1
|
Nair S, Baker NE. Extramacrochaetae regulates Notch signaling in the Drosophila eye through non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560841. [PMID: 39131389 PMCID: PMC11312471 DOI: 10.1101/2023.10.04.560841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis (diap1) gene. Accordingly, we found that multiple effects of emc mutations on cell growth and on eye development were all caused by activation of caspases. These effects included acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant clones, Notch signaling was elevated in the morphogenetic furrow, increasing morphogenetic furrow speed. This was associated with caspase-dependent increase in levels of Delta protein, the transmembrane ligand for Notch. Posterior to the morphogenetic furrow, elevated Delta cis-inhibited Notch signaling that was required for R7 specification and cone cell differentiation. Growth inhibition of emc mutant clones in wing imaginal discs also depended on caspases. Thus, emc mutations reveal the importance of restraining caspase activity even in non-apoptotic cells to prevent abnormal development, in the Drosophila eye through effects on Notch signaling.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Present address: Department of Neuroscience and Physiology, NYU School of Medicine, 435 East 30 St, New York, NY
| | - Nicholas E. Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Present address: Department of Microbiology and Molecular Genetics, University of California, Irvine, 2011 Biological Sciences 3, Irvine, CA 92697-2300
| |
Collapse
|
2
|
He T, Fan Y, Wang Y, Liu M, Zhu AJ. Dissection of the microRNA Network Regulating Hedgehog Signaling in Drosophila. Front Cell Dev Biol 2022; 10:866491. [PMID: 35573695 PMCID: PMC9096565 DOI: 10.3389/fcell.2022.866491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The evolutionarily conserved Hedgehog (Hh) signaling plays a critical role in embryogenesis and adult tissue homeostasis. Aberrant Hh signaling often leads to various forms of developmental anomalies and cancer. Since altered microRNA (miRNA) expression is associated with developmental defects and tumorigenesis, it is not surprising that several miRNAs have been found to regulate Hh signaling. However, these miRNAs are mainly identified through small-scale in vivo screening or in vitro assays. As miRNAs preferentially reduce target gene expression via the 3' untranslated region, we analyzed the effect of reduced expression of core components of the Hh signaling cascade on downstream signaling activity, and generated a transgenic Drosophila toolbox of in vivo miRNA sensors for core components of Hh signaling, including hh, patched (ptc), smoothened (smo), costal 2 (cos2), fused (fu), Suppressor of fused (Su(fu)), and cubitus interruptus (ci). With these tools in hand, we performed a genome-wide in vivo miRNA overexpression screen in the developing Drosophila wing imaginal disc. Of the twelve miRNAs identified, seven were not previously reported in the in vivo Hh regulatory network. Moreover, these miRNAs may act as general regulators of Hh signaling, as their overexpression disrupts Hh signaling-mediated cyst stem cell maintenance during spermatogenesis. To identify direct targets of these newly discovered miRNAs, we used the miRNA sensor toolbox to show that miR-10 and miR-958 directly target fu and smo, respectively, while the other five miRNAs act through yet-to-be-identified targets other than the seven core components of Hh signaling described above. Importantly, through loss-of-function analysis, we found that endogenous miR-10 and miR-958 target fu and smo, respectively, whereas deletion of the other five miRNAs leads to altered expression of Hh signaling components, suggesting that these seven newly discovered miRNAs regulate Hh signaling in vivo. Given the powerful effects of these miRNAs on Hh signaling, we believe that identifying their bona fide targets of the other five miRNAs will help reveal important new players in the Hh regulatory network.
Collapse
Affiliation(s)
- Tao He
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Fan
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yao Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
3
|
Roberto N, Becam I, Plessis A, Holmgren RA. Engrailed, Suppressor of fused and Roadkill modulate the Drosophila GLI transcription factor Cubitus interruptus at multiple levels. Development 2022; 149:dev200159. [PMID: 35290435 PMCID: PMC10656455 DOI: 10.1242/dev.200159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022]
Abstract
Morphogen gradients need to be robust, but may also need to be tailored for specific tissues. Often this type of regulation is carried out by negative regulators and negative feedback loops. In the Hedgehog (Hh) pathway, activation of patched (ptc) in response to Hh is part of a negative feedback loop limiting the range of the Hh morphogen. Here, we show that in the Drosophila wing imaginal disc two other known Hh targets genes feed back to modulate Hh signaling. First, anterior expression of the transcriptional repressor Engrailed modifies the Hh gradient by attenuating the expression of the Hh pathway transcription factor cubitus interruptus (ci), leading to lower levels of ptc expression. Second, the E-3 ligase Roadkill shifts the competition between the full-length activator and truncated repressor forms of Ci by preferentially targeting full-length Ci for degradation. Finally, we provide evidence that Suppressor of fused, a negative regulator of Hh signaling, has an unexpected positive role, specifically protecting full-length Ci but not the Ci repressor from Roadkill.
Collapse
Affiliation(s)
- Nicole Roberto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Isabelle Becam
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Anne Plessis
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Robert A. Holmgren
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
4
|
Cluster-Based Analysis of Retinitis Pigmentosa Modifiers Using Drosophila Eye Size and Gene Expression Data. Genes (Basel) 2022; 13:genes13020386. [PMID: 35205430 PMCID: PMC8872475 DOI: 10.3390/genes13020386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
The goal of this research is to computationally identify candidate modifiers for retinitis pigmentosa (RP), a group of rare genetic disorders that trigger the cellular degeneration of retinal tissue. RP being subject to phenotypic variation complicates diagnosis and treatment of the disease. In a previous study, modifiers of RP were identified by an association between genetic variation in the DNA sequence and variation in eye size in a well-characterized Drosophila model of RP. This study will instead focus on RNA expression data to identify candidate modifier genes whose expression is correlated with phenotypic variation in eye size. The proposed approach uses the K-Means algorithm to cluster 171 Drosophila strains based on their expression profiles for 18,140 genes in adult females. This algorithm is designed to investigate the correlation between Drosophila eye size and genetic expression and gather suspect genes from clusters with abnormally large or small eyes. The clustering algorithm was implemented using the R scripting language and successfully identified 10 suspected candidate modifiers for RP. This analysis was followed by a validation study that tested seven candidate modifiers and found that the loss of five of them significantly altered the degeneration phenotype and thus can be labeled as a bona fide modifier of disease.
Collapse
|
5
|
Sun J, Yoon J, Lee M, Lee HK, Hwang YS, Daar IO. Zic5 stabilizes Gli3 via a non-transcriptional mechanism during retinal development. Cell Rep 2022; 38:110312. [PMID: 35108539 DOI: 10.1016/j.celrep.2022.110312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
The Zic family of zinc finger transcription factors plays a critical role in multiple developmental processes. Using loss-of-function studies, we find that Zic5 is important for the differentiation of retinal pigmented epithelium (RPE) and the rod photoreceptor layer through suppressing Hedgehog (Hh) signaling. Further, Zic5 interacts with the critical Hh signaling molecule, Gli3, through the zinc finger domains of both proteins. This Zic5-Gli3 interaction disrupts Gli3/Gli3 homodimerization, resulting in Gli3 protein stabilization via a reduction in Gli3 ubiquitination. During embryonic Hh signaling, the activator form of Gli is normally converted to a repressor form through proteosome-mediated processing of Gli3, and the ratio of Gli3 repressor to full-length (activator) form of Gli3 determines the Gli3 repressor output required for normal eye development. Our results suggest Zic5 is a critical player in regulating Gli3 stability for the proper differentiation of RPE and rod photoreceptor layer during Xenopus eye development.
Collapse
Affiliation(s)
- Jian Sun
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jaeho Yoon
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Moonsup Lee
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Hyun-Kyung Lee
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yoo-Seok Hwang
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ira O Daar
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
6
|
Zhang Q, Jiang J. Regulation of Hedgehog Signal Transduction by Ubiquitination and Deubiquitination. Int J Mol Sci 2021; 22:ijms222413338. [PMID: 34948134 PMCID: PMC8703657 DOI: 10.3390/ijms222413338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis in species ranging from insects to mammals. Deregulation of Hh pathway activity has been implicated in a wide range of human disorders, including congenital diseases and cancer. Hh exerts its biological influence through a conserved signaling pathway. Binding of Hh to its receptor Patched (Ptc), a twelve-span transmembrane protein, leads to activation of an atypical GPCR family protein and Hh signal transducer Smoothened (Smo), which then signals downstream to activate the latent Cubitus interruptus (Ci)/Gli family of transcription factors. Hh signal transduction is regulated by ubiquitination and deubiquitination at multiple steps along the pathway including regulation of Ptc, Smo and Ci/Gli proteins. Here we review the effect of ubiquitination and deubiquitination on the function of individual Hh pathway components, the E3 ubiquitin ligases and deubiquitinases involved, how ubiquitination and deubiquitination are regulated, and whether the underlying mechanisms are conserved from Drosophila to mammals.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
- Correspondence: (Q.Z.); (J.J.)
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (Q.Z.); (J.J.)
| |
Collapse
|
7
|
Liu M, Su Y, Peng J, Zhu AJ. Protein modifications in Hedgehog signaling: Cross talk and feedback regulation confer divergent Hedgehog signaling activity. Bioessays 2021; 43:e2100153. [PMID: 34738654 DOI: 10.1002/bies.202100153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
The complexity of the Hedgehog (Hh) signaling cascade has increased over the course of evolution; however, it does not suffice to accommodate the dynamic yet robust requirements of differential Hh signaling activity needed for embryonic development and adult homeostatic maintenance. One solution to solve this dilemma is to apply multiple forms of post-translational modifications (PTMs) to the core Hh signaling components, modulating their abundance, localization, and signaling activity. This review summarizes various forms of protein modifications utilized to regulate Hh signaling, with a special emphasis on crosstalk between different forms of PTMs and their feedback regulation by Hh signaling.
Collapse
Affiliation(s)
- Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Su
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jingyu Peng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
8
|
Cummings CM, Singer JD. Cul3 is required for normal development of the mammary gland. Cell Tissue Res 2021; 385:49-63. [PMID: 33825963 DOI: 10.1007/s00441-021-03456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Cullin 3 (Cul3) has recently been implicated in a multitude of different processes, including the oxidative stress response, autophagy, tumorigenesis, and differentiation. To investigate the role of Cul3 in mammary gland development, we created a mouse model system using Cre-lox targeting where Cul3 is specifically deleted from the mammary gland. Such MMTV-Cre Cul3Flx/Flx mice examined at 2 and 3 months of age show delays and defects in mammary gland development. Mammary ductal trees from Cul3-deficient mammary glands exhibit delayed forward growth through the mammary fat pad, dilation of the ducts, and abnormal morphology of some of the epithelial structures within the gland. Additionally, terminal end buds are larger and less plentiful in MMTV-Cre Cul3Flx/Flx mammary glands, and there is significantly less primary and secondary branching compared to control animals. In contrast, by 6 months of age, the mammary ductal tree has grown to fill the entire mammary fat pad in glands lacking Cul3. However, distorted epithelial structures and dilated ducts persist. MMTV-Cre Cul3Flx/Flx mothers are able to nourish their litters, but the process of involution is slightly delayed in mammary glands lacking Cul3. Therefore, we conclude that while Cul3 is not essential for mammary gland function, Cul3 is required for the mammary gland to proceed normally through development.
Collapse
Affiliation(s)
- Cristina M Cummings
- School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ, USA
| | - Jeffrey D Singer
- Department of Biology, Portland State University, Portland, OR, USA.
| |
Collapse
|
9
|
Zhang Z, Aweya JJ, Yao D, Zheng Z, Tran NT, Li S, Zhang Y. Ubiquitination as an Important Host-Immune Response Strategy in Penaeid Shrimp: Inferences From Other Species. Front Immunol 2021; 12:697397. [PMID: 34122458 PMCID: PMC8191737 DOI: 10.3389/fimmu.2021.697397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
Shrimp aquaculture is an essential economic venture globally, but the industry faces numerous challenges, especially pathogenic infections. As invertebrates, shrimp rely mainly on their innate immune system for protection. An increasing number of studies have shown that ubiquitination plays a vital role in the innate immune response to microbial pathogens. As an important form of posttranslational modification (PTM), both hosts and pathogens have exploited ubiquitination and the ubiquitin system as an immune response strategy to outwit the other. This short review brings together recent findings on ubiquitination and how this PTM plays a critical role in immune modulation in penaeid shrimps. Key findings inferred from other species would help guide further studies on ubiquitination as an immune response strategy in shrimp-pathogen interactions.
Collapse
Affiliation(s)
- Zhaoxue Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
10
|
Quiquand M, Rimesso G, Qiao N, Suo S, Zhao C, Slattery M, White KP, Han JJ, Baker NE. New regulators of Drosophila eye development identified from temporal transcriptome changes. Genetics 2021; 217:6117222. [PMID: 33681970 DOI: 10.1093/genetics/iyab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 12/28/2020] [Indexed: 11/12/2022] Open
Abstract
In the last larval instar, uncommitted progenitor cells in the Drosophila eye primordium start to adopt individual retinal cell fates, arrest their growth and proliferation, and initiate terminal differentiation into photoreceptor neurons and other retinal cell types. To explore the regulation of these processes, we have performed mRNA-Seq studies of the larval eye and antennal primordial at multiple developmental stages. A total of 10,893 fly genes were expressed during these stages and could be adaptively clustered into gene groups, some of whose expression increases or decreases in parallel with the cessation of proliferation and onset of differentiation. Using in situ hybridization of a sample of 98 genes to verify spatial and temporal expression patterns, we estimate that 534 genes or more are transcriptionally upregulated during retinal differentiation, and 1367 or more downregulated as progenitor cells differentiate. Each group of co-expressed genes is enriched for regulatory motifs recognized by co-expressed transcription factors, suggesting that they represent coherent transcriptional regulatory programs. Using available mutant strains, we describe novel roles for the transcription factors SoxNeuro (SoxN), H6-like homeobox (Hmx), CG10253, without children (woc), Structure specific recognition protein (Ssrp), and multisex combs (mxc).
Collapse
Affiliation(s)
- Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nan Qiao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shengbao Suo
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunyu Zhao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Matthew Slattery
- Institute for Genomics & Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Kevin P White
- Institute for Genomics & Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jackie J Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Remodeling without destruction: non-proteolytic ubiquitin chains in neural function and brain disorders. Mol Psychiatry 2021; 26:247-264. [PMID: 32709994 PMCID: PMC9229342 DOI: 10.1038/s41380-020-0849-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022]
Abstract
Ubiquitination is a fundamental posttranslational protein modification that regulates diverse biological processes, including those in the CNS. Several topologically and functionally distinct polyubiquitin chains can be assembled on protein substrates, modifying their fates. The classical and most prevalent polyubiquitin chains are those that tag a substrate to the proteasome for degradation, which has been established as a major mechanism driving neural circuit deconstruction and remodeling. In contrast, proteasome-independent non-proteolytic polyubiquitin chains regulate protein scaffolding, signaling complex formation, and kinase activation, and play essential roles in an array of signal transduction processes. Despite being a cornerstone in immune signaling and abundant in the mammalian brain, these non-proteolytic chains are underappreciated in neurons and synapses in the brain. Emerging studies have begun to generate exciting insights about some fundamental roles played by these non-degradative chains in neuronal function and plasticity. In addition, their roles in a number of brain diseases are being recognized. In this article, we discuss recent advances on these nonconventional ubiquitin chains in neural development, function, plasticity, and related pathologies.
Collapse
|
12
|
Characterization of Plasmodium falciparum NEDD8 and identification of cullins as its substrates. Sci Rep 2020; 10:20220. [PMID: 33214620 PMCID: PMC7677368 DOI: 10.1038/s41598-020-77001-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
A variety of post-translational modifications of Plasmodium falciparum proteins, including phosphorylation and ubiquitination, are shown to have key regulatory roles during parasite development. NEDD8 is a ubiquitin-like modifier of cullin-RING E3 ubiquitin ligases, which regulates diverse cellular processes. Although neddylation is conserved in eukaryotes, it is yet to be characterized in Plasmodium and related apicomplexan parasites. We characterized P. falciparum NEDD8 (PfNEDD8) and identified cullins as its physiological substrates. PfNEDD8 is a 76 amino acid residue protein without the C-terminal tail, indicating that it can be readily conjugated. The wild type and mutant (Gly75Ala/Gly76Ala) PfNEDD8 were expressed in P. falciparum. Western blot of wild type PfNEDD8-expressing parasites indicated multiple high molecular weight conjugates, which were absent in the parasites expressing the mutant, indicating conjugation of NEDD8 through Gly76. Immunoprecipitation followed by mass spectrometry of wild type PfNEDD8-expressing parasites identified two putative cullins. Furthermore, we expressed PfNEDD8 in mutant S. cerevisiae strains that lacked endogenous NEDD8 (rub1Δ) or NEDD8 conjugating E2 enzyme (ubc12Δ). The PfNEDD8 immunoprecipitate also contained S. cerevisiae cullin cdc53, further substantiating cullins as physiological substrates of PfNEDD8. Our findings lay ground for investigation of specific roles and drug target potential of neddylation in malaria parasites.
Collapse
|
13
|
Xie L, Ji X, Tu Y, Wang K, Zhu L, Zeng X, Wang X, Zhang J, Zhu M. MLN4924 inhibits hedgehog signaling pathway and activates autophagy to alleviate mouse laser-induced choroidal neovascularization lesion. Biomed Pharmacother 2020; 130:110654. [PMID: 34321162 DOI: 10.1016/j.biopha.2020.110654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022] Open
Abstract
Neovascular age-related macular degeneration (nAMD), featured as choroidal neovascularization (CNV), can cause blindness in the elderly population. MLN4924, a highly selective small-molecule inhibitor of NEDD8 (neuronal precursor cell-expressed developmentally down-regulated protein 8)-activating enzyme (NAE), inhibits the proliferation, angiogenesis and inflammation of multiple cancers via up-regulating hedgehog pathway-regulated autophagy. MLN4924 intraperitoneal injection mitigated the leakage, area and volume of mouse laser-induced CNV lesion. Additionally, compared to CNV 7 d group, MLN4924 treated mouse retina-retinal pigment epithelium (RPE)-choroid complex showed decreased expression of hedgehog pathway-associated molecules patched 1 (PTCH1), smoothened (SMO), GLI family zinc finger 1 (GLI1) and GLI family zinc finger 2 (GLI2) with increased expression of autophagy-associated molecules sequestosome 1 (p62) and LC microtubule-associated protein 1 light chain 3 (LC3). Meanwhile, human choroidal endothelial cells (HCECs) exposed to hypoxia condition also showed decreased expression of hedgehog pathway-associated molecules and increased expression of autophagy-associated molecules. Compared to hypoxia + MLN4924 group, SMO agonist SAG up-regulated hedgehog pathway and down-regulated autophagy, whereas autophagy inhibitor PIK-III inhibited autophagy with no effect on hedgehog pathway, indicating that MLN4924 facilitated autophagy of HCECs via hindering hedgehog pathway under hypoxia condition. Finally, MLN4924 inhibited proliferation, migration and tube formation of HCECs via boosting hedgehog pathway-regulated autophagy. In summary, MLN4924 relieved the formation of mouse laser-induced CNV lesion might via up-regulating hedgehog pathway-regulated autophagy. The results provide a potential interfering strategy for nAMD targeting the autophagy of choroidal endothelial cells.
Collapse
Affiliation(s)
- Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoyan Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kun Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Linling Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xinwei Zeng
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xue Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ji Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
14
|
You X, Zhang Y, Long Q, Liu Z, Feng Z, Zhang W, Teng Z, Zeng Y. Does single gene expression omnibus data mining analysis apply for only tumors and not mental illness? A preliminary study on bipolar disorder based on bioinformatics methodology. Medicine (Baltimore) 2020; 99:e21989. [PMID: 32871949 PMCID: PMC7458177 DOI: 10.1097/md.0000000000021989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD), a common kind of mood disorder with frequent recurrence, high rates of additional comorbid conditions and poor compliance, has an unclear pathogenesis. The Gene Expression Omnibus (GEO) database is a gene expression database created and maintained by the National Center for Biotechnology Information. Researchers can download expression data online for bioinformatics analysis, especially for cancer research. However, there is little research on the use of such bioinformatics analysis methodologies for mental illness by downloading differential expression data from the GEO database. METHODS Publicly available data were downloaded from the GEO database (GSE12649, GSE5388 and GSE5389), and differentially expressed genes (DEGs) were extracted by using the online tool GEO2R. A Venn diagram was used to screen out common DEGs between postmortem brain tissues and normal tissues. Functional annotation and pathway enrichment analysis of DEGs were performed by using Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses, respectively. Furthermore, a protein-protein interaction network was constructed to identify hub genes. RESULTS A total of 289 DEGs were found, among which 5 of 10 hub genes [HSP90AA1, HSP90AB 1, UBE2N, UBE3A, and CUL1] were identified as susceptibility genes whose expression was downregulated. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that variations in these 5 hub genes were obviously enriched in protein folding, protein polyubiquitination, apoptotic process, protein binding, the ubiquitin-mediated proteolysis pathway, and protein processing in the endoplasmic reticulum pathway. These findings strongly suggested that HSP90AA1, UBE3A, and CUL 1, which had large areas under the curve in receiver operator curves (P < .05), were potential diagnostic markers for BD. CONCLUSION Although there are 3 hub genes [HSP90AA1, UBE3A, and CUL 1] that are tightly correlated with the occurrence of BD, mainly based on routine bioinformatics methods for cancer-related disease, the feasibility of applying this single GEO bioinformatics approach for mental illness is questionable, given the significant differences between mental illness and cancer-related diseases.
Collapse
|
15
|
Reduced SERCA Function Preferentially Affects Wnt Signaling by Retaining E-Cadherin in the Endoplasmic Reticulum. Cell Rep 2020; 26:322-329.e3. [PMID: 30625314 PMCID: PMC6338334 DOI: 10.1016/j.celrep.2018.12.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/14/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022] Open
Abstract
Calcium homeostasis in the lumen of the endoplasmic reticulum is required for correct processing and trafficking of transmembrane proteins, and defects in protein trafficking can impinge on cell signaling pathways. We show here that mutations in the endoplasmic reticulum calcium pump SERCA disrupt Wingless signaling by sequestering Armadillo/β-catenin away from the signaling pool. Armadillo remains bound to E-cadherin, which is retained in the endoplasmic reticulum when calcium levels there are reduced. Using hypomorphic and null SERCA alleles in combination with the loss of the plasma membrane calcium channel Orai allowed us to define three distinct thresholds of endoplasmic reticulum calcium. Wingless signaling is sensitive to even a small reduction, while Notch and Hippo signaling are disrupted at intermediate levels, and elimination of SERCA function results in apoptosis. These differential and opposing effects on three oncogenic signaling pathways may complicate the use of SERCA inhibitors as cancer therapeutics. Suisse and Treisman describe genetic conditions that reduce calcium in the endoplasmic reticulum to three distinct extents. They find that Wnt signaling is more sensitive to changes in calcium levels than the Notch and Hippo pathways, potentially complicating the use of calcium pump inhibitors as cancer therapeutics.
Collapse
|
16
|
Wang K, Deshaies RJ, Liu X. Assembly and Regulation of CRL Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:33-46. [DOI: 10.1007/978-981-15-1025-0_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Karpiyevich M, Adjalley S, Mol M, Ascher DB, Mason B, van der Heden van Noort GJ, Laman H, Ovaa H, Lee MCS, Artavanis-Tsakonas K. Nedd8 hydrolysis by UCH proteases in Plasmodium parasites. PLoS Pathog 2019; 15:e1008086. [PMID: 31658303 PMCID: PMC6837540 DOI: 10.1371/journal.ppat.1008086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/07/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
Plasmodium parasites are the causative agents of malaria, a disease with wide public health repercussions. Increasing drug resistance and the absence of a vaccine make finding new chemotherapeutic strategies imperative. Components of the ubiquitin and ubiquitin-like pathways have garnered increased attention as novel targets given their necessity to parasite survival. Understanding how these pathways are regulated in Plasmodium and identifying differences to the host is paramount to selectively interfering with parasites. Here, we focus on Nedd8 modification in Plasmodium falciparum, given its central role to cell division and DNA repair, processes critical to Plasmodium parasites given their unusual cell cycle and requirement for refined repair mechanisms. By applying a functional chemical approach, we show that deNeddylation is controlled by a different set of enzymes in the parasite versus the human host. We elucidate the molecular determinants of the unusual dual ubiquitin/Nedd8 recognition by the essential PfUCH37 enzyme and, through parasite transgenics and drug assays, determine that only its ubiquitin activity is critical to parasite survival. Our experiments reveal interesting evolutionary differences in how neddylation is controlled in higher versus lower eukaryotes, and highlight the Nedd8 pathway as worthy of further exploration for therapeutic targeting in antimalarial drug design. Ubiquitin and ubiquitin-like post-translational modifications are evolutionarily conserved and involved in fundamental cellular processes essential to all eukaryotes. As such, enzymatic components of these pathways present attractive targets for therapeutic intervention for both chronic and communicable diseases. Nedd8 modification of cullin ubiquitin E3 ligases is critical to the viability of eukaryotic organisms and mediates cell cycle progression and DNA damage repair. Given the complex lifecycle and unusual replication mechanisms of the malaria parasite, one would expect neddylation to be of central importance to its survival, yet little is known about this pathway in Plasmodium. Here we present our findings on how Nedd8 removal is controlled in Plasmodium falciparum and how this pathway differs to that of its human host.
Collapse
Affiliation(s)
- Maryia Karpiyevich
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sophie Adjalley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Marco Mol
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - David B. Ascher
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Melbourne, Melbourne, Australia
| | - Bethany Mason
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Heike Laman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marcus C. S. Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | |
Collapse
|
18
|
Ma P, Song NN, Li Y, Zhang Q, Zhang L, Zhang L, Kong Q, Ma L, Yang X, Ren B, Li C, Zhao X, Li Y, Xu Y, Gao X, Ding YQ, Mao B. Fine-Tuning of Shh/Gli Signaling Gradient by Non-proteolytic Ubiquitination during Neural Patterning. Cell Rep 2019; 28:541-553.e4. [DOI: 10.1016/j.celrep.2019.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/08/2018] [Accepted: 06/03/2019] [Indexed: 01/14/2023] Open
|
19
|
Chahtane H, Zhang B, Norberg M, LeMasson M, Thévenon E, Bakó L, Benlloch R, Holmlund M, Parcy F, Nilsson O, Vachon G. LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis. THE NEW PHYTOLOGIST 2018; 220:579-592. [PMID: 29995985 DOI: 10.1111/nph.15329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
The Arabidopsis LEAFY (LFY) transcription factor is a key regulator of floral meristem emergence and identity. LFY interacts genetically and physically with UNUSUAL FLORAL ORGANS, a substrate adaptor of CULLIN1-RING ubiquitin ligase complexes (CRL1). The functionally redundant genes BLADE ON PETIOLE1 (BOP1) and -2 (BOP2) are potential candidates to regulate LFY activity and have recently been shown to be substrate adaptors of CULLIN3 (CUL3)-RING ubiquitin ligases (CRL3). We tested the hypothesis that LFY activity is controlled by BOPs and CUL3s in plants and that LFY is a substrate for ubiquitination by BOP-containing CRL3 complexes. When constitutively expressed, LFY activity is fully dependent on BOP2 as well as on CUL3A and B to regulate target genes such as APETALA1 and to induce ectopic flower formation. We also show that LFY and BOP2 proteins interact physically and that LFY-dependent ubiquitinated species are produced in vitro in a reconstituted cell-free CRL3 system in the presence of LFY, BOP2 and CUL3. This new post-translational regulation of LFY activity by CRL3 complexes makes it a unique transcription factor subjected to a positive dual regulation by both CRL1 and CRL3 complexes and suggests a novel mechanism for promoting flower development.
Collapse
Affiliation(s)
- Hicham Chahtane
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38054, Grenoble Cedex 9, France
| | - Bo Zhang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE, S-901 83, Sweden
| | - Mikael Norberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE, S-901 83, Sweden
| | - Marie LeMasson
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38054, Grenoble Cedex 9, France
| | - Emmanuel Thévenon
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38054, Grenoble Cedex 9, France
| | - László Bakó
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Reyes Benlloch
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE, S-901 83, Sweden
| | - Mattias Holmlund
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE, S-901 83, Sweden
| | - François Parcy
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38054, Grenoble Cedex 9, France
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE, S-901 83, Sweden
| | - Gilles Vachon
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38054, Grenoble Cedex 9, France
| |
Collapse
|
20
|
Panahi Y, Azimi A, Naderi M, Jadidi K, Sahebkar A. An analytical enrichment-based review of structural genetic studies on keratoconus. J Cell Biochem 2018; 120:4748-4756. [PMID: 30260013 DOI: 10.1002/jcb.27764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
Keratoconus is a progressive bilateral corneal protrusion that leads to irregular astigmatism and impairment of vision. Keratoconus is an etiologically heterogeneous corneal dystrophy and both environmental and genetic factors play a role in its etiopathogenesis. In this analytical review, we have studied all the genes that are structurally associated with keratoconus and have tried to explain the function of each gene and its association with other eye disorders in a concise way. In addition, using gene set enrichment analysis, it was attempted to find the most important impaired metabolic pathways in keratoconus. Several genetic studies have been carried out on keratoconus and several genes have been identified as risk factors involved in the etiology of the disease. In the current study, 16 studies, including nine association studies, five genome-wide association studies, one linkage study, and one meta-analysis, were reviewed and based on the 19 genes found, enrichment was performed and the most important metabolic pathways involved in the disease were identified. The enrichment results indicated that the two pathways, interleukin 1 processing and assembly of collagen fibrils, are significantly associated with the disease. Obviously, the results of this study, in addition to providing information about the genes involved in the disease, can provide an integrated insight into the gene-based etiology of keratoconus and therapeutic opportunities thereof.
Collapse
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Azimi
- Department of Ophthalmology, Poostchi Eye Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Naderi
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic inflammation Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Zong W, Wang Y, Tang Q, Zhang H, Yu F. Prd1 associates with the clathrin adaptor α-Adaptin and the kinesin-3 Imac/Unc-104 to govern dendrite pruning in Drosophila. PLoS Biol 2018; 16:e2004506. [PMID: 30142146 PMCID: PMC6126864 DOI: 10.1371/journal.pbio.2004506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 09/06/2018] [Accepted: 08/03/2018] [Indexed: 11/18/2022] Open
Abstract
Refinement of the nervous system depends on selective removal of excessive axons/dendrites, a process known as pruning. Drosophila ddaC sensory neurons prune their larval dendrites via endo-lysosomal degradation of the L1-type cell adhesion molecule (L1-CAM), Neuroglian (Nrg). Here, we have identified a novel gene, pruning defect 1 (prd1), which governs dendrite pruning of ddaC neurons. We show that Prd1 colocalizes with the clathrin adaptor protein α-Adaptin (α-Ada) and the kinesin-3 immaculate connections (Imac)/Uncoordinated-104 (Unc-104) in dendrites. Moreover, Prd1 physically associates with α-Ada and Imac, which are both critical for dendrite pruning. Prd1, α-Ada, and Imac promote dendrite pruning via the regulation of endo-lysosomal degradation of Nrg. Importantly, genetic interactions among prd1, α-adaptin, and imac indicate that they act in the same pathway to promote dendrite pruning. Our findings indicate that Prd1, α-Ada, and Imac act together to regulate discrete distribution of α-Ada/clathrin puncta, facilitate endo-lysosomal degradation, and thereby promote dendrite pruning in sensory neurons. During the maturation of the nervous system, some neurons can selectively eliminate their unnecessary connections, including dendrites and axons, to retain specific connections. In Drosophila, a class of sensory neurons lose all their larval dendrites during metamorphosis, when they transition from larvae to adults. We previously showed that these neurons prune their dendrites via lysosome-mediated degradation of a cell-adhesion protein, Neuroglian. In this paper, we identified a previously uncharacterized gene, pruning defect 1 (prd1), which plays an important role in dendrite pruning. We show that Prd1 is localized and complexed with α-Adaptin and Imac, two other proteins that are also essential for dendrite pruning. Moreover, Prd1, α-Adaptin, and Imac act in a common pathway to promote dendrite pruning by down-regulating Neuroglian protein. Thus, our study highlights a mechanism whereby Prd1, α-Adaptin, and Imac act together to regulate distribution of α-Adaptin/clathrin puncta, facilitate lysosome-dependent protein degradation, and thereby promote dendrite pruning in Drosophila sensory neurons.
Collapse
Affiliation(s)
- Wenhui Zong
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Quan Tang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Heng Zhang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, Singapore
- * E-mail:
| |
Collapse
|
22
|
MAPK signaling couples SCF-mediated degradation of translational regulators to oocyte meiotic progression. Proc Natl Acad Sci U S A 2018; 115:E2772-E2781. [PMID: 29496961 DOI: 10.1073/pnas.1715439115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are important regulators of gene expression programs, especially during gametogenesis. How the abundance of particular RBPs is restricted to defined stages of meiosis remains largely elusive. Here, we report a molecular pathway that subjects two nonrelated but broadly evolutionarily conserved translational regulators (CPB-3/CPEB and GLD-1/STAR) to proteosomal degradation in Caenorhabditis elegans germ cells at the transition from pachytene to diplotene of meiotic prophase. Both RBPs are recognized by the same ubiquitin ligase complex, containing the molecular scaffold Cullin-1 and the tumor suppressor SEL-10/FBXW7 as its substrate recognition subunit. Destabilization of either RBP through this Skp, Cullin, F-box-containing complex (SCF) ubiquitin ligase appears to loosen its negative control over established target mRNAs, and presumably depends on a prior phosphorylation of CPB-3 and GLD-1 by MAPK (MPK-1), whose activity increases in mid- to late pachytene to promote meiotic progression and oocyte differentiation. Thus, we propose that the orchestrated degradation of RBPs via MAPK-signaling cascades during germ cell development may act to synchronize meiotic with sexual differentiation gene expression changes.
Collapse
|
23
|
Suisse A, Békés M, Huang TT, Treisman JE. The COP9 signalosome inhibits Cullin-RING E3 ubiquitin ligases independently of its deneddylase activity. Fly (Austin) 2018; 12:118-126. [PMID: 29355077 DOI: 10.1080/19336934.2018.1429858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The COP9 signalosome inhibits the activity of Cullin-RING E3 ubiquitin ligases by removing Nedd8 modifications from their Cullin subunits. Neddylation renders these complexes catalytically active, but deneddylation is also necessary for them to exchange adaptor subunits and avoid auto-ubiquitination. Although deneddylation is thought to be the primary function of the COP9 signalosome, additional activities have been ascribed to some of its subunits. We recently showed that COP9 subunits protect the transcriptional repressor and tumor suppressor Capicua from two distinct modes of degradation. Deneddylation by the COP9 signalosome inactivates a Cullin 1 complex that ubiquitinates Capicua following its phosphorylation by MAP kinase in response to Epidermal Growth Factor Receptor signaling. The CSN1b subunit also stabilizes unphosphorylated Capicua to control its basal level, independently of the deneddylase function of the complex. Here we further examine the importance of deneddylation for COP9 functions in vivo. We use an uncleavable form of Nedd8 to show that preventing deneddylation does not reproduce the effects of loss of COP9. In contrast, in the presence of COP9, conjugation to uncleavable Nedd8 renders Cullins unable to promote the degradation of their substrates. Our results suggest that irreversible neddylation prolongs COP9 binding to and inhibition of Cullin-based ubiquitin ligases.
Collapse
Affiliation(s)
- Annabelle Suisse
- a Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology , NYU School of Medicine , 540 First Avenue, New York , NY , USA
| | - Miklós Békés
- b Department of Biochemistry and Molecular Pharmacology , NYU School of Medicine , 540 First Avenue, New York , NY , USA
| | - Tony T Huang
- b Department of Biochemistry and Molecular Pharmacology , NYU School of Medicine , 540 First Avenue, New York , NY , USA
| | - Jessica E Treisman
- a Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology , NYU School of Medicine , 540 First Avenue, New York , NY , USA
| |
Collapse
|
24
|
Increasing the Unneddylated Cullin1 Portion Rescues the csn Phenotypes by Stabilizing Adaptor Modules To Drive SCF Assembly. Mol Cell Biol 2017; 37:MCB.00109-17. [PMID: 28923850 DOI: 10.1128/mcb.00109-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
The dynamic SCF (Skp1-cullin1-F-box protein) assembly is controlled by cycles of cullin neddylation/deneddylation based on the deneddylation activity of the COP9 signalosome (CSN) and global sequestration of cullins by CAND1. However, acceptance of this prediction was hampered by the results of recent studies, and the regulatory mechanism and key players remain to be identified. We found that maintaining a proper Cul1Nedd8/Cul1 ratio is crucial to ensure SCF functions. Reducing the high Cul1Nedd8/Cul1 ratios in csn mutants through ectopic expression of the nonneddylatable Cul1K722R proteins or introducing the endogenous cul1K722R point mutation significantly rescues their defective phenotypes. In vivo protein degradation assays revealed that the large portion of the unneddylated Cul1 contributes to F-box protein stabilization. Moreover, the unneddylated Cul1 tends to associate with adaptor modules, and disruption of Cul1-Skp-1 binding fails to restore the csn phenotypes. Taking the data together, we propose that unneddylated Cul1 is another central player involved in maintenance of the adaptor module pool through the formation of Cul1-Skp-1-F-box complexes and promotion of rapid SCF assembly.
Collapse
|
25
|
Ketosugbo KF, Bushnell HL, Johnson RI. A screen for E3 ubiquitination ligases that genetically interact with the adaptor protein Cindr during Drosophila eye patterning. PLoS One 2017; 12:e0187571. [PMID: 29117266 PMCID: PMC5678704 DOI: 10.1371/journal.pone.0187571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination is a crucial post-translational modification that can target proteins for degradation. The E3 ubiquitin ligases are responsible for recognizing substrate proteins for ubiquitination, hence providing specificity to the process of protein degradation. Here, we describe a genetic modifier screen that identified E3 ligases that modified the rough-eye phenotype generated by expression of cindrRNAi transgenes during Drosophila eye development. In total, we identified 36 E3 ligases, as well as 4 Cullins, that modified the mild cindrRNA mis-patterning phenotype. This indicates possible roles for these E3s/Cullins in processes that require Cindr function, including cytoskeletal regulation, cell adhesion, cell signaling and cell survival. Three E3 ligases identified in our screen had previously been linked to regulating JNK signaling.
Collapse
Affiliation(s)
- Kwami F. Ketosugbo
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
| | - Henry L. Bushnell
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
| | - Ruth I. Johnson
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
26
|
Li Z, Cui Q, Wang X, Li B, Zhao D, Xia Q, Zhao P. Functions and substrates of NEDDylation during cell cycle in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:101-112. [PMID: 28964913 DOI: 10.1016/j.ibmb.2017.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
NEDDylation, a post-translational modification mediated by the conjugation of the ubiquitin-like protein Nedd8 to specific substrates, is an essential biological process that regulates cell cycle progression in eukaryotes. Here, we report the conservation of NEDDylation machinery and NEDDylated proteins in the silkworm, Bombyx mori. We have identified all the components necessary for reversible NEDDylation in the silkworm including Nedd8, E1, E2, E3, and deNEDDylation enzymes. By the approach of RNAi-mediated gene silencing, it was shown that knockdown of BmNedd8 and the conjugating enzymes decreased the global level of NEDDylation, while knockdown of deNEDDylation enzymes increased the prevalence of this modification in cultured silkworm cells. Moreover, the lack of the NEDDylation system caused cell cycle arrest at the G2/M phase and resulted in defects in chromosome congression and segregation. Using the wild-type and mutants of BmNedd8, we identified the specific substrates of BmNedd8, which are involved in the regulation for many cellular processes, including ribosome biogenesis, spliceosome structure, spindle formation, metabolism, and RNA biogenesis. This clearly demonstrates that the NEDDylation system is able to control multiple pathways in the silkworm. Altogether, the information on the functions and substrates of the NEDDylation system presented here could provide a basis for future investigations of protein NEDDylation and its regulatory mechanism on cell cycle progression in the silkworm.
Collapse
Affiliation(s)
- Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Qixin Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiaoyan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bingqian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China.
| |
Collapse
|
27
|
Pan C, Xiong Y, Lv X, Xia Y, Zhang S, Chen H, Fan J, Wu W, Liu F, Wu H, Zhou Z, Zhang L, Zhao Y. UbcD1 regulates Hedgehog signaling by directly modulating Ci ubiquitination and processing. EMBO Rep 2017; 18:1922-1934. [PMID: 28887318 PMCID: PMC5666607 DOI: 10.15252/embr.201643289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 07/31/2017] [Accepted: 08/10/2017] [Indexed: 01/20/2023] Open
Abstract
The Hh pathway controls many morphogenetic processes in metazoans and plays important roles in numerous pathologies and in cancer. Hh signaling is mediated by the activity of the Gli/Ci family of transcription factors. Several studies in Drosophila have shown that ubiquitination by the ubiquitin E3 ligases Slimb and Rdx(Hib) plays a crucial role in controlling Ci stability dependent on the levels of Hh signals. If Hh levels are low, Slimb adds K11- and K48-linked poly-ubiquitin chains on Ci resulting in partial degradation. Ubiquitin E2 enzymes are pivotal in determining the topologies of ubiquitin chains. However, which E2 enzymes participate in the selective ubiquitination-degradation of Ci remains elusive. Here, we find that the E2 enzyme UbcD1 negatively regulates Hh signaling activity in Drosophila wing disks. Genetic and biochemical analyses in wing disks and in cultured cells reveal that UbcD1 directly controls Ci stability. Interestingly, UbcD1 is found to be selectively involved in Slimb-mediated Ci degradation. Finally, we show that the homologs of UbcD1 play a conserved role in modulating Hh signaling in vertebrates.
Collapse
Affiliation(s)
- Chenyu Pan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yue Xiong
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangdong Lv
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanxin Xia
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuo Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jialin Fan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hailong Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
28
|
Suisse A, He D, Legent K, Treisman JE. COP9 signalosome subunits protect Capicua from MAPK-dependent and -independent mechanisms of degradation. Development 2017; 144:2673-2682. [PMID: 28619822 DOI: 10.1242/dev.148767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022]
Abstract
The COP9 signalosome removes Nedd8 modifications from the Cullin subunits of ubiquitin ligase complexes, reducing their activity. Here, we show that mutations in the Drosophila COP9 signalosome subunit 1b (CSN1b) gene increase the activity of ubiquitin ligases that contain Cullin 1. Analysis of CSN1b mutant phenotypes revealed a requirement for the COP9 signalosome to prevent ectopic expression of Epidermal growth factor receptor (EGFR) target genes. It does so by protecting Capicua, a transcriptional repressor of EGFR target genes, from EGFR pathway-dependent ubiquitylation by a Cullin 1/SKP1-related A/Archipelago E3 ligase and subsequent proteasomal degradation. The CSN1b subunit also maintains basal Capicua levels by protecting it from a separate mechanism of degradation that is independent of EGFR signaling. As a suppressor of tumor growth and metastasis, Capicua may be an important target of the COP9 signalosome in cancer.
Collapse
Affiliation(s)
- Annabelle Suisse
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - DanQing He
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Kevin Legent
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jessica E Treisman
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
29
|
He S, Cao Y, Xie P, Dong G, Zhang L. The Nedd8 Non-covalent Binding Region in the Smurf HECT Domain is Critical to its Ubiquitn Ligase Function. Sci Rep 2017; 7:41364. [PMID: 28169289 PMCID: PMC5294409 DOI: 10.1038/srep41364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/19/2016] [Indexed: 11/24/2022] Open
Abstract
Nedd8 is a ubiquitin-like protein that controls vital biological events through conjugation to target proteins. We previously identified the HECT-type ubiquitin ligase Smurf1 which controls diverse cellular processes is activated by Nedd8 through covalent neddylation. However, the effect of non-covalent binding to Nedd8 remains unknown. In this study, we demonstrate that both Smurf1 and its homologue Smurf2 carry a non-covalent Nedd8-binding site within its catalytic HECT domain. Structural analysis reveals that Smurf2 has Nedd8-binding sites within the small sub-domain of N-lobe and the C-lobe of HECT domain. Interestingly, the consensus Nedd8 binding sequence, L(X7)R(X5)F(X)ALQ is conserved in both Smurfs. Mutational studies reveal that all the five residues in the conserved sequence are required for binding to Nedd8. Functional studies suggest that mutations that disrupt Smurf interaction with Nedd8 reduce its neddylation and stabilize the protein. Furthermore, Nedd8 binding site in Smurf is shown to be necessary for its ubiquitin ligase activity towards the substrate and also the self-ubiquitylation. Finally, we show that Nedd8 binding to Smurf plays important roles in the regulation of cell migration and the BMP and TGFβ signaling pathways.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Yu Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China.,Georgia Cancer Center, Augusta University, Augusta GA, USA
| | - Ping Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Guanglong Dong
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| |
Collapse
|
30
|
Mergner J, Kuster B, Schwechheimer C. DENEDDYLASE1 Protein Counters Automodification of Neddylating Enzymes to Maintain NEDD8 Protein Homeostasis in Arabidopsis. J Biol Chem 2017; 292:3854-3865. [PMID: 28096463 DOI: 10.1074/jbc.m116.767103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/10/2017] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the conjugation of the ubiquitin-like protein NEDD8 onto protein targets is an important post-translational modification. The best understood neddylation targets are the cullins, scaffold subunits of E3 ubiquitin ligases, where neddylation as well as deneddylation, facilitated by the protease activity of the CSN (COP9 signalosome), are required to control ubiquitin ligase assembly, function, and ultimately substrate degradation. Little is known about the role of other deneddylating enzymes besides CSN and the role of neddylation and deneddylation of their substrates. We previously characterized Arabidopsis thaliana mutants with defects in the conserved NEDD8-specific protease DEN1 (DENEDDYLASE1). These mutants display only subtle growth phenotypes despite the strong accumulation of a broad range of neddylated proteins. Specifically, we identified AXR1 (AUXIN-RESISTANT1), a subunit of the heterodimeric NAE (E1 NEDD8-ACTIVATING ENZYME), as highly neddylated in den1 mutants. Here, we examined the mechanism and consequences of AXR1 neddylation in more detail. We find that AXR1 as well as other neddylation enzymes are autoneddylated at multiple lysines. NAE autoneddylation can be linked to reduced NCE (E2 NEDD8-CONJUGATING ENZYME) NEDD8 thioester levels, either by critically reducing the pool of free NEDD8 or by reducing NAE activity. In planta, increasing NEDD8 gene dosage is sufficient to suppress den1 mutant phenotypes. We therefore suggest that DEN1 serves to recover diverted NEDD8 moieties from autoneddylated NAE subunits, and possibly also other neddylated proteins, to maintain NEDD8 pathway activity toward other NEDD8-dependent processes such as cullin E3 ligase regulation.
Collapse
Affiliation(s)
- Julia Mergner
- From the Chair of Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8 and.,the Chair of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Bernhard Kuster
- the Chair of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Claus Schwechheimer
- From the Chair of Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8 and
| |
Collapse
|
31
|
dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis. PLoS Genet 2016; 12:e1006204. [PMID: 27442438 PMCID: PMC4956209 DOI: 10.1371/journal.pgen.1006204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/28/2016] [Indexed: 12/13/2022] Open
Abstract
Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis. Molecules of the Hedgehog (Hh) family are involved in the control of many developmental processes in both vertebrates and invertebrates. One of these processes is the formation of the retina in the fruitfly Drosophila. Here, Hh orchestrates a differentiation wave that allows the fast and precise differentiation of the fly retina, by controlling cell cycle, fate and morphogenesis. In this work we identify the gene dachshund (dac) as necessary to potentiate Hh signaling. In its absence, all Hh-dependent processes are delayed and retinal differentiation is severely impaired. Using genetic analysis, we find that dac, a nuclear factor that can bind DNA, is required for the stabilization of the nuclear transducer of the Hh signal, the Gli transcription factor Ci. dac expression is activated by Hh signaling and therefore is a key element in a positive feedback loop within the Hh signaling pathway that ensures a fast and robust differentiation of the retina. The vertebrate dac homologues, the DACH1 and 2 genes, are also important developmental regulators and cancer genes and a potential link between DACH genes and the Hh pathway in vertebrates awaits investigation.
Collapse
|
32
|
Li T, Giagtzoglou N, Eberl DF, Jaiswal SN, Cai T, Godt D, Groves AK, Bellen HJ. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals. eLife 2016; 5. [PMID: 27331610 PMCID: PMC4978524 DOI: 10.7554/elife.15258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023] Open
Abstract
Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Nikolaos Giagtzoglou
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neurology, Baylor College of Medicine, Houston, United States
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, United States
| | - Sonal Nagarkar Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Tiantian Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Dorothea Godt
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
33
|
Li H, Zhu H, Liu Y, He F, Xie P, Zhang L. Itch promotes the neddylation of JunB and regulates JunB-dependent transcription. Cell Signal 2016; 28:1186-1195. [PMID: 27245101 DOI: 10.1016/j.cellsig.2016.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/22/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Protein neddylation is essential for the viability of most organisms and is widely involved in the regulation of immunity, DNA damage and repair, cell signaling and cell cycle. Unlike RING-type neddylation ligases, HECT-type neddylation ligase remains less defined. Here, we show that Itch is a novel HECT-type neddylation E3 ligase and we identify JunB as a substrate of Nedd8 modification by Itch. JunB neddylation attenuates its transcriptional activity. In addition, JunB neddylation mediated by Itch promotes its ubiquitination-dependent degradation. Therefore, these findings define a new HECT-type neddylation ligase and its neddylation substrate.
Collapse
Affiliation(s)
- Haiwen Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Heng Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yang Liu
- The First Hospital Attached to Guiyang College of Traditional Chinese Medicine, Guiyang 550001, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Ping Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
34
|
Li T, Fan J, Blanco-Sánchez B, Giagtzoglou N, Lin G, Yamamoto S, Jaiswal M, Chen K, Zhang J, Wei W, Lewis MT, Groves AK, Westerfield M, Jia J, Bellen HJ. Ubr3, a Novel Modulator of Hh Signaling Affects the Degradation of Costal-2 and Kif7 through Poly-ubiquitination. PLoS Genet 2016; 12:e1006054. [PMID: 27195754 PMCID: PMC4873228 DOI: 10.1371/journal.pgen.1006054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Junkai Fan
- Markey Cancer Center and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Nikolaos Giagtzoglou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Zhang
- Markey Cancer Center and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wei Wei
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael T. Lewis
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew K. Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Jianhang Jia
- Markey Cancer Center and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Fu W, Sun J, Huang G, Liu JC, Kaufman A, Ryan RJH, Ramanathan SY, Venkatesh T, Singh B. Squamous Cell Carcinoma-related Oncogene (SCCRO) Family Members Regulate Cell Growth and Proliferation through Their Cooperative and Antagonistic Effects on Cullin Neddylation. J Biol Chem 2016; 291:6200-17. [PMID: 26792857 DOI: 10.1074/jbc.m115.692756] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 11/06/2022] Open
Abstract
SCCRO (squamous cell carcinoma-related oncogene; also known as DCUN1D1) is a highly conserved gene that functions as an E3 in neddylation. Although inactivation of SCCRO in yeast results in lethality, SCCRO(-/-) mice are viable. The exclusive presence of highly conserved paralogues in higher organisms led us to assess whether compensation by SCCRO paralogues rescues lethality in SCCRO(-/-) mice. Using murine and Drosophila models, we assessed the in vivo activities of SCCRO and its paralogues in cullin neddylation. We found that SCCRO family members have overlapping and antagonistic activity that regulates neddylation and cell proliferation activities in vivo. In flies, both dSCCRO and dSCCRO3 promote neddylation and cell proliferation, whereas dSCCRO4 negatively regulates these processes. Analysis of somatic clones showed that the effects that these paralogues have on proliferation serve to promote cell competition, leading to apoptosis in clones with a net decrease in neddylation activity. We found that dSCCRO and, to a lesser extent, dSCCRO3 rescue the neddylation and proliferation defects promoted by expression of SCCRO4. dSCCRO and dSCCRO3 functioned cooperatively, with their coexpression resulting in an increase in both the neddylated cullin fraction and proliferation activity. In contrast, human SCCRO and SCCRO4 promote, and human SCCRO3 inhibits, neddylation and proliferation when expressed in flies. Our findings provide the first insights into the mechanisms through which SCCRO family members cooperatively regulate neddylation and cell proliferation.
Collapse
Affiliation(s)
- Weimin Fu
- From the Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | - Joanne Sun
- From the Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | - Guochang Huang
- From the Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | - Jeffrey C Liu
- From the Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | - Andrew Kaufman
- From the Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | - Russell J H Ryan
- From the Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | - Suresh Y Ramanathan
- From the Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | - Tadmiri Venkatesh
- Department of Biology, The City College of New York, New York, New York 10031
| | - Bhuvanesh Singh
- From the Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| |
Collapse
|
36
|
Abstract
In this review, I summarize some of the recent insight into pharmacological targeting of hypoxia in disease models. Studies from cultured cell systems, animal models, and translation to human patients have revealed that posttranslational modifications of individual proteins within NF-κB and hypoxia-inducible factor pathways serve as ideal targets for analysis in disease models. Studies defining differences and similarities between these responses have taught us a number of important lessons about the complexity of the inflammatory response. A clearer definition of these pathways has provided new insight into disease pathogenesis and, importantly, the potential for new therapeutic targets.
Collapse
|
37
|
Moncrieff S, Moncan M, Scialpi F, Ditzel M. Regulation of hedgehog Ligand Expression by the N-End Rule Ubiquitin-Protein Ligase Hyperplastic Discs and the Drosophila GSK3β Homologue, Shaggy. PLoS One 2015; 10:e0136760. [PMID: 26334301 PMCID: PMC4559392 DOI: 10.1371/journal.pone.0136760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022] Open
Abstract
Hedgehog (Hh) morphogen signalling plays an essential role in tissue development and homeostasis. While much is known about the Hh signal transduction pathway, far less is known about the molecules that regulate the expression of the hedgehog (hh) ligand itself. Here we reveal that Shaggy (Sgg), the Drosophila melanogaster orthologue of GSK3β, and the N-end Rule Ubiquitin-protein ligase Hyperplastic Discs (Hyd) act together to co-ordinate Hedgehog signalling through regulating hh ligand expression and Cubitus interruptus (Ci) expression. Increased hh and Ci expression within hyd mutant clones was effectively suppressed by sgg RNAi, placing sgg downstream of hyd. Functionally, sgg RNAi also rescued the adult hyd mutant head phenotype. Consistent with the genetic interactions, we found Hyd to physically interact with Sgg and Ci. Taken together we propose that Hyd and Sgg function to co-ordinate hh ligand and Ci expression, which in turn influences important developmental signalling pathways during imaginal disc development. These findings are important as tight temporal/spatial regulation of hh ligand expression underlies its important roles in animal development and tissue homeostasis. When deregulated, hh ligand family misexpression underlies numerous human diseases (e.g., colorectal, lung, pancreatic and haematological cancers) and developmental defects (e.g., cyclopia and polydactyly). In summary, our Drosophila-based findings highlight an apical role for Hyd and Sgg in initiating Hedgehog signalling, which could also be evolutionarily conserved in mammals.
Collapse
Affiliation(s)
- Sophie Moncrieff
- MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh CRUK Cancer Research Centre, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | - Matthieu Moncan
- MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh CRUK Cancer Research Centre, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | - Flavia Scialpi
- MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh CRUK Cancer Research Centre, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | - Mark Ditzel
- MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh CRUK Cancer Research Centre, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Reduction of Cullin-2 in somatic cells disrupts differentiation of germline stem cells in the Drosophila ovary. Dev Biol 2015. [DOI: 10.1016/j.ydbio.2015.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Abstract
Restless legs syndrome (RLS) is a common sensorimotor trait defined by symptoms that interfere with sleep onset and maintenance in a clinically meaningful way. Nonvolitional myoclonus while awake and asleep is a sign of the disorder and an informative endophenotype. The genetic contributions to RLS/periodic leg movements are substantial, are among the most robust defined to date for a common disease, and account for much of the variance in disease expressivity. The disorder is polygenic, as revealed by recent genome-wide association studies. Experimental studies are revealing mechanistic details of how these common variants might influence RLS expressivity.
Collapse
Affiliation(s)
- David B Rye
- Program in Sleep, Department of Neurology, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, GA 30329, USA.
| |
Collapse
|
40
|
Deubiquitination of Ci/Gli by Usp7/HAUSP Regulates Hedgehog Signaling. Dev Cell 2015; 34:58-72. [PMID: 26120032 DOI: 10.1016/j.devcel.2015.05.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/18/2015] [Accepted: 05/19/2015] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) signaling plays essential roles in animal development and tissue homeostasis, and its misregulation causes congenital diseases and cancers. Regulation of the ubiquitin/proteasome-mediated proteolysis of Ci/Gli transcription factors is central to Hh signaling, but whether deubiquitinase is involved in this process remains unknown. Here, we show that Hh stimulates the binding of a ubiquitin-specific protease Usp7 to Ci, which positively regulates Hh signaling activity through inhibiting Ci ubiquitination and degradation mediated by both Slimb-Cul1 and Hib-Cul3 E3 ligases. Furthermore, we find that Usp7 forms a complex with GMP-synthetase (GMPS) to promote Hh pathway activity. Finally, we show that the mammalian counterpart of Usp7, HAUSP, positively regulates Hh signaling by modulating Gli ubiquitination and stability. Our findings reveal a conserved mechanism by which Ci/Gli is stabilized by a deubiquitination enzyme and identify Usp7/HUASP as a critical regulator of Hh signaling and potential therapeutic target for Hh-related cancers.
Collapse
|
41
|
Abstract
NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is a ubiquitin-like protein that activates the largest ubiquitin E3 ligase family, the cullin-RING ligases. Many non-cullin neddylation targets have been proposed in recent years. However, overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery, which makes validating potential NEDD8 targets challenging. Here, we re-evaluate studies of non-cullin targets of NEDD8 in light of the current understanding of the neddylation pathway, and suggest criteria for identifying genuine neddylation substrates under homeostatic conditions. We describe the biological processes that might be regulated by non-cullin neddylation, and the utility of neddylation inhibitors for research and as potential therapies. Understanding the biological significance of non-cullin neddylation is an exciting research prospect primed to reveal fundamental insights.
Collapse
|
42
|
Kandala S, Kim IM, Su H. Neddylation and deneddylation in cardiac biology. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2014; 4:140-158. [PMID: 25628956 PMCID: PMC4299693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
Neddylation is a post-translational protein modification that conjugates a ubiquitin-like protein NEDD8 to target proteins. Similar to ubiquitination, neddylation is mediated by a cascade of three NEDD8 specific enzymes, an E1 activating enzyme, an E2 conjugating enzyme and one of the several E3 ligases. Neddylation is countered by the action of deneddylases via a process termed deneddylation. By altering the substrate's conformation, stability, subcellular localization or binding affinity to DNA or proteins, neddylation regulates diverse cellular processes including the ubiquitin-proteasome system-mediated protein degradation, protein transcription, cell signaling etc. Dysregulation of neddylation has been linked to cancer, neurodegenerative disorders, and more recently, cardiac disease. Here we comprehensively overview the biochemistry, the proteome and the biological function of neddylation. We also summarize the recent progress in revealing the physiological and pathological role of neddylation and deneddylation in the heart.
Collapse
Affiliation(s)
- Sridhar Kandala
- Vascular Biology Center, Medical College of Georgia, Georgia Regents UniversityAugusta, GA, USA
| | - Il-man Kim
- Vascular Biology Center, Medical College of Georgia, Georgia Regents UniversityAugusta, GA, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Georgia Regents UniversityAugusta, GA, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents UniversityAugusta, GA, USA
| |
Collapse
|
43
|
Hedgehog-induced phosphorylation by CK1 sustains the activity of Ci/Gli activator. Proc Natl Acad Sci U S A 2014; 111:E5651-60. [PMID: 25512501 DOI: 10.1073/pnas.1416652111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hedgehog (Hh) signaling governs many developmental processes by regulating the balance between the repressor (Ci(R)/Gli(R)) and activator (Ci(A)/Gli(A)) forms of Cubitus interruptus (Ci)/glioma-associated oncogene homolog (Gli) transcription factors. Although much is known about how Ci(R)/Gli(R) is controlled, the regulation of Ci(A)/Gli(A) remains poorly understood. Here we demonstrate that Casein kinase 1 (CK1) sustains Hh signaling downstream of Costal2 and Suppressor of fused (Sufu) by protecting Ci(A) from premature degradation. We show that Hh stimulates Ci phosphorylation by CK1 at multiple Ser/Thr-rich degrons to inhibit its recognition by the Hh-induced MATH and BTB domain containing protein (HIB), a substrate receptor for the Cullin 3 family of E3 ubiquitin ligases. In Hh-receiving cells, reduction of CK1 activity accelerated HIB-mediated degradation of Ci(A), leading to premature loss of pathway activity. We also provide evidence that Gli(A) is regulated by CK1 in a similar fashion and that CK1 acts downstream of Sufu to promote Sonic hedgehog signaling. Taken together, our study not only reveals an unanticipated and conserved mechanism by which phosphorylation of Ci/Gli positively regulates Hh signaling but also provides the first evidence, to our knowledge, that substrate recognition by the Cullin 3 family of E3 ubiquitin ligases is negatively regulated by a kinase.
Collapse
|
44
|
Zhao Y, Morgan MA, Sun Y. Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal 2014; 21:2383-400. [PMID: 24410571 PMCID: PMC4241876 DOI: 10.1089/ars.2013.5795] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/12/2014] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Protein neddylation is catalyzed by an E1 NEDD8-activating enzyme (NAE), an E2 NEDD8-conjugating enzyme, and an E3 NEDD8 ligase. Known physiological substrates of neddylation are cullin family members. Cullin neddylation leads to activation of cullin-RING ligases (CRLs), the largest family of E3 ubiquitin ligases responsible for ubiquitylation and degradation of many key signaling/regulatory proteins. Thus, through modulating CRLs, neddylation regulates many biological processes, including cell cycle progression, signal transduction, and tumorigenesis. Given that NEDD8 is overexpressed and CRLs are abnormally activated in many human cancers, targeting protein neddylation, in general, and cullin neddylation, in particular, appears to be an attractive anticancer approach. RECENT ADVANCES MLN4924, a small molecule inhibitor of NAE, was discovered that inactivates CRLs and causes accumulation of CRL substrates to suppress tumor cell growth both in vitro and in vivo. Promising preclinical results advanced MLN4924 to several clinical trials for anticancer therapy. CRITICAL ISSUES In preclinical settings, MLN4924 effectively suppresses tumor cell growth by inducing apoptosis, senescence, and autophagy, and causes sensitization to chemoradiation therapies in a cellular context-dependent manner. Signal molecules that determine the cell fate upon MLN4924 treatment, however, remain elusive. Cancer cells develop MLN4924 resistance by selecting target mutations. FUTURE DIRECTIONS In the clinical side, several Phase 1b trials are under way to determine the safety and efficacy of MLN4924, acting alone or in combination with conventional chemotherapy, against human solid tumors. In the preclinical side, the efforts are being made to develop additional neddylation inhibitors by targeting NEDD8 E2s and E3s.
Collapse
Affiliation(s)
- Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan , Ann Arbor, Michigan
| | | | | |
Collapse
|
45
|
Huang YC, Lu YN, Wu JT, Chien CT, Pi H. The COP9 signalosome converts temporal hormone signaling to spatial restriction on neural competence. PLoS Genet 2014; 10:e1004760. [PMID: 25393278 PMCID: PMC4230841 DOI: 10.1371/journal.pgen.1004760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
During development, neural competence is conferred and maintained by integrating spatial and temporal regulations. The Drosophila sensory bristles that detect mechanical and chemical stimulations are arranged in stereotypical positions. The anterior wing margin (AWM) is arrayed with neuron-innervated sensory bristles, while posterior wing margin (PWM) bristles are non-innervated. We found that the COP9 signalosome (CSN) suppresses the neural competence of non-innervated bristles at the PWM. In CSN mutants, PWM bristles are transformed into neuron-innervated, which is attributed to sustained expression of the neural-determining factor Senseless (Sens). The CSN suppresses Sens through repression of the ecdysone signaling target gene broad (br) that encodes the BR-Z1 transcription factor to activate sens expression. Strikingly, CSN suppression of BR-Z1 is initiated at the prepupa-to-pupa transition, leading to Sens downregulation, and termination of the neural competence of PWM bristles. The role of ecdysone signaling to repress br after the prepupa-to-pupa transition is distinct from its conventional role in activation, and requires CSN deneddylating activity and multiple cullins, the major substrates of deneddylation. Several CSN subunits physically associate with ecdysone receptors to represses br at the transcriptional level. We propose a model in which nuclear hormone receptors cooperate with the deneddylation machinery to temporally shutdown downstream target gene expression, conferring a spatial restriction on neural competence at the PWM. A critical step in building a functional nervous system is to generate neurons at the appropriate locations. Neural competence is acquired at the precursor stage with the expression of specific transcription factors. One such critical factor is Senseless (Sens), as precursors lacking Sens fail to develop to neurons. Here we describe the critical role of protein complex COP9 signalosome (CSN) that regulates Sens expression by integrating temporal and spatial information. This was studied in developing Drosophila wing tissues, in which the anterior wing margin develops neuron-innervated bristles, while the posterior wing margin develops non-innervated bristles. The CSN complex is required for the anterior-posterior difference in spatial patterning of neuron formation, and posterior cells lacking CSN develop innervated bristles like anterior cells. CSN accomplishes this by transforming the temporal hormonal ecdysone signaling from activation to repression of downstream target BR-Z1. As BR-Z1 itself is a transcription activator, repression of BR-Z1 in turn leads to repression of Sens in posterior wing margin, eventually terminating the neural competence. Repression of BR-Z1 expression requires the interaction between the CSN complex and the ecdysone receptors. Our results suggest a novel CSN-mediated regulation that converts temporal hormone signaling to the patterning of neurons at the right place.
Collapse
Affiliation(s)
- Yi-Chun Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Insitute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Nung Lu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - June-Tai Wu
- Institute of Molecular Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ting Chien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Insitute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (CTC); (HP)
| | - Haiwei Pi
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail: (CTC); (HP)
| |
Collapse
|
46
|
Signaling by the engulfment receptor draper: a screen in Drosophila melanogaster implicates cytoskeletal regulators, Jun N-terminal Kinase, and Yorkie. Genetics 2014; 199:117-34. [PMID: 25395664 DOI: 10.1534/genetics.114.172544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Draper, the Drosophila melanogaster homolog of the Ced-1 protein of Caenorhabditis elegans, is a cell-surface receptor required for the recognition and engulfment of apoptotic cells, glial clearance of axon fragments and dendritic pruning, and salivary gland autophagy. To further elucidate mechanisms of Draper signaling, we screened chromosomal deficiencies to identify loci that dominantly modify the phenotype of overexpression of Draper isoform II (suppressed differentiation of the posterior crossvein in the wing). We found evidence for 43 genetic modifiers of Draper II. Twenty-four of the 37 suppressor loci and 3 of the 6 enhancer loci were identified. An additional 5 suppressors and 2 enhancers were identified among mutations in functionally related genes. These studies reveal positive contributions to Drpr signaling for the Jun N-terminal Kinase pathway, supported by genetic interactions with hemipterous, basket, jun, and puckered, and for cytoskeleton regulation as indicated by genetic interactions with rac1, rac2, RhoA, myoblast city, Wiskcott-Aldrich syndrome protein, and the formin CG32138, and for yorkie and expanded. These findings indicate that Jun N-terminal Kinase activation and cytoskeletal remodeling collaborate in Draper signaling. Relationships between Draper signaling and Decapentaplegic signaling, insulin signaling, Salvador/Warts/Hippo signaling, apical-basal cell polarity, and cellular responses to mechanical forces are also discussed.
Collapse
|
47
|
Protein competition switches the function of COP9 from self-renewal to differentiation. Nature 2014; 514:233-6. [DOI: 10.1038/nature13562] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/06/2014] [Indexed: 12/21/2022]
|
48
|
Multiple mechanisms modulate distinct cellular susceptibilities toward apoptosis in the developing Drosophila eye. Dev Cell 2014; 30:48-60. [PMID: 24981611 DOI: 10.1016/j.devcel.2014.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/09/2014] [Accepted: 05/10/2014] [Indexed: 02/06/2023]
Abstract
Although apoptosis is mechanistically well understood, a comprehensive understanding of how cells modulate their susceptibility toward apoptosis in a developing tissue is lacking. Here, we reveal striking dynamics in the apoptotic susceptibilities of different cell types in the Drosophila retina over a period of only 24 hr. Mitotic cells are extremely susceptible to apoptotic signals, while postmitotic cells have developed several strategies to promote survival. For example, photoreceptor neurons accumulate the inhibitor of apoptosis, Diap1. In unspecified cells, Cullin-3-mediated degradation keeps Diap1 levels low. These cells depend on EGFR signaling for survival. As development proceeds, developmentally older photoreceptors degrade Diap1, resulting in increased apoptosis susceptibility. Finally, R8 photoreceptors have very efficient survival mechanisms independent of EGFR or Diap1. These examples illustrate how complex cellular susceptibility toward apoptosis is regulated in a developing organ. Similar complexities may regulate apoptosis susceptibilities in mammalian development, and tumor cells may take advantage of it.
Collapse
|
49
|
Wang G, Tang X, Chen Y, Cao J, Huang Q, Ling X, Ren W, Liu S, Wu Y, Ray L, Lin X. Hyperplastic discs differentially regulates the transcriptional outputs of hedgehog signaling. Mech Dev 2014; 133:117-25. [PMID: 24854243 DOI: 10.1016/j.mod.2014.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/14/2014] [Accepted: 05/06/2014] [Indexed: 11/17/2022]
Abstract
Hedgehog (Hh) acts as a morphogen to activate the transcription of diverse target genes via its downstream effector Cubitus interruptus (Ci). Currently, it is less understood how Ci recruits co-factors to activate transcription. Here we report that hyperplastic discs (hyd), an E3 ubiquitin ligase, can differentially regulate the transcriptional outputs of Hh signaling. We show that loss of Hyd activity caused upregulation of some, but not all of Hh target genes. Importantly, Hyd does not affect the stability of Ci. Our data suggest that Hyd differentially restrains the transcriptional activity of Ci via selective association with respective promoters.
Collapse
Affiliation(s)
- Guolun Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofang Tang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yujie Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jun Cao
- Wenzhou Medical University, Zhejiang, China
| | | | | | - Wenyan Ren
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Songqing Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lorraine Ray
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
50
|
Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, Lu Y, Liu P, Li Y, Wang S, Chai N, Wu J, Deng H, Wang HR, Cao Y, Zhao F, Cui Y, Wang J, He F, Zhang L. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun 2014; 5:3733. [DOI: 10.1038/ncomms4733] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/25/2014] [Indexed: 02/06/2023] Open
|