1
|
Chen KY, Kibayashi T, Giguelay A, Hata M, Nakajima S, Mikami N, Takeshima Y, Ichiyama K, Omiya R, Ludwig LS, Hattori K, Sakaguchi S. Genome-wide CRISPR screen in human T cells reveals regulators of FOXP3. Nature 2025:10.1038/s41586-025-08795-5. [PMID: 40140585 DOI: 10.1038/s41586-025-08795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/14/2025] [Indexed: 03/28/2025]
Abstract
Regulatory T (Treg) cells, which specifically express the master transcription factor FOXP3, have a pivotal role in maintaining immunological tolerance and homeostasis and have the potential to revolutionize cell therapies for autoimmune diseases1-3. Although stimulation of naive CD4+ T cells in the presence of TGFβ and IL-2 can induce FOXP3+ Treg cells in vitro (iTreg cells), the resulting cells are often unstable and have thus far hampered translational efforts4-6. A systematic approach towards understanding the regulatory networks that dictate Treg differentiation could lead to more effective iTreg cell-based therapies. Here we performed a genome-wide CRISPR loss-of-function screen to catalogue gene regulatory determinants of FOXP3 induction in primary human T cells and characterized their effects at single-cell resolution using Perturb-icCITE-seq. We identify the RBPJ-NCOR repressor complex as a novel, context-specific negative regulator of FOXP3 expression. RBPJ-targeted knockout enhanced iTreg differentiation and function, independent of canonical Notch signalling. Repeated cytokine and T cell receptor signalling stimulation in vitro revealed that RBPJ-deficient iTreg cells exhibit increased phenotypic stability compared with control cells through DNA demethylation of the FOXP3 enhancer CNS2, reinforcing FOXP3 expression. Conversely, overexpression of RBPJ potently suppressed FOXP3 induction through direct modulation of FOXP3 histone acetylation by HDAC3. Finally, RBPJ-ablated human iTreg cells more effectively suppressed xenogeneic graft-versus-host disease than control iTreg cells in a humanized mouse model. Together, our findings reveal novel regulators of FOXP3 and point towards new avenues to improve the efficacy of adoptive cell therapy for autoimmune disease.
Collapse
Affiliation(s)
- Kelvin Y Chen
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | - Tatsuya Kibayashi
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Ambre Giguelay
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Mayu Hata
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shunsuke Nakajima
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Takeshima
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kenji Ichiyama
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryusuke Omiya
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Leif S Ludwig
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Kunihiro Hattori
- Joint Research Chair of Innovative Drug Discovery in Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Department of Experimental Pathology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Dai Q, Preusse K, Yu D, Kovall RA, Thorner K, Lin X, Kopan R. Loss of Notch dimerization perturbs intestinal homeostasis by a mechanism involving HDAC activity. PLoS Genet 2024; 20:e1011486. [PMID: 39666740 DOI: 10.1371/journal.pgen.1011486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/26/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
A tri-protein complex containing NICD, RBPj and MAML1 binds DNA as monomer or as cooperative dimers to regulate transcription. Mice expressing Notch dimerization-deficient alleles (NDD) of Notch1 and Notch2 are sensitized to environmental insults but otherwise develop and age normally. Transcriptomic analysis of colonic spheroids uncovered no evidence of dimer-dependent target gene miss-regulation, confirmed impaired stem cell maintenance in-vitro, and discovered an elevated signature of epithelial innate immune response to symbionts, a likely underlying cause for heightened sensitivity in NDD mice. TurboID followed by quantitative nano-spray MS/MS mass-spectrometry analyses in a human colon carcinoma cell line expressing either NOTCH2DD or NOTCH2 revealed an unbalanced interactome, with reduced interaction of NOTCH2DD with the transcription machinery but relatively preserved interaction with the HDAC2 interactome suggesting modulation via cooperativity. To ask if HDAC2 activity contributes to Notch loss-of-function phenotypes, we used the HDAC2 inhibitor Valproic acid (VPA) and discovered it could prevent the intestinal consequences of NDD and gamma secretase inhibitors (DBZ or DAPT) treatment in mice and spheroids, suggesting synergy between HDAC activity and pro-differentiation program in intestinal stem cells.
Collapse
Affiliation(s)
- Quanhui Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kristina Preusse
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Danni Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Konrad Thorner
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
3
|
Robeson M, Goudy SL, Davis ME. Differential Effects of Four Canonical Notch-Activating Ligands on c-Kit+ Cardiac Progenitor Cells. Int J Mol Sci 2024; 25:11182. [PMID: 39456964 PMCID: PMC11508355 DOI: 10.3390/ijms252011182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Notch signaling, an important signaling pathway in cardiac development, has been shown to mediate the reparative functions of c-kit+ progenitor cells (CPCs). However, it is unclear how each of the four canonical Notch-activating ligands affects intracellular processes in c-kit+ cells when used as an external stimulus. Neonatal c-kit+ CPCs were stimulated using four different chimeric Notch-activating ligands tethered to Dynabeads, and the resulting changes were assessed using TaqMan gene expression arrays, with subsequent analysis by principal component analysis (PCA). Additionally, functional outcomes were measured using an endothelial cell tube formation assay and MSC migration assay to assess the paracrine capacity to stimulate new vessel formation and recruit other reparative cell types to the site of injury. Gene expression data showed that stimulation with Jagged-1 is associated with the greatest pro-angiogenic gene response, including the expression of VEGF and basement membrane proteins, while the other canonical ligands, Jagged-2, Dll-1, and Dll-4, are more associated with regulatory and epigenetic changes. The functional assay showed differential responses to the four ligands in terms of angiogenesis, while none of the ligands produced a robust change in migration. These data demonstrate how the four Notch-activating ligands differentially regulate CPC gene expression and function.
Collapse
Affiliation(s)
- Matthew Robeson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| | - Steven L. Goudy
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA 30322, USA;
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
- Children’s Heart Research and Outcomes (HeRO) Center, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Zhao Y, Wang G, Wei Z, Li D, Morshedi M. RETRACTED ARTICLE: Wnt, notch signaling and exercise: what are their functions? Hum Cell 2024; 37:1612. [PMID: 38386243 DOI: 10.1007/s13577-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Yijie Zhao
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Guangjun Wang
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Zhifeng Wei
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Duo Li
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | | |
Collapse
|
5
|
Ito T. Molecular pathology of small cell lung cancer: Overview from studies on neuroendocrine differentiation regulated by ASCL1 and Notch signaling. Pathol Int 2024; 74:239-251. [PMID: 38607250 DOI: 10.1111/pin.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Pulmonary neuroendocrine (NE) cells are rare airway epithelial cells. The balance between Achaete-scute complex homolog 1 (ASCL1) and hairy and enhancer of split 1, one of the target molecules of the Notch signaling pathway, is crucial for NE differentiation. Small cell lung cancer (SCLC) is a highly aggressive lung tumor, characterized by rapid cell proliferation, a high metastatic potential, and the acquisition of resistance to treatment. The subtypes of SCLC are defined by the expression status of NE cell-lineage transcription factors, such as ASCL1, which roles are supported by SRY-box 2, insulinoma-associated protein 1, NK2 homeobox 1, and wingless-related integration site signaling. This network reinforces NE differentiation and may induce the characteristic morphology and chemosensitivity of SCLC. Notch signaling mediates cell-fate decisions, resulting in an NE to non-NE fate switch. The suppression of NE differentiation may change the histological type of SCLC to a non-SCLC morphology. In SCLC with NE differentiation, Notch signaling is typically inactive and genetically or epigenetically regulated. However, Notch signaling may be activated after chemotherapy, and, in concert with Yes-associated protein signaling and RE1-silencing transcription factor, suppresses NE differentiation, producing intratumor heterogeneity and chemoresistance. Accumulated information on the molecular mechanisms of SCLC will contribute to further advances in the control of this recalcitrant cancer.
Collapse
Grants
- 20H03691 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 18K19489 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 16590318 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 25460439 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- Smoking Research Foundation, Japan
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Medical Technology, Kumamoto Health Science University Faculty of Health Sciences, Kumamoto, Japan
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Torres HM, Fang F, May DG, Bosshardt P, Hinojosa L, Roux KJ, Tao J. Comprehensive analysis of the proximity-dependent nuclear interactome for the oncoprotein NOTCH1 in live cells. J Biol Chem 2024; 300:105522. [PMID: 38043798 PMCID: PMC10788534 DOI: 10.1016/j.jbc.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
Notch signaling plays a critical role in cell fate decisions in all cell types. Furthermore, gain-of-function mutations in NOTCH1 have been uncovered in many human cancers. Disruption of Notch signaling has recently emerged as an attractive disease treatment strategy. However, the nuclear interaction landscape of the oncoprotein NOTCH1 remains largely unexplored. We therefore employed here a proximity-dependent biotin identification approach to identify in vivo protein associations with the nuclear Notch1 intracellular domain in live cells. We identified a large set of previously reported and unreported proteins that associate with NOTCH1, including general transcription and elongation factors, DNA repair and replication factors, coactivators, corepressors, and components of the NuRD and SWI/SNF chromatin remodeling complexes. We also found that Notch1 intracellular domain associates with protein modifiers and components of other signaling pathways that may influence Notch signal transduction and protein stability such as USP7. We further validated the interaction of NOTCH1 with histone deacetylase 1 or GATAD2B using protein network analysis, proximity-based ligation, in vivo cross-linking and coimmunoprecipitation assays in several Notch-addicted cancer cell lines. Through data mining, we also revealed potential drug targets for the inhibition of Notch signaling. Collectively, these results provide a valuable resource to uncover the mechanisms that fine-tune Notch signaling in tumorigenesis and inform therapeutic targets for Notch-addicted tumors.
Collapse
Affiliation(s)
- Haydee M Torres
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| | - Fang Fang
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Danielle G May
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Paige Bosshardt
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Leetoria Hinojosa
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Jianning Tao
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA.
| |
Collapse
|
7
|
Alam J, Huda MN, Tackett AJ, Miah S. Oncogenic signaling-mediated regulation of chromatin during tumorigenesis. Cancer Metastasis Rev 2023; 42:409-425. [PMID: 37147457 PMCID: PMC10348982 DOI: 10.1007/s10555-023-10104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Signaling pathways play critical roles in executing and controlling important biological processes within cells. Cells/organisms trigger appropriate signal transduction pathways in order to turn on or off intracellular gene expression in response to environmental stimuli. An orchestrated regulation of different signaling pathways across different organs and tissues is the basis of many important biological functions. Presumably, any malfunctions or dysregulation of these signaling pathways contribute to the pathogenesis of disease, particularly cancer. In this review, we discuss how the dysregulation of signaling pathways (TGF-β signaling, Hippo signaling, Wnt signaling, Notch signaling, and PI3K-AKT signaling) modulates chromatin modifications to regulate the epigenome, thereby contributing to tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Jahangir Alam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Md Nazmul Huda
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sayem Miah
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
8
|
Jiang H, Bian W, Sui Y, Li H, Zhao H, Wang W, Li X. FBXO42 facilitates Notch signaling activation and global chromatin relaxation by promoting K63-linked polyubiquitination of RBPJ. SCIENCE ADVANCES 2022; 8:eabq4831. [PMID: 36129980 PMCID: PMC9491713 DOI: 10.1126/sciadv.abq4831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 05/28/2023]
Abstract
Dysregulation of the Notch-RBPJ (recombination signal-binding protein of immunoglobulin kappa J region) signaling pathway has been found associated with various human diseases including cancers; however, precisely how this key signaling pathway is fine-tuned via its interactors and modifications is still largely unknown. In this study, using a proteomic approach, we identified F-box only protein 42 (FBXO42) as a previously unidentified RBPJ interactor. FBXO42 promotes RBPJ polyubiquitination on lysine-175 via lysine-63 linkage, which enhances the association of RBPJ with chromatin remodeling complexes and induces a global chromatin relaxation. Genetically depleting FBXO42 or pharmacologically targeting its E3 ligase activity attenuates the Notch signaling-related leukemia development in vivo. Together, our findings not only revealed FBXO42 as a critical regulator of the Notch pathway by modulating RBPJ-dependent global chromatin landscape changes but also provided insights into the therapeutic intervention of the Notch pathway for leukemia treatment.
Collapse
Affiliation(s)
- Hua Jiang
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Weixiang Bian
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Yue Sui
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Huanle Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Han Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Xu Li
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
9
|
Hsu CC, Serio A, Gopal S, Gelmi A, Chiappini C, Desai RA, Stevens MM. Biophysical Regulations of Epigenetic State and Notch Signaling in Neural Development Using Microgroove Substrates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32773-32787. [PMID: 35830496 PMCID: PMC9335410 DOI: 10.1021/acsami.2c01996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A number of studies have recently shown how surface topography can alter the behavior and differentiation patterns of different types of stem cells. Although the exact mechanisms and molecular pathways involved remain unclear, a consistent portion of the literature points to epigenetic changes induced by nuclear remodeling. In this study, we investigate the behavior of clinically relevant neural populations derived from human pluripotent stem cells when cultured on polydimethylsiloxane microgrooves (3 and 10 μm depth grooves) to investigate what mechanisms are responsible for their differentiation capacity and functional behavior. Our results show that microgrooves enhance cell alignment, modify nuclear geometry, and significantly increase cellular stiffness, which we were able to measure at high resolution with a combination of light and electron microscopy, scanning ion conductance microscopy (SICM), and atomic force microscopy (AFM) coupled with quantitative image analysis. The microgrooves promoted significant changes in the epigenetic landscape, as revealed by the expression of key histone modification markers. The main behavioral change of neural stem cells on microgrooves was an increase of neuronal differentiation under basal conditions on the microgrooves. Through measurements of cleaved Notch1 levels, we found that microgrooves downregulate Notch signaling. We in fact propose that microgroove topography affects the differentiation potential of neural stem cells by indirectly altering Notch signaling through geometric segregation and that this mechanism in parallel with topography-dependent epigenetic modulations acts in concert to enhance stem cell neuronal differentiation.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Andrea Serio
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Sahana Gopal
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Amy Gelmi
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Ciro Chiappini
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Ravi A. Desai
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Molly M. Stevens
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| |
Collapse
|
10
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
11
|
Zhang K, Wang J, Zhu Y, Liu X, Li J, Shi Z, Cao M, Li Y. Identification of Hub Genes Associated With the Development of Stomach Adenocarcinoma by Integrated Bioinformatics Analysis. Front Oncol 2022; 12:844990. [PMID: 35686089 PMCID: PMC9170954 DOI: 10.3389/fonc.2022.844990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study was conducted in order to gain a better understanding of the molecular mechanisms of stomach adenocarcinoma (STAD), which is necessary to predict the prognosis of STAD and develop novel gene therapy strategies. Methods In this study, the gene expression profile of GSE118916 in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas Program (TCGA) was used to explore the differential co-expression genes of STAD and normal tissues. Results A total of 407 STAD samples were collected, consisting of 375 from stomach adenocarcinoma tissues and 32 from normal tissues, as well as RNA-seq count data for 19,600 genes. Forty-two differentially expressed genes were screened by weighted gene co-expression network analysis (WGCNA) and differentially expressed gene analysis. According to the functional annotation analysis of the clusterProfiler R package, these genes were analyzed for GO function enrichment, digestion (biological process), tube bottom material membrane (cell component), and oxidoreductase activity (molecular function). The KEGG pathway was enriched in gastric acid secretion and chemical carcinogenesis. In addition, Cytoscape's cytoHubba plug-in was used to identify seven hub genes (EWSR1, ESR1, CLTC, PCMT1, TP53, HUWE1, and HDAC1) in a protein-protein interaction (PPI) network consisting of 7 nodes and 11 edges. Compared with normal tissues, CLTC and TP53 genes were upregulated in stomach adenocarcinoma (P < 0.05). TP53 was expressed differently in stages II and IV, EWSR1 was expressed differently in stages II and III, and ESR1 was expressed differently in stages I-III. Among the seven hub genes, Kaplan-Meier analysis and TCGG showed that the expression levels of HDAC1 and CLTC were significantly correlated with OS in patients with stomach adenocarcinoma (P < 0.05). GEPIA2 analysis showed that ESR1 expression was closely correlated with OS and DFS in gastric adenocarcinoma (P < 0.05). Then, the expression of the genes and their correlations were revealed by the R2 Platform (http://r2.amc.nl). Finally, we collected 18 pairs of gastric mucosal tissues from normal people and cancer tissues from patients with stomach adenocarcinoma. The expression levels of the above seven hub genes and their relative protein expression were detected by RT-PCR and immunohistochemistry (IHC). The results showed that the gene and protein expression levels in stomach adenocarcinoma tissues were increased than those in the normal group. Conclusion In summary, we believe that the identified hub genes were related to the occurrence of stomach adenocarcinoma, especially the expression of ESR1, HDAC1, and CLTC genes, which are related to the prognosis and overall survival of patients and may become the potential for the future diagnosis and treatment of STAD.
Collapse
Affiliation(s)
- Kehui Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YingYing Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengxing Cao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Tao B, Hu H, Chen J, Chen L, Luo D, Sun Y, Ge F, Zhu Z, Trudeau VL, Hu W. Sinhcaf‐dependent histone deacetylation is essential for primordial germ cell specification. EMBO Rep 2022; 23:e54387. [PMID: 35532311 PMCID: PMC9171691 DOI: 10.15252/embr.202154387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Primordial germ cells (PGCs) are the progenitor cells that give rise to sperm and eggs. Sinhcaf is a recently identified subunit of the Sin3 histone deacetylase complex (SIN3A-HDAC). Here, we provide evidence that Sinhcaf-dependent histone deacetylation is essential for germ plasm aggregation and primordial germ cell specification. Specifically, maternal-zygotic sinhcaf zebrafish mutants exhibit germ plasm aggregation defects, decreased PGC abundance and male-biased sex ratio, which can be rescued by re-expressing sinhcaf. Overexpression of sinhcaf results in excess PGCs and a female-biased sex ratio. Sinhcaf binds to the promoter region of kif26ab. Loss of sinhcaf epigenetically switches off kif26ab expression by increasing histone 3 acetylation in the promoter region. Injection of kif26ab mRNA could partially rescue the germ plasm aggregation defects in sinhcaf mutant embryos. Taken together, we demonstrate a role of Sinhcaf in germ plasm aggregation and PGC specialization that is mediated by regulating the histone acetylation status of the kif26ab promoter to activate its transcription. Our findings provide novel insights into the function and regulatory mechanisms of Sinhcaf-mediated histone deacetylation in PGC specification.
Collapse
Affiliation(s)
- Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Hongling Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Lu Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
- Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
13
|
Campbell LJ, Levendusky JL, Steines SA, Hyde DR. Retinal regeneration requires dynamic Notch signaling. Neural Regen Res 2021; 17:1199-1209. [PMID: 34782554 PMCID: PMC8643038 DOI: 10.4103/1673-5374.327326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal damage in the adult zebrafish induces Müller glia reprogramming to produce neuronal progenitor cells that proliferate and differentiate into retinal neurons. Notch signaling, which is a fundamental mechanism known to drive cell-cell communication, is required to maintain Müller glia in a quiescent state in the undamaged retina, and repression of Notch signaling is necessary for Müller glia to reenter the cell cycle. The dynamic regulation of Notch signaling following retinal damage also directs proliferation and neurogenesis of the Müller glia-derived progenitor cells in a robust regeneration response. In contrast, mammalian Müller glia respond to retinal damage by entering a prolonged gliotic state that leads to additional neuronal death and permanent vision loss. Understanding the dynamic regulation of Notch signaling in the zebrafish retina may aid efforts to stimulate Müller glia reprogramming for regeneration of the diseased human retina. Recent findings identified DeltaB and Notch3 as the ligand-receptor pair that serves as the principal regulators of zebrafish Müller glia quiescence. In addition, multiomics datasets and functional studies indicate that additional Notch receptors, ligands, and target genes regulate cell proliferation and neurogenesis during the regeneration time course. Still, our understanding of Notch signaling during retinal regeneration is limited. To fully appreciate the complex regulation of Notch signaling that is required for successful retinal regeneration, investigation of additional aspects of the pathway, such as post-translational modification of the receptors, ligand endocytosis, and interactions with other fundamental pathways is needed. Here we review various modes of Notch signaling regulation in the context of the vertebrate retina to put recent research in perspective and to identify open areas of inquiry.
Collapse
Affiliation(s)
- Leah J Campbell
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Jaclyn L Levendusky
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Shannon A Steines
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
14
|
Martinez Lyons A, Boulter L. The developmental origins of Notch-driven intrahepatic bile duct disorders. Dis Model Mech 2021; 14:dmm048413. [PMID: 34549776 PMCID: PMC8480193 DOI: 10.1242/dmm.048413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Notch signaling pathway is an evolutionarily conserved mechanism of cell-cell communication that mediates cellular proliferation, cell fate specification, and maintenance of stem and progenitor cell populations. In the vertebrate liver, an absence of Notch signaling results in failure to form bile ducts, a complex tubular network that radiates throughout the liver, which, in healthy individuals, transports bile from the liver into the bowel. Loss of a functional biliary network through congenital malformations during development results in cholestasis and necessitates liver transplantation. Here, we examine to what extent Notch signaling is necessary throughout embryonic life to initiate the proliferation and specification of biliary cells and concentrate on the animal and human models that have been used to define how perturbations in this signaling pathway result in developmental liver disorders.
Collapse
Affiliation(s)
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
| |
Collapse
|
15
|
Edwards A, Brennan K. Notch Signalling in Breast Development and Cancer. Front Cell Dev Biol 2021; 9:692173. [PMID: 34295896 PMCID: PMC8290365 DOI: 10.3389/fcell.2021.692173] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The Notch signalling pathway is a highly conserved developmental signalling pathway, with vital roles in determining cell fate during embryonic development and tissue homeostasis. Aberrant Notch signalling has been implicated in many disease pathologies, including cancer. In this review, we will outline the mechanism and regulation of the Notch signalling pathway. We will also outline the role Notch signalling plays in normal mammary gland development and how Notch signalling is implicated in breast cancer tumorigenesis and progression. We will cover how Notch signalling controls several different hallmarks of cancer within epithelial cells with sections focussed on its roles in proliferation, apoptosis, invasion, and metastasis. We will provide evidence for Notch signalling in the breast cancer stem cell phenotype, which also has implications for therapy resistance and disease relapse in breast cancer patients. Finally, we will summarise the developments in therapeutic targeting of Notch signalling, and the pros and cons of this approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Abigail Edwards
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Keith Brennan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Giaimo BD, Robert-Finestra T, Oswald F, Gribnau J, Borggrefe T. Chromatin Regulator SPEN/SHARP in X Inactivation and Disease. Cancers (Basel) 2021; 13:cancers13071665. [PMID: 33916248 PMCID: PMC8036811 DOI: 10.3390/cancers13071665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Carcinogenesis is a multistep process involving not only the activation of oncogenes and disabling tumor suppressor genes, but also epigenetic modulation of gene expression. X chromosome inactivation (XCI) is a paradigm to study heterochromatin formation and maintenance. The double dosage of X chromosomal genes in female mammals is incompatible with early development. XCI is an excellent model system for understanding the establishment of facultative heterochromatin initiated by the expression of a 17,000 nt long non-coding RNA, known as Xinactivespecifictranscript (Xist), on the X chromosome. This review focuses on the molecular mechanisms of how epigenetic modulators act in a step-wise manner to establish facultative heterochromatin, and we put these in the context of cancer biology and disease. An in depth understanding of XCI will allow a better characterization of particular types of cancer and hopefully facilitate the development of novel epigenetic therapies. Abstract Enzymes, such as histone methyltransferases and demethylases, histone acetyltransferases and deacetylases, and DNA methyltransferases are known as epigenetic modifiers that are often implicated in tumorigenesis and disease. One of the best-studied chromatin-based mechanism is X chromosome inactivation (XCI), a process that establishes facultative heterochromatin on only one X chromosome in females and establishes the right dosage of gene expression. The specificity factor for this process is the long non-coding RNA Xinactivespecifictranscript (Xist), which is upregulated from one X chromosome in female cells. Subsequently, Xist is bound by the corepressor SHARP/SPEN, recruiting and/or activating histone deacetylases (HDACs), leading to the loss of active chromatin marks such as H3K27ac. In addition, polycomb complexes PRC1 and PRC2 establish wide-spread accumulation of H3K27me3 and H2AK119ub1 chromatin marks. The lack of active marks and establishment of repressive marks set the stage for DNA methyltransferases (DNMTs) to stably silence the X chromosome. Here, we will review the recent advances in understanding the molecular mechanisms of how heterochromatin formation is established and put this into the context of carcinogenesis and disease.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| | - Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| |
Collapse
|
17
|
Bauer S, Ratz L, Heckmann-Nötzel D, Kaczorowski A, Hohenfellner M, Kristiansen G, Duensing S, Altevogt P, Klauck SM, Sültmann H. miR-449a Repression Leads to Enhanced NOTCH Signaling in TMPRSS2:ERG Fusion Positive Prostate Cancer Cells. Cancers (Basel) 2021; 13:964. [PMID: 33669024 PMCID: PMC7975324 DOI: 10.3390/cancers13050964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
About 50% of prostate cancer (PCa) tumors are TMPRSS2:ERG (T2E) fusion-positive (T2E+), but the role of T2E in PCa progression is not fully understood. We were interested in investigating epigenomic alterations associated with T2E+ PCa. Using different sequencing cohorts, we found several transcripts of the miR-449 cluster to be repressed in T2E+ PCa. This repression correlated strongly with enhanced expression of NOTCH and several of its target genes in TCGA and ICGC PCa RNA-seq data. We corroborated these findings using a cellular model with inducible T2E expression. Overexpression of miR-449a in vitro led to silencing of genes associated with NOTCH signaling (NOTCH1, HES1) and HDAC1. Interestingly, HDAC1 overexpression led to the repression of HES6, a negative regulator of the transcription factor HES1, the primary effector of NOTCH signaling, and promoted cell proliferation by repressing the cell cycle inhibitor p21. Inhibition of NOTCH as well as knockdown of HES1 reduced the oncogenic properties of PCa cell lines. Using tissue microarray analysis encompassing 533 human PCa cores, ERG-positive areas exhibited significantly increased HES1 expression. Taken together, our data suggest that an epigenomic regulatory network enhances NOTCH signaling and thereby contributes to the oncogenic properties of T2E+ PCa.
Collapse
Affiliation(s)
- Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; (S.B.); (D.H.-N.); (S.M.K.)
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Leonie Ratz
- Department of Obstetrics and Gynecology, University Hospital of Cologne, 50937 Cologne, Germany;
| | - Doreen Heckmann-Nötzel
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; (S.B.); (D.H.-N.); (S.M.K.)
- Computer Assisted Medical Interventions, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (A.K.); (S.D.)
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Glen Kristiansen
- Center for Integrated Oncology, Institute of Pathology, University of Bonn, 53127 Bonn, Germany;
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (A.K.); (S.D.)
- Department of Urology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sabine M. Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; (S.B.); (D.H.-N.); (S.M.K.)
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; (S.B.); (D.H.-N.); (S.M.K.)
| |
Collapse
|
18
|
Gnanavel M, Murugesan A, Konda Mani S, Yli-Harja O, Kandhavelu M. Identifying the miRNA Signature Association with Aging-Related Senescence in Glioblastoma. Int J Mol Sci 2021; 22:ijms22020517. [PMID: 33419230 PMCID: PMC7825621 DOI: 10.3390/ijms22020517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor and its malignant phenotypic characteristics are classified as grade IV tumors. Molecular interactions, such as protein–protein, protein–ncRNA, and protein–peptide interactions are crucial to transfer the signaling communications in cellular signaling pathways. Evidences suggest that signaling pathways of stem cells are also activated, which helps the propagation of GBM. Hence, it is important to identify a common signaling pathway that could be visible from multiple GBM gene expression data. microRNA signaling is considered important in GBM signaling, which needs further validation. We performed a high-throughput analysis using micro array expression profiles from 574 samples to explore the role of non-coding RNAs in the disease progression and unique signaling communication in GBM. A series of computational methods involving miRNA expression, gene ontology (GO) based gene enrichment, pathway mapping, and annotation from metabolic pathways databases, and network analysis were used for the analysis. Our study revealed the physiological roles of many known and novel miRNAs in cancer signaling, especially concerning signaling in cancer progression and proliferation. Overall, the results revealed a strong connection with stress induced senescence, significant miRNA targets for cell cycle arrest, and many common signaling pathways to GBM in the network.
Collapse
Affiliation(s)
- Mutharasu Gnanavel
- BioMediTech Institute, Faculty of Medicine and Health Technology, Tampere University, ArvoYlpönkatu 34, 33520 Tampere, Finland; (M.G.); (A.M.); (O.Y.-H.)
| | - Akshaya Murugesan
- BioMediTech Institute, Faculty of Medicine and Health Technology, Tampere University, ArvoYlpönkatu 34, 33520 Tampere, Finland; (M.G.); (A.M.); (O.Y.-H.)
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Saravanan Konda Mani
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Olli Yli-Harja
- BioMediTech Institute, Faculty of Medicine and Health Technology, Tampere University, ArvoYlpönkatu 34, 33520 Tampere, Finland; (M.G.); (A.M.); (O.Y.-H.)
- Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland
- Institute for Systems Biology, 1441N 34th Street, Seattle, WA 98109, USA
| | - Meenakshisundaram Kandhavelu
- BioMediTech Institute, Faculty of Medicine and Health Technology, Tampere University, ArvoYlpönkatu 34, 33520 Tampere, Finland; (M.G.); (A.M.); (O.Y.-H.)
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland
- Science Center, Tampere University Hospital, ArvoYlpönkatu 34, 33520 Tampere, Finland
- Correspondence:
| |
Collapse
|
19
|
Brenner M, Messing A. Regulation of GFAP Expression. ASN Neuro 2021; 13:1759091420981206. [PMID: 33601918 PMCID: PMC7897836 DOI: 10.1177/1759091420981206] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Expression of the GFAP gene has attracted considerable attention because its onset is a marker for astrocyte development, its upregulation is a marker for reactive gliosis, and its predominance in astrocytes provides a tool for their genetic manipulation. The literature on GFAP regulation is voluminous, as almost any perturbation of development or homeostasis in the CNS will lead to changes in its expression. In this review, we limit our discussion to mechanisms proposed to regulate GFAP synthesis through a direct interaction with its gene or mRNA. Strengths and weaknesses of the supportive experimental findings are described, and suggestions made for additional studies. This review covers 15 transcription factors, DNA and histone methylation, and microRNAs. The complexity involved in regulating the expression of this intermediate filament protein suggests that GFAP function may vary among both astrocyte subtypes and other GFAP-expressing cells, as well as during development and in response to perturbations.
Collapse
Affiliation(s)
- Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
20
|
Notch Signaling Function in the Angiocrine Regulation of Tumor Development. Cells 2020; 9:cells9112467. [PMID: 33198378 PMCID: PMC7697556 DOI: 10.3390/cells9112467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022] Open
Abstract
The concept of tumor growth being angiogenesis dependent had its origin in the observations of Judah Folkman in 1969 of a retinoblastoma in a child. Tumor angiogenesis is initiated when endothelial cells (ECs) respond to local stimuli and migrate towards the growing mass, which results in the formation of tubular structures surrounded by perivascular support cells that transport blood to the inner tumor. In turn, the neo-vasculature supports tumor development and eventual metastasis. This process is highly regulated by several signaling pathways. Central to this process is the Notch signaling pathway. Beyond the role of Notch signaling in tumor angiogenesis, a major hallmark of cancer development, it has also been implicated in the regulation of tumor cell proliferation and survival, in epithelial-to-mesenchymal transition, invasion and metastasis and in the regulation of cancer stem cells, in a variety of hematologic and solid malignancies. There is increasing evidence for the tumor vasculature being important in roles other than those linked to blood perfusion. Namely, endothelial cells act on and influence neighboring tumor cells by use of angiocrine factors to generate a unique cellular microenvironment, thereby regulating tumor stem-like cells’ homeostasis, modulating tumor progression, invasiveness, trafficking and metastasis. This review will focus on Notch signaling components that play a part in angiocrine signaling in a tumor setting.
Collapse
|
21
|
Falcone C, Santo M, Liuzzi G, Cannizzaro N, Grudina C, Valencic E, Peruzzotti-Jametti L, Pluchino S, Mallamaci A. Foxg1 Antagonizes Neocortical Stem Cell Progression to Astrogenesis. Cereb Cortex 2020; 29:4903-4918. [PMID: 30821834 DOI: 10.1093/cercor/bhz031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/06/2019] [Accepted: 02/09/2019] [Indexed: 12/12/2022] Open
Abstract
Neocortical astrogenesis follows neuronogenesis and precedes oligogenesis. Among key factors dictating its temporal articulation, there are progression rates of pallial stem cells (SCs) towards astroglial lineages as well as activation rates of astrocyte differentiation programs in response to extrinsic gliogenic cues. In this study, we showed that high Foxg1 SC expression antagonizes astrocyte generation, while stimulating SC self-renewal and committing SCs to neuronogenesis. We found that mechanisms underlying this activity are mainly cell autonomous and highly pleiotropic. They include a concerted downregulation of 4 key effectors channeling neural SCs to astroglial fates, as well as defective activation of core molecular machineries implementing astroglial differentiation programs. Next, we found that SC Foxg1 levels specifically decline during the neuronogenic-to-gliogenic transition, pointing to a pivotal Foxg1 role in temporal modulation of astrogenesis. Finally, we showed that Foxg1 inhibits astrogenesis from human neocortical precursors, suggesting that this is an evolutionarily ancient trait.
Collapse
Affiliation(s)
- Carmen Falcone
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Manuela Santo
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Gabriele Liuzzi
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Noemi Cannizzaro
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Clara Grudina
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Erica Valencic
- Department of Diagnostics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Luca Peruzzotti-Jametti
- Dept of Clinical Neurosciences, University of Cambridge, Clifford Allbutt Building -- Cambridge Biosciences Campus, Hills Road, Cambridge, UK
| | - Stefano Pluchino
- Dept of Clinical Neurosciences, University of Cambridge, Clifford Allbutt Building -- Cambridge Biosciences Campus, Hills Road, Cambridge, UK
| | - Antonello Mallamaci
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| |
Collapse
|
22
|
He B, Perez SE, Lee SH, Ginsberg SD, Malek-Ahmadi M, Mufson EJ. Expression profiling of precuneus layer III cathepsin D-immunopositive pyramidal neurons in mild cognitive impairment and Alzheimer's disease: Evidence for neuronal signaling vulnerability. J Comp Neurol 2020; 528:2748-2766. [PMID: 32323319 PMCID: PMC7492791 DOI: 10.1002/cne.24929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The precuneus (PreC; Brodmann area 7), a key hub within the default mode network (DMN) displays amyloid and tau-containing neurofibrillary tangle (NFT) pathology during the onset of Alzheimer's disease (AD). PreC layer III projection neurons contain lysosomal hydrolase cathepsin D (CatD), a marker of neurons vulnerable to NFT pathology. Here we applied single population laser capture microdissection coupled with custom-designed microarray profiling to determine the genetic signature of PreC CatD-positive-layer III neurons accrued from postmortem tissue obtained from the Rush Religious Orders Study (RROS) cases with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI) and AD. Expression profiling revealed significant differential expression of key transcripts in MCI and AD compared to NCI that underlie signaling defects, including dysregulation of genes within the endosomal-lysosomal and autophagy pathways, cytoskeletal elements, AD-related genes, ionotropic and metabotropic glutamate receptors, cholinergic enzymes and receptors, markers of monoamine neurotransmission as well as steroid-related transcripts. Pervasive defects in both MCI and AD were found in select transcripts within these key gene ontology categories, underscoring the vulnerability of these corticocortical projection neurons during the onset and progression of dementia. Select PreC dysregulated genes detected via custom-designed microarray analysis were validated using qPCR. In summary, expression profiling of PreC CatD -positive layer III neurons revealed significant dysregulation of a mosaic of genes in MCI and AD that were not previously appreciated in terms of their indication of systems-wide signaling defects in a key hub of the DMN.
Collapse
Affiliation(s)
- Bin He
- Department of Neurobiology and Neurology, Barrow
Neurological Institute, Phoenix, Arizona
| | - Sylvia E. Perez
- Department of Neurobiology and Neurology, Barrow
Neurological Institute, Phoenix, Arizona
| | - Sang Han Lee
- Center for Biomedical Imaging and Neuromodulation, Nathan
Kline Institute, Orangeburg, New York
- Child and Adolescent Psychiatry, New York University School
of Medicine, New York, New York
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute,
Orangeburg, New York
- Department of Psychiatry, New York University School of
Medicine, New York, New York
- Neuroscience & Physiology, New York University School
of Medicine, New York, New York
- NYU Neuroscience Institute, New York University School of
Medicine, New York, New York
| | | | - Elliott J. Mufson
- Department of Neurobiology and Neurology, Barrow
Neurological Institute, Phoenix, Arizona
| |
Collapse
|
23
|
Lomelí H, Castillo-Castellanos F. Notch signaling and the emergence of hematopoietic stem cells. Dev Dyn 2020; 249:1302-1317. [PMID: 32996661 DOI: 10.1002/dvdy.230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The hematopoietic stem cell (HSC) is able to give rise to all blood cell lineages in vertebrates. HSCs are generated in the early embryo after two precedent waves of primitive hematopoiesis. Canonical Notch signaling is at the center of the complex mechanism that controls the development of the definitive HSC. The successful in vitro generation of hematopoietic cells from pluripotent stem cells with the capacity for multilineage hematopoietic reconstitution after transplantation requires the recapitulation of the most important process that takes place in the hemogenic endothelium during definitive hematopoiesis, that is the endothelial-to-hematopoietic transition (EHT). To meet this challenge, it is necessary to thoroughly understand the molecular mechanisms that modulate Notch signaling during the HSC differentiation process considering different temporal and spatial dimensions. In recent years, there have been important advances in this field. Here, we review relevant contributions describing different genes, factors, environmental cues, and signaling cascades that regulate the EHT through Notch interactions at multiple levels. The evolutionary conservation of the hematopoietic program has made possible the use of diverse model systems. We describe the contributions of the zebrafish model and the most relevant ones from transgenic mouse studies and from in vitro differentiated pluripotent cells.
Collapse
Affiliation(s)
- Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210, Mexico
| | - Francisco Castillo-Castellanos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210, Mexico
| |
Collapse
|
24
|
Ferrante F, Giaimo BD, Bartkuhn M, Zimmermann T, Close V, Mertens D, Nist A, Stiewe T, Meier-Soelch J, Kracht M, Just S, Klöble P, Oswald F, Borggrefe T. HDAC3 functions as a positive regulator in Notch signal transduction. Nucleic Acids Res 2020; 48:3496-3512. [PMID: 32107550 PMCID: PMC7144913 DOI: 10.1093/nar/gkaa088] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant Notch signaling plays a pivotal role in T-cell acute lymphoblastic leukemia (T-ALL) and chronic lymphocytic leukemia (CLL). Amplitude and duration of the Notch response is controlled by ubiquitin-dependent proteasomal degradation of the Notch1 intracellular domain (NICD1), a hallmark of the leukemogenic process. Here, we show that HDAC3 controls NICD1 acetylation levels directly affecting NICD1 protein stability. Either genetic loss-of-function of HDAC3 or nanomolar concentrations of HDAC inhibitor apicidin lead to downregulation of Notch target genes accompanied by a local reduction of histone acetylation. Importantly, an HDAC3-insensitive NICD1 mutant is more stable but biologically less active. Collectively, these data show a new HDAC3- and acetylation-dependent mechanism that may be exploited to treat Notch1-dependent leukemias.
Collapse
Affiliation(s)
- Francesca Ferrante
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | | | - Marek Bartkuhn
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Tobias Zimmermann
- Bioinformatics and Systems Biology, University of Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Viola Close
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, Albert-Einstein-Allee 23, 89081 Ulm, Germany.,Cooperation Unit "Mechanisms of Leukemogenesis'' (B061), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg Germany
| | - Daniel Mertens
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, Albert-Einstein-Allee 23, 89081 Ulm, Germany.,Cooperation Unit "Mechanisms of Leukemogenesis'' (B061), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, University of Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, University of Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Steffen Just
- University Medical Center Ulm, Center for Internal Medicine, Molecular Cardiology, Department of Internal Medicine II, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Patricia Klöble
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
25
|
Epigenetic Regulation of Notch Signaling During Drosophila Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:59-75. [PMID: 32060871 DOI: 10.1007/978-3-030-34436-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Notch signaling exerts multiple important functions in various developmental processes, including cell differentiation and cell proliferation, while mis-regulation of this pathway results in a variety of complex diseases, such as cancer and developmental defects. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, makes this an attractive model for studying the fundamental mechanisms of how Notch signaling is regulated and how it functions in various cellular contexts. Recently, increasing evidence for epigenetic control of Notch signaling reveals the intimate link between epigenetic regulators and Notch signaling pathway. In this chapter, we summarize the research advances of Notch and CAF-1 in Drosophila development and the epigenetic regulation mechanisms of Notch signaling activity by CAF-1 as well as other epigenetic modification machineries, which enables Notch to orchestrate different biological inputs and outputs in specific cellular contexts.
Collapse
|
26
|
Yamamoto S. Making sense out of missense mutations: Mechanistic dissection of Notch receptors through structure-function studies in Drosophila. Dev Growth Differ 2020; 62:15-34. [PMID: 31943162 DOI: 10.1111/dgd.12640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Notch signaling is involved in the development of almost all organ systems and is required post-developmentally to modulate tissue homeostasis. Rare variants in Notch signaling pathway genes are found in patients with rare Mendelian disorders, while unique or recurrent somatic mutations in a similar set of genes are identified in cancer. The human genome contains four genes that encode Notch receptors, NOTCH1-4, all of which are linked to genetic diseases and cancer. Although some mutations have been classified as clear loss- or gain-of-function alleles based on cellular or rodent based assay systems, the functional consequence of many variants/mutations in human Notch receptors remain unknown. In this review, I will first provide an overview of the domain structure of Notch receptors and discuss how each module is known to regulate Notch signaling activity in vivo using the Drosophila Notch receptor as an example. Next, I will introduce some interesting mutant alleles that have been isolated in the fly Notch gene over the past > 100 years of research and discuss how studies of these mutations have facilitated the understanding of Notch biology. By identifying unique alleles of the fly Notch gene through forward genetic screens, mapping their molecular lesions and characterizing their phenotypes in depth, one can begin to unravel new mechanistic insights into how different domains of Notch fine-tune signaling output. Such information can be useful in deciphering the functional consequences of rare variants/mutations in human Notch receptors, which in turn can influence disease management and therapy.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.,Department of Neuroscience, BCM, Houston, TX, USA.,Program in Developmental Biology, BCM, Houston, TX, USA.,Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
27
|
Skip is essential for Notch signaling to induce Sox2 in cerebral arteriovenous malformations. Cell Signal 2020; 68:109537. [PMID: 31927035 DOI: 10.1016/j.cellsig.2020.109537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/24/2022]
Abstract
Notch signaling and Sry-box (Sox) family transcriptional factors both play critical roles in endothelial cell (EC) differentiation in vascularization. Recent studies have shown that excessive Notch signaling induces Sox2 to cause cerebral arteriovenous malformations (AVMs). Here, we examine human pulmonary AVMs and find no induction of Sox2. Results of epigenetic studies also show less alteration of Sox2-DNA binding in pulmonary AVMs than in cerebral AVMs. We identify high expression of ski-interacting protein (Skip) in brain ECs, a Notch-associated chromatin-modifying protein that is lacking in lung ECs. Knockdown of Skip abolished Notch-induction of Sox2 in brain ECs, while restoration of Skip in lung ECs enabled Notch-mediated Sox2 induction. The results suggest that Skip is a key factor for induction of Sox2 in cerebral AVMs.
Collapse
|
28
|
Dreval K, Lake RJ, Fan HY. HDAC1 negatively regulates selective mitotic chromatin binding of the Notch effector RBPJ in a KDM5A-dependent manner. Nucleic Acids Res 2019; 47:4521-4538. [PMID: 30916347 PMCID: PMC6511865 DOI: 10.1093/nar/gkz178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 01/25/2023] Open
Abstract
Faithful propagation of transcription programs through cell division underlies cell-identity maintenance. Transcriptional regulators selectively bound on mitotic chromatin are emerging critical elements for mitotic transcriptional memory; however, mechanisms governing their site-selective binding remain elusive. By studying how protein-protein interactions impact mitotic chromatin binding of RBPJ, the major downstream effector of the Notch signaling pathway, we found that histone modifying enzymes HDAC1 and KDM5A play critical, regulatory roles in this process. We found that HDAC1 knockdown or inactivation leads to increased RBPJ occupancy on mitotic chromatin in a site-specific manner, with a concomitant increase of KDM5A occupancy at these sites. Strikingly, the presence of KDM5A is essential for increased RBPJ occupancy. Our results uncover a regulatory mechanism in which HDAC1 negatively regulates RBPJ binding on mitotic chromatin in a KDM5A-dependent manner. We propose that relative chromatin affinity of a minimal regulatory complex, reflecting a specific transcription program, renders selective RBPJ binding on mitotic chromatin.
Collapse
Affiliation(s)
- Kostiantyn Dreval
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Robert J Lake
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Hua-Ying Fan
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
29
|
Edelmann J, Holzmann K, Tausch E, Saunderson EA, Jebaraj BMC, Steinbrecher D, Dolnik A, Blätte TJ, Landau DA, Saub J, Estenfelder S, Ibach S, Cymbalista F, Leblond V, Delmer A, Bahlo J, Robrecht S, Fischer K, Goede V, Bullinger L, Wu CJ, Mertens D, Ficz G, Gribben JG, Hallek M, Döhner H, Stilgenbauer S. Genomic alterations in high-risk chronic lymphocytic leukemia frequently affect cell cycle key regulators and NOTCH1-regulated transcription. Haematologica 2019; 105:1379-1390. [PMID: 31467127 PMCID: PMC7193490 DOI: 10.3324/haematol.2019.217307] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022] Open
Abstract
To identify genomic alterations contributing to the pathogenesis of high-risk chronic lymphocytic leukemia (CLL) beyond the well-established role of TP53 aberrations, we comprehensively analyzed 75 relapsed/refractory and 71 treatment-naïve high-risk cases from prospective clinical trials by single nucleotide polymorphism arrays and targeted next-generation sequencing. Increased genomic complexity was a hallmark of relapsed/refractory and treatment-naïve high-risk CLL. In relapsed/refractory cases previously exposed to the selective pressure of chemo(immuno)therapy, gain(8)(q24.21) and del(9)(p21.3) were particularly enriched. Both alterations affect key regulators of cell-cycle progression, namely MYC and CDKN2A/B. While homozygous CDKN2A/B loss has been directly associated with Richter transformation, we did not find this association for heterozygous loss of CDKN2A/B. Gains in 8q24.21 were either focal gains in a MYC enhancer region or large gains affecting the MYC locus, but only the latter type was highly enriched in relapsed/refractory CLL (17%). In addition to a high frequency of NOTCH1 mutations (23%), we found recurrent genetic alterations in SPEN (4% mutated), RBPJ (8% deleted) and SNW1 (8% deleted), all affecting a protein complex that represses transcription of NOTCH1 target genes. We investigated the functional impact of these alterations on HES1, DTX1 and MYC gene transcription and found derepression of these NOTCH1 target genes particularly with SPEN mutations. In summary, we provide new insights into the genomic architecture of high-risk CLL, define novel recurrent DNA copy number alterations and refine knowledge on del(9p), gain(8q) and alterations affecting NOTCH1 signaling. This study was registered at ClinicalTrials.gov with number NCT01392079.
Collapse
Affiliation(s)
- Jennifer Edelmann
- Department of Internal Medicine III, Ulm University, Ulm, Germany .,Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Emily A Saunderson
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | | | - Anna Dolnik
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Tamara J Blätte
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Dan A Landau
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.,New York Genome Center, New York, NY, USA
| | - Jenny Saub
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Sven Estenfelder
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Stefan Ibach
- Wissenschaftlicher Service Pharma GmbH (WiSP), Langenfeld, Germany
| | | | | | - Alain Delmer
- Service d'Hématologie Clinique, CHU de Reims, Reims, France
| | - Jasmin Bahlo
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
| | - Sandra Robrecht
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
| | - Kirsten Fischer
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
| | - Valentin Goede
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, Ulm University, Ulm, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Catherine J Wu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Daniel Mertens
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michael Hallek
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | | |
Collapse
|
30
|
Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, Tripathi S, Calibasi-Kocal G, Rickelt S, Butty VL, Moreno M, Iqbal AM, Bauer-Rowe KE, Imada S, Ulutas MS, Mylonas C, Whary MT, Levine SS, Basbinar Y, Hynes RO, Mino-Kenudson M, Deshpande V, Boyer LA, Fox JG, Terranova C, Rai K, Piwnica-Worms H, Mihaylova MM, Regev A, Yilmaz ÖH. Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell 2019; 178:1115-1131.e15. [PMID: 31442404 PMCID: PMC6732196 DOI: 10.1016/j.cell.2019.07.048] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/03/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023]
Abstract
Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (βOHB), distinguishes self-renewing Lgr5+ stem cells (ISCs) from differentiated cell types. Hmgcs2 loss depletes βOHB levels in Lgr5+ ISCs and skews their differentiation toward secretory cell fates, which can be rescued by exogenous βOHB and class I histone deacetylase (HDAC) inhibitor treatment. Mechanistically, βOHB acts by inhibiting HDACs to reinforce Notch signaling, instructing ISC self-renewal and lineage decisions. Notably, although a high-fat ketogenic diet elevates ISC function and post-injury regeneration through βOHB-mediated Notch signaling, a glucose-supplemented diet has the opposite effects. These findings reveal how control of βOHB-activated signaling in ISCs by diet helps to fine-tune stem cell adaptation in homeostasis and injury.
Collapse
Affiliation(s)
- Chia-Wei Cheng
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA
| | - Moshe Biton
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA,These authors contributed equally to this work
| | - Adam L. Haber
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA,These authors contributed equally to this work
| | - Nuray Gunduz
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - George Eng
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Liam T. Gaynor
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston MA, 02215, USA
| | - Surya Tripathi
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA
| | - Gizem Calibasi-Kocal
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Steffen Rickelt
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA
| | - Vincent L. Butty
- BioMicro Center, at MIT, Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
| | - Marta Moreno
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA
| | - Ameena M Iqbal
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA
| | | | - Shinya Imada
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University,1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Mehmet Sefa Ulutas
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Department of Biology, Siirt University, Science and Arts Faculty, 56100 Siirt, Turkey
| | | | - Mark T. Whary
- Division of Comparative Medicine, Department of Biological Engineering, MIT, Cambridge, Massachusetts 02139, USA
| | - Stuart S. Levine
- BioMicro Center, at MIT, Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
| | - Yasemin Basbinar
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Richard O. Hynes
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Laurie A. Boyer
- Department of Biology, MIT, Cambridge, Massachusetts 02139, USA
| | - James G. Fox
- Division of Comparative Medicine, Department of Biological Engineering, MIT, Cambridge, Massachusetts 02139, USA
| | - Christopher Terranova
- Genomic Medicine Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kunal Rai
- Genomic Medicine Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria M. Mihaylova
- The Ohio State Comprehensive Cancer Center, Department of Biological Chemistry and Pharmacology, Ohio State University, 308 Wiseman Hall, Columbus, OH 43210, USA
| | - Aviv Regev
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Ömer H. Yilmaz
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts 02139, USA,Department of Biology, MIT, Cambridge, Massachusetts 02139, USA,Department of Pathology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, Massachusetts 02114, USA,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA,Lead Contact,Correspondence: Ömer H. Yilmaz () (Ö.H.Y)
| |
Collapse
|
31
|
Moghbeli M, Mosannen Mozaffari H, Memar B, Forghanifard MM, Gholamin M, Abbaszadegan MR. Role of MAML1 in targeted therapy against the esophageal cancer stem cells. J Transl Med 2019; 17:126. [PMID: 30992079 PMCID: PMC6469193 DOI: 10.1186/s12967-019-1876-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal cancer is the sixth-leading cause of cancer-related deaths worldwide. Cancer stem cells (CSCs) are the main reason for tumor relapse in esophageal squamous cell carcinoma (ESCC). The NOTCH pathway is important in preservation of CSCs, therefore it is possible to target such cells by targeting MAML1 as the main component of the NOTCH transcription machinery. Methods In present study we isolated the CD44+ ESCC CSCs and designed a MAML1-targeted therapy to inhibit the NOTCH signaling pathway. CSCs were isolated using magnetic cell sorting utilizing the CD44 cell surface marker. Several stem cell markers were analyzed in the levels of protein and mRNA expression. The isolated CSCs were characterized in vivo in NUDE mice. Biological role of MAML1 was assessed in isolated CD44+ CSCs. A drug resistance assay was also performed to assess the role of MAML1 in CD44+ CSCs with 5FU resistance. Results The CD44+ CSCs had ability to form tumors in NUDE mice. MAML1 silencing caused a significant decrease (p = 0.019) and ectopic expression caused a significant increase in migration of CD44+ CSCs (p = 0.012). Moreover, MAML1 silencing and ectopic expression significantly increased and decreased 5FU resistance, respectively (p < 0.05). MAML1 silencing significantly increased the number of cells in G1 phase (p = 0.008), and its ectopic expression significantly increased the number of CD44+ CSCS in S phase (p = 0.037). Conclusions MAML1 may be utilized for targeted therapy with a low side effect to eliminate the CD44+ CSCs through inhibition of canonical NOTCH pathway in ESCC patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Mosannen Mozaffari
- Gastroenterology and Hepatology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mehran Gholamin
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
32
|
Pillidge Z, Bray SJ. SWI/SNF chromatin remodeling controls Notch-responsive enhancer accessibility. EMBO Rep 2019; 20:embr.201846944. [PMID: 30914409 DOI: 10.15252/embr.201846944] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Notch signaling plays a key role in many cell fate decisions during development by directing different gene expression programs via the transcription factor CSL, known as Su(H) in Drosophila Which target genes are responsive to Notch signaling is influenced by the chromatin state of enhancers, yet how this is regulated is not fully known. Detecting a specific increase in the histone variant H3.3 in response to Notch signaling, we tested which chromatin remodelers or histone chaperones are required for the changes in enhancer accessibility to Su(H) binding. We show a crucial role for the Brahma SWI/SNF chromatin remodeling complex, including the actin-related BAP55 subunit, in conferring enhancer accessibility and enabling the transcriptional response to Notch activity. The Notch-responsive regions have high levels of nucleosome turnover which depend on the Brahma complex, increase in magnitude with Notch signaling, and primarily involve histone H3.3. Together these results highlight the importance of SWI/SNF-mediated nucleosome turnover in rendering enhancers responsive to Notch.
Collapse
Affiliation(s)
- Zoe Pillidge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Kovacic B, Rosner M, Schlangen K, Kramer N, Hengstschläger M. DRUGPATH - a novel bioinformatic approach identifies DNA-damage pathway as a regulator of size maintenance in human ESCs and iPSCs. Sci Rep 2019; 9:1897. [PMID: 30760778 PMCID: PMC6374489 DOI: 10.1038/s41598-018-37491-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/29/2018] [Indexed: 02/05/2023] Open
Abstract
Genetic and biochemical screening approaches often fail to identify functionally relevant pathway networks because many signaling proteins contribute to multiple gene ontology pathways. We developed a DRUGPATH-approach to predict pathway-interactomes from high-content drug screen data. DRUGPATH is based upon combining z-scores of effective inhibitors with their corresponding and validated targets. We test DRUGPATH by comparing homeostatic pathways in human embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs) and human amniotic fluid stem cells (hAFSCs). We show that hAFSCs utilize distinct interactomes compared to hESCs/hiPSCs and that pathways orchestrating cell cycle and apoptosis are strongly interconnected, while pathways regulating survival and size are not. Interestingly, hESCs/hiPSCs regulate their size by growing exact additional sizes during each cell cycle. Chemical and genetic perturbation studies show that this “adder-model” is dependent on the DNA-damage pathway. In the future, the DRUGPATH-approach may help to predict novel pathway interactomes from high-content drug screens.
Collapse
Affiliation(s)
- Boris Kovacic
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna (MUV), Vienna, Austria.
| | - Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna (MUV), Vienna, Austria
| | - Karin Schlangen
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna (MUV), Vienna, Austria
| | - Nina Kramer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna (MUV), Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna (MUV), Vienna, Austria
| |
Collapse
|
34
|
Wu Y, Lin X, Lim IY, Chen L, Teh AL, MacIsaac JL, Tan KH, Kobor MS, Chong YS, Gluckman PD, Karnani N. Analysis of two birth tissues provides new insights into the epigenetic landscape of neonates born preterm. Clin Epigenetics 2019; 11:26. [PMID: 30744680 PMCID: PMC6371604 DOI: 10.1186/s13148-018-0599-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023] Open
Abstract
Background Preterm birth (PTB), defined as child birth before completion of 37 weeks of gestation, is a major challenge in perinatal health care and can bear long-term medical and financial burden. Over a million children die each year due to PTB complications, and those who survive can face developmental delays. Unfortunately, our understanding of the molecular pathways associated with PTB remains limited. There is a growing body of evidence suggesting the role of DNA methylation (DNAm) in mediating the effects of PTB on future health outcomes. Thus, epigenome-wide association studies (EWAS), where DNAm sites are examined for associations with PTB, can help shed light on the biological mechanisms linking the two. Results In an Asian cohort of 1019 infants (68 preterm, 951 full term), we examined and compared the associations between PTB and genome-wide DNAm profiles using both cord tissue (n = 1019) and cord blood (n = 332) samples on Infinium HumanMethylation450 arrays. PTB was significantly associated (P < 5.8e−7) with DNAm at 296 CpGs (209 genes) in the cord blood. Over 95% of these CpGs were replicated in other PTB/gestational age EWAS conducted in (cord) blood. This replication was apparent even across populations of different ethnic origin (Asians, Caucasians, and African Americans). More than a third of these 296 CpGs were replicated in at least 4 independent studies, thereby identifying a robust set of PTB-linked epigenetic signatures in cord blood. Interrogation of cord tissue in addition to cord blood provided novel insights into the epigenetic status of the neonates born preterm. Overall, 994 CpGs (608 genes, P < 3.7e−7) associated with PTB in cord tissue, of which only 10 of these CpGs were identified in the analysis using cord blood. Genes from cord tissue showed enrichment of molecular pathways related to fetal growth and development, while those from cord blood showed enrichment of immune response pathways. A substantial number of PTB-associated CpGs from both the birth tissues were also associated with gestational age. Conclusions Our findings provide insights into the epigenetic landscape of neonates born preterm, and that its status is captured more comprehensively by interrogation of more than one neonatal tissue in tandem. Both these neonatal tissues are clinically relevant in their unique ways and require careful consideration in identification of biomarkers related to PTB and gestational age. Trial registration This birth cohort is a prospective observational study designed to study the developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875. Electronic supplementary material The online version of this article (10.1186/s13148-018-0599-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yonghui Wu
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Xinyi Lin
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Ives Yubin Lim
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Ai Ling Teh
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Julia L MacIsaac
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore.,Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
35
|
Lu G, Zhang M, Wang J, Zhang K, Wu S, Zhao X. Epigenetic regulation of myelination in health and disease. Eur J Neurosci 2019; 49:1371-1387. [DOI: 10.1111/ejn.14337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Guozhen Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Jian Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Kaixiang Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Xianghui Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| |
Collapse
|
36
|
Chen T, Wang T, Liang W, Zhao Q, Yu Q, Ma CM, Zhuo L, Guo D, Zheng K, Zhou C, Wei S, Huang W, Jiang J, Liu J, Li S, He J, Jiang Y, Zhong N. PAK4 Phosphorylates Fumarase and Blocks TGFβ-Induced Cell Growth Arrest in Lung Cancer Cells. Cancer Res 2019; 79:1383-1397. [PMID: 30683654 DOI: 10.1158/0008-5472.can-18-2575] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/06/2018] [Accepted: 01/23/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Tao Chen
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ting Wang
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
- Department of Pharmacology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenhua Liang
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Qin Zhao
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Qiujing Yu
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Chun-Min Ma
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Lingang Zhuo
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Dong Guo
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Ke Zheng
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Shupei Wei
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Wenhua Huang
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Juhong Jiang
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jing Liu
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Shiyue Li
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jianxing He
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China.
| | - Yuhui Jiang
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China.
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases; National Clinical Research Center of Respiratory Diseases; Guangzhou Institute of Respiratory Health; First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
37
|
Wang S, Chen J, Garcia SP, Liang X, Zhang F, Yan P, Yu H, Wei W, Li Z, Wang J, Le H, Han Z, Luo X, Day DS, Stevens SM, Zhang Y, Park PJ, Liu ZJ, Sun K, Yuan GC, Pu WT, Zhang B. A dynamic and integrated epigenetic program at distal regions orchestrates transcriptional responses to VEGFA. Genome Res 2019; 29:193-207. [PMID: 30670628 PMCID: PMC6360815 DOI: 10.1101/gr.239053.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/12/2018] [Indexed: 01/29/2023]
Abstract
Cell behaviors are dictated by epigenetic and transcriptional programs. Little is known about how extracellular stimuli modulate these programs to reshape gene expression and control cell behavioral responses. Here, we interrogated the epigenetic and transcriptional response of endothelial cells to VEGFA treatment and found rapid chromatin changes that mediate broad transcriptomic alterations. VEGFA-responsive genes were associated with active promoters, but changes in promoter histone marks were not tightly linked to gene expression changes. VEGFA altered transcription factor occupancy and the distal epigenetic landscape, which profoundly contributed to VEGFA-dependent changes in gene expression. Integration of gene expression, dynamic enhancer, and transcription factor occupancy changes induced by VEGFA yielded a VEGFA-regulated transcriptional regulatory network, which revealed that the small MAF transcription factors are master regulators of the VEGFA transcriptional program and angiogenesis. Collectively these results revealed that extracellular stimuli rapidly reconfigure the chromatin landscape to coordinately regulate biological responses.
Collapse
Affiliation(s)
- Shiyan Wang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahuan Chen
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sara P Garcia
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - Xiaodong Liang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengyi Yan
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huijing Yu
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiting Wei
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixuan Li
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingfang Wang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huangying Le
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zeguang Han
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xusheng Luo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel S Day
- Department for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sean M Stevens
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Yan Zhang
- Renji-Med Clinical Stem Cell Research Center, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Peter J Park
- Department for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhi-Jie Liu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Kun Sun
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
38
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Oncogenic Signaling Induced by HCV Infection. Viruses 2018; 10:v10100538. [PMID: 30279347 PMCID: PMC6212953 DOI: 10.3390/v10100538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The liver is frequently exposed to toxins, metabolites, and oxidative stress, which can challenge organ function and genomic stability. Liver regeneration is therefore a highly regulated process involving several sequential signaling events. It is thus not surprising that individual oncogenic mutations in hepatocytes do not necessarily lead to cancer and that the genetic profiles of hepatocellular carcinomas (HCCs) are highly heterogeneous. Long-term infection with hepatitis C virus (HCV) creates an oncogenic environment by a combination of viral protein expression, persistent liver inflammation, oxidative stress, and chronically deregulated signaling events that cumulate as a tipping point for genetic stability. Although novel direct-acting antivirals (DAA)-based treatments efficiently eradicate HCV, the associated HCC risk cannot be fully eliminated by viral cure in patients with advanced liver disease. This suggests that HCV may persistently deregulate signaling pathways beyond viral cure and thereby continue to perturb cancer-relevant gene function. In this review, we summarize the current knowledge about oncogenic signaling pathways derailed by chronic HCV infection. This will not only help to understand the mechanisms of hepatocarcinogenesis but will also highlight potential chemopreventive strategies to help patients with a high-risk profile of developing HCC.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
39
|
Kim GS, Park HS, Lee YC. OPTHiS Identifies the Molecular Basis of the Direct Interaction between CSL and SMRT Corepressor. Mol Cells 2018; 41:842-852. [PMID: 30157580 PMCID: PMC6182220 DOI: 10.14348/molcells.2018.0196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/18/2018] [Accepted: 07/19/2018] [Indexed: 01/17/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway and involves in the regulation of various cellular and developmental processes. Ligand binding releases the intracellular domain of Notch receptor (NICD), which interacts with DNA-bound CSL [CBF1/Su(H)/Lag-1] to activate transcription of target genes. In the absence of NICD binding, CSL down-regulates target gene expression through the recruitment of various corepressor proteins including SMRT/NCoR (silencing mediator of retinoid and thyroid receptors/nuclear receptor corepressor), SHARP (SMRT/HDAC1-associated repressor protein), and KyoT2. Structural and functional studies revealed the molecular basis of these interactions, in which NICD coactivator and corepressor proteins competitively bind to β-trefoil domain (BTD) of CSL using a conserved ϕWϕP motif (ϕ denotes any hydrophobic residues). To date, there are conflicting ideas regarding the molecular mechanism of SMRT-mediated repression of CSL as to whether CSL-SMRT interaction is direct or indirect (via the bridge factor SHARP). To solve this issue, we mapped the CSL-binding region of SMRT and employed a 'one- plus two-hybrid system' to obtain CSL interaction-defective mutants for this region. We identified the CSL-interaction module of SMRT (CIMS; amino acid 1816-1846) as the molecular determinant of its direct interaction with CSL. Notably, CIMS contains a canonical ϕWϕP sequence (APIWRP, amino acids 1832-1837) and directly interacts with CSL-BTD in a mode similar to other BTD-binding corepressors. Finally, we showed that CSL-interaction motif, rather than SHARP-interaction motif, of SMRT is involved in transcriptional repression of NICD in a cell-based assay. These results strongly suggest that SMRT participates in CSL-mediated repression via direct binding to CSL.
Collapse
Affiliation(s)
- Gwang Sik Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186,
Korea
| | - Hee-Sae Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186,
Korea
| | - Young Chul Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
40
|
Aburjania Z, Jang S, Whitt J, Jaskula-Stzul R, Chen H, Rose JB. The Role of Notch3 in Cancer. Oncologist 2018; 23:900-911. [PMID: 29622701 PMCID: PMC6156186 DOI: 10.1634/theoncologist.2017-0677] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch family is a highly conserved gene group that regulates cell-cell interaction, embryogenesis, and tissue commitment. This review article focuses on the third Notch family subtype, Notch3. Regulation via Notch3 signaling was first implicated in vasculogenesis. However, more recent findings suggest that Notch3 signaling may play an important role in oncogenesis, tumor maintenance, and resistance to chemotherapy. Its role is mainly oncogenic, although in some cancers it appears to be tumor suppressive. Despite the wealth of published literature, it remains relatively underexplored and requires further research to shed more light on its role in cancer development, determine its tissue-specific function, and elaborate novel treatment strategies. Herein we summarize the role of Notch3 in cancer, possible mechanisms of its action, and current cancer treatment strategies targeting Notch3 signaling. IMPLICATIONS FOR PRACTICE The Notch family is a highly conserved gene group that regulates cell-cell interaction, embryogenesis, and tissue commitment. This review summarizes the existing data on the third subtype of the Notch family, Notch3. The role of Notch3 in different types of cancers is discussed, as well as implications of its modification and new strategies to affect Notch3 signaling activity.
Collapse
Affiliation(s)
- Zviadi Aburjania
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samuel Jang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Renata Jaskula-Stzul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
41
|
Giaimo BD, Borggrefe T. Introduction to Molecular Mechanisms in Notch Signal Transduction and Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:3-30. [DOI: 10.1007/978-3-319-89512-3_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Wyss JC, Kumar R, Mikulic J, Schneider M, Aebi JD, Juillerat-Jeanneret L, Golshayan D. Targeted γ-secretase inhibition of Notch signaling activation in acute renal injury. Am J Physiol Renal Physiol 2018; 314:F736-F746. [DOI: 10.1152/ajprenal.00414.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Notch pathway has been reported to control tissue damage in acute kidney diseases. To investigate potential beneficial nephroprotective effects of targeting Notch, we developed chemically functionalized γ-secretase inhibitors (GSIs) targeting γ-glutamyltranspeptidase (γ-GT) and/or γ-glutamylcyclotransferase (γ-GCT), two enzymes overexpressed in the injured kidney, and evaluated them in in vivo murine models of acute tubular and glomerular damage. Exposure of the animals to disease-inducing drugs together with the functionalized GSIs improved proteinuria and, to some extent, kidney dysfunction. The expression of genes involved in the Notch pathway, acute inflammatory stress responses, and the renin-angiotensin system was enhanced in injured kidneys, which could be downregulated upon administration of functionalized GSIs. Immunohistochemistry staining and Western blots demonstrated enhanced activation of Notch1 as detected by its cleaved active intracellular domain during acute kidney injury, and this was downregulated by concomitant treatment with the functionalized GSIs. Thus targeted γ-secretase-based prodrugs developed as substrates for γ-GT/γ-GCT have the potential to selectively control Notch activation in kidney diseases with subsequent regulation of the inflammatory stress response and the renin-angiotensin pathways.
Collapse
Affiliation(s)
- Jean-Christophe Wyss
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Rajesh Kumar
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Josip Mikulic
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Manfred Schneider
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche, Basel, Switzerland
| | - Johannes D. Aebi
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche, Basel, Switzerland
| | - Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- University Institute of Pathology, CHUV and UNIL, Lausanne, Switzerland
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
43
|
Bray SJ, Gomez-Lamarca M. Notch after cleavage. Curr Opin Cell Biol 2018; 51:103-109. [DOI: 10.1016/j.ceb.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 01/13/2023]
|
44
|
Wang Z, Lyu J, Wang F, Miao C, Nan Z, Zhang J, Xi Y, Zhou Q, Yang X, Ge W. The histone deacetylase HDAC1 positively regulates Notch signaling during Drosophila wing development. Biol Open 2018; 7:bio.029637. [PMID: 29437043 PMCID: PMC5861358 DOI: 10.1242/bio.029637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Notch signaling pathway is highly conserved across different animal species and plays crucial roles in development and physiology. Regulation of Notch signaling occurs at multiple levels in different tissues and cell types. Here, we show that the histone deacetylase HDAC1 acts as a positive regulator of Notch signaling during Drosophila wing development. Depletion of HDAC1 causes wing notches on the margin of adult wing. Consistently, the expression of Notch target genes is reduced in the absence of HDAC1 during wing margin formation. We further provide evidence that HDAC1 acts upstream of Notch activation. Mechanistically, we show that HDAC1 regulates Notch protein levels by promoting Notch transcription. Consistent with this, the HDAC1-associated transcriptional co-repressor Atrophin (Atro) is also required for transcriptional activation of Notch in the wing disc. In summary, our results demonstrate that HDAC1 positively regulates Notch signaling and reveal a previously unidentified function of HDAC1 in Notch signaling.
Collapse
Affiliation(s)
- Zehua Wang
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jialan Lyu
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fang Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen Miao
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zi Nan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiayu Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qi Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
45
|
Steinbuck MP, Arakcheeva K, Winandy S. Novel TCR-Mediated Mechanisms of Notch Activation and Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:997-1007. [PMID: 29288204 PMCID: PMC5854196 DOI: 10.4049/jimmunol.1700070] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 11/22/2017] [Indexed: 01/04/2023]
Abstract
The Notch receptor is an evolutionarily highly conserved transmembrane protein that is essential to a wide spectrum of cellular systems. Notch signaling is especially important to T cell development, and its deregulation leads to leukemia. Although not well characterized, it continues to play an integral role in peripheral T cells, in which a unique mode of Notch activation can occur. In contrast to canonical Notch activation initiated by adjacent ligand-expressing cells, TCR stimulation is sufficient to induce Notch signaling. However, the interactions between these two pathways have not been defined. In this article, we show that Notch activation occurs in peripheral T cells within a few hours post-TCR stimulation and is required for optimal T cell activation. Using a panel of inhibitors against components of the TCR signaling cascade, we demonstrate that Notch activation is facilitated through initiation of protein kinase C-induced ADAM activity. Moreover, our data suggest that internalization of Notch via endocytosis plays a role in this process. Although ligand-mediated Notch stimulation relies on mechanical pulling forces that disrupt the autoinhibitory domain of Notch, we hypothesized that, in T cells in the absence of ligands, these conformational changes are induced through chemical adjustments in the endosome, causing alleviation of autoinhibition and receptor activation. Thus, T cells may have evolved a unique method of Notch receptor activation, which is described for the first time, to our knowledge, in this article.
Collapse
Affiliation(s)
- Martin Peter Steinbuck
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Ksenia Arakcheeva
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Susan Winandy
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
46
|
CSL-Associated Corepressor and Coactivator Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:279-295. [PMID: 30030832 DOI: 10.1007/978-3-319-89512-3_14] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The highly conserved Notch signal transduction pathway orchestrates fundamental cellular processes including, differentiation, proliferation, and apoptosis during embryonic development and in the adult organism. Dysregulated Notch signaling underlies the etiology of a variety of human diseases, such as certain types of cancers, developmental disorders and cardiovascular disease. Ligand binding induces proteolytic cleavage of the Notch receptor and nuclear translocation of the Notch intracellular domain (NICD), which forms a ternary complex with the transcription factor CSL and the coactivator MAML to upregulate transcription of Notch target genes. The DNA-binding protein CSL is the centrepiece of transcriptional regulation in the Notch pathway, acting as a molecular hub for interactions with either corepressors or coactivators to repress or activate, respectively, transcription. Here we review previous structure-function studies of CSL-associated coregulator complexes and discuss the molecular insights gleaned from this research. We discuss the functional consequences of both activating and repressing binding partners using the same interaction platforms on CSL. We also emphasize that although there has been a significant uptick in structural information over the past decade, it is still under debate how the molecular switch from repression to activation mediated by CSL occurs at Notch target genes and whether it will be possible to manipulate these transcription complexes therapeutically in the future.
Collapse
|
47
|
Chan SKK, Cerda-Moya G, Stojnic R, Millen K, Fischer B, Fexova S, Skalska L, Gomez-Lamarca M, Pillidge Z, Russell S, Bray SJ. Role of co-repressor genomic landscapes in shaping the Notch response. PLoS Genet 2017; 13:e1007096. [PMID: 29155828 PMCID: PMC5714389 DOI: 10.1371/journal.pgen.1007096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/04/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
Repressors are frequently deployed to limit the transcriptional response to signalling pathways. For example, several co-repressors interact directly with the DNA-binding protein CSL and are proposed to keep target genes silenced in the absence of Notch activity. However, the scope of their contributions remains unclear. To investigate co-repressor activity in the context of this well defined signalling pathway, we have analysed the genome-wide binding profile of the best-characterized CSL co-repressor in Drosophila, Hairless, and of a second CSL interacting repressor, SMRTER. As predicted there was significant overlap between Hairless and its CSL DNA-binding partner, both in Kc cells and in wing discs, where they were predominantly found in chromatin with active enhancer marks. However, while the Hairless complex was widely present at some Notch regulated enhancers in the wing disc, no binding was detected at others, indicating that it is not essential for silencing per se. Further analysis of target enhancers confirmed differential requirements for Hairless. SMRTER binding significantly overlapped with Hairless, rather than complementing it, and many enhancers were apparently co-bound by both factors. Our analysis indicates that the actions of Hairless and SMRTER gate enhancers to Notch activity and to Ecdysone signalling respectively, to ensure that the appropriate levels and timing of target gene expression are achieved. The communication between cells that occurs during development, as well as in disease contexts, involves a small number of signalling pathways of which the Notch pathway is one. One outstanding question is how these pathways can bring about different gene responses in different contexts. As gene expression is co-ordinated by a mixture of activators and repressors, we set out to investigate whether the distribution of repressors across the genome is important in shaping whether genes are able to respond to Notch activity. Our results from analyzing the binding profile of two repressors, Hairless and SMRTER, show that, in many cases, they are not essential for preventing a gene from responding. Instead they are deployed at a limited number of genetic loci where they gate the response, helping to set a threshold for gene activation. Perturbations to their function lead to enhanced gene expression in limited territories rather than to new programmes of gene expression. Their main role therefore is to restrict the time or levels of signal that a gene needs to receive before it will respond.
Collapse
Affiliation(s)
- Stephen K. K. Chan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gustavo Cerda-Moya
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Robert Stojnic
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Kat Millen
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Bettina Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Silvie Fexova
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Lenka Skalska
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Maria Gomez-Lamarca
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Zoe Pillidge
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J. Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 667] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
49
|
Hall ET, Pradhan-Sundd T, Samnani F, Verheyen EM. The protein phosphatase 4 complex promotes the Notch pathway and wingless transcription. Biol Open 2017; 6:1165-1173. [PMID: 28652317 PMCID: PMC5576076 DOI: 10.1242/bio.025221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Wnt/Wingless (Wg) pathway controls cell fate specification, tissue differentiation and organ development across organisms. Using an in vivo RNAi screen to identify novel kinase and phosphatase regulators of the Wg pathway, we identified subunits of the serine threonine phosphatase Protein Phosphatase 4 (PP4). Knockdown of the catalytic and regulatory subunits of PP4 cause reductions in the Wg pathway targets Senseless and Distal-less. We find that PP4 regulates the Wg pathway by controlling Notch-driven wg transcription. Genetic interaction experiments identified that PP4 likely promotes Notch signaling within the nucleus of the Notch-receiving cell. Although the PP4 complex is implicated in various cellular processes, its role in the regulation of Wg and Notch pathways was previously uncharacterized. Our study identifies a novel role of PP4 in regulating Notch pathway, resulting in aberrations in Notch-mediated transcriptional regulation of the Wingless ligand. Furthermore, we show that PP4 regulates proliferation independent of its interaction with Notch. Summary: The protein phosphatase 4 complex promotes Notch signaling and target gene expression during Drosophila wing development.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Faaria Samnani
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, British Columbia V5A 1S6, Canada
| |
Collapse
|
50
|
Abstract
Notch signaling is evolutionarily conserved from Drosophila to human. It plays critical roles in neural stem cell maintenance and neurogenesis in the embryonic brain as well as in the adult brain. Notch functions greatly depend on careful regulation and cross-talk with other regulatory mechanisms. Deregulation of Notch signaling is involved in many neurodegenerative diseases and brain disorders. Here, we summarize the fundamental role of Notch in neuronal development and specification and discuss how epigenetic regulation and pathway cross-talk contribute to Notch function. In addition, we cover aberrant alterations of Notch signaling in the diseased brain. The aim of this review is to provide an insight into how Notch signaling works in different contexts to control neurogenesis and its potential effects in diagnoses and therapies of neurodegeneration, brain tumors and disorders.
Collapse
Affiliation(s)
- Runrui Zhang
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Anna Engler
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Verdon Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|