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | - Nicolaus Kroger
- Department of Stem cell Transplantation, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Bruns
- Department of Hematology, University Medical Centre, Utrecht, Netherlands
| | - Christian Koenecke
- Hannover Medical School, Department of Haematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Marc Bierings
- Princess Maxima Center/University Hospital for Children (WKZ) Stem cell transplantation, Utrecht, Netherlands
| | - José Luis Piñana
- Hospital Clínico Universatario of Valencia, INCLIVA foundation, Valencia, Spain
| | | | - Herve Ghesquieres
- Department Haematology, Hospices Civils de Lyon, Pierre Benite, France
| | | | | | - Diana Averbuch
- Pediatric Infectious Diseases, Faculty of Medicine, Hebrew University of Jerusalem; Hadassah Medical Center, Jerusalem, Israel
| | | | - Jan Styczynski
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| |
Collapse
|
25
|
Cellular Organelles Involved in Hepatitis E Virus Infection. Pathogens 2021; 10:pathogens10091206. [PMID: 34578238 PMCID: PMC8469867 DOI: 10.3390/pathogens10091206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis E virus (HEV), a major cause of acute hepatitis worldwide, infects approximately 20 million individuals annually. HEV can infect a wide range of mammalian and avian species, and cause frequent zoonotic spillover, increasingly raising public health concerns. To establish a successful infection, HEV needs to usurp host machineries to accomplish its life cycle from initial attachment to egress. However, relatively little is known about the HEV life cycle, especially the functional role(s) of cellular organelles and their associated proteins at different stages of HEV infection. Here, we summarize current knowledge regarding the relation of HEV with the different cell organelles during HEV infection. Furthermore, we discuss the underlying mechanisms by which HEV infection is precisely regulated in infected cells and the modification of host cell organelles and their associated proteins upon HEV infection.
Collapse
|
26
|
Bremer W, Blasczyk H, Yin X, Duron ES, Grakoui A, Feng Z, Walker C. Resolution of hepatitis E virus infection in CD8+ T cell-depleted rhesus macaques. J Hepatol 2021; 75:557-564. [PMID: 33961939 PMCID: PMC8603813 DOI: 10.1016/j.jhep.2021.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS HEV is a significant cause of acute hepatitis globally. Some genotypes establish persistent infection when immunity is impaired. Adaptive immune mechanisms that mediate resolution of infection have not been identified. Herein, the requirement for CD8+ T cells to control HEV infection was assessed in rhesus macaques, a model of acute and persistent HEV infection in humans. METHODS Rhesus macaques were untreated or treated with depleting anti-CD8α monoclonal antibodies before challenge with an HEV genotype (gt)3 isolate derived from a chronically infected human patient. HEV replication, alanine aminotransferase, anti-capsid antibody and HEV-specific CD4+ and CD8+ T cell responses were assessed after infection. RESULTS HEV control in untreated macaques coincided with the onset of a neutralizing IgG response against the ORF2 capsid and liver infiltration of functional HEV-specific CD4+ and CD8+ T cells. Virus control was delayed by 1 week in CD8+ T cell-depleted macaques. Infection resolved with onset of a neutralizing IgG antibody response and a much more robust expansion of CD4+ T cells with antiviral effector function. CONCLUSIONS Liver infiltration of functional CD8+ T cells coincident with HEV clearance in untreated rhesus macaques, and a 1-week delay in HEV clearance in CD8+ T cell-depleted rhesus macaques, support a role for this subset in timely control of virus replication. Resolution of infection in the absence of CD8+ T cells nonetheless indicates that neutralizing antibodies and/or CD4+ T cells may act autonomously to inhibit HEV replication. HEV susceptibility to multiple adaptive effector mechanisms may explain why persistence occurs only with generalized immune suppression. The findings also suggest that neutralizing antibodies and/or CD4+ T cells should be considered as a component of immunotherapy for chronic infection. LAY SUMMARY The hepatitis E virus (HEV) is a major cause of liver disease globally. Some genetic types (genotypes) of HEV persist in the body if immunity is impaired. Our objective was to identify immune responses that promote clearance of HEV. Findings indicate that HEV may be susceptible to multiple arms of the immune response that can act independently to terminate infection. They also provide a pathway to assess immune therapies for chronic HEV infection.
Collapse
Affiliation(s)
- William Bremer
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s, 700 Children’s Drive, Columbus, OH, USA
| | - Heather Blasczyk
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s, 700 Children’s Drive, Columbus, OH, USA
| | - Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s, 700 Children’s Drive, Columbus, OH, USA
| | - Eduardo Salinas Duron
- Division of Microbiology and Immunology, Emory Vaccine Center and Emory University School of Medicine, Atlanta, GA, USA
| | - Arash Grakoui
- Division of Microbiology and Immunology, Emory Vaccine Center and Emory University School of Medicine, Atlanta, GA, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s, 700 Children’s Drive, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christopher Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's, 700 Children's Drive, Columbus, OH, USA; Division of Microbiology and Immunology, Emory Vaccine Center and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
27
|
Seroprevalence of hepatitis E virus in risk populations and blood donors in a referral hospital in the south of Brazil. Sci Rep 2021; 11:6011. [PMID: 33727656 PMCID: PMC7966736 DOI: 10.1038/s41598-021-85365-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
The prevalence of anti-hepatitis E virus (HEV) antibodies has a high heterogeneity worldwide. South American data are still scarce. The aim of this study was to evaluate the prevalence of HEV in populations at risk in comparison to blood donors (BD). A cross-sectional study was carried out in adults of different risk populations including crack users (CK), residents in a low income area (LIA), cirrhotic (CIR) and liver transplant patients (LT) compared with BD. The WANTAI HEV ELISA test was used and real-time PCR (in-house for screening and ALTONA as confirmatory test) for HEV RNA screening. A total of 400 participants were included. Anti-HEV IgG was positive in 19.5% of the total sample, reaching the highest rate in the CIR group, 22.5%, followed by CK, LT, and LIA (20%, 18.7%, and 17.5%, respectively). The prevalence found in BD individuals was of 18.7% (p = NS). Anti-HEV IgM was positive in only 1.5% of the sample (6/400). No blood or stools samples were positive for HEV RNA. The seroprevalence reported is among the highest rates ever found in Brazil. Considering the intense diagnostic investigation, data show that HEV circulation is more common that might be expected in our country.
Collapse
|
28
|
Advances in Hepatitis E Virus Biology and Pathogenesis. Viruses 2021; 13:v13020267. [PMID: 33572257 PMCID: PMC7915517 DOI: 10.3390/v13020267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the causative agents for liver inflammation across the world. HEV is a positive-sense single-stranded RNA virus. Human HEV strains mainly belong to four major genotypes in the genus Orthohepevirus A, family Hepeviridae. Among the four genotypes, genotype 1 and 2 are obligate human pathogens, and genotype 3 and 4 cause zoonotic infections. HEV infection with genotype 1 and 2 mainly presents as acute and self-limiting hepatitis in young adults. However, HEV infection of pregnant women with genotype 1 strains can be exacerbated to fulminant hepatitis, resulting in a high rate of case fatality. As pregnant women maintain the balance of maternal-fetal tolerance and effective immunity against invading pathogens, HEV infection with genotype 1 might dysregulate the balance and cause the adverse outcome. Furthermore, HEV infection with genotype 3 can be chronic in immunocompromised patients, with rapid progression, which has been a challenge since it was reported years ago. The virus has a complex interaction with the host cells in downregulating antiviral factors and recruiting elements to generate a conducive environment of replication. The virus-cell interactions at an early stage might determine the consequence of the infection. In this review, advances in HEV virology, viral life cycle, viral interference with the immune response, and the pathogenesis in pregnant women are discussed, and perspectives on these aspects are presented.
Collapse
|
29
|
Tallan A, Feng Z. Virus spread in the liver: mechanisms, commonalities, and unanswered questions. Future Virol 2020; 15:707-715. [PMID: 33250929 DOI: 10.2217/fvl-2020-0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The liver is home to five known human hepatitis viruses (hepatitis A virus-hepatitis E virus). Despite being phylogenetically unrelated, these viruses replicate and spread in the liver without causing apparent cytopathic effects, and all have evolved strategies to counteract antibody-mediated inhibition of virus spread. In this review, we discuss the current understanding regarding the spread mechanisms for these viruses with an attempt to extract common principles and identify key questions for future studies.
Collapse
Affiliation(s)
- Alexi Tallan
- Center for Vaccines & Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Zongdi Feng
- Center for Vaccines & Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, Ohio State University College of Medicine, Columbus OH 43210, USA
| |
Collapse
|
30
|
Review of Hepatitis E Virus in Rats: Evident Risk of Species Orthohepevirus C to Human Zoonotic Infection and Disease. Viruses 2020; 12:v12101148. [PMID: 33050353 PMCID: PMC7600399 DOI: 10.3390/v12101148] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) (family Hepeviridae) is one of the most common human pathogens, causing acute hepatitis and an increasingly recognized etiological agent in chronic hepatitis and extrahepatic manifestations. Recent studies reported that not only are the classical members of the species Orthohepevirus A (HEV-A) pathogenic to humans but a genetically highly divergent rat origin hepevirus (HEV-C1) in species Orthohepevirus C (HEV-C) is also able to cause zoonotic infection and symptomatic disease (hepatitis) in humans. This review summarizes the current knowledge of hepeviruses in rodents with special focus of rat origin HEV-C1. Cross-species transmission and genetic diversity of HEV-C1 and confirmation of HEV-C1 infections and symptomatic disease in humans re-opened the long-lasting and full of surprises story of HEV in human. This novel knowledge has a consequence to the epidemiology, clinical aspects, laboratory diagnosis, and prevention of HEV infection in humans.
Collapse
|
31
|
Sooryanarain H, Meng XJ. Swine hepatitis E virus: Cross-species infection, pork safety and chronic infection. Virus Res 2020; 284:197985. [PMID: 32333941 DOI: 10.1016/j.virusres.2020.197985] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Swine hepatitis E virus (swine HEV) belongs to the species Orthohepevirus A within the genus Orthohepevirus in the family Hepeviridae. Four different genotypes of swine HEV within the species Orthohepevirus A have been identified so far from domesticated and wild swine population: genotypes 3 (HEV-3) and 4 (HEV-4) swine HEVs are zoonotic and infect humans, whereas HEV-5 and HEV-6 are only identified from swine. As a zoonotic agent, swine HEV is an emerging public health concern in many industrialized countries. Pigs are natural reservoir for HEV, consumption of raw or undercooked pork is an important route of foodborne HEV transmission. Occupational risks such as direct contact with infected pigs also increase the risk of HEV transmission in humans. Cross-species infection of HEV-3 and HEV-4 have been documented under experimental and natural conditions. Both swine HEV-3 and swine HEV-4 infect non-human primates, the surrogates of man. Swine HEV, predominantly HEV-3, can establish chronic infection in immunocompromised patients especially in solid organ transplant recipients. The zoonotic HEV-3, and to lesser extent HEV-4, have also been shown to cause neurological diseases and kidney injury. In this review, we focus on the epidemiology of swine HEV, host and viral determinants influencing cross-species HEV infection, zoonotic infection and its associated pork safety concern, as well as swine HEV-associated chronic infection and neurological diseases.
Collapse
Affiliation(s)
- Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
32
|
Halkurike VJ, Goel A, Katiyar H, Agarwal SK, Pande S, Aggarwal R. Blood transfusion is unlikely to be a source for hepatitis E virus transmission in India. Indian J Gastroenterol 2020; 39:161-164. [PMID: 32372189 DOI: 10.1007/s12664-020-01033-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Transmission of hepatitis E virus (HEV) through transfusion has been reported from countries where genotype 3 virus is predominant. Data from countries with predominantly genotype 1 HEV, such as India, are limited. We studied the risk of HEV transmission following transfusion of blood or blood components in India. METHODS Adult patients undergoing cardiac surgery who received transfusion of blood or blood products in the peri-operative period and who lacked history of any transfusion or surgery in the preceding 1 year were studied. A pre-transfusion blood specimen was collected for IgG anti-HEV antibody test. For the participants who were seronegative for anti-HEV, follow up specimens were collected at every 2-3-month intervals for up to 6 months after surgery and were tested for IgM and IgG anti-HEV antibodies. RESULTS Of the 335 participants originally enrolled, 191 (57%) could be followed up. Of them, 103 (53.9%) were seropositive for HEV IgG at baseline and were excluded. Of the remaining 88 participants (age 42 ± 14.1 years; 55 [63%] male), none reported hepatitis-like illness during the follow up period of 81 ± 23 days. Also, none of these 88 participants was found to have seroconversion to anti-HEV IgM or IgG positivity in the follow up specimens. CONCLUSION Transfusion-mediated transmission of HEV was not observed in our cohort and may be infrequent in the Indian population, where genotype 1 is the predominant HEV type.
Collapse
Affiliation(s)
- Vijay J Halkurike
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India
| | - Amit Goel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India
| | - Harshita Katiyar
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India
| | - Surendra Kumar Agarwal
- Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India
| | - Shantanu Pande
- Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India.
| |
Collapse
|
33
|
Specific circulating microRNAs during hepatitis E infection can serve as indicator for chronic hepatitis E. Sci Rep 2020; 10:5337. [PMID: 32210284 PMCID: PMC7093451 DOI: 10.1038/s41598-020-62159-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) genotypes 3 and 4 (HEV-3, HEV-4) infections are an emerging public health issue in industrialized countries. HEV-3 and −4 are usually self-limiting but can progress to chronic hepatitis E in immunocompromised individuals. The molecular mechanisms involved in persistent infections are poorly understood. Micro RNAs (miRNAs) can regulate viral pathogenesis and can serve as novel disease biomarkers. We aimed to explore the modulation of serum miRNAs in patients with acute (AHE) and chronic (CHE) hepatitis E. Both AHE- and CHE-patients exhibited high viral loads (median 3.23E + 05 IU/mL and 2.11E + 06 IU/mL, respectively) with HEV-3c being the predominant HEV-genotype. Expression analysis of liver-specific serum miRNAs was performed using real-time PCR. miR-99a-5p, miR-122-5p, and miR-125b-5p were upregulated in AHE (4.70–5.28 fold) and CHE patients (2.28–6.34 fold), compared to HEV-negative controls. Notably, miR-192-5p was increased 2.57 fold while miR-125b-5p was decreased 0.35 fold in CHE but not in AHE patients. Furthermore, decreased miR-122-5p expression significantly correlates with reduced liver transaminases in CHE patients. To our knowledge, this marks the first investigation concerning the regulation of circulating liver-specific miRNAs in acute and chronic HEV infections. We found that miR-125b-5p, miR-192-5p, and miR-99a-5p may prove useful in the diagnosis of chronic hepatitis E.
Collapse
|
34
|
Hepatitis E Virus Infection in an Italian Cohort of Hematopoietic Stem Cell Transplantation Recipients: Seroprevalence and Infection. Biol Blood Marrow Transplant 2020; 26:1355-1362. [PMID: 32200124 DOI: 10.1016/j.bbmt.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/15/2020] [Accepted: 03/10/2020] [Indexed: 01/05/2023]
Abstract
Chronic hepatitis E virus (HEV) infection in hematopoietic stem cell transplantation (HSCT) recipients is an emerging threat. The aim of this study was to provide data on the HEV burden in an Italian cohort of HSCT recipients and analyze risk factors for HEV seropositivity. This retrospective study reports data from 596 HSCT recipients compiled between 2010 and 2019. It included patients who underwent transplantation between 2010 and 2015 for whom pretransplantation (n = 419) and post-transplantation (n = 161) serum samples were available and tested retrospectively, as well as patients in whom prospective HEV testing was performed during the standard care: pre-HSCT IgG screening in 144, pre-HSCT HEV-RNA screening in addition to IgG screening in 60, and HEV-RNA testing in case of clinical suspicion of HEV infection in 59 (26 of whom were also included in the IgG screening cohorts). The rate of pre-HSCT HEV-IgG positivity was 6.0% (34 of 563). Older age was an independent risk factor for seropositivity (P = .039). None of the 34 HEV-IgG-positive patients had detectable HEV-RNA. One case of transient HEV-RNA positivity pre-HSCT was identified through screening. Two patients were diagnosed with chronic HEV hepatitis, and 1 patient was successfully treated with ribavirin. The burden of HEV infection in HSCT recipients in Italy is limited, and pre-HSCT screening appears to be of no benefit. Timely diagnosis of HEV infection with HEV-RNA is mandatory in cases of clinical suspicion.
Collapse
|
35
|
Istrate A, Rădulescu AL. A comparison of hepatitis E and A in a teaching hospital in Northwestern Romania. Acute hepatitis E - a mild disease? Med Pharm Rep 2020; 93:30-38. [PMID: 32133444 PMCID: PMC7051815 DOI: 10.15386/mpr-1487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background and aims The incidence of locally acquired hepatitis E has increased in recent years across Europe. There are only few data on hepatitis E in Romania. The purpose of our research was to describe and compare hepatitis E and hepatitis A in adult patients. Methods We included all consecutive adult patients with hepatitis E and hepatitis A admitted to the Teaching Hospital of Infectious Diseases, Cluj-Napoca, Romania between January 2017 and August 2019. Results Hepatitis E incidence increased in 2018–2019 compared to 2017. The average age in hepatitis E (n=48) patients was 50.6 versus 39.1 years in hepatitis A (n=152, not including 262 minors) and two-thirds of the patients in both groups were men. Compared to hepatitis A, patients with hepatitis E presented significantly less modified AST and ALT, bilirubin, prothrombin index and INR levels. We found more comorbidities in hepatitis E patients adjusted for age and gender. Severe forms were found in 5 (3.3%) hepatitis A patients, compared to 12 (25%) of hepatitis E patients, of which 3 died. Ribavirin treatment was considered in 9 patients with acute-on-chronic hepatitis E, immunosuppression, cancers or neurological manifestations, showing good results. Conclusions We observed an increased number of hepatitis E cases. Although laboratory results were less modified compared to hepatitis A, we found a higher number of severe hepatitis E cases. Ribavirin treatment seems to be beneficial in patients with preexisting conditions.
Collapse
Affiliation(s)
- Alexandru Istrate
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Epidemiology, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| | - Amanda Lelia Rădulescu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Epidemiology, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| |
Collapse
|
36
|
Bohm K, Strömpl J, Krumbholz A, Zell R, Krause G, Sievers C. Establishment of a Highly Sensitive Assay for Detection of Hepatitis E Virus-Specific Immunoglobulins. J Clin Microbiol 2020; 58:e01029-19. [PMID: 31694975 PMCID: PMC6989076 DOI: 10.1128/jcm.01029-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E, a liver disease caused by infection with the hepatitis E virus (HEV), is a worldwide emerging disease. The diagnosis is based on the detection of viral RNA and of HEV-specific immunoglobulins (Ig). For the latter, various assays are commercially available but still lack harmonization. In this study, a Luminex-based multiplex serological assay was established that measures the presence of total IgG, IgA, and IgM antibodies, targeting a short peptide derived from the viral E2 protein. For the validation, 160 serum samples with a known HEV serostatus were used to determine the assay cutoff and accuracy. Thereby, HEV IgG- and RNA-positive sera were identified with a sensitivity of 100% and a specificity of 98% (95% confidence interval [CI], 94% to 100%). Application of the assay by retesting 514 serum samples previously characterized with different HEV-IgG or total antibody tests revealed a high level of agreement between the assays (Cohen's kappa, 0.58 to 0.99). The established method is highly sensitive and specific and can be easily implemented in a multiplex format to facilitate rapid differential diagnostics with a few microliters of sample input.
Collapse
Affiliation(s)
- Katrin Bohm
- Department of Epidemiology, Helmholtz Centre for Infectious Research, Brunswick, Germany
| | - Julia Strömpl
- Department of Epidemiology, Helmholtz Centre for Infectious Research, Brunswick, Germany
| | - Andi Krumbholz
- Institute of Infection Medicine, University of Kiel, University Hospital Schleswig Holstein, Kiel, Germany
| | - Roland Zell
- Division of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infectious Research, Brunswick, Germany
- Institute for Infectious Disease Epidemiology, TWINCORE, Hanover, Germany
- Translational Infrastructure Epidemiology, German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Claudia Sievers
- Department of Epidemiology, Helmholtz Centre for Infectious Research, Brunswick, Germany
| |
Collapse
|
37
|
Hartard C, Gantzer C, Bronowicki JP, Schvoerer E. Emerging hepatitis E virus compared with hepatitis A virus: A new sanitary challenge. Rev Med Virol 2019; 29:e2078. [PMID: 31456241 DOI: 10.1002/rmv.2078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
Abstract
Hepatitis A (HAV) and E (HEV) viruses are able to cause liver disease in humans. Among the five classical hepatotropic viruses, they are mainly transmitted via the fecal-oral route. Historically, many similarities have thus been described between them according to their incidence and their pathogenicity, especially in countries with poor sanitary conditions. However, recent advances have provided new insights, and the gap is widening between them. Indeed, while HAV infection incidence tends to decrease in developed countries along with public health improvement, HEV is currently considered as an underdiagnosed emerging pathogen. HEV autochthonous infections are increasingly observed and are mainly associated with zoonotic transmissions. Extra hepatic signs resulting in neurological or renal impairments have also been reported for HEV, as well as a chronic carrier state in immunocompromised patients, arguing in favor of differential pathogenesis between those two viruses. Recent molecular tools have allowed studies of viral genome variability and investigation of links between viral plasticity and clinical evolution. The identification of key functional mutations in viral genomes may improve the knowledge of their clinical impact and is analyzed in depth in the present review.
Collapse
Affiliation(s)
- Cédric Hartard
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christophe Gantzer
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Evelyne Schvoerer
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
38
|
Mainardi V, Gerona S, Ardao G, Ferreira N, Ramírez G, Arbiza J, Mirazo S. Locally Acquired Chronic Hepatitis E Followed by Epstein-Barr Virus Reactivation and Burkitt Lymphoma as a Suspected Extrahepatic Manifestation in a Liver Transplant Recipient. AMERICAN JOURNAL OF CASE REPORTS 2019; 20:1016-1021. [PMID: 31302664 PMCID: PMC6647622 DOI: 10.12659/ajcr.916253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a common cause of acute hepatitis in developing regions. In high-income countries, hepatitis E is an emergent zoonotic disease of increasing concern. Clinically, the infection is usually acute and self-limited in immunocompetent individuals, although rare chronic cases in immunocompromised patients have been reported. Both acute and chronic infections have been recently associated with several extrahepatic manifestations, including neurological and hematological disorders. CASE REPORT A case of autochthonous chronic HEV infection in a liver-transplanted man from a non-endemic country is presented. Phylogenetic analysis revealed a swine origin of the HEV human infection. Chronic hepatitis E was treated with a 9-week course of ribavirin, after which viral clearance was achieved. Subsequently, the patient developed a post-transplant lymphoproliferative disorder (PTLD) in the form of Burkitt lymphoma. At the time of lymphoma diagnosis, the patient had shown a strong reactivation of Epstein-Barr virus (EBV) infection. After additional antiviral ganciclovir therapy and chemotherapy, the patient had a complete recovery with no sequelae. CONCLUSIONS The differential diagnosis of persistently elevated transaminases in transplanted and/or immunocompromised patients should include testing for HEV by appropriate nucleic acid techniques (NATs). Cases of HEV infection with an atypical clinical outcome, such as the one presented herein, highlights the need for increased awareness of chronic hepatitis E and its association with a wide range of extrahepatic manifestations.
Collapse
Affiliation(s)
- Victoria Mainardi
- National Liver Transplant Program, Central Hospital of the Armed Forces, Montevideo, Uruguay
| | - Solange Gerona
- National Liver Transplant Program, Central Hospital of the Armed Forces, Montevideo, Uruguay
| | - Gonzalo Ardao
- National Liver Transplant Program, Central Hospital of the Armed Forces, Montevideo, Uruguay
| | - Noelia Ferreira
- National Liver Transplant Program, Central Hospital of the Armed Forces, Montevideo, Uruguay
| | - Gabriel Ramírez
- Virology Section, Science Faculty, University of the Republic, Montevideo, Uruguay
| | - Juan Arbiza
- Virology Section, Science Faculty, University of the Republic, Montevideo, Uruguay
| | - Santiago Mirazo
- Virology Section, Science Faculty, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
39
|
Horvatits T, Schulze Zur Wiesch J, Lütgehetmann M, Lohse AW, Pischke S. The Clinical Perspective on Hepatitis E. Viruses 2019; 11:E617. [PMID: 31284447 PMCID: PMC6669652 DOI: 10.3390/v11070617] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Every year, there are an estimated 20 million hepatitis E virus (HEV) infections worldwide, leading to an estimated 3.3 million symptomatic cases of hepatitis E. HEV is largely circulating in the west and is associated with several hepatic and extrahepatic diseases. HEV Genotype 1 and 2 infections are waterborne and causative for epidemics in the tropics, while genotype 3 and 4 infections are zoonotic diseases and are mainly transmitted by ingestion of undercooked pork in industrialized nations. The clinical course of these infections differs: genotype 1 and 2 infection can cause acute illness and can lead to acute liver failure (ALF) or acute on chronic liver failure (ACLF) with a high mortality rate of 20% in pregnant women. In contrast, the majority of HEV GT-3 and -4 infections have a clinically asymptomatic course and only rarely lead to acute on chronic liver failure in elderly or patients with underlying liver disease. Immunosuppressed individuals infected with genotype 3 or 4 may develop chronic hepatitis E, which then can lead to life-threatening cirrhosis. Furthermore, several extra-hepatic manifestations affecting various organs have been associated with ongoing or previous HEV infections but the causal link for many of them still needs to be proven. There is no approved specific therapy for the treatment of acute or chronic HEV GT-3 or -4 infections but off-label use of ribavirin has been demonstrated to be safe and effective in the majority of patients. However, in approximately 15% of chronically HEV infected patients, cure is not possible.
Collapse
Affiliation(s)
- Thomas Horvatits
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
- Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Sven Pischke
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany.
| |
Collapse
|
40
|
Aggarwal R, Goel A. Natural History, Clinical Manifestations, and Pathogenesis of Hepatitis E Virus Genotype 1 and 2 Infections. Cold Spring Harb Perspect Med 2019; 9:a032136. [PMID: 29735580 PMCID: PMC6601454 DOI: 10.1101/cshperspect.a032136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infection with genotype 1 or 2 hepatitis E virus (HEV) results primarily from human-to-human transmission through the fecal-oral route in low-resource countries. It presents primarily as "acute viral hepatitis" syndrome, usually a self-limiting illness. A few cases progress to acute liver failure, a serious illness with high fatality. Clinical disease is infrequent among children. Infection during pregnancy is associated with a higher risk of symptomatic disease, severe liver injury, and mortality. Severe disease is also encountered in persons with preexisting chronic liver disease. Some cases have associated extrahepatic features, particularly acute pancreatitis and neurological manifestations. Chronic infection appears to be extremely infrequent with these HEV genotypes. The exact pathogenesis of liver injury remains unknown, although the host immune response appears to be important for viral clearance as well as for induction of liver injury. Hormonal and immune factors appear to be responsible for the severe disease during pregnancy.
Collapse
Affiliation(s)
- Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Amit Goel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
41
|
Feng Z, Lemon SM. Innate Immunity to Enteric Hepatitis Viruses. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033464. [PMID: 29686040 DOI: 10.1101/cshperspect.a033464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although hepatitis A virus (HAV) and hepatitis E virus (HEV) are both positive-strand RNA viruses that replicate in the cytoplasm of hepatocytes, there are important differences in the ways they induce and counteract host innate immune responses. HAV is remarkably stealthy because of its ability to evade and disrupt innate signaling pathways that lead to interferon production. In contrast, HEV does not block interferon production. Instead, it persists in the presence of an interferon response. These differences may provide insight into HEV persistence in immunocompromised patients, an emerging health problem in developed countries.
Collapse
Affiliation(s)
- Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio 43205
| | - Stanley M Lemon
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
42
|
|