1
|
Mueller RL, Combs B, Alhadidy MM, Brady ST, Morfini GA, Kanaan NM. Tau: A Signaling Hub Protein. Front Mol Neurosci 2021; 14:647054. [PMID: 33815057 PMCID: PMC8017207 DOI: 10.3389/fnmol.2021.647054] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Over four decades ago, in vitro experiments showed that tau protein interacts with and stabilizes microtubules in a phosphorylation-dependent manner. This observation fueled the widespread hypotheses that these properties extend to living neurons and that reduced stability of microtubules represents a major disease-driving event induced by pathological forms of tau in Alzheimer’s disease and other tauopathies. Accordingly, most research efforts to date have addressed this protein as a substrate, focusing on evaluating how specific mutations, phosphorylation, and other post-translational modifications impact its microtubule-binding and stabilizing properties. In contrast, fewer efforts were made to illuminate potential mechanisms linking physiological and disease-related forms of tau to the normal and pathological regulation of kinases and phosphatases. Here, we discuss published work indicating that, through interactions with various kinases and phosphatases, tau may normally act as a scaffolding protein to regulate phosphorylation-based signaling pathways. Expanding on this concept, we also review experimental evidence linking disease-related tau species to the misregulation of these pathways. Collectively, the available evidence supports the participation of tau in multiple cellular processes sustaining neuronal and glial function through various mechanisms involving the scaffolding and regulation of selected kinases and phosphatases at discrete subcellular compartments. The notion that the repertoire of tau functions includes a role as a signaling hub should widen our interpretation of experimental results and increase our understanding of tau biology in normal and disease conditions.
Collapse
Affiliation(s)
- Rebecca L Mueller
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Benjamin Combs
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - Mohammed M Alhadidy
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Scott T Brady
- Department of Anatomy and Cell Biology, The University of Illinois at Chicago, Chicago, IL, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, The University of Illinois at Chicago, Chicago, IL, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, United States
| |
Collapse
|
2
|
Paul MR, Pan TC, Pant DK, Shih NN, Chen Y, Harvey KL, Solomon A, Lieberman D, Morrissette JJ, Soucier-Ernst D, Goodman NG, Stavropoulos SW, Maxwell KN, Clark C, Belka GK, Feldman M, DeMichele A, Chodosh LA. Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets. J Clin Invest 2020; 130:4252-4265. [PMID: 32657779 PMCID: PMC7410083 DOI: 10.1172/jci129941] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Nearly all breast cancer deaths result from metastatic disease. Despite this, the genomic events that drive metastatic recurrence are poorly understood. We performed whole-exome and shallow whole-genome sequencing to identify genes and pathways preferentially mutated or copy-number altered in metastases compared with the paired primary tumors from which they arose. Seven genes were preferentially mutated in metastases - MYLK, PEAK1, SLC2A4RG, EVC2, XIRP2, PALB2, and ESR1 - 5 of which are not significantly mutated in any type of human primary cancer. Four regions were preferentially copy-number altered: loss of STK11 and CDKN2A/B, as well as gain of PTK6 and the membrane-bound progesterone receptor, PAQR8. PAQR8 gain was mutually exclusive with mutations in the nuclear estrogen and progesterone receptors, suggesting a role in treatment resistance. Several pathways were preferentially mutated or altered in metastases, including mTOR, CDK/RB, cAMP/PKA, WNT, HKMT, and focal adhesion. Immunohistochemical analyses revealed that metastases preferentially inactivate pRB, upregulate the mTORC1 and WNT signaling pathways, and exhibit nuclear localization of activated PKA. Our findings identify multiple therapeutic targets in metastatic recurrence that are not significantly mutated in primary cancers, implicate membrane progesterone signaling and nuclear PKA in metastatic recurrence, and provide genomic bases for the efficacy of mTORC1, CDK4/6, and PARP inhibitors in metastatic breast cancer.
Collapse
Affiliation(s)
- Matt R. Paul
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Tien-chi Pan
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Dhruv K. Pant
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Natalie N.C. Shih
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Pathology and Laboratory Medicine
| | - Yan Chen
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Kyra L. Harvey
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Aaron Solomon
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | | | | | - Danielle Soucier-Ernst
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - Noah G. Goodman
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - S. William Stavropoulos
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Radiology, and
| | - Kara N. Maxwell
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - Candace Clark
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - George K. Belka
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Michael Feldman
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Pathology and Laboratory Medicine
| | - Angela DeMichele
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lewis A. Chodosh
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
- Department of Medicine
| |
Collapse
|
3
|
Riehle KJ, Kenerson HL, Riggle KM, Turnham R, Sullivan K, Bauer R, Scott JD, Yeung RS. Neurotensin as a source of cyclic AMP and co-mitogen in fibrolamellar hepatocellular carcinoma. Oncotarget 2019; 10:5092-5102. [PMID: 31489118 PMCID: PMC6707953 DOI: 10.18632/oncotarget.27149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/28/2019] [Indexed: 12/20/2022] Open
Abstract
Fibrolamellar hepatocellular carcinomas (FL-HCCs) possess a unique mutation that encodes a chimeric form of protein kinase A (DNAJ-PKAc), which includes a chaperonin binding domain. DNAJ-PKAc retains most of the biochemical properties of the native enzyme, however, and activity remains dependent on cAMP. We thus speculated that a persistent source of cAMP is necessary to promote FL-HCC carcinogenesis, and that neurotensin (NTS) may drive cAMP production in this setting, given that NS serum and tumor levels are elevated in many patients with FL-HCC. We examined expression of NTS pathway components in human FL-HCCs and paired normal livers, and determined the role of NTS in driving proliferation in tumor slice cultures. Cultured hepatocytes were used to determine interactions between NTS and other proliferative pathways, and to determine the effects of NTS on cAMP production and PKA activity. We found that the NTS pathway is up-regulated in human FL-HCCs, and that NTS activates cAMP and PKA in hepatocytes. NTS increases proliferation in the presence of epidermal growth factor (EGF), and NTS-induced proliferation is dependent on NTSR1 and the EGFR/MEK pathway. We conclude that NTS serves as a co-mitogen in FL-HCC, and provides a source of cAMP to facilitate ongoing activation of DNAJ-PKAc.
Collapse
Affiliation(s)
| | | | - Kevin M. Riggle
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Rigney Turnham
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Kevin Sullivan
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Renay Bauer
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
O'Neill N, Sylantyev S. The Functional Role of Spontaneously Opening GABA A Receptors in Neural Transmission. Front Mol Neurosci 2019; 12:72. [PMID: 30983968 PMCID: PMC6447609 DOI: 10.3389/fnmol.2019.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Ionotropic type of γ-aminobutyric acid receptors (GABAARs) produce two forms of inhibitory signaling: phasic inhibition generated by rapid efflux of neurotransmitter GABA into the synaptic cleft with subsequent binding to GABAARs, and tonic inhibition generated by persistent activation of extrasynaptic and/or perisynaptic GABAARs by GABA continuously present in the extracellular space. It is widely accepted that phasic and tonic GABAergic inhibition is mediated by receptor groups of distinct subunit composition and modulated by different cytoplasmic mechanisms. Recently, however, it has been demonstrated that spontaneously opening GABAARs (s-GABAARs), which do not need GABA binding to enter an active state, make a significant input into tonic inhibitory signaling. Due to GABA-independent action mode, s-GABAARs promise new safer options for therapy of neural disorders (such as epilepsy) devoid of side effects connected to abnormal fluctuations of GABA concentration in the brain. However, despite the potentially important role of s-GABAARs in neural signaling, they still remain out of focus of neuroscience studies, to a large extent due to technical difficulties in their experimental research. Here, we summarize present data on s-GABAARs functional properties and experimental approaches that allow isolation of s-GABAARs effects from those of conventional (GABA-dependent) GABAARs.
Collapse
Affiliation(s)
- Nathanael O'Neill
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sergiy Sylantyev
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Rivera-Pagán AF, Méndez-González MP, Rivera-Aponte DE, Malpica-Nieves CJ, Melnik-Martínez KV, Zayas-Santiago A, Maldonado-Martínez G, Shuba YM, Skatchkov SN, Eaton MJ. A-Kinase-Anchoring Protein (AKAP150) is expressed in Astrocytes and Upregulated in Response to Ischemia. Neuroscience 2018; 384:54-63. [PMID: 29800717 DOI: 10.1016/j.neuroscience.2018.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
A-kinase-anchoring proteins, AKAPs, are scaffolding proteins that associate with kinases and phosphatases, and direct them to a specific submembrane site to coordinate signaling events. AKAP150, a rodent ortholog of human AKAP79, has been extensively studied in neurons, but very little is known about the localization and function of AKAP150 in astrocytes, the major cell type in brain. Thus, in this study, we assessed the localization of AKAP150 in astrocytes and elucidated its role during physiological and ischemic conditions. Herein, we demonstrate that AKAP150 is localized in astrocytes and is up-regulated during ischemia both in vitro and in vivo. Knock-down of AKAP150 by RNAi depolarizes the astrocytic membrane potential and substantially reduces by 80% the ability of astrocytes to take up extracellular potassium during ischemic conditions. Therefore, upregulation of AKAP150 during ischemia preserves potassium conductance and the associated hyperpolarized membrane potential of astrocytes; properties of astrocytes needed to maintain extracellular brain homeostasis. Taken together, these data suggest that AKAP150 may play a pivotal role in the neuroprotective mechanism of astrocytes during pathological conditions.
Collapse
Affiliation(s)
- Aixa F Rivera-Pagán
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, United States
| | - Miguel P Méndez-González
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, United States; University of Puerto Rico, Natural Sciences Department, Aguadilla, PR, United States
| | - David E Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, United States
| | | | | | - Astrid Zayas-Santiago
- Department of Pathology and Laboratory Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| | | | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology of the National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Serguei N Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, United States; Department of Physiology, Universidad Central del Caribe, Bayamón, PR, United States.
| | - Misty J Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, United States.
| |
Collapse
|
6
|
Haddad JF, Yang Y, Yeung S, Couture JF. Recognizing asymmetry in pseudo-symmetry; structural insights into the interaction between amphipathic α-helices and X-bundle proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1605-1612. [PMID: 28652208 DOI: 10.1016/j.bbapap.2017.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/14/2017] [Accepted: 06/21/2017] [Indexed: 11/27/2022]
Abstract
An α-helix bundle is a small and compact protein fold always composed of more than 2 α-helices that typically run nearly parallel or antiparallel to each other. The repertoire of arrangements of α-helix bundle is such that these domains bind to a myriad of molecular entities including DNA, RNA, proteins and small molecules. A special instance of α-helical bundle is the X-type in which the arrangement of two α-helices interact at 45° to form an X. Among those, some X-helix bundle proteins bind to the hydrophobic section of an amphipathic α-helix in a seemingly orientation and sequence specific manner. In this review, we will compare the binding mode of amphipathic α-helices to X-helix bundle and α-helical bundle proteins. From these structures, we will highlight potential regulatory paradigms that may control the specific interactions of X-helix bundle proteins to amphipathic α-helices. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- John Faissal Haddad
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Yidai Yang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sylvain Yeung
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
7
|
Das Banerjee T, Dagda RY, Dagda M, Chu CT, Rice M, Vazquez-Mayorga E, Dagda RK. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA. J Neurochem 2017; 142:545-559. [PMID: 28556983 DOI: 10.1111/jnc.14083] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity.
Collapse
Affiliation(s)
- Tania Das Banerjee
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Raul Y Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Monica Rice
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Emmanuel Vazquez-Mayorga
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.,Department of Biomedical Sciences, Universidad Autonoma de Ciudad Juarez, Cd. Juarez, Mexico
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
8
|
Gorshkov K, Mehta S, Ramamurthy S, Ronnett GV, Zhou FQ, Zhang J. AKAP-mediated feedback control of cAMP gradients in developing hippocampal neurons. Nat Chem Biol 2017; 13:425-431. [PMID: 28192412 PMCID: PMC5362298 DOI: 10.1038/nchembio.2298] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 01/06/2023]
Abstract
Cyclic AMP (cAMP) and protein kinase A (PKA), classical examples of spatially compartmentalized signaling molecules, are critical axon determinants that regulate neuronal polarity and axon formation, yet little is known about micro-compartmentalization of cAMP and PKA signaling and its role in developing neurons. Here, we revealed that cAMP forms a gradient in developing hippocampal neurons, with higher cAMP levels in more distal regions of the axon compared to other regions of the cell. Interestingly, this cAMP gradient changed according to the developmental stage and depended on proper anchoring of PKA by A-kinase anchoring proteins (AKAPs). Disrupting PKA anchoring to AKAPs increased the cAMP gradient in early-stage neurons and led to enhanced axon elongation. Our results provide new evidence for a local negative feedback loop, assembled by AKAPs, for the precise control of a growth-stage-dependent cAMP gradient to ensure proper axon growth.
Collapse
Affiliation(s)
- Kirill Gorshkov
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Santosh Ramamurthy
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabriele V Ronnett
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Neurology and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Feng-Quan Zhou
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatr Res 2016; 80:110-8. [PMID: 27027723 PMCID: PMC5105330 DOI: 10.1038/pr.2016.36] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Fibrolamellar hepatocellular carcinoma (FL-HCC) affects children without underlying liver disease. A consistent mutation in FL-HCCs leads to fusion of the genes encoding a heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PRKACA). We sought to characterize the resultant chimeric protein and its effects in FL-HCC. METHODS The expression pattern and subcellular localization of protein kinase A (PKA) subunits in FL-HCCs were compared to paired normal livers by quantitative polymerase chain reaction (qPCR), immunoblotting, and immunofluorescence. PKA activity was measured by radioactive kinase assay, and we determined whether the FL-HCC mutation is present in other primary liver tumors. RESULTS The fusion transcript and chimeric protein were detected exclusively in FL-HCCs. DNAJB1-PRKACA was expressed 10-fold higher than the wild-type PRKACA transcript, resulting in overexpression of the mutant protein in tumors. Consequently, FL-HCCs possess elevated cAMP-stimulated PKA activity compared to normal livers, despite similar Kms between the mutant and wild-type kinases. CONCLUSION FL-HCCs in children and young adults uniquely overexpress DNAJB1-PRKACA, which results in elevated cAMP-dependent PKA activity. These data suggest that aberrant PKA signaling contributes to liver tumorigenesis.
Collapse
|
10
|
Thakkar A, Aljameeli A, Thomas S, Shah GV. A-kinase anchoring protein 2 is required for calcitonin-mediated invasion of cancer cells. Endocr Relat Cancer 2016; 23:1-14. [PMID: 26432469 PMCID: PMC4734633 DOI: 10.1530/erc-15-0425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2015] [Indexed: 12/20/2022]
Abstract
Expression of neuropeptide calcitonin (CT) and its receptor (CTR) is frequently elevated in prostate cancers (PCs) and activation of CT-CTR axis in non-invasive PC cells induces an invasive phenotype. Specific, cell-permeable inhibitors of protein kinase A abolish CTR-stimulated invasion of PC cells. Since PKA is ubiquitously distributed in cells, the present study examined the mechanism(s) by which CTR-stimulated PKA activity is regulated in time and space. CT reduced cell adhesion but increased invasion of PC cells. Both these actions were abolished by st-Ht31 inhibitory peptide suggesting the involvement of an A-kinase anchoring protein (AKAP) in CT action. Next, we identified the AKAP associated with CT action by the subtraction of potential AKAP candidates using siRNAs. Knock-down of membrane-associated AKAP2, but not other AKAPs, abolished CT-stimulated invasion. Stable knock-down of AKAP2 in PC3-CTR cells remarkably decreased their cell proliferation, invasion, clonogenicity and ability to form orthotopic tumors and distant metastases in nude mice. Re-expression of AKAP2-wt restored these characteristics. Primary PC specimens displayed remarkable upregulation of CTR/AKAP2 expression as compared to benign prostates. Metastatic cancers displayed significantly higher CTR/AKAP2 expression than localized cancers. These results for the first time demonstrate that AKAP2 is expressed in human prostates, its expression is elevated in metastatic prostate cancer, and the knock-down of its expression remarkably decreased tumorigenicity and metastatic ability of prostate cancer cells. AKAP2 may serve as a critical component of CTR-mediated oncogenic actions.
Collapse
Affiliation(s)
- Arvind Thakkar
- PharmacologyCollege of Pharmacy, University of Louisiana, Monroe, Louisiana 71291, USA
| | - Ahmed Aljameeli
- PharmacologyCollege of Pharmacy, University of Louisiana, Monroe, Louisiana 71291, USA
| | - Shibu Thomas
- PharmacologyCollege of Pharmacy, University of Louisiana, Monroe, Louisiana 71291, USA
| | - Girish V Shah
- PharmacologyCollege of Pharmacy, University of Louisiana, Monroe, Louisiana 71291, USA
| |
Collapse
|
11
|
Rinaldi L, Sepe M, Donne RD, Feliciello A. A dynamic interface between ubiquitylation and cAMP signaling. Front Pharmacol 2015; 6:177. [PMID: 26388770 PMCID: PMC4559665 DOI: 10.3389/fphar.2015.00177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
Phosphorylation waves drive the propagation of signals generated in response to hormones and growth factors in target cells. cAMP is an ancient second messenger implicated in key biological functions. In mammals, most of the effects elicited by cAMP are mediated by protein kinase A (PKA). Activation of the kinase by cAMP results in the phosphorylation of a variety of cellular substrates, leading to differentiation, proliferation, survival, metabolism. The identification of scaffold proteins, namely A-Kinase Anchor proteins (AKAPs), that localize PKA in specific cellular districts, provided critical cues for our understanding of the role played by cAMP in cell biology. Multivalent complexes are assembled by AKAPs and include signaling enzymes, mRNAs, adapter molecules, receptors and ion channels. A novel development derived from the molecular analysis of these complexes nucleated by AKAPs is represented by the presence of components of the ubiquitin-proteasome system (UPS). More to it, the AKAP complex can be regulated by the UPS, eliciting relevant effects on downstream cAMP signals. This represents a novel, yet previously unpredicted interface between compartmentalized signaling and the UPS. We anticipate that impairment of these regulatory mechanisms could promote cell dysfunction and disease. Here, we will focus on the reciprocal regulation between cAMP signaling and UPS, and its relevance to human degenerative and proliferative disorders.
Collapse
Affiliation(s)
- Laura Rinaldi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II , Naples, Italy
| | - Maria Sepe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II , Naples, Italy
| | - Rossella Delle Donne
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II , Naples, Italy
| | - Antonio Feliciello
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II , Naples, Italy
| |
Collapse
|
12
|
Nishimura T, Sugiura K, Naito K. A-kinase anchor protein 1 (AKAP1) regulates cAMP-dependent protein kinase (PKA) localization and is involved in meiotic maturation of porcine oocytes. Biol Reprod 2013; 88:85. [PMID: 23426434 DOI: 10.1095/biolreprod.112.106351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In mammalian oocytes, cAMP-dependent protein kinase (PKA) has critical functions in meiotic arrest and meiotic maturation. Although subcellular localization of PKA is regulated by A-kinase anchor proteins (AKAPs) and PKA compartmentalization is essential for PKA functions, the role of AKAPs in meiotic regulation has not been fully elucidated. In the present study, we performed far-Western blot analysis using porcine PRKAR2A for detection of AKAPs and found, to our knowledge, several novel signals in porcine oocytes. Among these signals, a 150-kDa AKAP showed the major expression and was the product of porcine AKAP1. Overexpression of AKAP1 changed the PKA localization and promoted meiotic resumption of porcine oocytes even in the presence of a high concentration of cAMP, which inhibits meiotic resumption by inducing high PKA activity. On the contrary, knockdown of AKAP1 showed inhibitory effects on meiotic resumption and oocyte maturation. In addition, the expression level of AKAP1 in porcine growing oocytes, which show meiotic incompetence and PKA mislocalization, was significantly lower than that in fully grown oocytes. However, AKAP1 insufficiency was not the primary cause of the meiotic incompetence of the growing oocytes. These results suggest that the regulation of PKA localization by AKAP1 may be involved in meiotic resumption and oocyte maturation but not in meiotic incompetence of porcine growing oocytes.
Collapse
Affiliation(s)
- Takanori Nishimura
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Blant A, Czubryt MP. Promotion and inhibition of cardiac hypertrophy by A-kinase anchor proteins. Can J Physiol Pharmacol 2012; 90:1161-70. [DOI: 10.1139/y2012-032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Originally identified as mediators of cyclic adenosine monophosphate (cAMP) and protein kinase A signaling, A-kinase anchor proteins (AKAPs) are now recognized as a diverse family of molecular scaffolds capable of interacting with many other proteins. Members of the AKAP family within the heart can take on either pro- or anti-hypertrophic roles by interacting with a myriad of protein kinases and phosphatases in the process. AKAPs often form the core of large signaling complexes (or signalosomes) that allow multiple pathways to converge and functionally intertwine. Approximately 30% of AKAPs discovered to date are expressed in the heart, but the functions of many of these remain to be discovered. This review focuses on AKAPs that have been demonstrated to play roles in mediating cardiac hypertrophy.
Collapse
Affiliation(s)
- Alexandra Blant
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Michael P. Czubryt
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
14
|
Johnson KR, Nicodemus-Johnson J, Carnegie GK, Danziger RS. Molecular evolution of A-kinase anchoring protein (AKAP)-7: implications in comparative PKA compartmentalization. BMC Evol Biol 2012; 12:125. [PMID: 22834419 PMCID: PMC3508976 DOI: 10.1186/1471-2148-12-125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 07/10/2012] [Indexed: 11/10/2022] Open
Abstract
Background A-Kinase Anchoring Proteins (AKAPs) are molecular scaffolding proteins mediating the assembly of multi-protein complexes containing cAMP-dependent protein kinase A (PKA), directing the kinase in discrete subcellular locations. Splice variants from the AKAP7 gene (AKAP15/18) are vital components of neuronal and cardiac phosphatase complexes, ion channels, cardiac Ca2+ handling and renal water transport. Results Shown in evolutionary analyses, the formation of the AKAP7-RI/RII binding domain (required for AKAP/PKA-R interaction) corresponds to vertebrate-specific gene duplication events in the PKA-RI/RII subunits. Species analyses of AKAP7 splice variants shows the ancestral AKAP7 splice variant is AKAP7α, while the ancestral long form AKAP7 splice variant is AKAP7γ. Multi-species AKAP7 gene alignments, show the recent formation of AKAP7δ occurs with the loss of native AKAP7γ in rats and basal primates. AKAP7 gene alignments and two dimensional Western analyses indicate that AKAP7γ is produced from an internal translation-start site that is present in the AKAP7δ cDNA of mice and humans but absent in rats. Immunofluorescence analysis of AKAP7 protein localization in both rat and mouse heart suggests AKAP7γ replaces AKAP7δ at the cardiac sarcoplasmic reticulum in species other than rat. DNA sequencing identified Human AKAP7δ insertion-deletions (indels) that promote the production of AKAP7γ instead of AKAP7δ. Conclusions This AKAP7 molecular evolution study shows that these vital scaffolding proteins developed in ancestral vertebrates and that independent mutations in the AKAP7 genes of rodents and early primates has resulted in the recent formation of AKAP7δ, a splice variant of likely lesser importance in humans than currently described.
Collapse
Affiliation(s)
- Keven R Johnson
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | | | | | | |
Collapse
|
15
|
Kanda VA, Abbott GW. KCNE Regulation of K(+) Channel Trafficking - a Sisyphean Task? Front Physiol 2012; 3:231. [PMID: 22754540 PMCID: PMC3385356 DOI: 10.3389/fphys.2012.00231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/08/2012] [Indexed: 11/16/2022] Open
Abstract
Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners.
Collapse
Affiliation(s)
- Vikram A Kanda
- Department of Biology, Manhattan College Riverdale, New York, NY, USA
| | | |
Collapse
|
16
|
Hou T, Li Y, Wang W. Prediction of peptides binding to the PKA RIIalpha subunit using a hierarchical strategy. ACTA ACUST UNITED AC 2011; 27:1814-21. [PMID: 21586518 DOI: 10.1093/bioinformatics/btr294] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Favorable interaction between the regulatory subunit of the cAMP-dependent protein kinase (PKA) and a peptide in A-kinase anchoring proteins (AKAPs) is critical for translocating PKA to the subcellular sites where the enzyme phosphorylates its substrates. It is very hard to identify AKAPs peptides binding to PKA due to the high sequence diversity of AKAPs. RESULTS We propose a hierarchical and efficient approach, which combines molecular dynamics (MD) simulations, free energy calculations, virtual mutagenesis (VM) and bioinformatics analyses, to predict peptides binding to the PKA RIIα regulatory subunit in the human proteome systematically. Our approach successfully retrieved 15 out of 18 documented RIIα-binding peptides. Literature curation supported that many newly predicted peptides might be true AKAPs. Here, we present the first systematic search for AKAP peptides in the human proteome, which is useful to further experimental identification of AKAPs and functional analysis of their biological roles.
Collapse
Affiliation(s)
- Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | | | | |
Collapse
|
17
|
McLaughlin WA, Hou T, Taylor SS, Wang W. The identification of novel cyclic AMP-dependent protein kinase anchoring proteins using bioinformatic filters and peptide arrays. Protein Eng Des Sel 2010; 24:333-9. [PMID: 21115539 DOI: 10.1093/protein/gzq106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) localize cyclic AMP-dependent protein kinase (PKA) to specific regions in the cell and place PKA in proximity to its phosphorylation targets. A computational model was created to identify AKAPs that bind to the docking/dimerization domain of the RII alpha isoform of the regulatory subunit of PKA. The model was used to search the entire human proteome, and the top candidates were tested for an interaction using peptide array experiments. Verified interactions include sphingosine kinase interacting protein and retinoic acid-induced protein 16. These interactions highlight new signaling pathways mediated by PKA.
Collapse
Affiliation(s)
- William A McLaughlin
- Department of Basic Science, The Commonwealth Medical College, 501 Madison Avenue, Scranton, PA 18510, USA.
| | | | | | | |
Collapse
|
18
|
Gao N, Hibi Y, Cueno M, Asamitsu K, Okamoto T. A-kinase-interacting protein 1 (AKIP1) acts as a molecular determinant of PKA in NF-kappaB signaling. J Biol Chem 2010; 285:28097-104. [PMID: 20562110 DOI: 10.1074/jbc.m110.116566] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cAMP-dependent protein kinase (PKA) signaling pathway plays a crucial role in the pathogenesis of many NF-kappaB-related diseases. However, there have been controversial reports with regard to the PKA actions in the regulation of NF-kappaB activity. In this study, we have demonstrated the effect of PKA on NF-kappaB activity in view of AKIP1 action; and in 293 and HeLa cells, where the endogenous AKIP1 expression is minimal, PKA-activating agents inhibited the NF-kappaB-dependent reporter gene expression, blocked the interaction of PKAc and p65 subunit of NF-kappaB, and attenuated PKA-dependent phosphorylation of p65 on Ser-276. This inhibitory function of PKAc in NF-kappaB signaling was reversed by overexpression of AKIP1 in 293 cells. In the breast cancer cell line, MDA-MB231 cells and MCF7 cells, where the endogenous AKIP1 is abundant, the PKA signal was found to be synergized with NF-kappaB activation; PKA-activating agents enhanced NF-kappaB-dependent transcriptional activity and the interaction between p65 and PKAc and augmented the phosphorylation of p65 on Ser-276. After RNAi knockdown of AKIP1 in these breast cancer cells, we observed that PKA-activating agents antagonized NF-kappaB-dependent activation. Meanwhile, PKA inhibitor suppressed NF-kappaB-induced breast cancer cell proliferation and multiple NF-kappaB-dependent anti-apoptotic gene expression. It is likely that expression of AKIP1 determines the relationship between these two signal transduction pathways. These findings explained controversial results from various independent groups regarding the action of PKA signaling on the NF-kappaB activation cascade and suggested a possible therapeutic potential of PKA inhibitor in developing anti-cancer strategies.
Collapse
Affiliation(s)
- Nan Gao
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
19
|
Rivard RL, Birger M, Gaston KJ, Howe AK. AKAP-independent localization of type-II protein kinase A to dynamic actin microspikes. ACTA ACUST UNITED AC 2009; 66:693-709. [PMID: 19536823 DOI: 10.1002/cm.20399] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of the cyclic AMP-dependent protein kinase (PKA) in subcellular space is required for cytoskeletal dynamics and chemotaxis. Currently, spatial regulation of PKA is thought to require the association of PKA regulatory (R) subunits with A-kinase anchoring proteins (AKAPs). Here, we show that the regulatory RIIalpha subunit of PKA associates with dynamic actin microspikes in an AKAP-independent manner. Both endogenous RIIalpha and a GFP-RIIalpha fusion protein co-localize with F-actin in microspikes within hippocampal neuron growth cones and the leading edge lamellae of NG108-15 cells. Live-cell imaging demonstrates that RIIalpha-associated microspikes are highly dynamic and that the coupling of RIIalpha to actin is tight, as the movement of both actin and RIIalpha are immediately and coincidently stopped by low-dose cytochalasin D. Importantly, co-localization of RIIalpha and actin in these structures is resistant to displacement by a cell-permeable disrupter of PKA-AKAP interactions. Biochemical fractionation confirms that a substantial pool of PKA RIIalpha is associated with the detergent-insoluble cytoskeleton and is resistant to extraction by a peptide inhibitor of AKAP interactions. Finally, mutation of the AKAP-binding domain of RIIalpha fails to disrupt its association with actin microspikes. These data provide the first demonstration of the physical association of a kinase with such dynamic actin structures, as well as the first demonstration of the ability of type-II PKA to localize to discrete subcellular structures independently of canonical AKAP function. This association is likely to be important for microfilament dynamics and cell migration and may prime the investigation of novel mechanisms for localizing PKA activity.
Collapse
Affiliation(s)
- Robert L Rivard
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
20
|
Eglen RM, Reisine T. The Current Status of Drug Discovery Against the Human Kinome. Assay Drug Dev Technol 2009; 7:22-43. [DOI: 10.1089/adt.2008.164] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Richard M. Eglen
- Bio-discovery, PerkinElmer Life and Analytical Sciences, Waltham, Massachusetts
| | | |
Collapse
|
21
|
Yang W, Steen H, Freeman MR. Proteomic approaches to the analysis of multiprotein signaling complexes. Proteomics 2008; 8:832-51. [PMID: 18297654 DOI: 10.1002/pmic.200700650] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Signal transduction is one of the most active fields in modern biomedical research. Increasing evidence has shown that signaling proteins associate with each other in characteristic ways to form large signaling complexes. These diverse structures operate to boost signaling efficiency, ensure specificity and increase sensitivity of the biochemical circuitry. Traditional methods of protein analysis are inadequate to fully characterize and understand these structures, which are intricate, contain many components and are highly dynamic. Instead, proteomics technologies are currently being applied to investigate the nature and composition of multimeric signaling complexes. This review presents commonly used and potential proteomic methods of analyzing diverse protein complexes along with a discussion and a brief evaluation of alternative approaches. Challenges associated with proteomic analysis of signaling complexes are also discussed.
Collapse
Affiliation(s)
- Wei Yang
- The Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | |
Collapse
|
22
|
Human mesenchymal stem cell proliferation is regulated by PGE2 through differential activation of cAMP-dependent protein kinase isoforms. Exp Cell Res 2008; 314:1831-8. [PMID: 18395713 DOI: 10.1016/j.yexcr.2008.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/06/2008] [Accepted: 02/08/2008] [Indexed: 01/14/2023]
Abstract
The conditions used for in vitro differentiation of hMSCs contain substances that affect the activity and expression of cyclooxygenase enzymes (COX1/COX2) and thereby the synthesis of prostanoids. hMSC constitutively produce PGE2 when cultivated in vitro. In this study we have investigated effects of PGE2 on proliferation of hMSC. We here demonstrate that one of the main control molecules in the Wnt pathway, GSK-3 beta, is phosphorylated at the negative regulatory site ser-9 after treating the cells with PGE2. This phosphorylation is mediated by elevation of cAMP and subsequent activation of PKA. Furthermore, PGE2 treatment leads to enhanced nuclear translocation of beta-catenin, thus influencing cell proliferation. The presence of two PKA isoforms, types I and II, prompted us to investigate their individual contribution in PGE2-mediated regulation of proliferation. Specific activation of PKA type II with synthetic cAMP analogues, resulted in enhancement of proliferation. On the other side, we found that treatment of hMSC with high concentrations of PGE2 inhibited cell proliferation by arresting the cells in G0/G1 phase, an effect we found to be mediated by PKA I. Hence, the two different PKA isoforms seem to have opposing functions in the regulation of proliferation and differentiation in these cells.
Collapse
|
23
|
Abstract
The proper trafficking and localization of cardiac potassium channels is profoundly important to the regulation of the regionally distinct action potentials across the myocardium. These processes are only beginning to be unravelled and involve modulators of channel synthesis and assembly, post-translational processing, various molecular motors and an increasing number of modifying enzymes and molecular anchors. The roles of anchoring proteins, molecular motors and kinases are explored and recent findings on channel internalization and trafficking are presented.
Collapse
|
24
|
Gao N, Asamitsu K, Hibi Y, Ueno T, Okamoto T. AKIP1 enhances NF-kappaB-dependent gene expression by promoting the nuclear retention and phosphorylation of p65. J Biol Chem 2008; 283:7834-43. [PMID: 18178962 DOI: 10.1074/jbc.m710285200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we have identified protein kinase A-interacting protein 1 (AKIP1) as a binding partner of NF-kappaB p65 subunit, and AKIP1 enhances the NF-kappaB-mediated gene expression. AKIP1 is a nuclear protein and known to interact with the catalytic subunit of PKA (PKAc). We identified AKIP1 by a yeast two-hybrid screen using the N terminus region of p65 as bait. The interaction between AKIP1 and p65 was confirmed by glutathione S-transferase pull-down assay in vitro and immunoprecipitation-Western blotting assay in vivo. We found that the PKAc was present in the AKIP1.p65 complex and enhanced the transcriptional activity of NF-kappaB by phosphorylating p65. In a transient luciferase assay, AKIP1 cotransfection efficiently increased the transcriptional activity of NF-kappaB induced by phorbol 12-myristate 13-acetate (PMA). When AKIP1 was knocked down by RNA interference, the PMA-mediated NF-kappaB-dependent gene expression was abolished, indicating a physiological role of AKIP1. We found that PKAc, which is maintained in an inactive form by binding to IkappaBalpha and NF-kappaB in resting cells, was activated by PMA-induced signaling and could phosphorylate p65. Overexpression of AKIP1 increased the PKAc binding to p65 and enhanced the PKAc-mediated phosphorylation of p65 at Ser-276. Interestingly, this p65 phosphorylation promoted nuclear translocation of p65 and enhanced NF-kappaB transcription. In fact, we observed that AKIP1 colocalized with p65 within the cells and appeared to retain p65 in nucleus. These findings indicate a positive role of AKIP1 in NF-kappaB signaling and suggest a novel mechanism by which AKIP1 augments the transcriptional competence of NF-kappaB.
Collapse
Affiliation(s)
- Nan Gao
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
25
|
Ceccarini M, Grasso M, Veroni C, Gambara G, Artegiani B, Macchia G, Ramoni C, Torreri P, Mallozzi C, Petrucci TC, Macioce P. Association of Dystrobrevin and Regulatory Subunit of Protein Kinase A: A New Role for Dystrobrevin as a Scaffold for Signaling Proteins. J Mol Biol 2007; 371:1174-87. [PMID: 17610895 DOI: 10.1016/j.jmb.2007.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 11/15/2022]
Abstract
The dystrophin-related and -associated protein dystrobrevin is a component of the dystrophin-associated protein complex, which directly links the cytoskeleton to the extracellular matrix. It is now thought that this complex also serves as a dynamic scaffold for signaling proteins, and dystrobrevin may play a role in this context. Since dystrobrevin involvement in signaling pathways seems to be dependent on its interaction with other proteins, we sought new insights and performed a two-hybrid screen of a mouse brain cDNA library using beta-dystrobrevin, the isoform expressed in non-muscle tissues, as bait. Among the positive clones characterized after the screen, one encodes the regulatory subunit RIalpha of the cAMP-dependent protein kinase A (PKA). We confirmed the interaction by in vitro and in vivo association assays, and mapped the binding site of beta-dystrobrevin on RIalpha to the amino-terminal region encompassing the dimerization/docking domain of PKA regulatory subunit. We also found that the domain of interaction for RIalpha is contained in the amino-terminal region of beta-dystrobrevin. We obtained evidence that beta-dystrobrevin also interacts directly with RIIbeta, and that not only beta-dystrobrevin but also alpha-dystrobrevin interacts with PKA regulatory subunits. We show that both alpha and beta-dystrobrevin are specific phosphorylation substrates for PKA and that protein phosphatase 2A (PP2A) is associated with dystrobrevins. Our results suggest a new role for dystrobrevin as a scaffold protein that may play a role in different cellular processes involving PKA signaling.
Collapse
Affiliation(s)
- Marina Ceccarini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Han J, Han L, Tiwari P, Wen Z, Zheng JQ. Spatial targeting of type II protein kinase A to filopodia mediates the regulation of growth cone guidance by cAMP. ACTA ACUST UNITED AC 2007; 176:101-11. [PMID: 17200417 PMCID: PMC2063631 DOI: 10.1083/jcb.200607128] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) plays a pivotal role in axonal growth and guidance, but its downstream mechanisms remain elusive. In this study, we report that type II protein kinase A (PKA) is highly enriched in growth cone filopodia, and this spatial localization enables the coupling of cAMP signaling to its specific effectors to regulate guidance responses. Disrupting the localization of PKA to filopodia impairs cAMP-mediated growth cone attraction and prevents the switching of repulsive responses to attraction by elevated cAMP. Our data further show that PKA targets protein phosphatase-1 (PP1) through the phosphorylation of a regulatory protein inhibitor-1 (I-1) to promote growth cone attraction. Finally, we find that I-1 and PP1 mediate growth cone repulsion induced by myelin-associated glycoprotein. These findings demonstrate that the spatial localization of type II PKA to growth cone filopodia plays an important role in the regulation of growth cone motility and guidance by cAMP.
Collapse
Affiliation(s)
- Jianzhong Han
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
27
|
Reynolds JG, McCalmon SA, Tomczyk T, Naya FJ. Identification and mapping of protein kinase A binding sites in the costameric protein myospryn. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:891-902. [PMID: 17499862 PMCID: PMC1955755 DOI: 10.1016/j.bbamcr.2007.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 03/30/2007] [Accepted: 04/05/2007] [Indexed: 01/08/2023]
Abstract
Recently we identified a novel target gene of MEF2A named myospryn that encodes a large, muscle-specific, costamere-restricted alpha-actinin binding protein. Myospryn belongs to the tripartite motif (TRIM) superfamily of proteins and was independently identified as a dysbindin-interacting protein. Dysbindin is associated with alpha-dystrobrevin, a component of the dystrophin-glycoprotein complex (DGC) in muscle. Apart from these initial findings little else is known regarding the potential function of myospryn in striated muscle. Here we reveal that myospryn is an anchoring protein for protein kinase A (PKA) (or AKAP) whose closest homolog is AKAP12, also known as gravin/AKAP250/SSeCKS. We demonstrate that myospryn co-localizes with RII alpha, a type II regulatory subunit of PKA, at the peripheral Z-disc/costameric region in striated muscle. Myospryn interacts with RII alpha and this scaffolding function has been evolutionarily conserved as the zebrafish ortholog also interacts with PKA. Moreover, myospryn serves as a substrate for PKA. These findings point to localized PKA signaling at the muscle costamere.
Collapse
Affiliation(s)
- Joseph G Reynolds
- Department of Biology, Program in Cell and Molecular Biology, Boston University, 24 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The regulation of ion channels involves more than just modulation of their synthesis and kinetics, as controls on their trafficking and localization are also important. Although the body of knowledge is fairly large, the entire trafficking pathway is not known for any one channel. This review summarizes current knowledge on the trafficking of potassium channels that are expressed in the heart. Our knowledge of channel assembly, trafficking through the Golgi apparatus and on to the surface is covered, as are controls on channel surface retention and endocytosis.
Collapse
Affiliation(s)
- David F Steele
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
29
|
Gervasi N, Hepp R, Tricoire L, Zhang J, Lambolez B, Paupardin-Tritsch D, Vincent P. Dynamics of protein kinase A signaling at the membrane, in the cytosol, and in the nucleus of neurons in mouse brain slices. J Neurosci 2007; 27:2744-50. [PMID: 17360896 PMCID: PMC6672563 DOI: 10.1523/jneurosci.5352-06.2007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cAMP-dependent protein kinase A (PKA) plays a ubiquitous role in the regulation of neuronal activity, but the dynamics of its activation have been difficult to investigate. We used the genetically encoded fluorescent probe AKAR2 to record PKA activation in the cytosol and the nucleus of neurons in mouse brain slice preparations, whereas the potassium current underlying the slow afterhyperpolarization potential (sAHP) in thalamic intralaminar neurons was used to monitor PKA activation at the membrane. Adenylyl cyclase was stimulated either directly using forskolin or via activation of 5-HT7 receptors. Both stimulations produced a maximal effect on sAHP, whereas in the cytosol, the amplitude of the 5-HT7 receptor-mediated response was half of that after direct adenylyl cyclase stimulation with forskolin. 5-HT7-mediated PKA responses were obtained in 30 s at the membrane, in 2.5 min in the cytosol, and in 13 min in the nucleus. Our results show in morphologically intact mammalian neurons the potential physiological relevance of PKA signal integration at the subcellular level: neuromodulators produce fast and powerful effects on membrane excitability, consistent with a highly efficient functional coupling between adenylyl cyclases, PKA, and target channels. Phosphorylation in the cytosol is slower and of graded amplitude, showing a differential integration of the PKA signal between the membrane and the cytosol. The nucleus integrates these cytosolic signals over periods of tens of minutes, consistent with passive diffusion of the free catalytic subunit of PKA into the nucleus, eventually resulting in a graded modulation of gene expression.
Collapse
Affiliation(s)
- Nicolas Gervasi
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, and
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| | - Régine Hepp
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, and
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| | - Ludovic Tricoire
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, and
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| | - Jin Zhang
- Departments of Pharmacology and Molecular Sciences and
- Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bertrand Lambolez
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, and
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| | - Danièle Paupardin-Tritsch
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, and
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| | - Pierre Vincent
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, and
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7102, F-75005 Paris, France, and
| |
Collapse
|
30
|
Cheng A, Arumugam TV, Liu D, Khatri RG, Mustafa K, Kwak S, Ling HP, Gonzales C, Xin O, Jo DG, Guo Z, Mark RJ, Mattson MP. Pancortin-2 interacts with WAVE1 and Bcl-xL in a mitochondria-associated protein complex that mediates ischemic neuronal death. J Neurosci 2007; 27:1519-28. [PMID: 17301160 PMCID: PMC6673736 DOI: 10.1523/jneurosci.5154-06.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The actin-modulating protein Wiskott-Aldrich syndrome protein verprolin homologous-1 (WAVE1) and a novel CNS-specific protein, pancortin, are highly enriched in adult cerebral cortex, but their functions are unknown. Here we show that WAVE1 and pancortin-2 interact in a novel cell death cascade in adult, but not embryonic, cerebral cortical neurons. Focal ischemic stroke induces the formation of a protein complex that includes pancortin-2, WAVE1, and the anti-apoptotic protein Bcl-xL. The three-protein complex is associated with mitochondria resulting in increased association of Bax with mitochondria, cytochrome c release, and neuronal apoptosis. In pancortin null mice generated using a Cre-loxP system, ischemia-induced WAVE1-Bcl-xL interaction is diminished, and cortical neurons in these mice are protected against ischemic injury. Thus, pancortin-2 is a mediator of ischemia-induced apoptosis of neurons in the adult cerebral cortex and functions in a novel mitochondrial/actin-associated protein complex that sequesters Bcl-xL.
Collapse
Affiliation(s)
- Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Thiruma V. Arumugam
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Dong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Rina G. Khatri
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Khadija Mustafa
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Seung Kwak
- Neuroscience Discovery Research, Wyeth Research, Princeton, New Jersey 08543
| | - Huai-Ping Ling
- Neuroscience Discovery Research, Wyeth Research, Princeton, New Jersey 08543
| | - Cathleen Gonzales
- Neuroscience Discovery Research, Wyeth Research, Princeton, New Jersey 08543
| | - Ouyang Xin
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Dong-Gyu Jo
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
- College of Pharmacy, Sungkyunkwan University, Suwon, Korea, and
| | - Zhihong Guo
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Robert J. Mark
- Neuroscience Discovery Research, Wyeth Research, Princeton, New Jersey 08543
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
31
|
Mansuy IM, Shenolikar S. Protein serine/threonine phosphatases in neuronal plasticity and disorders of learning and memory. Trends Neurosci 2006; 29:679-86. [PMID: 17084465 DOI: 10.1016/j.tins.2006.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 07/28/2006] [Accepted: 10/19/2006] [Indexed: 01/12/2023]
Abstract
Phosphorylation and dephosphorylation of cellular proteins by protein kinases and phosphatases represent important mechanisms for controlling major biological events. In the nervous system, protein phosphatases are contained in highly dynamic complexes localized within specialized subcellular compartments and they ensure timely dephosphorylation of multiple neuronal phosphoproteins. This modulates the responsiveness of individual synapses to neural activity and controls synaptic plasticity. These enzymes in turn play a key role in many forms of learning and memory, and their dysfunction contributes to cognitive deficits associated with aging and dementias or neurodegenerative diseases. Here, we review key modes of regulation of neuronal protein serine/threonine phosphatases and their contribution to disorders of learning and memory.
Collapse
Affiliation(s)
- Isabelle M Mansuy
- Brain Research Institute, Medical Faculty of the University Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | |
Collapse
|
32
|
Rhim JH, Jang IS, Yeo EJ, Song KY, Park SC. Role of protein kinase C-dependent A-kinase anchoring proteins in lysophosphatidic acid-induced cAMP signaling in human diploid fibroblasts. Aging Cell 2006; 5:451-61. [PMID: 17081159 DOI: 10.1111/j.1474-9726.2006.00239.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Previously, we reported that lysophosphatidic acid (LPA)-induced adenosine 3',5'-cyclic monophosphate (cAMP) production by human diploid fibroblasts depends on the age of the fibroblasts. In this study, we examined the role of A-kinase anchoring proteins (AKAP) in the regulation of LPA-stimulated cAMP production in senescent fibroblasts. We found that levels of protein kinase C (PKC)-dependent AKAPs, such as Gravin and AKAP79, were elevated in senescent cells. Co-immunoprecipitation experiments revealed that Gravin and AKAP79 do not associate with adenylyl cyclase type 2 (AC2) but bind to AC4/6, which interacts with calcium-dependent PKCs alpha/beta both in young and senescent fibroblasts. When the expression of Gravin and AKAP79 was blocked by small interference RNA transfection, the basal level of cAMP was greatly reduced and the cAMP status after LPA treatment was also reversed. Protein kinase A showed a similar pattern in terms of its basal activity and LPA-dependent modulation. These data suggest that Gravin and to a lesser extent, AKAP79, may play important roles in maintaining the basal AC activity and in coupling the AC systems to inhibitory signals such as Gialpha in young cells, and to stimulatory signals such as PKCs in senescent cells. This study also demonstrates that Gravin is especially important for the long-term activation of PKC by LPA in senescent cells. We conclude that LPA-dependent increased level of cAMP in senescent human diploid fibroblasts is associated with increases in Gravin levels resulting in its increased binding with and activation of calcium-dependent PKC alpha/beta and AC4/6.
Collapse
Affiliation(s)
- Ji-Heon Rhim
- Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | | | | | | | | |
Collapse
|
33
|
Bridges D, MacDonald JA, Wadzinski B, Moorhead GBG. Identification and characterization of D-AKAP1 as a major adipocyte PKA and PP1 binding protein. Biochem Biophys Res Commun 2006; 346:351-7. [PMID: 16756943 DOI: 10.1016/j.bbrc.2006.05.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/20/2006] [Indexed: 01/17/2023]
Abstract
Protein kinase A (PKA) plays an important role in the regulation of lipid metabolism in adipocytes. The activity of PKA is known to be modulated by its specific location in the cell, a process mediated by A-kinase anchoring proteins (AKAPs). In order to examine the subcellular localization of PKA in this tissue we performed a search for AKAP proteins in adipocytes. We purified a 120 kDa protein which can bind both the regulatory subunit of PKA as well as the catalytic subunit of protein phosphatase 1 (PP1). This protein was found to be enriched in the lipid droplet fraction of primary adipocytes and was identified as D-AKAP1. This protein may play an important role in the regulation of PKA in adipocytes.
Collapse
Affiliation(s)
- Dave Bridges
- Department of Biological Sciences, University of Calgary, Calgary, Alta., Canada T2N 4N1
| | | | | | | |
Collapse
|
34
|
Inan M, Lu HC, Albright MJ, She WC, Crair MC. Barrel map development relies on protein kinase A regulatory subunit II beta-mediated cAMP signaling. J Neurosci 2006; 26:4338-49. [PMID: 16624954 PMCID: PMC6674004 DOI: 10.1523/jneurosci.3745-05.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellular and molecular mechanisms mediating the activity-dependent development of brain circuitry are still incompletely understood. Here, we examine the role of cAMP-dependent protein kinase [protein kinase A (PKA)] signaling in cortical development and plasticity, focusing on its role in thalamocortical synapse and barrel map development. We provide direct evidence that PKA activity mediates barrel map formation using knock-out mice that lack type IIbeta regulatory subunits of PKA (PKARIIbeta). We show that PKARIIbeta-mediated PKA function is required for proper dendritogenesis and the organization of cortical layer IV neurons into barrels, but not for the development and plasticity of thalamocortical afferent clustering into a barrel pattern. We localize PKARIIbeta function to postsynaptic processes in barrel cortex and show that postsynaptic PKA targets, but not presynaptic PKA targets, have decreased phosphorylation in pkar2b knock-out (PKARIIbeta(-/-)) mice. We also show that long-term potentiation at TC synapses and the associated developmental increase in AMPA receptor function at these synapses, which normally occurs as barrels form, is absent in PKARIIbeta(-/-) mice. Together, these experiments support an activity-dependent model for barrel map development in which the selective addition and elimination of thalamocortical synapses based on Hebbian mechanisms for synapse formation is mediated by a cAMP/PKA-dependent pathway that relies on PKARIIbeta function.
Collapse
|
35
|
Iriuchijima N, Sato-Harada R, Takano M, Fujio K, Sato T, Goto F, Harada A. Reduced expression of kinase-associated phosphatase in cortical dendrites of MAP2-deficient mice. Biochem Biophys Res Commun 2005; 338:1216-21. [PMID: 16257389 DOI: 10.1016/j.bbrc.2005.10.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 11/30/2022]
Abstract
We previously demonstrated that cAMP-dependent protein kinase was reduced in the dendrites of MAP2-deficient mice. In this study, we compared the expression of various protein phosphatases (PPs) between wild-type and map2(-/-) dendrites. Kinase-associated phosphatase (KAP) was the only PP which showed difference between the two phenotypes: (1) the expression of KAP was reduced in map2(-/-) cortical dendrites, and (2) the amount of KAP bound to microtubules was reduced in map2(-/-) brains. We also demonstrated in cultured neuroblastoma cells that KAP is not only expressed in dividing cells, but also in the neurites of differentiated cells. Our findings propose that KAP, which has been reported to function in cell-cycle control, has an as yet uncovered role in regulating dendritic functions. We also propose MAP2-deficient mice as an ideal system for identifying protein phosphatases essential for dendritic functions.
Collapse
Affiliation(s)
- Nobuhisa Iriuchijima
- Laboratory of Molecular Traffic, Department of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Xie H, Braha O, Gu LQ, Cheley S, Bayley H. Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. ACTA ACUST UNITED AC 2005; 12:109-20. [PMID: 15664520 DOI: 10.1016/j.chembiol.2004.11.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2004] [Revised: 11/04/2004] [Accepted: 11/05/2004] [Indexed: 11/17/2022]
Abstract
An engineered version of the staphylococcal alpha-hemolysin protein pore, bearing a peptide inhibitor near the entrance to the beta barrel, interacts with the catalytic (C) subunit of cAMP-dependent protein kinase. By monitoring the ionic current through the pore, binding events are detected at the single-molecule level. The kinetic and thermodynamic constants governing the binding interaction and the synergistic effect of MgATP are comparable but not identical to the values in bulk solution. Further, the values are strongly dependent on the applied membrane potential. Additional exploration of these findings may lead to a better understanding of the properties of enzymes at the lipid/water interface. Despite the complications, we suggest that the engineered pore might be used as a sensor element to screen inhibitors that act at either the substrate or ATP binding sites of the C subunit.
Collapse
Affiliation(s)
- Hongzhi Xie
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | | | | | |
Collapse
|
37
|
Hur EM, Park YS, Huh YH, Yoo SH, Woo KC, Choi BH, Kim KT. Junctional membrane inositol 1,4,5-trisphosphate receptor complex coordinates sensitization of the silent EGF-induced Ca2+ signaling. ACTA ACUST UNITED AC 2005; 169:657-67. [PMID: 15911880 PMCID: PMC2171708 DOI: 10.1083/jcb.200411034] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) is a highly versatile intracellular signal that regulates many different cellular processes, and cells have developed mechanisms to have exquisite control over Ca(2+) signaling. Epidermal growth factor (EGF), which fails to mobilize intracellular Ca(2+) when administrated alone, becomes capable of evoking [Ca(2+)](i) increase and exocytosis after bradykinin (BK) stimulation in chromaffin cells. Here, we provide evidence that this sensitization process is coordinated by a macromolecular signaling complex comprised of inositol 1,4,5-trisphosphate receptor type I (IP(3)R1), cAMP-dependent protein kinase (PKA), EGF receptor (EGFR), and an A-kinase anchoring protein, yotiao. The IP(3)R complex functions as a focal point to promote Ca(2+) release in two ways: (1) it facilitates PKA-dependent phosphorylation of IP(3)R1 in response to BK-induced elevation of cAMP, and (2) it couples the plasmalemmal EGFR with IP(3)R1 at the Ca(2+) store located juxtaposed to the plasma membrane. Our study illustrates how the junctional membrane IP(3)R complex connects different signaling pathways to define the fidelity and specificity of Ca(2+) signaling.
Collapse
Affiliation(s)
- Eun-Mi Hur
- National Research Laboratory of Molecular Neurophysiology, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, 790-784, South Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Buch MH, Pickard A, Rodriguez A, Gillies S, Maass AH, Emerson M, Cartwright EJ, Williams JC, Oceandy D, Redondo JM, Neyses L, Armesilla AL. The Sarcolemmal Calcium Pump Inhibits the Calcineurin/Nuclear Factor of Activated T-cell Pathway via Interaction with the Calcineurin A Catalytic Subunit. J Biol Chem 2005; 280:29479-87. [PMID: 15955804 DOI: 10.1074/jbc.m501326200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcineurin/nuclear factor of activated T-cell (NFAT) pathway represents a crucial transducer of cellular function. There is increasing evidence placing the sarcolemmal calcium pump, or plasma membrane calcium/calmodulin ATPase pump (PMCA), as a potential modulator of signal transduction pathways. We demonstrate a novel interaction between PMCA and the calcium/calmodulin-dependent phosphatase, calcineurin, in mammalian cells. The interaction domains were located to the catalytic domain of PMCA4b and the catalytic domain of the calcineurin A subunit. Endogenous calcineurin activity, assessed by measuring the transcriptional activity of its best characterized substrate, NFAT, was significantly inhibited by 60% in the presence of ectopic PMCA4b. This inhibition was notably reversed by the co-expression of the PMCA4b interaction domain, demonstrating the functional significance of this interaction. PMCA4b was, however, unable to confer its inhibitory effect in the presence of a calcium/calmodulin-independent constitutively active mutant calcineurin A suggesting a calcium/calmodulin-dependent mechanism. The modulatory function of PMCA4b is further supported by the observation that endogenous calcineurin moves from the cytoplasm to the plasma membrane when PMCA4b is overexpressed. We suggest recruitment by PMCA4b of calcineurin to a low calcium environment as a possible explanation for these findings. In summary, our results offer strong evidence for a novel functional interaction between PMCA and calcineurin, suggesting a role for PMCA as a negative modulator of calcineurin-mediated signaling pathways in mammalian cells. This study reinforces the emerging role of PMCA as a molecular organizer and regulator of signaling transduction pathways.
Collapse
Affiliation(s)
- Mamta H Buch
- Division of Cardiology, The University of Manchester, Stopford Bldg., Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Higashida H, Hoshi N, Zhang JS, Yokoyama S, Hashii M, Jin D, Noda M, Robbins J. Protein kinase C bound with A-kinase anchoring protein is involved in muscarinic receptor-activated modulation of M-type KCNQ potassium channels. Neurosci Res 2005; 51:231-4. [PMID: 15710486 DOI: 10.1016/j.neures.2004.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
The second messenger for closure of M/KCNQ potassium channels in post-ganglionic neurons and central neurons had remained as a 'mystery in the neuroscience field' for over 25 years. However, recently the details of the pathway leading from muscarinic acetylcholine receptor (mAChR)-stimulation to suppression of the M/KCNQ-current were discovered. A key molecule is A-kinase anchoring protein (AKAP; AKAP79 in human, or its rat homolog, AKAP150) which forms a trimeric complex with protein kinase C (PKC) and KCNQ channels. AKAP79 or 150 serves as an adapter that brings the anchored C-kinase to the substrate KCNQ channel to permit the rapid and 'definitive' phosphorylation of serine residues, resulting in avoidance of signal dispersion. Thus, these findings suggest that mAChR-induced short-term modulation (or memory) does occur within the already well-integrated molecular complex, without accompanying Hebbian synapse plasticity. However, before this identity is confirmed, many other modulators which affect M-currents remain to be addressed as intriguing issues.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Multiprotein signalling networks create focal points of enzyme activity that disseminate the intracellular action of many hormones and neurotransmitters. Accordingly, the spatio-temporal activation of protein kinases and phosphatases is an important factor in controlling where and when phosphorylation events occur. Anchoring proteins provide a molecular framework that orients these enzymes towards selected substrates. A-kinase anchoring proteins (AKAPs) are signal-organizing molecules that compartmentalize various enzymes that are regulated by second messengers.
Collapse
Affiliation(s)
- Wei Wong
- Howard Hughes Medical Institute/Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L-474, Portland, Oregon 97239, USA
| | | |
Collapse
|
41
|
Carnegie GK, Smith FD, McConnachie G, Langeberg LK, Scott JD. AKAP-Lbc Nucleates a Protein Kinase D Activation Scaffold. Mol Cell 2004; 15:889-99. [PMID: 15383279 DOI: 10.1016/j.molcel.2004.09.015] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 07/06/2004] [Accepted: 07/09/2004] [Indexed: 12/30/2022]
Abstract
The transmission of cellular signals often proceeds through multiprotein complexes where enzymes are positioned in proximity to their upstream activators and downstream substrates. In this report we demonstrate that the A-kinase anchoring protein AKAP-Lbc assembles an activation complex for the lipid-dependent enzyme protein kinase D (PKD). Using a combination of biochemical, enzymatic, and immunofluorescence techniques, we show that the anchoring protein contributes to PKD activation in two ways: it recruits an upstream kinase PKCeta and coordinates PKA phosphorylation events that release activated protein kinase D. Thus, AKAP-Lbc synchronizes PKA and PKC activities in a manner that leads to the activation of a third kinase. This configuration illustrates the utility of kinase anchoring as a mechanism to constrain the action of broad-spectrum enzymes.
Collapse
Affiliation(s)
- Graeme K Carnegie
- Howard Hughes Medical Institute, Vollum Institute, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
42
|
Malbon CC, Tao J, Wang HY. AKAPs (A-kinase anchoring proteins) and molecules that compose their G-protein-coupled receptor signalling complexes. Biochem J 2004; 379:1-9. [PMID: 14715081 PMCID: PMC1224059 DOI: 10.1042/bj20031648] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 12/08/2003] [Accepted: 01/09/2004] [Indexed: 11/17/2022]
Abstract
Cell signalling mediated via GPCRs (G-protein-coupled receptors) is a major paradigm in biology, involving the assembly of receptors, G-proteins, effectors and downstream elements into complexes that approach in design 'solid-state' signalling devices. Scaffold molecules, such as the AKAPs (A-kinase anchoring proteins), were discovered more than a decade ago and represent dynamic platforms, enabling multivalent signalling. AKAP79 and AKAP250 were the first to be shown to bind to membrane-embedded GPCRs, orchestrating the interactions of various protein kinases (including tyrosine kinases), protein phosphatases (e.g. calcineurin) and cytoskeletal elements with at least one member of the superfamily of GPCRs, the prototypical beta2-adrenergic receptor. In this review, the multivalent interactions of AKAP250 with the cell membrane, receptor, cytoskeleton and constituent components are detailed, providing a working model for AKAP-based GPCR signalling complexes. Dynamic regulation of the AKAP-receptor complex is mediated by ordered protein phosphorylation.
Collapse
Affiliation(s)
- Craig C Malbon
- Department of Molecular Pharmacology, University Medical Center, Stony Brook University, Stony Brook, NY 11794-8651, USA.
| | | | | |
Collapse
|
43
|
Rebois R, Allen BG, Hébert TE. The targetable G protein proteome: where is the next generation of drug targets? ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1741-8372(04)02429-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Vogalis F, Harvey JR, Furness JB. Suppression of a slow post-spike afterhyperpolarization by calcineurin inhibitors. Eur J Neurosci 2004; 19:2650-8. [PMID: 15147299 DOI: 10.1111/j.0953-816x.2004.03369.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A subset of myenteric neurons in the intestine (AH neurons) generate prolonged (>5 s) post-spike afterhyperpolarizations (slow AHPs) that are insensitive to apamin and tetraethylammonium. Generation of slow AHPs depends critically on Ca(2+) entry and intracellular release of Ca(2+) from stores, which then leads to the activation of a K(+) conductance that underlies the slow AHP (g(sAHP)). Slow AHPs are inhibited by stimulation of the cAMP/protein kinase A (PKA) pathway, suggesting that phosphorylation of the K(+)-channels that mediate the g(sAHP) (K(sAHP)-channels) is responsible for suppression of slow AHPs and possibly for the repolarization phase of slow AHPs. In the present study, we investigated the possibility that the rising phase of the slow AHP is mediated by dephosphorylation of K(sAHP)-channels by calcineurin (CaN), a Ca(2+)-calmodulin-dependent protein phosphatase, leading to an increase in g(sAHP) and activation of the associated current I(sAHP). Slow AHPs and I(sAHP) were recorded using conventional recording techniques, and we tested the actions of two inhibitors of CaN, FK506 and cyclosporin A, and also the effect of the CaN autoinhibitory peptide applied intracellularly, on these events. We report here that all three treatments inhibited the slow AHP and I(sAHP) (>70%) without significantly affecting the ability of neurons to fire action potentials. In addition, the slow AHP and I(sAHP) were suppressed by okadaic acid, an inhibitor of protein phosphatases 1 and 2A. Our results indicate that activation of the g(sAHP) that underlies the post-depolarization slow AHPs in AH neurons is mediated by the actions CaN and non-Ca(2+)-dependent phosphatases.
Collapse
Affiliation(s)
- F Vogalis
- Department of Anatomy & Cell Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | |
Collapse
|
45
|
Abstract
A growing family of endogenous inhibitors of calcineurin has been identified in recent years. These endogenous calcineurin inhibitors are throwing new light on the function and regulation of calcineurin in a wide variety of cellular processes and cell types.
Collapse
Affiliation(s)
- Jun O Liu
- Department of Pharmacology and Molecular Sciences and Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
Abstract
The targeting of phosphatase PP2B or calcineurin toward certain substrates synchronizes a variety of physiological processes. This review emphasizes how the targeting of calcineurin through interaction with various anchoring proteins facilitates phosphatase regulation of T-cell activation, neuronal excitability and cardiac hypertrophy.
Collapse
Affiliation(s)
- Kimberly L Dodge
- Howard Hughes Medical Institute, Vollum Institute, Oregon Health and Sciences University, Portland, OR, USA
| | | |
Collapse
|
47
|
Affiliation(s)
- Morgan Sheng
- The Picower Center for Learning and Memory, Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|