1
|
Resende PC, Junqueira DM, Tochetto C, Ogrzewalska M, Motta FC, Lopes J, Appolinario L, Macedo L, Caetano B, Matos A, Silva T, Pereira EC, Lima LF, Riediger I, Debur MDC, Becker GN, Andrade A, Nasr AMLF, Piler RA, Dalla Vecchia AC, Almeida W, Brown D, Schaefer R, Siqueira MM. Zoonotic transmission of novel Influenza A variant viruses detected in Brazil during 2020 to 2023. Nat Commun 2024; 15:10748. [PMID: 39737909 DOI: 10.1038/s41467-024-53815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/22/2024] [Indexed: 01/01/2025] Open
Abstract
Zoonotic infections (swine-human) caused by influenza A viruses (IAVs) have been reported and linked to close contact between these species. Here, we describe eight human IAV variant infections (6 mild and 2 severe cases, including 1 death) detected in Paraná, Brazil, during 2020-2023. Genomes recovered were closely related to Brazilian swIAVs of three major lineages (1 A.3.3.2/pdm09, 1B/human-like, and H3.1990.5), including three H1N1v, two H1N2v, two H3N2v and one H1v. Five H1v were closely related to pdm09 lineage, one H1v (H1N2v) grouped within 1B.2.3 clade, and the two H3v grouped within a clade composed exclusively of Brazilian H3 swIAV (clade H3.1990.5.1). Internal gene segments were closely related to H1N1pdm09 isolated from pigs. IAV variant rarely result in sustained transmission between people, however the potential to develop such ability is of concern and must not be underestimated. This study brings into focus the need for continuous influenza surveillance and timely risk assessment.
Collapse
Affiliation(s)
- Paola Cristina Resende
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil.
| | - Dennis M Junqueira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Laboratório de Bioinformática e Evolução Viral, Universidade Federal de Santa Maria (UFSM), Santa Maria, Santa Catarina, Brazil
| | - Caroline Tochetto
- Embrapa Suínos e Aves, BR 153, Km 110, Concórdia, Santa Catarina, Brazil
| | - Maria Ogrzewalska
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Fernando C Motta
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Jonathan Lopes
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Luciana Appolinario
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Larissa Macedo
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Braulia Caetano
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Aline Matos
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Thauane Silva
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Elisa Cavalcante Pereira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Leticia Ferreira Lima
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Irina Riediger
- Laboratório Central do Estado do Paraná (LACEN-PR), Curitiba, Paraná, Brazil
| | | | | | - Aline Andrade
- Laboratório Central do Estado do Paraná (LACEN-PR), Curitiba, Paraná, Brazil
| | | | | | | | - Walquíria Almeida
- Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - David Brown
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR 153, Km 110, Concórdia, Santa Catarina, Brazil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Gubbins S, Paudyal B, Dema B, Vats A, Ulaszewska M, Vatzia E, Tchilian E, Gilbert SC. Predicting airway immune responses and protection from immune parameters in blood following immunization in a pig influenza model. Front Immunol 2024; 15:1506224. [PMID: 39749329 PMCID: PMC11693722 DOI: 10.3389/fimmu.2024.1506224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Whereas the intranasally delivered influenza vaccines used in children affect transmission of influenza virus in the community as well as reducing illness, inactivated influenza vaccines administered by intramuscular injection do not prevent transmission and have a variable, sometimes low rate of vaccine effectiveness. Although mucosally administered vaccines have the potential to induce more protective immune response at the site of viral infection, quantitating such immune responses in large scale clinical trials and developing correlates of protection is challenging. Here we show that by using mathematical models immune responses measured in the blood after delivery of vaccine to the lungs by aerosol can predict immune responses in the respiratory tract in pigs. Additionally, these models can predict protection from influenza virus challenge despite lower levels of blood responses following aerosol immunization. However, the inclusion of immune responses measured in nasal swab eluates did not improve the predictive power of the model. Our models are an important first step, providing proof of principle that it is feasible to predict immune responses and protection in pigs. This approach now provides a path to develop correlates of protection for mucosally delivered vaccines in samples that are easily accessed in clinical trials.
Collapse
Affiliation(s)
| | | | - Barbara Dema
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | | | - Marta Ulaszewska
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Eleni Vatzia
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Sarah C. Gilbert
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS), Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Zhao Y, Han L, Sang H, Yang P, Hou Y, Xiao Y. Two genotypes of H3N2 swine influenza viruses identified in pigs from Shandong Province, China. Front Cell Infect Microbiol 2024; 14:1517023. [PMID: 39748885 PMCID: PMC11694508 DOI: 10.3389/fcimb.2024.1517023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
Swine influenza virus (SIV) is a highly contagious pathogen that poses significant economic challenges to the swine industry and carries zoonotic potential, underscoring the need for vigilant surveillance. In this study, we performed a comprehensive genetic and molecular analysis of H3N2 SIV isolates obtained from 372 swine samples collected in Shandong Province, China. Phylogenetic analysis revealed two distinct genotypes. The surface genes of both genotypes clustered with the human-like H3N2 lineage, while the internal genes of one genotype clustered with the 2009 pandemic H1N1 (pdm/09) lineage. In the second genotype, the NS gene clustered with the classical swine (CS) H1N1 lineage, while the remaining internal genes clustered with pdm/09, suggesting stable integration of pdm/09 gene segments into H3N2 SIV. Homology analysis showed over 96% genetic similarity between the isolates and reference strains from China and Brazil, suggesting potential transmission through swine trade or human movement. Molecular characterization identified amino acid substitutions in the HA protein (190D, 226I, and 228S), potentially enhancing the virus's affinity for human-like receptors, thereby increasing the zoonotic risk. Key mutations in the PB2 (271A, 591R), PA (336M, 356R, 409N), and M2 (S31N) proteins, along with novel drug resistance mutations, indicate the potential for enhanced virulence and drug resistance in these isolates. Moreover, glycosylation site analysis revealed four differences, and antigenic site analysis showed 13 differences between the HA proteins of the isolates and the WHO-recommended vaccine strain A/Cambodia/E0826360/2020 for the 2021-2022 season, which may reduce vaccine efficacy. Serological analysis revealed that 11 out of the tested serum samples were positive for H3N2 antibodies, resulting in an overall positivity rate of 0.42%. These findings emphasize the urgent need for strengthened SIV surveillance in China to monitor the risk of human transmission and ensure better preparedness for future influenza outbreaks.
Collapse
Affiliation(s)
- Yuzhong Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, China
| | - Lebin Han
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, China
| | - Haotian Sang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, China
| | - Pingping Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, China
| | - Yanmeng Hou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, China
| | - Yihong Xiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
4
|
Kim DS, Firoz W, Santana Maldonado CM, Gauger PC, Weir A, Baumgarth N, Rumbeiha WK. One health: Subchronic exposure to low ambient hydrogen sulfide increases mortality of influenza A virus infection in mice. ENVIRONMENTAL RESEARCH 2024; 266:120536. [PMID: 39638025 DOI: 10.1016/j.envres.2024.120536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The environment plays an important role in modulating susceptibility and severity of respiratory tract infections. Influenza is a significant zoonotic disease globally. Hydrogen sulfide (H2S), a respiratory tract irritant and toxic gas, is ubiquitous in the environment. The interaction of environmental H2S exposure and influenza is unknown. In this pilot study we tested the hypothesis that subchronic exposure to ambient H2S worsens the outcome of influenza A virus (IAV) infection in mice. Male C57BL6 mice were exposed either to room air (RA), or to 5 or 10 ppm H2S for 2 h, 5 days a week for 5 weeks, followed by a single exposure either to phosphate buffered saline (sham) or a sublethal IAV intranasal dose of 10 plaque-forming units and observed for up to 28 days post inoculation (DPI). 10 ppm H2S alone suppressed growth. Mice challenged with IAV following exposure to 5 or 10 ppm H2S were most severely affected and euthanized on DPI 6 to 7 or DPI 4, respectively. In contrast, mice exposed to RA and challenged with IAV only showed minor weight loss. Viral titer in lung homogenates was 11-fold higher in mice pre-exposed to 5 ppm H2S and challenged with IAV compared to the RA-IAV group on DPI 3. BALF concentrations of TNF-α, IL-6, and IL-10 cytokines were significantly higher in mice exposed to H2S and challenged with IAV compared to sham groups. Lung pathology was most severe in mice exposed to H2S and challenged with IAV. Collectively, the study shows that mice subchronically exposed to low levels of H2S overly reacted to a nonlethal dose of IAV, suffering severe lung injury and mortality. This suggests that communities and workers subchronically exposed to ambient H2S concentrations used in this study or higher are at higher risk for developing very severe IAV infections and mortality.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, USA
| | - Wahed Firoz
- Center for Immunology and Infectious Diseases, Department of Pathology, Microbiology and Immunology, UC Davis, USA; Graduate Group in Immunology, UC Davis, USA
| | | | - Phillip C Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Abigail Weir
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, Department of Pathology, Microbiology and Immunology, UC Davis, USA; Graduate Group in Immunology, UC Davis, USA; Lyme and Tickborne Diseases Research and Education Institute, W Harry Feinstone Dept. Molecular Microbiology and Immunology, Bloomberg School of Public Health, and Dept. Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, USA
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, USA.
| |
Collapse
|
5
|
Jung B, Yeom M, An DJ, Kang A, Vu TTH, Na W, Byun Y, Song D. Large-Scale Serological Survey of Influenza A Virus in South Korean Wild Boar (Sus scrofa). ECOHEALTH 2024; 21:174-182. [PMID: 38842623 DOI: 10.1007/s10393-024-01685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/08/2024] [Indexed: 06/07/2024]
Abstract
In this comprehensive large-scale study, conducted from 2015 to 2019, 7,209 wild boars across South Korea were sampled to assess their exposure to influenza A viruses (IAVs). Of these, 250 (3.5%) were found to be IAV-positive by ELISA, and 150 (2.1%) by the hemagglutination inhibition test. Detected subtypes included 23 cases of pandemic 2009 H1N1, six of human seasonal H3N2, three of classical swine H1N1, 13 of triple-reassortant swine H1N2, seven of triple-reassortant swine H3N2, and seven of swine-origin H3N2 variant. Notably, none of the serum samples tested positive for avian IAV subtypes H3N8, H5N3, H7N7, and H9N2 or canine IAV subtype H3N2. This serologic analysis confirmed the exposure of Korean wild boars to various subtypes of swine and human influenza viruses, with some serum samples cross-reacting between swine and human strains, indicating potential infections with multiple IAVs. The results highlight the potential of wild boar as a novel mixing vessel, facilitating the adaptation of IAVs and their spillover to other hosts, including humans. In light of these findings, we recommend regular and frequent surveillance of circulating influenza viruses in the wild boar population as a proactive measure to prevent potential human influenza pandemics and wild boar influenza epizootics.
Collapse
Affiliation(s)
- Bud Jung
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong-ro, Jochiwon-eup, Sejong-si, 30019, Republic of Korea
| | - Minjoo Yeom
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Aram Kang
- QuadMedicine R&D Centre, QuadMedicine, Inc, Seongnam, 13209, Republic of Korea
| | - Thi Thu Hang Vu
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong-ro, Jochiwon-eup, Sejong-si, 30019, Republic of Korea
| | - Woonsung Na
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Youngjoo Byun
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong-ro, Jochiwon-eup, Sejong-si, 30019, Republic of Korea.
| | - Daesub Song
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Zhao X, Shen M, Cui L, Liu C, Yu J, Wang G, Erdeljan M, Wang K, Chen S, Wang Z. Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China. Sci Rep 2024; 14:28792. [PMID: 39567587 PMCID: PMC11579394 DOI: 10.1038/s41598-024-80457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Influenza poses a significant threat to the global economy and health. Inactivated virus vaccines were introduced in China for prevention in 2018. In this study, three pairs of hemagglutinin (HA) and neuraminidase (NA) gene sequences were obtained from three Swine influenza virus (IAV-S) inactivated vaccine strains that were marketed in China in 2018. Phylogenetic analysis was carried out with HA and NA gene sequences to investigate the relationship between vaccine use and virus genetic drift. The findings showed that the evolutionary rate of HA remained relatively stable from 2012 to 2017, with an average genetic distance of approximately 0.020731195. However, following the introduction of the swine influenza vaccine, there was a notable acceleration in the evolutionary rate of HA, accompanied by a significant increase in the genetic distance. In 2018, the value was 0.111750269, while in 2019 it was 0.176389393. In contrast, the evolution of NA was relatively smooth, with an average genetic distance of approximately 0.030386708. Finally, we demonstrated that commercial vaccines are weak neutralizers of wild strains through immunization experiments in animals. Thus, we have reason to believe that mutations in the virus favor virus evasion of vaccine immunity. Our findings suggest that vaccine use may significantly impact the evolution of the influenza virus by potentially stimulating mutations. The selection pressure of vaccine antibodies played a role in regulating the variation of IAV-S-H1N1.
Collapse
Affiliation(s)
- Xinkun Zhao
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Mingshuai Shen
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Li Cui
- Shandong animal husbandry association, Jinan, 250000, China
| | - Cun Liu
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), Jinan, 250100, China
| | - Jieshi Yu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), Jinan, 250100, China
| | - Mihajlo Erdeljan
- Department for veterinary medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Kezhou Wang
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Shumin Chen
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), Jinan, 250100, China
| | - Zhao Wang
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University& Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China.
| |
Collapse
|
7
|
Gerhards NM, Vrieling M, Dresken R, Nguyen-van Oort S, Bordes L, Wells JM, de Swart RL. Porcine Airway Organoid-Derived Well-Differentiated Epithelial Cultures as a Tool for the Characterization of Swine Influenza a Virus Strains. Viruses 2024; 16:1777. [PMID: 39599891 PMCID: PMC11598950 DOI: 10.3390/v16111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Swine influenza A viruses (IAVsw) are important causes of disease in pigs but also constitute a public health risk. IAVsw strains show remarkable differences in pathogenicity. We aimed to generate airway organoids from the porcine lower respiratory tract and use these to establish well-differentiated airway epithelial cell (WD-AEC) cultures grown at an air-liquid interface (ALI) for in vitro screening of IAVsw strain virulence. Epithelial cells were isolated from bronchus tissue of juvenile pigs, and airway organoids were cultured in an extracellular matrix in a culture medium containing human growth factors. Single-cell suspensions of these 3D organoids were seeded on Transwell filters and differentiated at ALI to form a pseudostratified epithelium containing ciliated cells, mucus-producing cells and tight junctions. Inoculation with a low dose of IAVsw in a low volume inoculum resulted in virus replication without requiring the addition of trypsin, and was quantified by the detection of viral genome loads in apical washes. Interestingly, inoculation of an H3N2 strain known to cause severe disease in pigs induced a greater reduction in trans-epithelial resistance and more damage to tight junctions than H1N2 or H1N1 strains associated with mild disease in pigs. We conclude that the porcine WD-AEC model is useful in assessing the virulence of IAVsw strains.
Collapse
Affiliation(s)
- Nora M. Gerhards
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (N.M.G.); (M.V.); (L.B.)
| | - Manouk Vrieling
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (N.M.G.); (M.V.); (L.B.)
| | - Romy Dresken
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (N.M.G.); (M.V.); (L.B.)
| | - Sophie Nguyen-van Oort
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (N.M.G.); (M.V.); (L.B.)
| | - Luca Bordes
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (N.M.G.); (M.V.); (L.B.)
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Wageningen University, 6708 WD Wageningen, The Netherlands;
| | - Rik L. de Swart
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (N.M.G.); (M.V.); (L.B.)
| |
Collapse
|
8
|
Zuckermann FA, Grinkova YV, Husmann RJ, Pires-Alves M, Storms S, Chen WY, Sligar SG. An effective vaccine against influenza A virus based on the matrix protein 2 (M2). Vet Microbiol 2024; 298:110245. [PMID: 39293153 DOI: 10.1016/j.vetmic.2024.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/14/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024]
Abstract
The ever-increasing antigenic diversity of the hemagglutinin (HA) of influenza A virus (IAV) poses a significant challenge for effective vaccine development. Notably, the matrix protein 2 (M2) is a highly conserved 97 amino acid long transmembrane tetrameric protein present in the envelope of IAV. More than 99 % of IAV strains circulating in American swine herds share the identical pandemic (pdm) isoform of M2, making it an ideal target antigen for a vaccine that could elicit broadly protective immunity. Here, using soluble nanoscale membrane assemblies termed nanodiscs (NDs), we designed this membrane mimetic nanostructures displaying full-length M2 in its natural transmembrane configuration (M2ND). Intramuscular (IM) immunization of swine with M2ND mixed with conventional emulsion adjuvant elicited M2-specific IgG antibodies in the serum that recognized influenza virions and M2-specific interferon-γ secreting cells present in the blood. Intranasal (IN) immunization with M2ND adjuvanted with a mycobacterial extract elicited M2-specific IgA in mucosal secretions that also recognized IAV. Immunization with an influenza whole inactivated virus (WIV) vaccine supplemented with a concurrent IM injection of M2ND mixed with an emulsion adjuvant increased the level of protective immunity afforded by the former against a challenge with an antigenically distinct H3N2 IAV, as exhibited by an enhanced elimination of virus from the lung. The lone IM administration of the M2ND vaccine mixed with an emulsion adjuvant provided measurable protection as evidenced by a >10-fold reduction or complete elimination of the challenge virus from the lung, but it did not diminish the viral load in nasal secretions nor the extent of pneumonia that ensued after the virus challenge. In contrast, an improved formulation of the M2ND vaccine that incorporated synthetic CpG oligodeoxynucleotides (CpG-ODN) in the nanostructures administered alone, via the IN and IM routes combined, provided a significant level of protective immunity against IAV as evidenced by a decreased viral load in both the upper and lower respiratory tracts and fully eliminated the occurrence of pneumonia in 89 % of the pigs immunized with this biologic. Notably, to be effective, the M2 protein must be displayed in the ND assemblies, as shown by the observation that simply mixing M2 with empty NDs incorporating CpG-ODN (eND-CpG-ODN) did not provide protective immunity. This novel M2-based vaccine offers great promise to help increase the breadth of protection afforded by conventional WIV vaccines against the diversity of IAV in circulation and, plausibly, as a broadly protective stand-alone biologic.
Collapse
Affiliation(s)
- Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA.
| | - Yelena V Grinkova
- Department of Biochemistry, 505 South Goodwin Avenue, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Robert J Husmann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Melissa Pires-Alves
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Suzanna Storms
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Wei-Yu Chen
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Stephen G Sligar
- Department of Biochemistry, 505 South Goodwin Avenue, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Gao R, Pascua PNQ, Chesnokov A, Nguyen HT, Uyeki TM, Mishin VP, Zanders N, Cui D, Jang Y, Jones J, La Cruz JD, Di H, Davis CT, Gubareva LV. Antiviral Susceptibility of Swine-Origin Influenza A Viruses Isolated from Humans, United States. Emerg Infect Dis 2024; 30:2303-2312. [PMID: 39378870 PMCID: PMC11521183 DOI: 10.3201/eid3011.240892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Since 2013, a total of 167 human infections with swine-origin (variant) influenza A viruses of A(H1N1)v, A(H1N2)v, and A(H3N2)v subtypes have been reported in the United States. Analysis of 147 genome sequences revealed that nearly all had S31N substitution, an M2 channel blocker-resistance marker, whereas neuraminidase inhibitor-resistance markers were not found. Two viruses had a polymerase acidic substitution (I38M or E199G) associated with decreased susceptibility to baloxavir, an inhibitor of viral cap-dependent endonuclease (CEN). Using phenotypic assays, we established subtype-specific susceptibility baselines for neuraminidase and CEN inhibitors. When compared with either baseline or CEN-sequence-matched controls, only the I38M substitution decreased baloxavir susceptibility, by 27-fold. Human monoclonal antibodies FI6v3 and CR9114 targeting the hemagglutinin's stem showed variable (0.03 to >10 µg/mL) neutralizing activity toward variant viruses, even within the same clade. Methodology and interpretation of laboratory data described in this study provide information for risk assessment and decision-making on therapeutic control measures.
Collapse
MESH Headings
- Humans
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Influenza, Human/virology
- Influenza, Human/epidemiology
- Influenza, Human/drug therapy
- Drug Resistance, Viral/genetics
- United States/epidemiology
- Animals
- Swine
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Dibenzothiepins
- Morpholines/pharmacology
- Influenza A virus/drug effects
- Influenza A virus/genetics
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Pyridones/pharmacology
- Triazines/pharmacology
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/drug effects
Collapse
|
10
|
Vatzia E, Paudyal B, Dema B, Carr BV, Sedaghat-Rostami E, Gubbins S, Sharma B, Moorhouse E, Morris S, Ulaszewska M, MacLoughlin R, Salguero FJ, Gilbert SC, Tchilian E. Aerosol immunization with influenza matrix, nucleoprotein, or both prevents lung disease in pig. NPJ Vaccines 2024; 9:188. [PMID: 39397062 PMCID: PMC11471855 DOI: 10.1038/s41541-024-00989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Current influenza vaccines are strain-specific and require frequent updates to combat new strains, making a broadly protective influenza vaccine (BPIV) highly desirable. A promising strategy is to induce T-cell responses against internal proteins conserved across influenza strains. In this study, pH1N1 pre-exposed pigs were immunized by aerosol using viral vectored vaccines (ChAdOx2 and MVA) expressing matrix (M1) and nucleoprotein (NP). Following H3N2 challenge, all immunizations (M1, NP or NPM1) reduced lung pathology, but M1 alone offered the greatest protection. NP or NPM1 immunization induced both T-cell and antibody responses. M1 immunization generated no detectable antibodies but elicited M1-specific T-cell responses, suggesting T cell-mediated protection. Additionally, a single aerosol immunization with the ChAdOx vaccine encoding M1, NP and neuraminidase reduced lung pathology. These findings provide insights into BPIV development using a relevant large natural host, the pig.
Collapse
Affiliation(s)
| | | | - Barbara Dema
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Susan Morris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah C Gilbert
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
11
|
Petro-Turnquist E, Madapong A, Steffen D, Weaver EA. Immunogenicity and Protective Efficacy of Dose-Sparing Epigraph Vaccine against H3 Swine Influenza A Virus. Vaccines (Basel) 2024; 12:943. [PMID: 39204066 PMCID: PMC11359338 DOI: 10.3390/vaccines12080943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Swine influenza A virus (IAV-S) is a highly prevalent and transmissible pathogen infecting worldwide swine populations. Our previous work has shown that the computationally derived vaccine platform, Epigraph, can induce broadly cross-reactive and durable immunity against H3 IAV-S in mice and swine. Therefore, in this study, we assess the immunogenicity and protective efficacy of the Epigraph vaccine at increasingly lower doses to determine the minimum dose required to maintain protective immunity against three genetically divergent H3 IAV-S. We assessed both antibody and T cell responses and then challenged with three H3N2 IAV-S derived from either Cluster IV(A), Cluster I, or the 2010.1 "human-like" cluster and assessed protection through reduced pathology, reduced viral load in the lungs, and reduced viral shedding from nasal swabs. Overall, we observed a dose-dependent effect where the highest dose of Epigraph protected against all three challenges, the middle dose of Epigraph protected against more genetically similar IAV-S, and the lowest dose of Epigraph only protected against genetically similar IAV-S. The results of these studies can be used to continue developing a broadly protective and low-dose vaccine against H3 IAV-S.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (A.M.)
| | - Adthakorn Madapong
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (A.M.)
| | - David Steffen
- Nebraska Veterinary Diagnostics Center, Lincoln, NE 68583, USA;
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (A.M.)
| |
Collapse
|
12
|
Lee CY. Exploring Potential Intermediates in the Cross-Species Transmission of Influenza A Virus to Humans. Viruses 2024; 16:1129. [PMID: 39066291 PMCID: PMC11281536 DOI: 10.3390/v16071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
13
|
Le Sage V, Rockey NC, French AJ, McBride R, McCarthy KR, Rigatti LH, Shephard MJ, Jones JE, Walter SG, Doyle JD, Xu L, Barbeau DJ, Wang S, Frizzell SA, Myerburg MM, Paulson JC, McElroy AK, Anderson TK, Vincent Baker AL, Lakdawala SS. Potential pandemic risk of circulating swine H1N2 influenza viruses. Nat Commun 2024; 15:5025. [PMID: 38871701 PMCID: PMC11176300 DOI: 10.1038/s41467-024-49117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Influenza A viruses in swine have considerable genetic diversity and continue to pose a pandemic threat to humans due to a potential lack of population level immunity. Here we describe a pipeline to characterize and triage influenza viruses for their pandemic risk and examine the pandemic potential of two widespread swine origin viruses. Our analysis reveals that a panel of human sera collected from healthy adults in 2020 has no cross-reactive neutralizing antibodies against a α-H1 clade strain (α-swH1N2) but do against a γ-H1 clade strain. The α-swH1N2 virus replicates efficiently in human airway cultures and exhibits phenotypic signatures similar to the human H1N1 pandemic strain from 2009 (H1N1pdm09). Furthermore, α-swH1N2 is capable of efficient airborne transmission to both naïve ferrets and ferrets with prior seasonal influenza immunity. Ferrets with H1N1pdm09 pre-existing immunity show reduced α-swH1N2 viral shedding and less severe disease signs. Despite this, H1N1pdm09-immune ferrets that became infected via the air can still onward transmit α-swH1N2 with an efficiency of 50%. These results indicate that this α-swH1N2 strain has a higher pandemic potential, but a moderate level of impact since there is reduced replication fitness and pathology in animals with prior immunity.
Collapse
MESH Headings
- Animals
- Ferrets/virology
- Humans
- Swine
- Influenza, Human/virology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/blood
- Influenza, Human/transmission
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/epidemiology
- Orthomyxoviridae Infections/transmission
- Orthomyxoviridae Infections/blood
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/immunology
- Pandemics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Swine Diseases/virology
- Swine Diseases/epidemiology
- Swine Diseases/immunology
- Swine Diseases/transmission
- Swine Diseases/blood
- Female
- Virus Shedding
- Male
- Adult
- Virus Replication
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicole C Rockey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Andrea J French
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ryan McBride
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kevin R McCarthy
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lora H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meredith J Shephard
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer E Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sydney G Walter
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua D Doyle
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lingqing Xu
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dominique J Barbeau
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shengyang Wang
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sheila A Frizzell
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael M Myerburg
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James C Paulson
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anita K McElroy
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
14
|
He Y, Song S, Wu J, Wu J, Zhang L, Sun L, Li Z, Wang X, Kou Z, Liu T. Emergence of Eurasian Avian-Like Swine Influenza A (H1N1) virus in a child in Shandong Province, China. BMC Infect Dis 2024; 24:550. [PMID: 38824508 PMCID: PMC11143696 DOI: 10.1186/s12879-024-09441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Influenza A virus infections can occur in multiple species. Eurasian avian-like swine influenza A (H1N1) viruses (EAS-H1N1) are predominant in swine and occasionally infect humans. A Eurasian avian-like swine influenza A (H1N1) virus was isolated from a boy who was suffering from fever; this strain was designated A/Shandong-binzhou/01/2021 (H1N1). The aims of this study were to investigate the characteristics of this virus and to draw attention to the need for surveillance of influenza virus infection in swine and humans. METHODS Throat-swab specimens were collected and subjected to real-time fluorescent quantitative polymerase chain reaction (RT‒PCR). Positive clinical specimens were inoculated onto Madin-Darby canine kidney (MDCK) cells to isolate the virus, which was confirmed by a haemagglutination assay. Then, whole-genome sequencing was carried out using an Illumina MiSeq platform, and phylogenetic analysis was performed with MEGA X software. RESULTS RT‒PCR revealed that the throat-swab specimens were positive for EAS-H1N1, and the virus was subsequently successfully isolated from MDCK cells; this strain was named A/Shandong-binzhou/01/2021 (H1N1). Whole-genome sequencing and phylogenetic analysis revealed that A/Shandong-binzhou/01/2021 (H1N1) is a novel triple-reassortant EAS-H1N1 lineage that contains gene segments from EAS-H1N1 (HA and NA), triple-reassortant swine influenza H1N2 virus (NS) and A(H1N1) pdm09 viruses (PB2, PB1, PA, NP and MP). CONCLUSIONS The isolation and analysis of the A/Shandong-binzhou/01/2021 (H1N1) virus provide further evidence that EAS-H1N1 poses a threat to human health, and greater attention should be given to the surveillance of influenza virus infections in swine and humans.
Collapse
Affiliation(s)
- Yujie He
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Shaoxia Song
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Jie Wu
- Binzhou Center for Disease Prevention and Control, Binzhou, China
| | - Julong Wu
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Lifang Zhang
- Binzhou Center for Disease Prevention and Control, Binzhou, China
| | - Lin Sun
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Zhong Li
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Xianjun Wang
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Zengqiang Kou
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Ti Liu
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China.
| |
Collapse
|
15
|
Ciacci Zanella G, Snyder CA, Arruda BL, Whitworth K, Green E, Poonooru RR, Telugu BP, Baker AL. Pigs lacking TMPRSS2 displayed fewer lung lesions and reduced inflammatory response when infected with influenza A virus. Front Genome Ed 2024; 5:1320180. [PMID: 38883409 PMCID: PMC11176495 DOI: 10.3389/fgeed.2023.1320180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 06/18/2024] Open
Abstract
Influenza A virus (IAV) infection is initiated by hemagglutinin (HA), a glycoprotein exposed on the virion's lipid envelope that undergoes cleavage by host cell proteases to ensure membrane fusion, entry into the host cells, and completion of the viral cycle. Transmembrane protease serine S1 member 2 (TMPRSS2) is a host transmembrane protease expressed throughout the porcine airway epithelium and is purported to play a major role in the HA cleavage process, thereby influencing viral pathogenicity and tissue tropism. Pigs are natural hosts of IAV and IAV disease causes substantial economic impact on the pork industry worldwide. Previous studies in mice demonstrated that knocking out expression of TMPRSS2 gene was safe and inhibited the spread of IAV after experimental challenge. Therefore, we hypothesized that knockout of TMPRSS2 will prevent IAV infectivity in the swine model. We investigated this hypothesis by comparing pathogenesis of an H1N1pdm09 virus challenge in wildtype (WT) control and in TMPRSS2 knockout (TMPRSS2 -/-) pigs. We demonstrated that TMPRSS2 was expressed in the respiratory tract in WT pigs with and without IAV infection. No differences in nasal viral shedding and lung lavage viral titers were observed between WT and TMPRSS2 -/- pigs. However, the TMPRSS2 -/- pig group had significantly less lung lesions and significant reductions in antiviral and proinflammatory cytokines in the lung. The virus titer results in our direct challenge model contradict prior studies in the murine animal model, but the reduced lung lesions and cytokine profile suggest a possible role for TMPRSS2 in the proinflammatory antiviral response. Further research is warranted to investigate the role of TMPRSS2 in swine IAV infection and disease.
Collapse
Affiliation(s)
- Giovana Ciacci Zanella
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Celeste A Snyder
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Bailey L Arruda
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Kristin Whitworth
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Erin Green
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Ravikanth Reddy Poonooru
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Bhanu P Telugu
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Amy L Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
16
|
Zhang L, Zhou E, Liu C, Tian X, Xue B, Zhang K, Luo B. Avian influenza and gut microbiome in poultry and humans: A "One Health" perspective. FUNDAMENTAL RESEARCH 2024; 4:455-462. [PMID: 38933214 PMCID: PMC11197557 DOI: 10.1016/j.fmre.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 06/28/2024] Open
Abstract
A gradual increase in avian influenza outbreaks has been found in recent years. It is highly possible to trigger the next human pandemic due to the characteristics of antigenic drift and antigenic shift in avian influenza virus (AIV). Although great improvements in understanding influenza viruses and the associated diseases have been unraveled, our knowledge of how these viruses impact the gut microbiome of both poultry and humans, as well as the underlying mechanisms, is still improving. The "One Health" approach shows better vitality in monitoring and mitigating the risk of avian influenza, which requires a multi-sectoral effort and highlights the interconnection of human health with environmental sustainability and animal health. Therefore, monitoring the gut microbiome may serve as a sentinel for protecting the common health of the environment, animals, and humans. This review summarizes the interactions between AIV infection and the gut microbiome of poultry and humans and their potential mechanisms. With the presented suggestions, we hope to address the current major challenges in the surveillance and prevention of microbiome-related avian influenza with the "One Health" approach.
Collapse
Affiliation(s)
- Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Erkai Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ce Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
- Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China
| |
Collapse
|
17
|
Szablewski CM, McBride DS, Trock SC, Habing GG, Hoet AE, Nelson SW, Nolting JM, Bowman AS. Evolution of influenza A viruses in exhibition swine and transmission to humans, 2013-2015. Zoonoses Public Health 2024; 71:281-293. [PMID: 38110691 PMCID: PMC10994755 DOI: 10.1111/zph.13104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
AIMS Swine are a mixing vessel for the emergence of novel reassortant influenza A viruses (IAV). Interspecies transmission of swine-origin IAV poses a public health and pandemic risk. In the United States, the majority of zoonotic IAV transmission events have occurred in association with swine exposure at agricultural fairs. Accordingly, this human-animal interface necessitates mitigation strategies informed by understanding of interspecies transmission mechanisms in exhibition swine. Likewise, the diversity of IAV in swine can be a source for novel reassortant or mutated viruses that pose a risk to both swine and human health. METHODS AND RESULTS In an effort to better understand those risks, here we investigated the epidemiology of IAV in exhibition swine and subsequent transmission to humans by performing phylogenetic analyses using full genome sequences from 272 IAV isolates collected from exhibition swine and 23 A(H3N2)v viruses from human hosts during 2013-2015. Sixty-seven fairs (24.2%) had at least one pig test positive for IAV with an overall estimated prevalence of 8.9% (95% CI: 8.3-9.6, Clopper-Pearson). Of the 19 genotypes found in swine, 5 were also identified in humans. There was a positive correlation between the number of human cases of a genotype and its prevalence in exhibition swine. Additionally, we demonstrated that A(H3N2)v viruses clustered tightly with exhibition swine viruses that were prevalent in the same year. CONCLUSIONS These data indicate that multiple genotypes of swine-lineage IAV have infected humans, and highly prevalent IAV genotypes in exhibition swine during a given year are also the strains detected most frequently in human cases of variant IAV. Continued surveillance and rapid characterization of IAVs in exhibition swine can facilitate timely phenotypic evaluation and matching of candidate vaccine strains to those viruses present at the human-animal interface which are most likely to spillover into humans.
Collapse
Affiliation(s)
| | - Dillon S. McBride
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Susan C. Trock
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gregory G. Habing
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Armando E. Hoet
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Sarah W. Nelson
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Jacqueline M. Nolting
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Andrew S. Bowman
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| |
Collapse
|
18
|
Dias AS, Baker ALV, Baker RB, Zhang J, Zeller MA, Kitikoon P, Gauger PC. Detection and Characterization of Influenza A Virus Endemic Circulation in Suckling and Nursery Pigs Originating from Vaccinated Farms in the Same Production System. Viruses 2024; 16:626. [PMID: 38675967 PMCID: PMC11054297 DOI: 10.3390/v16040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows.
Collapse
MESH Headings
- Animals
- Swine
- Swine Diseases/virology
- Swine Diseases/epidemiology
- Swine Diseases/prevention & control
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/epidemiology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/isolation & purification
- Influenza A virus/classification
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Phylogeny
- Farms
- Animals, Suckling
- Vaccination/veterinary
- Endemic Diseases/veterinary
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- RNA, Viral/genetics
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/immunology
- Genome, Viral
Collapse
Affiliation(s)
- Alessandra Silva Dias
- Department of Preventive Veterinary Medicine, Minas Gerais State University, 6627 Antonio Carlos Avenue, Belo Horizonte 31620-295, MG, Brazil;
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Rodney B. Baker
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Michael A. Zeller
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Pravina Kitikoon
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
- Phillip Gauger of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| |
Collapse
|
19
|
Petro-Turnquist E, Pekarek MJ, Weaver EA. Swine influenza A virus: challenges and novel vaccine strategies. Front Cell Infect Microbiol 2024; 14:1336013. [PMID: 38633745 PMCID: PMC11021629 DOI: 10.3389/fcimb.2024.1336013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Swine Influenza A Virus (IAV-S) imposes a significant impact on the pork industry and has been deemed a significant threat to global public health due to its zoonotic potential. The most effective method of preventing IAV-S is vaccination. While there are tremendous efforts to control and prevent IAV-S in vulnerable swine populations, there are considerable challenges in developing a broadly protective vaccine against IAV-S. These challenges include the consistent diversification of IAV-S, increasing the strength and breadth of adaptive immune responses elicited by vaccination, interfering maternal antibody responses, and the induction of vaccine-associated enhanced respiratory disease after vaccination. Current vaccination strategies are often not updated frequently enough to address the continuously evolving nature of IAV-S, fail to induce broadly cross-reactive responses, are susceptible to interference, may enhance respiratory disease, and can be expensive to produce. Here, we review the challenges and current status of universal IAV-S vaccine research. We also detail the current standard of licensed vaccines and their limitations in the field. Finally, we review recently described novel vaccines and vaccine platforms that may improve upon current methods of IAV-S control.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew J. Pekarek
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric A. Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
20
|
VanInsberghe D, McBride DS, DaSilva J, Stark TJ, Lau MSY, Shepard SS, Barnes JR, Bowman AS, Lowen AC, Koelle K. Genetic drift and purifying selection shape within-host influenza A virus populations during natural swine infections. PLoS Pathog 2024; 20:e1012131. [PMID: 38626244 PMCID: PMC11051653 DOI: 10.1371/journal.ppat.1012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/26/2024] [Accepted: 03/16/2024] [Indexed: 04/18/2024] Open
Abstract
Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype swine IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intrahost Single Nucleotide Variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.
Collapse
Affiliation(s)
- David VanInsberghe
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Dillon S. McBride
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Juliana DaSilva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thomas J. Stark
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Max S. Y. Lau
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Samuel S. Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John R. Barnes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, Georgia, United States of America
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, Georgia, United States of America
| |
Collapse
|
21
|
Thomas MN, Zanella GC, Cowan B, Caceres CJ, Rajao DS, Perez DR, Gauger PC, Vincent Baker AL, Anderson TK. Nucleoprotein reassortment enhanced transmissibility of H3 1990.4.a clade influenza A virus in swine. J Virol 2024; 98:e0170323. [PMID: 38353535 PMCID: PMC10949443 DOI: 10.1128/jvi.01703-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/22/2024] [Indexed: 03/20/2024] Open
Abstract
The increased detection of H3 C-IVA (1990.4.a) clade influenza A viruses (IAVs) in US swine in 2019 was associated with a reassortment event to acquire an H1N1pdm09 lineage nucleoprotein (pdmNP) gene, replacing a TRIG lineage NP (trigNP). We hypothesized that acquiring the pdmNP conferred a selective advantage over prior circulating H3 viruses with a trigNP. To investigate the role of NP reassortment in transmission, we identified two contemporary 1990.4.a representative strains (NC/19 and MN/18) with different evolutionary origins of the NP gene. A reverse genetics system was used to generate wild-type (wt) strains and swap the pdm and TRIG lineage NP genes, generating four viruses: wtNC/19-pdmNP, NC/19-trigNP, wtMN/18-trigNP, and MN/18-pdmNP. The pathogenicity and transmission of the four viruses were compared in pigs. All four viruses infected 10 primary pigs and transmitted to five indirect contact pigs per group. Pigs infected via contact with MN/18-pdmNP shed virus 2 days earlier than pigs infected with wtMN/18-trigNP. The inverse did not occur for wtNC/19-pdmNP and NC/19-trigNP. This suggests that pdmNP reassortment resulted in a combination of genes that improved transmission efficiency when paired with the 1990.4.a hemagglutinin (HA). This is likely a multigenic trait, as replacing the trigNP gene did not diminish the transmission of a wild-type IAV in swine. This study demonstrates how reassortment and evolutionary change of internal genes can result in more transmissible viruses that influence HA clade detection frequency. Thus, rapidly identifying novel reassortants paired with dominant hemagglutinin/neuraminidase may improve the prediction of strains to include in vaccines.IMPORTANCEInfluenza A viruses (IAVs) are composed of eight non-continuous gene segments that can reassort during coinfection of a host, creating new combinations. Some gene combinations may convey a selective advantage and be paired together preferentially. A reassortment event was detected in swine in the United States that involved the exchange of two lineages of nucleoprotein (NP) genes (trigNP to pdmNP) that became a predominant genotype detected in surveillance. Using a transmission study, we demonstrated that exchanging the trigNP for a pdmNP caused the virus to shed from the nose at higher levels and transmit to other pigs more rapidly. Replacing a pdmNP with a trigNP did not hinder transmission, suggesting that transmission efficiency depends on interactions between multiple genes. This demonstrates how reassortment alters IAV transmission and that reassortment events can provide an explanation for why genetically related viruses with different internal gene combinations experience rapid fluxes in detection frequency.
Collapse
Affiliation(s)
- Megan N. Thomas
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, USA
| | - Giovana Ciacci Zanella
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - C. Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Phillip C. Gauger
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| |
Collapse
|
22
|
Heider A, Wedde M, Weinheimer V, Döllinger S, Monazahian M, Dürrwald R, Wolff T, Schweiger B. Characteristics of two zoonotic swine influenza A(H1N1) viruses isolated in Germany from diseased patients. Int J Med Microbiol 2024; 314:151609. [PMID: 38286065 DOI: 10.1016/j.ijmm.2024.151609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Interspecies transmission of influenza A viruses (IAV) from pigs to humans is a concerning event as porcine IAV represent a reservoir of potentially pandemic IAV. We conducted a comprehensive analysis of two porcine A(H1N1)v viruses isolated from human cases by evaluating their genetic, antigenic and virological characteristics. The HA genes of those human isolates belonged to clades 1C.2.1 and 1C.2.2, respectively, of the A(H1N1) Eurasian avian-like swine influenza lineage. Antigenic profiling revealed substantial cross-reactivity between the two zoonotic H1N1 viruses and human A(H1N1)pdm09 virus and some swine viruses, but did not reveal cross-reactivity to H1N2 and earlier human seasonal A(H1N1) viruses. The solid-phase direct receptor binding assay analysis of both A(H1N1)v showed a predominant binding to α2-6-sialylated glycans similar to human-adapted IAV. Investigation of the replicative potential revealed that both A(H1N1)v viruses grow in human bronchial epithelial cells to similar high titers as the human A(H1N1)pdm09 virus. Cytokine induction was studied in human alveolar epithelial cells A549 and showed that both swine viruses isolated from human cases induced higher amounts of type I and type III IFN, as well as IL6 compared to a seasonal A(H1N1) or a A(H1N1)pdm09 virus. In summary, we demonstrate a remarkable adaptation of both zoonotic viruses to propagate in human cells. Our data emphasize the needs for continuous monitoring of people and regions at increased risk of such trans-species transmissions, as well as systematic studies to quantify the frequency of these events and to identify viral molecular determinants enhancing the zoonotic potential of porcine IAV.
Collapse
Affiliation(s)
- Alla Heider
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany.
| | - Marianne Wedde
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Viola Weinheimer
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Stephanie Döllinger
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | | | - Ralf Dürrwald
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Thorsten Wolff
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Brunhilde Schweiger
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| |
Collapse
|
23
|
Cardenas M, Seibert B, Cowan B, Fraiha ALS, Carnaccini S, Gay LC, Faccin FC, Caceres CJ, Anderson TK, Vincent Baker AL, Perez DR, Rajao DS. Amino acid 138 in the HA of a H3N2 subtype influenza A virus increases affinity for the lower respiratory tract and alveolar macrophages in pigs. PLoS Pathog 2024; 20:e1012026. [PMID: 38377132 PMCID: PMC10906893 DOI: 10.1371/journal.ppat.1012026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Influenza A virus (FLUAV) infects a wide range of hosts and human-to-swine spillover events are frequently reported. However, only a few of these human viruses have become established in pigs and the host barriers and molecular mechanisms driving adaptation to the swine host remain poorly understood. We previously found that infection of pigs with a 2:6 reassortant virus (hVIC/11) containing the hemagglutinin (HA) and neuraminidase (NA) gene segments from the human strain A/Victoria/361/2011 (H3N2) and internal gene segments of an endemic swine strain (sOH/04) resulted in a fixed amino acid substitution in the HA (A138S, mature H3 HA numbering). In silico analysis revealed that S138 became predominant among swine H3N2 virus sequences deposited in public databases, while 138A predominates in human isolates. To understand the role of the HA A138S substitution in the adaptation of a human-origin FLUAV HA to swine, we infected pigs with the hVIC/11A138S mutant and analyzed pathogenesis and transmission compared to hVIC/11 and sOH/04. Our results showed that the hVIC/11A138S virus had an intermediary pathogenesis between hVIC/11 and sOH/04. The hVIC/11A138S infected the upper respiratory tract, right caudal, and both cranial lobes while hVIC/11 was only detected in nose and trachea samples. Viruses induced a distinct expression pattern of various pro-inflammatory cytokines such as IL-8, TNF-α, and IFN-β. Flow cytometric analysis of lung samples revealed a significant reduction of porcine alveolar macrophages (PAMs) in hVIC/11A138S-infected pigs compared to hVIC/11 while a MHCIIlowCD163neg population was increased. The hVIC/11A138S showed a higher affinity for PAMs than hVIC/11, noted as an increase of infected PAMs in bronchoalveolar lavage fluid (BALF), and showed no differences in the percentage of HA-positive PAMs compared to sOH/04. This increased infection of PAMs led to an increase of granulocyte-monocyte colony-stimulating factor (GM-CSF) stimulation but a reduced expression of peroxisome proliferator-activated receptor gamma (PPARγ) in the sOH/04-infected group. Analysis using the PAM cell line 3D4/21 revealed that the A138S substitution improved replication and apoptosis induction in this cell type compared to hVIC/11 but at lower levels than sOH/04. Overall, our study indicates that adaptation of human viruses to the swine host involves an increased affinity for the lower respiratory tract and alveolar macrophages.
Collapse
Affiliation(s)
- Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Ana Luiza S. Fraiha
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - C. Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
24
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
25
|
Wang Q, Liu Z, Zeng X, Zheng Y, Lan L, Wang X, Lai Z, Hou X, Gao L, Liang L, Tang S, Zhang Z, Leng J, Fan X. Integrated analysis of miRNA-mRNA expression of newly emerging swine H3N2 influenza virus cross-species infection with tree shrews. Virol J 2024; 21:4. [PMID: 38178220 PMCID: PMC10768296 DOI: 10.1186/s12985-023-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Cross-species transmission of zoonotic IAVs to humans is potentially widespread and lethal, posing a great threat to human health, and their cross-species transmission mechanism has attracted much attention. miRNAs have been shown to be involved in the regulation of IAVs infection and immunity, however, few studies have focused on the molecular mechanisms underlying miRNAs and mRNAs expression after IAVs cross-species infection. METHODS We used tree shrews, a close relative of primates, as a model and used RNA-Seq and bioinformatics tools to analyze the expression profiles of DEMs and DEGs in the nasal turbinate tissue at different time points after the newly emerged swine influenza A virus SW2783 cross-species infection with tree shrews, and miRNA-mRNA interaction maps were constructed and verified by RT-qPCR, miRNA transfection and luciferase reporter assay. RESULTS 14 DEMs were screened based on functional analysis and interaction map, miR-760-3p, miR-449b-2, miR-30e-3p, and miR-429 were involved in the signal transduction process of replication and proliferation after infection, miR-324-3p, miR-1301-1, miR-103-1, miR-134-5p, miR-29a, miR-31, miR-16b, miR-34a, and miR-125b participate in negative feedback regulation of genes related to the immune function of the body to activate the antiviral immune response, and miR-106b-3p may be related to the cross-species infection potential of SW2783, and the expression level of these miRNAs varies in different days after infection. CONCLUSIONS The miRNA regulatory networks were constructed and 14 DEMs were identified, some of them can affect the replication and proliferation of viruses by regulating signal transduction, while others can play an antiviral role by regulating the immune response. It indicates that abnormal expression of miRNAs plays a crucial role in the regulation of cross-species IAVs infection, which lays a solid foundation for further exploration of the molecular regulatory mechanism of miRNAs in IAVs cross-species infection and anti-influenza virus targets.
Collapse
Affiliation(s)
- Qihui Wang
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Zihe Liu
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
| | - Xia Zeng
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yu Zheng
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
| | - Li Lan
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
| | - Xinhang Wang
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
| | - Zhenping Lai
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoqiong Hou
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
| | - Lingxi Gao
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
| | - Liang Liang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Shen Tang
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Zengfeng Zhang
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jing Leng
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Key Laboratory of Characteristic Experimental Animal Models of Guangxi, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xiaohui Fan
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
26
|
Anderson TK, Medina RA, Nelson MI. The Evolution of SARS-CoV-2 and Influenza A Virus at the Human–Animal Interface. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2024:549-572. [DOI: 10.1016/b978-0-443-28818-0.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Kumari S, Chaudhari J, Huang Q, Gauger P, De Almeida MN, Ly H, Liang Y, Vu HLX. Assessment of Immune Responses to a Trivalent Pichinde Virus-Vectored Vaccine Expressing Hemagglutinin Genes from Three Co-Circulating Influenza A Virus Subtypes in Pigs. Vaccines (Basel) 2023; 11:1806. [PMID: 38140210 PMCID: PMC10748346 DOI: 10.3390/vaccines11121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pichinde virus (PICV) can infect several animal species and has been developed as a safe and effective vaccine vector. Our previous study showed that pigs vaccinated with a recombinant PICV-vectored vaccine expressing the hemagglutinin (HA) gene of an H3N2 influenza A virus of swine (IAV-S) developed virus-neutralizing antibodies and were protected against infection by the homologous H3N2 strain. The objective of the current study was to evaluate the immunogenicity and protective efficacy of a trivalent PICV-vectored vaccine expressing HA antigens from the three co-circulating IAV-S subtypes: H1N1, H1N2, and H3N2. Pigs immunized with the trivalent PICV vaccine developed virus-neutralizing (VN) and hemagglutination inhibition (HI) antibodies against all three matching IAV-S. Following challenge infection with the H1N1 strain, five of the six pigs vaccinated with the trivalent vaccine had no evidence of IAV-S RNA genomes in nasal swabs and bronchoalveolar lavage fluid, while all non-vaccinated control pigs showed high number of copies of IAV-S genomic RNA in these two types of samples. Overall, our results demonstrate that the trivalent PICV-vectored vaccine elicits antibody responses against the three targeted IAV-S strains and provides protection against homologous virus challenges in pigs. Therefore, PICV exhibits the potential to be explored as a viral vector for delivering multiple vaccine antigens in swine.
Collapse
Affiliation(s)
- Sushmita Kumari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (S.K.); (J.C.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (S.K.); (J.C.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Qinfeng Huang
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (Q.H.); (H.L.)
| | - Phillip Gauger
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.G.); (M.N.D.A.)
| | - Marcelo Nunes De Almeida
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.G.); (M.N.D.A.)
| | - Hinh Ly
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (Q.H.); (H.L.)
| | - Yuying Liang
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (Q.H.); (H.L.)
| | - Hiep L. X. Vu
- Department of Animals Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
28
|
Van Reeth K, Parys A, Gracia JCM, Trus I, Chiers K, Meade P, Liu S, Palese P, Krammer F, Vandoorn E. Sequential vaccinations with divergent H1N1 influenza virus strains induce multi-H1 clade neutralizing antibodies in swine. Nat Commun 2023; 14:7745. [PMID: 38008801 PMCID: PMC10679120 DOI: 10.1038/s41467-023-43339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
Vaccines that protect against any H1N1 influenza A virus strain would be advantageous for use in pigs and humans. Here, we try to induce a pan-H1N1 antibody response in pigs by sequential vaccination with antigenically divergent H1N1 strains. Adjuvanted whole inactivated vaccines are given intramuscularly in various two- and three-dose regimens. Three doses of heterologous monovalent H1N1 vaccine result in seroprotective neutralizing antibodies against 71% of a diverse panel of human and swine H1 strains, detectable antibodies against 88% of strains, and sterile cross-clade immunity against two heterologous challenge strains. This strategy outperforms any two-dose regimen and is as good or better than giving three doses of matched trivalent vaccine. Neutralizing antibodies are H1-specific, and the second heterologous booster enhances reactivity with conserved epitopes in the HA head. We show that even the most traditional influenza vaccines can offer surprisingly broad protection if they are administered in an alternative way.
Collapse
Affiliation(s)
- Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium.
| | - Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | | | - Ivan Trus
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Koen Chiers
- Laboratory of Pathology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| |
Collapse
|
29
|
Patil V, Hernandez-Franco JF, Yadagiri G, Bugybayeva D, Dolatyabi S, Feliciano-Ruiz N, Schrock J, Suresh R, Hanson J, Yassine H, HogenEsch H, Renukaradhya GJ. Characterization of the Efficacy of a Split Swine Influenza A Virus Nasal Vaccine Formulated with a Nanoparticle/STING Agonist Combination Adjuvant in Conventional Pigs. Vaccines (Basel) 2023; 11:1707. [PMID: 38006039 PMCID: PMC10675483 DOI: 10.3390/vaccines11111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Swine influenza A viruses (SwIAVs) are pathogens of both veterinary and medical significance. Intranasal (IN) vaccination has the potential to reduce flu infection. We investigated the efficacy of split SwIAV H1N2 antigens adsorbed with a plant origin nanoparticle adjuvant [Nano11-SwIAV] or in combination with a STING agonist ADU-S100 [NanoS100-SwIAV]. Conventional pigs were vaccinated via IN and challenged with a heterologous SwIAV H1N1-OH7 or 2009 H1N1 pandemic virus. Immunologically, in NanoS100-SwIAV vaccinates, we observed enhanced frequencies of activated monocytes in the blood of the pandemic virus challenged animals and in tracheobronchial lymph nodes (TBLN) of H1N1-OH7 challenged animals. In both groups of the virus challenged pigs, increased frequencies of IL-17A+ and CD49d+IL-17A+ cytotoxic lymphocytes were observed in Nano11-SwIAV vaccinates in the draining TBLN. Enhanced frequency of CD49d+IFNγ+ CTLs in the TBLN and blood of both the Nano11-based SwIAV vaccinates was observed. Animals vaccinated with both Nano11-based vaccines had upregulated cross-reactive secretory IgA in the lungs and serum IgG against heterologous and heterosubtypic viruses. However, in NanoS100-SwIAV vaccinates, a slight early reduction in the H1N1 pandemic virus and a late reduction in the SwIAV H1N1-OH7 load in the nasal passages were detected. Hence, despite vast genetic differences between the vaccine and both the challenge viruses, IN vaccination with NanoS100-SwIAV induced antigen-specific moderate levels of cross-protective immune responses.
Collapse
Affiliation(s)
- Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Juan F. Hernandez-Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Ganesh Yadagiri
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Dina Bugybayeva
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Ninoshkaly Feliciano-Ruiz
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Juliette Hanson
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| | - Hadi Yassine
- Biomedical Research Center, Research Institute in Doha, Qatar University, QU-NRC, Building H10, Zone 5, Room D101, Doha P.O. Box 2713, Qatar;
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; (V.P.); (G.Y.); (D.B.); (S.D.); (N.F.-R.); (J.S.); (R.S.); (J.H.)
| |
Collapse
|
30
|
Hernandez-Franco JF, Yadagiri G, Patil V, Bugybayeva D, Dolatyabi S, Dumkliang E, Singh M, Suresh R, Akter F, Schrock J, Renukaradhya GJ, HogenEsch H. Intradermal Vaccination against Influenza with a STING-Targeted Nanoparticle Combination Adjuvant Induces Superior Cross-Protective Humoral Immunity in Swine Compared with Intranasal and Intramuscular Immunization. Vaccines (Basel) 2023; 11:1699. [PMID: 38006031 PMCID: PMC10675188 DOI: 10.3390/vaccines11111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The development of cross-protective vaccines against the zoonotic swine influenza A virus (swIAV), a potential pandemic-causing agent, continues to be an urgent global health concern. Commercially available vaccines provide suboptimal cross-protection against circulating subtypes of swIAV, which can lead to worldwide economic losses and poor zoonosis deterrence. The limited efficacy of current swIAV vaccines demands innovative strategies for the development of next-generation vaccines. Considering that intramuscular injection is the standard route of vaccine administration in both human and veterinary medicine, the exploration of alternative strategies, such as intradermal vaccination, presents a promising avenue for vaccinology. This investigation demonstrates the first evaluation of a direct comparison between a commercially available multivalent swIAV vaccine and monovalent whole inactivated H1N2 swine influenza vaccine, delivered by intradermal, intranasal, and intramuscular routes. The monovalent vaccines were adjuvanted with NanoST, a cationic phytoglycogen-based nanoparticle that is combined with the STING agonist ADU-S100. Upon heterologous challenge, intradermal vaccination generated a stronger cross-reactive nasal and serum antibody response in pigs compared with intranasal and intramuscular vaccination. Antibodies induced by intradermal immunization also had higher avidity compared with the other routes of vaccination. Bone marrow from intradermally and intramuscularly immunized pigs had both IgG and IgA virus-specific antibody-secreting cells. These studies reveal that NanoST is a promising adjuvant system for the intradermal administration of STING-targeted influenza vaccines.
Collapse
Affiliation(s)
- Juan F. Hernandez-Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Ganesh Yadagiri
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Dina Bugybayeva
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Ekachai Dumkliang
- Drug Delivery System Excellence Center (DDSEC), Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Mithilesh Singh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Fatema Akter
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Singh N, Batra K, Chaudhary D, Punia M, Kumar A, Maan NS, Maan S. Prevalence of porcine viral respiratory diseases in India. Anim Biotechnol 2023; 34:1642-1654. [PMID: 35112631 DOI: 10.1080/10495398.2022.2032117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pig industry is growing rapidly in India and contributes a major share of growth in the livestock sector. Over the last few years, there is a gradual increase in the adoption of pigs for production by economically weaker sections of the country. However, this production is affected by many respiratory diseases which are responsible for significant economic loss. The occurrence and impact of these diseases are still under-documented. The four important pathogens including porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza A viruses (SIV) and classical swine fever virus (CSFV) are documented here. These diseases are highly devastating in nature and frequent outbreaks have been reported from different parts of the country. The rapid and specific diagnosis, effective prevention and control measures are required for the eradication of these diseases which is urgently required for the growth of the pig industry. This review highlights the prevalence, epidemiology, diagnostics and information gaps on important respiratory viral pathogens of pigs reported from different parts of India. This review also emphasizes the importance of these viral diseases and the urgent need to develop vaccines and effective measures for the eradication of these diseases.
Collapse
Affiliation(s)
- Neha Singh
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Kanisht Batra
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Deepika Chaudhary
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Monika Punia
- Department of Biotechnology, Ch. Devi Lal University, Sirsa, India
| | - Aman Kumar
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Narender Singh Maan
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Sushila Maan
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| |
Collapse
|
32
|
Markin A, Wagle S, Grover S, Vincent Baker AL, Eulenstein O, Anderson TK. PARNAS: Objectively Selecting the Most Representative Taxa on a Phylogeny. Syst Biol 2023; 72:1052-1063. [PMID: 37208300 PMCID: PMC10627562 DOI: 10.1093/sysbio/syad028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
The use of next-generation sequencing technology has enabled phylogenetic studies with hundreds of thousands of taxa. Such large-scale phylogenies have become a critical component in genomic epidemiology in pathogens such as SARS-CoV-2 and influenza A virus. However, detailed phenotypic characterization of pathogens or generating a computationally tractable dataset for detailed phylogenetic analyses requires objective subsampling of taxa. To address this need, we propose parnas, an objective and flexible algorithm to sample and select taxa that best represent observed diversity by solving a generalized k-medoids problem on a phylogenetic tree. parnas solves this problem efficiently and exactly by novel optimizations and adapting algorithms from operations research. For more nuanced selections, taxa can be weighted with metadata or genetic sequence parameters, and the pool of potential representatives can be user-constrained. Motivated by influenza A virus genomic surveillance and vaccine design, parnas can be applied to identify representative taxa that optimally cover the diversity in a phylogeny within a specified distance radius. We demonstrated that parnas is more efficient and flexible than existing approaches. To demonstrate its utility, we applied parnas to 1) quantify SARS-CoV-2 genetic diversity over time, 2) select representative influenza A virus in swine genes derived from over 5 years of genomic surveillance data, and 3) identify gaps in H3N2 human influenza A virus vaccine coverage. We suggest that our method, through the objective selection of representatives in a phylogeny, provides criteria for quantifying genetic diversity that has application in the the rational design of multivalent vaccines and genomic epidemiology. PARNAS is available at https://github.com/flu-crew/parnas.
Collapse
Affiliation(s)
- Alexey Markin
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, 50010, USA
| | - Sanket Wagle
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Siddhant Grover
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, 50010, USA
| | - Oliver Eulenstein
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, 50010, USA
| |
Collapse
|
33
|
McNee A, Vanover D, Rijal P, Paudyal B, Lean FZX, MacLoughlin R, Núñez A, Townsend A, Santangelo PJ, Tchilian E. A direct contact pig influenza challenge model for assessing protective efficacy of monoclonal antibodies. Front Immunol 2023; 14:1229051. [PMID: 37965320 PMCID: PMC10641767 DOI: 10.3389/fimmu.2023.1229051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Monoclonal antibodies (mAbs) can be used to complement immunization for the therapy of influenza virus infection. We have established the pig, a natural large animal host for influenza A, with many physiological, immunological, and anatomical similarities to humans, as an appropriate model for testing mAbs. We have evaluated the protective efficacy of the strongly neutralizing human anti-hemagglutinin mAb, 2-12C in the pig influenza model. Intravenous administration of recombinant 2-12C reduced virus load and lung pathology, however, it did not prevent virus nasal shedding and, consequently, transmission. This may be because the pigs were directly infected intranasally with a high dose of the H1N1pdm09 virus. To address this, we developed a contact challenge model in which the animals were given 2-12C and one day later co-housed with donor pigs previously infected intra-nasally with H1N1pdm09. 2-12C pre-treatment completely prevented infection. We also administered a lower dose of 2-12C by aerosol to the respiratory tract, but this did not prevent shedding in the direct challenge model, although it abolished lung infection. We propose that the direct contact challenge model of pig influenza may be useful for evaluating candidate mAbs and emerging delivery platforms prior to clinical trials.
Collapse
Affiliation(s)
- Adam McNee
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| | - Pramila Rijal
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Basudev Paudyal
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Fabian Z. X. Lean
- Department of Pathology, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, United Kingdom
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Galway, Ireland
| | - Alejandro Núñez
- Department of Pathology, Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, United Kingdom
| | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
34
|
VanInsberghe D, McBride DS, DaSilva J, Stark TJ, Lau MS, Shepard SS, Barnes JR, Bowman AS, Lowen AC, Koelle K. Genetic drift and purifying selection shape within-host influenza A virus populations during natural swine infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563581. [PMID: 37961583 PMCID: PMC10634741 DOI: 10.1101/2023.10.23.563581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intra-host single nucleotide variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.
Collapse
Affiliation(s)
- David VanInsberghe
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
- Department of Biology, Emory University, Atlanta, GA, 30322
| | - Dillon S. McBride
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Juliana DaSilva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Thomas J. Stark
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Max S.Y. Lau
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322
| | - Samuel S. Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - John R. Barnes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR)
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, 30322
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR)
| |
Collapse
|
35
|
Nguyen TN, Kumari S, Sillman S, Chaudhari J, Lai DC, Vu HLX. A Single-Dose Intramuscular Immunization of Pigs with Lipid Nanoparticle DNA Vaccines Based on the Hemagglutinin Antigen Confers Complete Protection against Challenge Infection with the Homologous Influenza Virus Strain. Vaccines (Basel) 2023; 11:1596. [PMID: 37896997 PMCID: PMC10611089 DOI: 10.3390/vaccines11101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The Influenza A virus of swine (IAV-S) is highly prevalent and causes significant economic losses to swine producers. Due to the highly variable and rapidly evolving nature of the virus, it is critical to develop a safe and versatile vaccine platform that allows for frequent updates of the vaccine immunogens to cope with the emergence of new viral strains. The main objective of this study was to assess the feasibility of using lipid nanoparticles (LNPs) as nanocarriers for delivering DNA plasmid encoding the viral hemagglutinin (HA) gene in pigs. The intramuscular administration of a single dose of the LNP-DNA vaccines resulted in robust systemic and mucosal responses in pigs. Importantly, the vaccinated pigs were fully protected against challenge infection with the homologous IAV-S strain, with only 1 out of 12 vaccinated pigs shedding a low amount of viral genomic RNA in its nasal cavity. No gross or microscopic lesions were observed in the lungs of the vaccinated pigs at necropsy. Thus, the LNP-DNA vaccines are highly effective in protecting pigs against the homologous IAV-S strain and can serve as a promising platform for the rapid development of IAV-S vaccines.
Collapse
Affiliation(s)
- The N. Nguyen
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sushmita Kumari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sarah Sillman
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Danh C. Lai
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
36
|
Ma W, Loving CL, Driver JP. From Snoot to Tail: A Brief Review of Influenza Virus Infection and Immunity in Pigs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1187-1194. [PMID: 37782856 PMCID: PMC10824604 DOI: 10.4049/jimmunol.2300385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 10/04/2023]
Abstract
Pigs play an important role in influenza A virus (IAV) epidemiology because they support replication of human, avian, and swine origin viruses and act as an IAV reservoir for pigs and other species, including humans. Moreover, novel IAVs with human pandemic potential may be generated in pigs. To minimize the threat of IAVs to human and swine health, it is crucial to understand host defense mechanisms that restrict viral replication and pathology in pigs. In this article, we review IAV strains circulating in the North American swine population, as well as porcine innate and acquired immune responses to IAV, including recent advances achieved through immunological tools developed specifically for swine. Furthermore, we highlight unique aspects of the porcine pulmonary immune system, which warrant consideration when developing vaccines and therapeutics to limit IAV in swine or when using pigs to model human IAV infections.
Collapse
Affiliation(s)
- Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO
| |
Collapse
|
37
|
Yu J, Sreenivasan C, Sheng Z, Zhai SL, Wollman JW, Luo S, Huang C, Gao R, Wang Z, Kaushik RS, Christopher-Hennings J, Nelson E, Hause BM, Li F, Wang D. A recombinant chimeric influenza virus vaccine expressing the consensus H3 hemagglutinin elicits broad hemagglutination inhibition antibodies against divergent swine H3N2 influenza viruses. Vaccine 2023; 41:6318-6326. [PMID: 37689544 DOI: 10.1016/j.vaccine.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The global distribution and ongoing evolution of type A swine influenza virus (IAV-S) continue to pose significant challenges against developing broadly protective vaccines to control swine influenza. This study focuses on the hemagglutinin (HA) consensus-based approach towards developing a more broadly protective swine influenza vaccine against various H3 strains circulating in domestic pig populations. By computationally analyzing >1000 swine H3 full-length HA sequences, we generated a consensus H3 and expressed it in the context of influenza A WSN/33 reverse genetics system. The derived recombinant chimeric swine influenza virus with the consensus H3 was inactivated and further evaluated as a potential universal vaccine in pigs. The consensus H3 vaccine elicited broadly active hemagglutination inhibition (HI) antibodies against divergent swine H3N2 influenza viruses including human H3N2 variant of concern, and strains belong to genetic clusters IV, IV-A, IV-B, IV-C, IV-D and IV-F. Importantly, vaccinated pigs were completely protected against challenge with a clinical swine H3N2 isolate in that neither viral shedding nor replication in lungs of vaccinated pigs were observed. These findings warrant further study of the consensus H3 vaccine platform for broad protection against diverse swine influenza viruses.
Collapse
Affiliation(s)
- Jieshi Yu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Chithra Sreenivasan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Zhizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Shao-Lun Zhai
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Jared W Wollman
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Sisi Luo
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Chen Huang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Zhao Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Ben M Hause
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
38
|
Welch M, Krueger K, Zhang J, Piñeyro P, Patterson A, Gauger P. Pathogenesis of an experimental coinfection of porcine parainfluenza virus 1 and influenza A virus in commercial nursery swine. Vet Microbiol 2023; 285:109850. [PMID: 37639899 DOI: 10.1016/j.vetmic.2023.109850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Porcine parainfluenza virus 1 (PPIV-1) is a recently characterized swine respirovirus. Previous experimental studies reported PPIV-1 replicates in the porcine respiratory tract causing minimal clinical disease or lesions. However, it is unknown if PPIV-1 co-infections with viral respiratory pathogens would cause respiratory disease consistent with natural infections reported in the field. The objective of this study was to evaluate if PPIV-1 increases the severity of influenza A virus respiratory disease in swine. Fifty conventional, five-week-old pigs were assigned to one of three challenge groups (n = 15) or a negative control group (n = 5). Pigs were challenged with a γ-cluster H1N2 influenza A virus in swine (IAV-S; A/Swine/North Carolina/00169/2006), PPIV-1 (USA/MN25890NS/2016), inoculum that contained equivalent titers of IAV-S and PPIV-1 (CO-IN), or negative control. Clinical scores representing respiratory disease and nasal swabs were collected daily and all pigs were necropsied five days post inoculation (DPI). The CO-IN group demonstrated a significantly lower percentage of pigs showing respiratory clinical signs relative to the IAV-S challenge group from 2 to 4 DPI. The IAV-S and CO-IN groups had significantly lower microscopic composite lesion scores in the upper respiratory tract compared to the PPIV-1 group although the IAV-S and CO-IN groups had significantly higher microscopic composite lung lesion scores. Collectively, PPIV-1 did not appear to influence severity of clinical disease, macroscopic lesions, or alter viral loads detected in nasal swabs or necropsy tissues when administered as a coinfection with IAV-S. Studies evaluating PPIV-1 coinfections with different strains of IAV-S, different respiratory pathogens or sequential exposure of PPIV-1 and IAV-S are warranted.
Collapse
Affiliation(s)
- Michael Welch
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Karen Krueger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Abby Patterson
- Boehringer Ingelheim Animal Health Inc., 2412 S. Loop Drive, Ames, IA 50010, USA
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
39
|
Ospina-Jimenez AF, Gomez AP, Rincon-Monroy MA, Ortiz L, Perez DR, Peña M, Ramirez-Nieto G. Sequence-Based Antigenic Analyses of H1 Swine Influenza A Viruses from Colombia (2008-2021) Reveals Temporal and Geographical Antigenic Variations. Viruses 2023; 15:2030. [PMID: 37896808 PMCID: PMC10612065 DOI: 10.3390/v15102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Swine influenza is a respiratory disease that affects the pork industry and is a public health threat. It is caused by type A influenza virus (FLUAV), which continuously undergoes genetic and antigenic variations. A large amount of information regarding FLUAV in pigs is available worldwide, but it is limited in Latin America. The HA sequences of H1 subtype FLUAV-positive samples obtained from pigs in Colombia between 2008-2021 were analyzed using sequence-based antigenic cartography and N-Glycosylation analyses. Of the 12 predicted global antigenic groups, Colombia contained five: four corresponding to pandemic strains and one to the classical swine H1N1 clade. Circulation of these clusters was observed in some regions during specific years. Ca2 was the immunodominant epitope among Colombian viruses. The counts of N-Glycosylation motifs were associated with the antigenic cluster ranging from three to five. The results show for the first time the existence of antigenic diversity of FLUAV in Colombia and highlight the impact of spatial and temporal factors on this diversity. This study provides information about FLUAV variability in pigs under natural conditions in the absence of vaccination and emphasizes the need for surveillance of its phylogenetic and antigenic characteristics.
Collapse
Affiliation(s)
- Andres F. Ospina-Jimenez
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| | - Arlen P. Gomez
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| | - Maria A. Rincon-Monroy
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
- National Veterinary Diagnostics Laboratory, Colombian Agricultural Institute (ICA), Bogotá 110931, Colombia
| | - Lucia Ortiz
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (L.O.); (D.R.P.)
| | - Daniel R. Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (L.O.); (D.R.P.)
| | - Mario Peña
- Asociación Colombiana de Porcicultores Porkcolombia—FNP, Bogotá 111311, Colombia;
| | - Gloria Ramirez-Nieto
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| |
Collapse
|
40
|
van Diemen PM, Byrne AMP, Ramsay AM, Watson S, Nunez A, V Moreno A, Chiapponi C, Foni E, Brown IH, Brookes SM, Everett HE. Interspecies Transmission of Swine Influenza A Viruses and Human Seasonal Vaccine-Mediated Protection Investigated in Ferret Model. Emerg Infect Dis 2023; 29:1798-1807. [PMID: 37610158 PMCID: PMC10461666 DOI: 10.3201/eid2909.230066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
We investigated the infection dynamics of 2 influenza A(H1N1) virus isolates from the swine 1A.3.3.2 (pandemic 2009) and 1C (Eurasian, avian-like) lineages. The 1C-lineage virus, A/Pavia/65/2016, although phylogenetically related to swine-origin viruses, was isolated from a human clinical case. This strain infected ferrets, a human influenza model species, and could be transmitted by direct contact and, less efficiently, by airborne exposure. Infecting ferrets and pigs (the natural host) resulted in mild or inapparent clinical signs comparable to those observed with 1A.3.3.2-lineage swine-origin viruses. Both H1N1 viruses could infect pigs and were transmitted to cohoused ferrets. Ferrets vaccinated with a human 2016-17 seasonal influenza vaccine were protected against infection with the antigenically matched 1A pandemic 2009 virus but not against the swine-lineage 1C virus. Our results reaffirm the need for continuous influenza A virus surveillance in pigs and identification of candidate human vaccine viruses.
Collapse
|
41
|
Fonseca FN, Haach V, Bellaver FV, Bombassaro G, Gava D, da Silva LP, Baron LF, Simonelly M, Carvalho WA, Schaefer R, Bastos AP. Immunological profile of mice immunized with a polyvalent virosome-based influenza vaccine. Virol J 2023; 20:187. [PMID: 37605141 PMCID: PMC10463652 DOI: 10.1186/s12985-023-02158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) causes respiratory disease in pigs and is a major concern for public health. Vaccination of pigs is the most successful measure to mitigate the impact of the disease in the herds. Influenza-based virosome is an effective immunomodulating carrier that replicates the natural antigen presentation pathway and has tolerability profile due to their purity and biocompatibility. METHODS This study aimed to develop a polyvalent virosome influenza vaccine containing the hemagglutinin and neuraminidase proteins derived from the swine IAVs (swIAVs) H1N1, H1N2 and H3N2 subtypes, and to investigate its effectiveness in mice as a potential vaccine for swine. Mice were immunized with two vaccine doses (1 and 15 days), intramuscularly and intranasally. At 21 days and eight months later after the second vaccine dose, mice were euthanized. The humoral and cellular immune responses in mice vaccinated intranasally or intramuscularly with a polyvalent influenza virosomal vaccine were investigated. RESULTS Only intramuscular vaccination induced high hemagglutination inhibition (HI) titers. Seroconversion and seroprotection (> 4-fold rise in HI antibody titers, reaching a titer of ≥ 1:40) were achieved in 80% of mice (intramuscularly vaccinated group) at 21 days after booster immunization. Virus-neutralizing antibody titers against IAV were detected at 8 months after vaccination, indicating long-lasting immunity. Overall, mice immunized with the virosome displayed greater ability for B, effector-T and memory-T cells from the spleen to respond to H1N1, H1N2 and H3N2 antigens. CONCLUSIONS All findings showed an efficient immune response against IAVs in mice vaccinated with a polyvalent virosome-based influenza vaccine.
Collapse
Affiliation(s)
| | - Vanessa Haach
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Haach V, Bastos APA, Gava D, da Fonseca FN, Morés MAZ, Coldebella A, Franco AC, Schaefer R. A polyvalent virosomal influenza vaccine induces broad cellular and humoral immunity in pigs. Virol J 2023; 20:181. [PMID: 37587490 PMCID: PMC10428566 DOI: 10.1186/s12985-023-02153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) is endemic in pigs globally and co-circulation of genetically and antigenically diverse virus lineages of subtypes H1N1, H1N2 and H3N2 is a challenge for the development of effective vaccines. Virosomes are virus-like particles that mimic virus infection and have proven to be a successful vaccine platform against several animal and human viruses. METHODS This study evaluated the immunogenicity of a virosome-based influenza vaccine containing the surface glycoproteins of H1N1 pandemic, H1N2 and H3N2 in pigs. RESULTS A robust humoral and cellular immune response was induced against the three IAV subtypes in pigs after two vaccine doses. The influenza virosome vaccine elicited hemagglutinin-specific antibodies and virus-neutralizing activity. Furthermore, it induced a significant maturation of macrophages, and proliferation of B lymphocytes, effector and central memory CD4+ and CD8+ T cells, and CD8+ T lymphocytes producing interferon-γ. Also, the vaccine demonstrated potential to confer long-lasting immunity until the market age of pigs and proved to be safe and non-cytotoxic to pigs. CONCLUSIONS This virosome platform allows flexibility to adjust the vaccine content to reflect the diversity of circulating IAVs in swine in Brazil. The vaccination of pigs may reduce the impact of the disease on swine production and the risk of swine-to-human transmission.
Collapse
Affiliation(s)
- Vanessa Haach
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, Rio Grande Do Sul, CEP 90035-003, Brazil
| | | | - Danielle Gava
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Francisco Noé da Fonseca
- Embrapa Sede, Parque Estação Biológica, Brasília, Distrito Federal, CEP 70770-901, Brazil
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | | | - Arlei Coldebella
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Ana Cláudia Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, Rio Grande Do Sul, CEP 90035-003, Brazil
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil.
| |
Collapse
|
43
|
Zeller MA, Ma J, Wong FY, Tum S, Hidano A, Holt H, Chhay T, Sorn S, Koeut D, Seng B, Chao S, Ng GGK, Yan Z, Chou M, Rudge JW, Smith GJD, Su YCF. The genomic landscape of swine influenza A viruses in Southeast Asia. Proc Natl Acad Sci U S A 2023; 120:e2301926120. [PMID: 37552753 PMCID: PMC10438389 DOI: 10.1073/pnas.2301926120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/07/2023] [Indexed: 08/10/2023] Open
Abstract
Swine are a primary source for the emergence of pandemic influenza A viruses. The intensification of swine production, along with global trade, has amplified the transmission and zoonotic risk of swine influenza A virus (swIAV). Effective surveillance is essential to uncover emerging virus strains; however gaps remain in our understanding of the swIAV genomic landscape in Southeast Asia. More than 4,000 nasal swabs were collected from pigs in Cambodia, yielding 72 IAV-positive samples by RT-qPCR and 45 genomic sequences. We unmasked the cocirculation of multiple lineages of genetically diverse swIAV of pandemic concern. Genomic analyses revealed a novel European avian-like H1N2 swIAV reassortant variant with North American triple reassortant internal genes, that emerged approximately seven years before its first detection in pigs in 2021. Using phylogeographic reconstruction, we identified south central China as the dominant source of swine viruses disseminated to other regions in China and Southeast Asia. We also identified nine distinct swIAV lineages in Cambodia, which diverged from their closest ancestors between two and 15 B.P., indicating significant undetected diversity in the region, including reverse zoonoses of human H1N1/2009 pandemic and H3N2 viruses. A similar period of cryptic circulation of swIAVs occurred in the decades before the H1N1/2009 pandemic. The hidden diversity of swIAV observed here further emphasizes the complex underlying evolutionary processes present in this region, reinforcing the importance of genomic surveillance at the human-swine interface for early warning of disease emergence to avoid future pandemics.
Collapse
Affiliation(s)
- Michael A. Zeller
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Jordan Ma
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Foong Ying Wong
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Sothyra Tum
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh120608, Cambodia
| | - Arata Hidano
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Hannah Holt
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Ty Chhay
- Livestock Development for Community Livelihood, Phnom Penh120108, Cambodia
| | - San Sorn
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh120608, Cambodia
| | - Dina Koeut
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh120608, Cambodia
| | - Bunnary Seng
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh120608, Cambodia
| | - Sovanncheypo Chao
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh120608, Cambodia
| | - Giselle G. K. Ng
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Zhuang Yan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Monidarin Chou
- University of Health Sciences, Phnom Penh120210, Cambodia
| | - James W. Rudge
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Gavin J. D. Smith
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore169857, Singapore
- SingHealth Duke-NUS Global Health Institute,SingHealth Duke-NUS Academic Medical Centre, Singapore169857, Singapore
- Duke Global Health Institute, Duke University, Durham, NC27708
| | - Yvonne C. F. Su
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| |
Collapse
|
44
|
Jiang S, Zhang S, Kang X, Feng Y, Li Y, Nie M, Li Y, Chen Y, Zhao S, Jiang T, Li J. Risk Assessment of the Possible Intermediate Host Role of Pigs for Coronaviruses with a Deep Learning Predictor. Viruses 2023; 15:1556. [PMID: 37515242 PMCID: PMC10384923 DOI: 10.3390/v15071556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Swine coronaviruses (CoVs) have been found to cause infection in humans, suggesting that Suiformes might be potential intermediate hosts in CoV transmission from their natural hosts to humans. The present study aims to establish convolutional neural network (CNN) models to predict host adaptation of swine CoVs. Decomposing of each ORF1ab and Spike sequence was performed with dinucleotide composition representation (DCR) and other traits. The relationship between CoVs from different adaptive hosts was analyzed by unsupervised learning, and CNN models based on DCR of ORF1ab and Spike were built to predict the host adaptation of swine CoVs. The rationality of the models was verified with phylogenetic analysis. Unsupervised learning showed that there is a multiple host adaptation of different swine CoVs. According to the adaptation prediction of CNN models, swine acute diarrhea syndrome CoV (SADS-CoV) and porcine epidemic diarrhea virus (PEDV) are adapted to Chiroptera, swine transmissible gastroenteritis virus (TGEV) is adapted to Carnivora, porcine hemagglutinating encephalomyelitis (PHEV) might be adapted to Primate, Rodent, and Lagomorpha, and porcine deltacoronavirus (PDCoV) might be adapted to Chiroptera, Artiodactyla, and Carnivora. In summary, the DCR trait has been confirmed to be representative for the CoV genome, and the DCR-based deep learning model works well to assess the adaptation of swine CoVs to other mammals. Suiformes might be intermediate hosts for human CoVs and other mammalian CoVs. The present study provides a novel approach to assess the risk of adaptation and transmission to humans and other mammals of swine CoVs.
Collapse
Affiliation(s)
- Shuyang Jiang
- College of Mathematics, Jilin University, Changchun, Jilin 130012, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Xiaoping Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Ye Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Yadan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Maoshun Nie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Shishun Zhao
- College of Mathematics, Jilin University, Changchun, Jilin 130012, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| |
Collapse
|
45
|
Cheung J, Bui AN, Younas S, Edwards KM, Nguyen HQ, Pham NT, Bui VN, Peiris M, Dhanasekaran V. Long-Term Epidemiology and Evolution of Swine Influenza Viruses, Vietnam. Emerg Infect Dis 2023; 29:1397-1406. [PMID: 37347532 PMCID: PMC10310380 DOI: 10.3201/eid2907.230165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Influenza A viruses are a One Health threat because they can spill over between host populations, including among humans, swine, and birds. Surveillance of swine influenza virus in Hanoi, Vietnam, during 2013-2019 revealed gene pool enrichment from imported swine from Asia and North America and showed long-term maintenance, persistence, and reassortment of virus lineages. Genome sequencing showed continuous enrichment of H1 and H3 diversity through repeat introduction of human virus variants and swine influenza viruses endemic in other countries. In particular, the North American H1-δ1a strain, which has a triple-reassortant backbone that potentially results in increased human adaptation, emerged as a virus that could pose a zoonotic threat. Co-circulation of H1-δ1a viruses with other swine influenza virus genotypes raises concerns for both human and animal health.
Collapse
Affiliation(s)
- Jonathan Cheung
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Anh Ngoc Bui
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Sonia Younas
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Kimberly M. Edwards
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Huy Quang Nguyen
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Ngoc Thi Pham
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Vuong Nghia Bui
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | | | | |
Collapse
|
46
|
Markin A, Ciacci Zanella G, Arendsee ZW, Zhang J, Krueger KM, Gauger PC, Vincent Baker AL, Anderson TK. Reverse-zoonoses of 2009 H1N1 pandemic influenza A viruses and evolution in United States swine results in viruses with zoonotic potential. PLoS Pathog 2023; 19:e1011476. [PMID: 37498825 PMCID: PMC10374098 DOI: 10.1371/journal.ppat.1011476] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
The 2009 H1N1 pandemic (pdm09) lineage of influenza A virus (IAV) crosses interspecies barriers with frequent human-to-swine spillovers each year. These spillovers reassort and drift within swine populations, leading to genetically and antigenically novel IAV that represent a zoonotic threat. We quantified interspecies transmission of the pdm09 lineage, persistence in swine, and identified how evolution in swine impacted zoonotic risk. Human and swine pdm09 case counts between 2010 and 2020 were correlated and human pdm09 burden and circulation directly impacted the detection of pdm09 in pigs. However, there was a relative absence of pdm09 circulation in humans during the 2020-21 season that was not reflected in swine. During the 2020-21 season, most swine pdm09 detections originated from human-to-swine spillovers from the 2018-19 and 2019-20 seasons that persisted in swine. We identified contemporary swine pdm09 representatives of each persistent spillover and quantified cross-reactivity between human seasonal H1 vaccine strains and the swine strains using a panel of monovalent ferret antisera in hemagglutination inhibition (HI) assays. The swine pdm09s had variable antigenic reactivity to vaccine antisera, but each swine pdm09 clade exhibited significant reduction in cross-reactivity to one or more of the human seasonal vaccine strains. Further supporting zoonotic risk, we showed phylogenetic evidence for 17 swine-to-human transmission events of pdm09 from 2010 to 2021, 11 of which were not previously classified as variants, with each of the zoonotic cases associated with persistent circulation of pdm09 in pigs. These data demonstrate that reverse-zoonoses and evolution of pdm09 in swine results in viruses that are capable of zoonotic transmission and represent a potential pandemic threat.
Collapse
Affiliation(s)
- Alexey Markin
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Giovana Ciacci Zanella
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Zebulun W Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Karen M Krueger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| |
Collapse
|
47
|
Parys A, Vereecke N, Vandoorn E, Theuns S, Van Reeth K. Surveillance and Genomic Characterization of Influenza A and D Viruses in Swine, Belgium and the Netherlands, 2019-2021. Emerg Infect Dis 2023; 29:1459-1464. [PMID: 37347825 PMCID: PMC10310360 DOI: 10.3201/eid2907.221499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
During 2019-2021, we isolated 62 swine influenza A viruses in Belgium and the Netherlands. We also detected influenza D in pigs in the Netherlands. The ever-changing diversity of influenza viruses and the identification of influenza D emphasize the need for more virus surveillance.
Collapse
|
48
|
Liu M, van Kuppeveld FJM, de Haan CAM, de Vries E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr Opin Virol 2023; 60:101314. [DOI: 10.1016/j.coviro.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
|
49
|
Petro-Turnquist E, Pekarek M, Jeanjaquet N, Wooledge C, Steffen D, Vu H, Weaver EA. Adenoviral-vectored epigraph vaccine elicits robust, durable, and protective immunity against H3 influenza A virus in swine. Front Immunol 2023; 14:1143451. [PMID: 37256131 PMCID: PMC10225514 DOI: 10.3389/fimmu.2023.1143451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Current methods of vaccination against swine Influenza A Virus (IAV-S) in pigs are infrequently updated, induce strain-specific responses, and have a limited duration of protection. Here, we characterize the onset and duration of adaptive immune responses after vaccination with an adenoviral-vectored Epigraph vaccine. In this longitudinal study we observed robust and durable antibody responses that remained above protective titers six months after vaccination. We further identified stable levels of antigen-specific T cell responses that remained detectable in the absence of antigen stimulation. Antibody isotyping revealed robust class switching from IgM to IgG induced by Epigraph vaccination, while the commercial comparator vaccine failed to induce strong antibody class switching. Swine were challenged six months after initial vaccination, and Epigraph-vaccinated animals demonstrated significant protection from microscopic lesion development in the trachea and lungs, reduced duration of viral shedding, lower presence of infectious virus and viral antigens in the lungs, and significant recall of antigen-specific T cell responses following challenge. The results obtained from this study are useful in determining the kinetics of adaptive immune responses after vaccination with adjuvanted whole inactivated virus vaccines compared to adenoviral vectored vaccines and contribute to the continued efforts of creating a universal IAV-S vaccine.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew Pekarek
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nicholas Jeanjaquet
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Cedric Wooledge
- Office of Research and Development, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - David Steffen
- Nebraska Veterinary Diagnostic Center, Lincoln, NE, United States
| | - Hiep Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric A. Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
50
|
Gu M, Jiao J, Liu S, Zhao W, Ge Z, Cai K, Xu L, He D, Zhang X, Qi X, Jiang W, Zhang P, Wang X, Hu S, Liu X. Monoclonal antibody targeting a novel linear epitope on nucleoprotein confers pan-reactivity to influenza A virus. Appl Microbiol Biotechnol 2023; 107:2437-2450. [PMID: 36820898 PMCID: PMC9947902 DOI: 10.1007/s00253-023-12433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Nucleoprotein (NP) functions crucially in the replicative cycle of influenza A virus (IAV) via forming the ribonucleoprotein complex together with PB2, PB1, and PA proteins. As its high conservation, NP ranks one of the hot targets for design of universal diagnostic reagents and antiviral drugs for IAV. Here, we report an anti-NP murine monoclonal antibody (mAb) 5F10 prepared from traditional lymphocyte hybridoma technique with the immunogen of a clade 2.3.4.4 H5N1 subtype avian influenza virus. The specificity of mAb 5F10 to NP protein was confirmed by immunofluorescence assay and western blotting, and the mAb 5F10 could be used in immunoprecipitation and immunohistochemistry assays. Importantly, mAb 5F10 possessed broad-spectrum reactivity against H1~H11 subtypes of avian influenza viruses, including various HA clades of H5Nx subtype. In addition, mAb 5F10 also showed good affinity with H1N1 and H3N2 subtype influenza viruses of swine and human origin. Furthermore, the recognized antigenic epitope of mAb 5F10 was identified to consist of the conserved amino acid motif 81EHPSA85 in the second flexible loop region of NP protein through screening the phage display peptide library. Collectively, the mAb 5F10 which recognizes the novel universal NP linear B-cell epitope of IAV with diverse origins and subtypes will be a powerful tool for NP protein-based structural, functional, and mechanistic studies, as well as the development of detection methods and universal vaccines for IAV. KEY POINTS: • A broad-spectrum mAb against various subtypes and sources of IAV was developed • The mAb possessed good reactivity in IFA, western blot, IP, and IHC assays • The mAb targeted a novel conserved linear B-cell epitope involving 81EHPSA85 on NP protein.
Collapse
Affiliation(s)
- Min Gu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Jun Jiao
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Suhan Liu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Wanchen Zhao
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Zhichuang Ge
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Kairui Cai
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Lijun Xu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Dongchang He
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Xinyu Zhang
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Xian Qi
- grid.410734.50000 0004 1761 5845Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Wenming Jiang
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, Qingdao, 266032 China
| | - Pinghu Zhang
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiaoquan Wang
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Shunlin Hu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiufan Liu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|