1
|
Leow SS, Khoo JS, Lee WK, Hoh CC, Fairus S, Sambanthamurthi R, Hayes KC. RNA-Seq transcriptome profiling of Nile rat livers reveals novel insights on the anti-diabetic mechanisms of Water-Soluble Palm Fruit Extract. J Appl Genet 2024:10.1007/s13353-024-00880-1. [PMID: 38890243 DOI: 10.1007/s13353-024-00880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Water-Soluble Palm Fruit Extract (WSPFE) has been shown to confer anti-diabetic effects in the Nile rat (NR) (Arvicanthis niloticus). Liquid and powder WSPFE both deterred diabetes onset in NRs fed a high-carbohydrate (hiCHO) diet, but the liquid form provided better protection. In this study, NRs were fed either a hiCHO diet or the same diet added with liquid or powder WSPFE. Following feeding of the diets for 8 weeks, random blood glucose levels were measured to categorize NRs as either diabetes-resistant or diabetes-susceptible, based on a cut-off value of 75 mg/dL. Livers were then obtained for Illumina HiSeq 4000 paired end RNA-sequencing (RNA-Seq) and the data were mapped to the reference genome. Consistent with physiological and biochemical parameters, the gene expression data obtained indicated that WSPFE was associated with protection against diabetes. Among hepatic genes upregulated by WSPFE versus controls, were genes related to insulin-like growth factor binding protein, leptin receptor, and processes of hepatic metabolism maintenance, while those downregulated were related to antigen binding, immunoglobulin receptor, inflammation- and cancer-related processes. WSPFE supplementation thus helped inhibit diabetes progression in NRs by increasing insulin sensitivity and reducing both the inflammatory effects of a hiCHO diet and the related DNA-damage compensatory mechanisms contributing to liver disease progression. In addition, the genetic permissiveness of susceptible NRs to develop diabetes was potentially associated with dysregulated compensatory mechanisms involving insulin signaling and oxidative stress over time. Further studies on other NR organs associated with diabetes and its complications are warranted.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Jia-Shiun Khoo
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Syed Fairus
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- Academy of Sciences Malaysia, Level 20, West Wing, MATRADE Tower, Jalan Sultan Haji Ahmad Shah, Off Jalan Tuanku Abdul Halim, 50480, Kuala Lumpur, Malaysia
| | - K C Hayes
- Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
2
|
Barahman M, Shamsaei G, Kashipazha D, Bahadoram M, Akade E. Paraneoplastic neurological syndromes of small cell lung cancer. POSTEPY PSYCHIATRII NEUROLOGII 2024; 33:80-92. [PMID: 39119541 PMCID: PMC11304241 DOI: 10.5114/ppn.2024.141157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/29/2024] [Indexed: 08/10/2024]
Abstract
Purpose This article reviews the relevant literature on paraneoplastic neurological syndromes of small cell lung cancer and discusses the clinical presentation, pathophysiology, and diagnosis of these syndromes. It also includes a summary of the current treatment options for the management of them. Views Paraneoplastic syndromes are a group of signs and symptoms that develop due to cancer in a remote site, mainly triggered by an autoantibody produced by the tissues involved or lymphocytes during anti-cancer defense. Among the cancers associated with paraneoplastic syndromes, lung cancers are the most common type, with small cell lung cancer being the most common subtype. The most common antibody associated with paraneoplastic syndromes is anti-Hu. Neurological and neuroendocrine syndromes comprise the majority of small cell lung cancer-related paraneoplastic syndromes. Classical paraneoplastic neurological syndromes include inappropriate antidiuretic hormone secretion, Cushing's syndrome, myasthenia gravis, Lambert-Eaton myasthenic syndrome, limbic encephalitis, paraneoplastic cerebellar degeneration, opsoclonus myoclonus ataxia, sensory neuropathy, and chorea. Conclusions Antibodies mediate paraneoplastic syndromes, and antibody detection is a crucial part of diagnosing these entities. Managing the underlying tumor is the best treatment approach for most paraneoplastic syndromes. Therefore, early diagnosis of small cell lung cancer may significantly improve the prognosis of paraneoplastic syndromes associated with it.
Collapse
Affiliation(s)
- Maedeh Barahman
- Department of Radiation Oncology, Firoozgar Hospital, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Gholamreza Shamsaei
- Department of Neurology, School of Medicine, Musculoskeletal Rehabilitation Research Center, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Davood Kashipazha
- Department of Neurology, School of Medicine, Musculoskeletal Rehabilitation Research Center, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Bahadoram
- Department of Neurology, School of Medicine, Musculoskeletal Rehabilitation Research Center, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esma’il Akade
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Solheim ET, Gerking Y, Kråkenes T, Herdlevær I, Birkeland E, Totland C, Dick F, Vedeler CA. Multi-omics profiling reveals dysregulated ribosome biogenesis and impaired cell proliferation following knockout of CDR2L. BMC Cancer 2024; 24:645. [PMID: 38802745 PMCID: PMC11129367 DOI: 10.1186/s12885-024-12399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Cerebellar degeneration-related (CDR) proteins are associated with paraneoplastic cerebellar degeneration (PCD) - a rare, neurodegenerative disease caused by tumour-induced autoimmunity against neural antigens resulting in degeneration of Purkinje neurons in the cerebellum. The pathogenesis of PCD is unknown, in large part due to our limited understanding of the functions of CDR proteins. To this end, we performed an extensive, multi-omics analysis of CDR-knockout cells focusing on the CDR2L protein, to gain a deeper understanding of the properties of the CDR proteins in ovarian cancer. METHODS Ovarian cancer cell lines lacking either CDR1, CDR2, or CDR2L were analysed using RNA sequencing and mass spectrometry-based proteomics to assess changes to the transcriptome, proteome and secretome in the absence of these proteins. RESULTS For each knockout cell line, we identified sets of differentially expressed genes and proteins. CDR2L-knockout cells displayed a distinct expression profile compared to CDR1- and CDR2-knockout cells. Knockout of CDR2L caused dysregulation of genes involved in ribosome biogenesis, protein translation, and cell cycle progression, ultimately causing impaired cell proliferation in vitro. Several of these genes showed a concurrent upregulation at the transcript level and downregulation at the protein level. CONCLUSIONS Our study provides the first integrative multi-omics analysis of the impact of knockout of the CDR genes, providing both new insights into the biological properties of the CDR proteins in ovarian cancer, and a valuable resource for future investigations into the CDR proteins.
Collapse
Affiliation(s)
- Eirik Tveit Solheim
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway.
| | - Yola Gerking
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
| | - Torbjørn Kråkenes
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Ida Herdlevær
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Cecilie Totland
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Fiona Dick
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
| | - Christian Alexander Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Dalmau J. Changing landscape in the field of paraneoplastic neurology: Personal perspectives over a 35-year career. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:11-32. [PMID: 38494272 DOI: 10.1016/b978-0-12-823912-4.00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paraneoplastic neurologic syndromes are a group of rare disorders that have fascinated neurologists for more than a century. The discovery in the 1980s that many of these disorders occurred in association with antibodies against neuronal proteins revived the interest for these diseases. This chapter first traces the history of the paraneoplastic neurologic syndromes during the era that preceded the discovery of immune mechanisms and then reviews the immunologic period during which many of these syndromes were found to be associated with antibodies against intracellular onconeuronal proteins and pathogenic cytotoxic T-cell mechanisms. Alongside these developments, investigations on the antibody-mediated disorders of the peripheral nervous system, such as the myasthenic syndromes or neuromyotonia, provided suggestions for the study of the central nervous system (CNS) syndromes. These converging areas of research culminated with the groundbreaking discovery of a new category of CNS disorders mediated by antibodies against neuronal surface proteins or receptors. These disorders are not always paraneoplastic, and the understanding of these syndromes and mechanisms has changed the landscape of neurology and neurosciences.
Collapse
Affiliation(s)
- Josep Dalmau
- IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
5
|
Lasser M, Bolduc J, Murphy L, O'Brien C, Lee S, Girirajan S, Lowery LA. 16p12.1 Deletion Orthologs are Expressed in Motile Neural Crest Cells and are Important for Regulating Craniofacial Development in Xenopus laevis. Front Genet 2022; 13:833083. [PMID: 35401697 PMCID: PMC8987115 DOI: 10.3389/fgene.2022.833083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Copy number variants (CNVs) associated with neurodevelopmental disorders are characterized by extensive phenotypic heterogeneity. In particular, one CNV was identified in a subset of children clinically diagnosed with intellectual disabilities (ID) that results in a hemizygous deletion of multiple genes at chromosome 16p12.1. In addition to ID, individuals with this deletion display a variety of symptoms including microcephaly, seizures, cardiac defects, and growth retardation. Moreover, patients also manifest severe craniofacial abnormalities, such as micrognathia, cartilage malformation of the ears and nose, and facial asymmetries; however, the function of the genes within the 16p12.1 region have not been studied in the context of vertebrate craniofacial development. The craniofacial tissues affected in patients with this deletion all derive from the same embryonic precursor, the cranial neural crest, leading to the hypothesis that one or more of the 16p12.1 genes may be involved in regulating neural crest cell (NCC)-related processes. To examine this, we characterized the developmental role of the 16p12.1-affected gene orthologs, polr3e, mosmo, uqcrc2, and cdr2, during craniofacial morphogenesis in the vertebrate model system, Xenopus laevis. While the currently-known cellular functions of these genes are diverse, we find that they share similar expression patterns along the neural tube, pharyngeal arches, and later craniofacial structures. As these genes show co-expression in the pharyngeal arches where NCCs reside, we sought to elucidate the effect of individual gene depletion on craniofacial development and NCC migration. We find that reduction of several 16p12.1 genes significantly disrupts craniofacial and cartilage formation, pharyngeal arch migration, as well as NCC specification and motility. Thus, we have determined that some of these genes play an essential role during vertebrate craniofacial patterning by regulating specific processes during NCC development, which may be an underlying mechanism contributing to the craniofacial defects associated with the 16p12.1 deletion.
Collapse
Affiliation(s)
- Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Jessica Bolduc
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Luke Murphy
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Caroline O'Brien
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Sangmook Lee
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA, United States
| | - Laura Anne Lowery
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
- *Correspondence: Laura Anne Lowery,
| |
Collapse
|
6
|
Hampe CS, Mitoma H. A Breakdown of Immune Tolerance in the Cerebellum. Brain Sci 2022; 12:brainsci12030328. [PMID: 35326284 PMCID: PMC8946792 DOI: 10.3390/brainsci12030328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cerebellar dysfunction can be associated with ataxia, dysarthria, dysmetria, nystagmus and cognitive deficits. While cerebellar dysfunction can be caused by vascular, traumatic, metabolic, genetic, inflammatory, infectious, and neoplastic events, the cerebellum is also a frequent target of autoimmune attacks. The underlying cause for this vulnerability is unclear, but it may be a result of region-specific differences in blood–brain barrier permeability, the high concentration of neurons in the cerebellum and the presence of autoantigens on Purkinje cells. An autoimmune response targeting the cerebellum—or any structure in the CNS—is typically accompanied by an influx of peripheral immune cells to the brain. Under healthy conditions, the brain is protected from the periphery by the blood–brain barrier, blood–CSF barrier, and blood–leptomeningeal barrier. Entry of immune cells to the brain for immune surveillance occurs only at the blood-CSF barrier and is strictly controlled. A breakdown in the barrier permeability allows peripheral immune cells uncontrolled access to the CNS. Often—particularly in infectious diseases—the autoimmune response develops because of molecular mimicry between the trigger and a host protein. In this review, we discuss the immune surveillance of the CNS in health and disease and also discuss specific examples of autoimmunity affecting the cerebellum.
Collapse
Affiliation(s)
- Christiane S. Hampe
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-554-9181
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo 160-0023, Japan;
| |
Collapse
|
7
|
Update on Paraneoplastic Cerebellar Degeneration. Brain Sci 2021; 11:brainsci11111414. [PMID: 34827413 PMCID: PMC8615604 DOI: 10.3390/brainsci11111414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose of review: To provide an update on paraneoplastic cerebellar degeneration (PCD), the involved antibodies and tumors, as well as management strategies. Recent findings: PCD represents the second most common presentation of the recently established class of immune mediated cerebellar ataxias (IMCAs). Although rare in general, PCD is one of the most frequent paraneoplastic presentations and characterized clinically by a rapidly progressive cerebellar syndrome. In recent years, several antibodies have been described in association with the clinical syndrome related to PCD; their clinical significance, however, has yet to be determined. The 2021 updated diagnostic criteria for paraneoplastic neurologic symptoms help to establish the diagnosis of PCD, direct cancer screening, and to evaluate the presence of these newly identified antibodies. Recognition of the clinical syndrome and prompt identification of a specific antibody are essential for early detection of an underlying malignancy and initiation of an appropriate treatment, which represents the best opportunity to modulate the course of the disease. As clinical symptoms can precede tumor diagnosis by years, co-occurrence of specific symptoms and antibodies should prompt continuous surveillance of the patient. Summary: We provide an in-depth overview on PCD, summarize recent findings related to PCD, and highlight the transformed diagnostic approach.
Collapse
|
8
|
Liontos M, Fiste O, Drakopoulou D, Thomakos N, Goula K, Zagouri F, Anagnostouli M, Dimopoulos MA. Paraneoplastic cerebellar degeneration in platinum-responsive endometrial cancer: A case report and review of literature. Gynecol Oncol Rep 2021; 37:100826. [PMID: 34258363 PMCID: PMC8260878 DOI: 10.1016/j.gore.2021.100826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022] Open
Abstract
Paraneoplastic cerebellar ataxia (PCA) represents an uncommon autoimmnue neurological disorder. It usually precedes the occurrence or relapse of gynecological cancer; especially ovarian cancer. We present the case of platinum-responsive endometrial cancer who developed PCA.
Paraneoplastic cerebellar ataxia is a rare immune-induced, non-metastatic neurologic syndrome, most frequently associated with gynecological cancers, which carries an abysmal prognosis. We report the case of a patient with advanced-stage uterine cancer, who developed severe pancerebellar ataxia, while in partial remission, after the completion of 3 cycles of neoadjuvant platinum-based chemotherapy. Swift initiation of immunosuppressive therapy with corticosteroids combined with plasmapheresis did not result in significant clinical benefit. Early recognition of this debilitating condition and standardization of its treatment strategy are prerequisites for both improved survival outcomes and quality of life in these patients. Further studies are warranted to clarify the immune-stimulating impact of effective cytotoxic chemotherapy and the occurence of autoimmune paraneoplastic neurological syndromes.
Collapse
Affiliation(s)
- Michalis Liontos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Oraianthi Fiste
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Danai Drakopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, NKUA, Aeginition Hospital, Athens, Greece
| | - Nikolaos Thomakos
- Division of Gynecologic Oncology, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliroi Goula
- Department of Pathology, Alexandra Hospital, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Anagnostouli
- Multiple Sclerosis & Demyelinating Diseases Unit and Immunogenetics Laboratory, 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, NKUA, Aeginition Hospital, Athens, Greece
| | | |
Collapse
|
9
|
Mitoma H, Manto M, Hadjivassiliou M. Immune-Mediated Cerebellar Ataxias: Clinical Diagnosis and Treatment Based on Immunological and Physiological Mechanisms. J Mov Disord 2021; 14:10-28. [PMID: 33423437 PMCID: PMC7840241 DOI: 10.14802/jmd.20040] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Since the first description of immune-mediated cerebellar ataxias (IMCAs) by Charcot in 1868, several milestones have been reached in our understanding of this group of neurological disorders. IMCAs have diverse etiologies, such as gluten ataxia, postinfectious cerebellitis, paraneoplastic cerebellar degeneration, opsoclonus myoclonus syndrome, anti-GAD ataxia, and primary autoimmune cerebellar ataxia. The cerebellum, a vulnerable autoimmune target of the nervous system, has remarkable capacities (collectively known as the cerebellar reserve, closely linked to plasticity) to compensate and restore function following various pathological insults. Therefore, good prognosis is expected when immune-mediated therapeutic interventions are delivered during early stages when the cerebellar reserve can be preserved. However, some types of IMCAs show poor responses to immunotherapies, even if such therapies are introduced at an early stage. Thus, further research is needed to enhance our understanding of the autoimmune mechanisms underlying IMCAs, as such research could potentially lead to the development of more effective immunotherapies. We underscore the need to pursue the identification of robust biomarkers.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.,Service des Neurosciences, University of Mons, Mons, Belgium
| | | |
Collapse
|
10
|
MicroRNA 452 regulates ASB8, NOL8, and CDR2 expression in colorectal cancer cells. Genes Genomics 2021; 43:33-41. [PMID: 33398662 DOI: 10.1007/s13258-020-01016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNAs play important roles in the pathogenesis of human diseases by regulating target gene expression in specific cells or tissues. Previously, we identified microRNA 452 (MIR452), which was specifically up-regulated in early stage human colorectal cancer (CRC) tissue. OBJECTIVE The current study aims to identify and verify the target genes of MIR452 associated with CRC. METHODS A luciferase reporter system was used to confirm the effect of MIR452 on ASB8, NOL8, and CDR2 expression. The expression levels of MIR452 and the target genes were evaluated by quantitative RT-PCR (qRT-PCR) and western blotting. RESULTS We verified the association between MIR452 and three genes, ASB8, NOL8, and CDR2, and showed that their transcripts were down-regulated by MIR452. Up-regulated MIR452 also down-regulated ASB8, NOL8, and CDR2 mRNA and protein levels in CRC cells. CDR2 protein expression was decreased in CRC tissues compared to adjacent non-tumor tissues. CONCLUSIONS These results suggest that ASB8, NOL8, and CDR2 were target genes of MIR452 in CRC cells and that up-regulated MIR452 in CRC tissue regulated ASB8, NOL8, and CDR2 expression during colorectal carcinogenesis.
Collapse
|
11
|
Herdlevær I, Kråkenes T, Schubert M, Vedeler CA. Localization of CDR2L and CDR2 in paraneoplastic cerebellar degeneration. Ann Clin Transl Neurol 2020; 7:2231-2242. [PMID: 33009713 PMCID: PMC7664253 DOI: 10.1002/acn3.51212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Identify the subcellular location and potential binding partners of two cerebellar degeneration-related proteins, CDR2L and CDR2, associated with anti-Yo-mediated paraneoplastic cerebellar degeneration. METHODS Cancer cells, rat Purkinje neuron cultures, and human cerebellar sections were exposed to cerebrospinal fluid and serum from patients with paraneoplastic cerebellar degeneration with Yo antibodies and with several antibodies against CDR2L and CDR2. We used mass spectrometry-based proteomics, super-resolution microscopy, proximity ligation assay, and co-immunoprecipitation to verify the antibodies and to identify potential binding partners. RESULTS We confirmed the CDR2L specificity of Yo antibodies by mass spectrometry-based proteomics and found that CDR2L localized to the cytoplasm and CDR2 to the nucleus. CDR2L co-localized with the 40S ribosomal protein S6, while CDR2 co-localized with the nuclear speckle proteins SON, eukaryotic initiation factor 4A-III, and serine/arginine-rich splicing factor 2. INTERPRETATION We showed that Yo antibodies specifically bind to CDR2L in Purkinje neurons of PCD patients where they potentially interfere with the function of the ribosomal machinery resulting in disrupted mRNA translation and/or protein synthesis. Our findings demonstrating that CDR2L interacts with ribosomal proteins and CDR2 with nuclear speckle proteins is an important step toward understanding PCD pathogenesis.
Collapse
Affiliation(s)
- Ida Herdlevær
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
| | | | - Manja Schubert
- Department of NeurologyHaukeland University HospitalBergenNorway
| | - Christian A. Vedeler
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
- Departments of Neurology and Clinical MedicineNeuro‐SysMed ‐ Centre of Excellence for Experimental Therapy in NeurologyBergenNorway
| |
Collapse
|
12
|
Liang J, Xia L, Oyang L, Lin J, Tan S, Yi P, Han Y, Luo X, Wang H, Tang L, Pan Q, Tian Y, Rao S, Su M, Shi Y, Cao D, Zhou Y, Liao Q. The functions and mechanisms of prefoldin complex and prefoldin-subunits. Cell Biosci 2020; 10:87. [PMID: 32699605 PMCID: PMC7370476 DOI: 10.1186/s13578-020-00446-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
The correct folding is a key process for a protein to acquire its functional structure and conformation. Prefoldin is a well-known chaperone protein that regulates the correct folding of proteins. Prefoldin plays a crucial role in the pathogenesis of common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease). The important role of prefoldin in emerging fields (such as nanoparticles, biomaterials) and tumors has attracted widespread attention. Also, each of the prefoldin subunits has different and independent functions from the prefoldin complex. It has abnormal expression in different tumors and plays an important role in tumorigenesis and development, especially c-Myc binding protein MM-1. MM-1 can inhibit the activity of c-Myc through various mechanisms to regulate tumor growth. Therefore, an in-depth analysis of the complex functions of prefoldin and their subunits is helpful to understand the mechanisms of protein misfolding and the pathogenesis of diseases caused by misfolded aggregation.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Jinguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Pin Yi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yaqian Han
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Xia Luo
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Lu Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Qing Pan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Shan Rao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yingrui Shi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| |
Collapse
|
13
|
Yshii L, Bost C, Liblau R. Immunological Bases of Paraneoplastic Cerebellar Degeneration and Therapeutic Implications. Front Immunol 2020; 11:991. [PMID: 32655545 PMCID: PMC7326021 DOI: 10.3389/fimmu.2020.00991] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare immune-mediated disease that develops mostly in the setting of neoplasia and offers a unique prospect to explore the interplay between tumor immunity and autoimmunity. In PCD, the deleterious adaptive immune response targets self-antigens aberrantly expressed by tumor cells, mostly gynecological cancers, and physiologically expressed by the Purkinje neurons of the cerebellum. Highly specific anti-neuronal antibodies in the serum and cerebrospinal fluid represent key diagnostic biomarkers of PCD. Some anti-neuronal antibodies such as anti-Yo autoantibodies (recognizing the CDR2/CDR2L proteins) are only associated with PCD. Other anti-neuronal antibodies, such as anti-Hu, anti-Ri, and anti-Ma2, are detected in patients with PCD or other types of paraneoplastic neurological manifestations. Importantly, these autoantibodies cannot transfer disease and evidence for a pathogenic role of autoreactive T cells is accumulating. However, the precise mechanisms responsible for disruption of self-tolerance to neuronal self-antigens in the cancer setting and the pathways involved in pathogenesis within the cerebellum remain to be fully deciphered. Although the occurrence of PCD is rare, the risk for such severe complication may increase with wider use of cancer immunotherapy, notably immune checkpoint blockade. Here, we review recent literature pertaining to the pathophysiology of PCD and propose an immune scheme underlying this disabling disease. Additionally, based on observations from patients' samples and on the pre-clinical model we recently developed, we discuss potential therapeutic strategies that could blunt this cerebellum-specific autoimmune disease.
Collapse
Affiliation(s)
- Lidia Yshii
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Chloé Bost
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| | - Roland Liblau
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| |
Collapse
|
14
|
LncRNA EPIC1 downregulation mediates hydrogen peroxide-induced neuronal cell injury. Aging (Albany NY) 2019; 11:11463-11473. [PMID: 31812951 PMCID: PMC6932932 DOI: 10.18632/aging.102545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Excessive oxidative stress causes neuronal cell injury. Long non-coding RNA (LncRNA) EPIC1 (Lnc-EPIC1) is a MYC-interacting LncRNA. Its expression and potential functions in hydrogen peroxide (H2O2)-stimulated neuronal cells are studied. In SH-SY5Y neuronal cells and primary human neuron cultures, H2O2 downregulated Lnc-EPIC1 and key MYC targets (Cyclin A1, CDC20 and CDC45). Ectopic overexpression of Lnc-EPIC1 increased expression of MYC targets and significantly attenuated H2O2-induced neuronal cell death and apoptosis. Contrarily, Lnc-EPIC1 siRNA potentiated neuronal cell death by H2O2. MYC knockout by CRISPR/Cas9 method also facilitated H2O2-induced SH-SY5Y cell death. Significantly, MYC knockout abolished Lnc-EPIC1-induced actions in H2O2-stimulated neuronal cells. Together, these results suggest that Lnc-EPIC1 downregulation mediates H2O2-induced neuronal cell death.
Collapse
|
15
|
Kråkenes T, Herdlevaer I, Raspotnig M, Haugen M, Schubert M, Vedeler CA. CDR2L Is the Major Yo Antibody Target in Paraneoplastic Cerebellar Degeneration. Ann Neurol 2019; 86:316-321. [PMID: 31148214 DOI: 10.1002/ana.25511] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/09/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
Abstract
The pathogenesis of Yo-mediated paraneoplastic cerebellar degeneration (PCD) is unclear. We applied cerebrospinal fluid and serum from PCD patients as well as CDR2 and CDR2L antibodies to neuronal tissue, cancer cell lines, and cells transfected with recombinant CDR2 and CDR2L to elucidate which is the major antigen of Yo antibodies. We found that Yo antibodies bound endogenous CDR2L, but not endogenous CDR2. However, Yo antibodies can bind the recombinant CDR2 protein used in routine clinical testing for these antibodies. Because Yo antibodies only bind endogenous CDR2L, we conclude that CDR2L is the major antigen of Yo antibodies in PCD. ANN NEUROL 2019;86:316-321.
Collapse
Affiliation(s)
- Torbjørn Kråkenes
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ida Herdlevaer
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Mette Haugen
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Manja Schubert
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Christian A Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway
| |
Collapse
|
16
|
Mitoma H, Manto M, Hampe CS. Immune-mediated Cerebellar Ataxias: Practical Guidelines and Therapeutic Challenges. Curr Neuropharmacol 2019; 17:33-58. [PMID: 30221603 PMCID: PMC6341499 DOI: 10.2174/1570159x16666180917105033] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated cerebellar ataxias (IMCAs), a clinical entity reported for the first time in the 1980s, include gluten ataxia (GA), paraneoplastic cerebellar degenerations (PCDs), antiglutamate decarboxylase 65 (GAD) antibody-associated cerebellar ataxia, post-infectious cerebellitis, and opsoclonus myoclonus syndrome (OMS). These IMCAs share common features with regard to therapeutic approaches. When certain factors trigger immune processes, elimination of the antigen( s) becomes a priority: e.g., gluten-free diet in GA and surgical excision of the primary tumor in PCDs. Furthermore, various immunotherapeutic modalities (e.g., steroids, immunoglobulins, plasmapheresis, immunosuppressants, rituximab) should be considered alone or in combination to prevent the progression of the IMCAs. There is no evidence of significant differences in terms of response and prognosis among the various types of immunotherapies. Treatment introduced at an early stage, when CAs or cerebellar atrophy is mild, is associated with better prognosis. Preservation of the "cerebellar reserve" is necessary for the improvement of CAs and resilience of the cerebellar networks. In this regard, we emphasize the therapeutic principle of "Time is Cerebellum" in IMCAs.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Address correspondence to this author at the Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan;, E-mail:
| | | | | |
Collapse
|
17
|
Jain A, Vats M, Neogi S, Khwaja GA. Paraneoplastic cerebellar degeneration with bilateral facial palsy: a rare primary presentation of breast cancer. BMJ Case Rep 2018; 2018:bcr-2018-224996. [PMID: 29930189 DOI: 10.1136/bcr-2018-224996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Paraneoplastic cerebellar degeneration is a rare dysfunction of the cerebellum associated with malignancy. Nevertheless, it is the most common paraneoplastic syndrome affecting the brain. A 50-year-old woman presented to the neurology outpatient department (OPD) with symptoms of cerebellar dysfunction since 4 months and complaints of a painless lump in the right breast and drooling from mouth since 1 month. Examination revealed classical signs of cerebellar dysfunction and a 5×5 cm lump in the right breast with a single right axillary lymph node. Serum anti-Yo antibody titre was strongly positive. The patient was referred to General Surgery OPD for opinion. After establishing the diagnosis of right breast carcinoma; she underwent a right modified radical mastectomy. She was referred to the oncologist for chemo/radiotherapy but because of poor performance status, only symptomatic treatment was pursued. Follow-up till now shows no improvement in the neurological dysfunction.
Collapse
Affiliation(s)
- Arihant Jain
- Department of General Surgery, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, Delhi, India
| | - Manu Vats
- Department of General Surgery, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, Delhi, India
| | - Sushanto Neogi
- Department of General Surgery, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, Delhi, India
| | - Geeta Anjum Khwaja
- Department of Neurology, G B Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| |
Collapse
|
18
|
Panja D, Vedeler CA, Schubert M. Paraneoplastic cerebellar degeneration: Yo antibody alters mitochondrial calcium buffering capacity. Neuropathol Appl Neurobiol 2018; 45:141-156. [PMID: 29679372 PMCID: PMC7379599 DOI: 10.1111/nan.12492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
Aim Neurodegeneration is associated with dysfunction of calcium buffering capacity and thereby sustained cellular and mitochondrial calcium overload. Paraneoplastic cerebellar degeneration (PCD), characterized by progressive Purkinje neurone degeneration following paraneoplastic Yo antibody internalization and binding to cerebellar degeneration‐related protein CDR2 and CDR2L, has been linked to intracellular calcium homeostasis imbalance due to calbindin D28k malfunction. Therefore, we hypothesized that Yo antibody internalization affects not only calbindin calcium binding capacity, but also calcium‐sensitive mitochondrial‐associated signalling, causing mitochondrial calcium overload and thereby Purkinje neurone death. Methods Immunohistochemically, we evaluated cerebellar organotypic slice cultures of rat brains after inducing PCD through the application of Yo antibody‐positive PCD patient sera or purified antibodies against CDR2 and CDR2L how pharmacologically biased mitochondrial signalling affected PCD pathology. Results We found that Yo antibody internalization into Purkinje neurons caused depletion of Purkinje neurone calbindin‐immunoreactivity, cannabinoid 1 receptor over‐activation and alterations in the actions of the mitochondria permeability transition pore (MPTP), voltage‐dependent anion channels, reactive oxygen species (ROS) and Na+/Ca2+ exchangers (NCX). The pathological mechanisms caused by Yo antibody binding to CDR2 or CDR2L differed between the two targets. Yo‐CDR2 binding did not alter the mitochondrial calcium retention capacity, cyclophilin D‐independent opening of MPTP or activity of NCX. Conclusion These findings suggest that minimizing intracellular calcium overload toxicity either directly with cyclosporin‐A or indirectly with cannabidiol or the ROS scavenger butylated hydroxytoluene promotes mitochondrial calcium homeostasis and may therefore be used as future neuroprotective therapy for PCD patients.
Collapse
Affiliation(s)
- D Panja
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - C A Vedeler
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - M Schubert
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
19
|
Abstract
Members of the MYC family of proto-oncogenes are the most commonly deregulated genes in all human cancers. MYC proteins drive an increase in cellular proliferation and facilitate multiple aspects of tumor initiation and progression, thereby controlling all hallmarks of cancer. MYC's ability to drive metabolic reprogramming of tumor cells leading to biomass accumulation and cellular proliferation is the most studied function of these oncogenes. MYC also regulates tumor progression and is often implicated in resistance to chemotherapy and in metastasis. While most oncogenic functions of MYC are attributed to its role as a transcription factor, more recently, new roles of MYC as a pro-survival factor in the cytoplasm suggest a previously unappreciated diversity in MYC's roles in cancer progression. This review will focus on the role of MYC in invasion and will discuss the canonical functions of MYC in Epithelial to Mesenchymal Transition and the cytoplasmic functions of MYC-nick in collective migration.
Collapse
Affiliation(s)
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
20
|
Sakr HI, Chute DJ, Nasr C, Sturgis CD. cMYC expression in thyroid follicular cell-derived carcinomas: a role in thyroid tumorigenesis. Diagn Pathol 2017; 12:71. [PMID: 28974238 PMCID: PMC5627435 DOI: 10.1186/s13000-017-0661-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/25/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND cMYC regulates approximately 15% of human genes and is involved in up to 20% of all human cancers. Reports discussing cMYC protein expression in thyroid carcinomas are limited, with controversies pertaining to cMYC expression patterns noted in the literature. The aims of the current study were to clarify patterns and intensities of cMYC expression in follicular cell-derived thyroid carcinomas across a spectrum of cancer morphologies and disease aggressivities, to correlate cMYC with BRAFV600E expression, and to evaluate the potential role of cMYC in progression of well-differentiated thyroid carcinomas into less well-differentiated carcinomas. METHODS Immunohistochemical studies using specific monoclonal antibodies for cMYC and BRAFV600E were performed on tissue microarrays built from follicular cell-derived thyroid carcinomas (25 papillary, 24 follicular, 24 oncocytic variant of follicular, and 21 undifferentiated). In addition, cMYC IHC testing was also performed on whole tissue tumor sections from a subset of patients. Nodular hyperplasia cases were used as non-neoplastic controls. Appropriate positive and negative controls were included. RESULTS cMYC was expressed almost exclusively in a nuclear fashion in both thyroid carcinomas and nodular hyperplasias. cMYC expression was weakly positive in both nodular hyperplasias and well-differentiated carcinomas. The majority of undifferentiated carcinomas (UDCs) showed strong nuclear cMYC positivity. PTC cases that were positive for cMYC (6/25) harbored the BRAF V600E mutation. A correlation was confirmed between cMYC intensity and tumor size in UDCs. UDC cases that developed out of well-differentiated thyroid carcinomas showed frank overexpression of cMYC in the undifferentiated tumor components. CONCLUSIONS Our study suggests that nuclear overexpression of cMYC correlates with tumorigenesis / dedifferentiation in follicular cell derived thyroid carcinomas, a concept that has not been shown before on whole tissue sections.
Collapse
Affiliation(s)
- Hany I Sakr
- Cleveland Clinic, Department of Pathology and Laboratory Medicine, 9500 Euclid Avenue, L25, Cleveland, OH, 44195, USA
| | - Deborah J Chute
- Cleveland Clinic, Department of Pathology and Laboratory Medicine, 9500 Euclid Avenue, L25, Cleveland, OH, 44195, USA
| | - Christian Nasr
- Cleveland Clinic, Department of Endocrinology, Diabetes and Metabolism, Cleveland, USA
| | - Charles D Sturgis
- Cleveland Clinic, Department of Pathology and Laboratory Medicine, 9500 Euclid Avenue, L25, Cleveland, OH, 44195, USA.
| |
Collapse
|
21
|
Holl K, He H, Wedemeyer M, Clopton L, Wert S, Meckes JK, Cheng R, Kastner A, Palmer AA, Redei EE, Solberg Woods LC. Heterogeneous stock rats: a model to study the genetics of despair-like behavior in adolescence. GENES BRAIN AND BEHAVIOR 2017; 17:139-148. [PMID: 28834208 DOI: 10.1111/gbb.12410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) is a complex illness caused by both genetic and environmental factors. Antidepressant resistance also has a genetic component. To date, however, very few genes have been identified for major depression or antidepressant resistance. In this study, we investigated whether outbred heterogeneous stock (HS) rats would be a suitable model to uncover the genetics of depression and its connection to antidepressant resistance. The Wistar Kyoto (WKY) rat, one of the eight founders of the HS, is a recognized animal model of juvenile depression and is resistant to fluoxetine antidepressant treatment. We therefore hypothesized that adolescent HS rats would exhibit variation in both despair-like behavior and response to fluoxetine treatment. We assessed heritability of despair-like behavior and response to sub-acute fluoxetine using a modified forced swim test (FST) in 4-week-old HS rats. We also tested whether blood transcript levels previously identified as depression biomarkers in adolescent human subjects are differentially expressed in HS rats with high vs. low FST immobility. We demonstrate heritability of despair-like behavior in 4-week-old HS rats and show that many HS rats are resistant to fluoxetine treatment. In addition, blood transcript levels of Amfr, Cdr2 and Kiaa1539, genes previously identified in human adolescents with MDD, are differentially expressed between HS rats with high vs. low immobility. These data demonstrate that FST despair-like behavior will be amenable to genetic fine-mapping in adolescent HS rats. The overlap between human and HS blood biomarkers suggest that these studies may translate to depression in humans.
Collapse
Affiliation(s)
- K Holl
- Department of pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - H He
- Internal Medicine, Molecular Medicine, Wake Forest Baptist Health, Winston Salem, NC, USA
| | - M Wedemeyer
- Department of pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L Clopton
- Department of pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S Wert
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - J K Meckes
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - R Cheng
- University of California, San Diego, CA, USA
| | - A Kastner
- Department of pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A A Palmer
- University of California, San Diego, CA, USA
| | - E E Redei
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - L C Solberg Woods
- Internal Medicine, Molecular Medicine, Wake Forest Baptist Health, Winston Salem, NC, USA
| |
Collapse
|
22
|
Mitoma H, Manto M, Hampe CS. Immune-mediated cerebellar ataxias: from bench to bedside. CEREBELLUM & ATAXIAS 2017; 4:16. [PMID: 28944066 PMCID: PMC5609024 DOI: 10.1186/s40673-017-0073-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
The cerebellum is a vulnerable target of autoimmunity in the CNS. The category of immune-mediated cerebellar ataxias (IMCAs) was recently established, and includes in particular paraneoplastic cerebellar degenerations (PCDs), gluten ataxia (GA) and anti-GAD65 antibody (Ab) associated-CA, all characterized by the presence of autoantibodies. The significance of onconeuronal autoantibodies remains uncertain in some cases. The pathogenic role of anti-GAD65Ab has been established both in vitro and in vivo, but a consensus has not been reached yet. Recent studies of anti-GAD65 Ab-associated CA have clarified that (1) autoantibodies are generally polyclonal and elicit pathogenic effects related to epitope specificity, and (2) the clinical course can be divided into two phases: a phase of functional disorder followed by cell death. These features provide the rationale for prompt diagnosis and therapeutic strategies. The concept “Time is brain” has been completely underestimated in the field of immune ataxias. We now put forward the concept “Time is cerebellum” to underline the importance of very early therapeutic strategies in order to prevent or stop the loss of neurons and synapses. The diagnosis of IMCAs should depend not only on Ab testing, but rather on a rapid and comprehensive assessment of the clinical/immune profile. Treatment should be applied during the period of preserved cerebellar reserve, and should encompass early removal of the conditions (such as remote primary tumors) or diseases that trigger the autoimmunity, followed by the combinations of various immunotherapies.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Tokyo Medical University, Medical Education Promotion Center, 6-7-1 Nishi-Shinjyuku, Shinjyuku-ku, Tokyo, 160-0023 Japan
| | - Mario Manto
- Unité d'Etude du Mouvement (UEM), FNRS, ULB-Erasme, 1070 Bruxelles, Belgium.,Service des Neurosciences, University of Mons, 7000 Mons, Belgium
| | | |
Collapse
|
23
|
Venkatraman A, Opal P. Paraneoplastic cerebellar degeneration with anti-Yo antibodies - a review. Ann Clin Transl Neurol 2016; 3:655-63. [PMID: 27606347 PMCID: PMC4999597 DOI: 10.1002/acn3.328] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/25/2016] [Accepted: 06/04/2016] [Indexed: 12/30/2022] Open
Abstract
The ataxic syndrome associated with Anti-Yo antibody, or Purkinje cell cytoplasmic antibody type 1 (PCA1), is the most common variant of paraneoplastic cerebellar degeneration (PCD). The typical presentation involves the subacute development of pancerebellar deficits with a clinical plateau within 6 months. The vast majority of cases have been reported in women with pelvic or breast tumors. Magnetic resonance imaging of the brain is often normal in the early stages, with cerebellar atrophy seen later. The underlying mechanism is believed to be an immunological reaction to cerebellar degeneration-related protein 2 (CDR2), a protein usually found in the cerebellum that is ectopically produced by tumor cells. Although both B- and T-cell abnormalities are seen, there is debate about the relative importance of the autoantibodies and cytotoxic T lymphocytes in the neuronal loss. Cerebrospinal fluid abnormalities, primarily elevated protein, lymphocytic pleocytosis, and oligoclonal bands, are common in the early stages. The low prevalence of this condition has not allowed for large-scale randomized controlled trials. Immunotherapies, such as steroids, intravenous immune globulins, and plasma exchange, have been extensively used in managing this condition, with limited success. Although some reports indicate benefit from antitumor therapies like surgery and chemotherapy, this has not been consistently observed. The prognosis for anti-Yo PCD is almost uniformly poor, with most patients left bedridden. Further studies are required to clarify the pathophysiology and provide evidence-based treatment options.
Collapse
Affiliation(s)
- Anand Venkatraman
- Department of Neurology University of Alabama at Birmingham Birmingham Alabama
| | - Puneet Opal
- Davee department of Neurology Northwestern University Feinberg School of Medicine Chicago Illinois; Department of Cell and Molecular Biology Northwestern University Feinberg School of Medicine Chicago Illinois
| |
Collapse
|
24
|
Hwang JY, Lee J, Oh CK, Kang HW, Hwang IY, Um JW, Park HC, Kim S, Shin JH, Park WY, Darnell RB, Um HD, Chung KC, Kim K, Oh YJ. Proteolytic degradation and potential role of onconeural protein cdr2 in neurodegeneration. Cell Death Dis 2016; 7:e2240. [PMID: 27253404 PMCID: PMC5143381 DOI: 10.1038/cddis.2016.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
Abstract
Cerebellar degeneration-related protein 2 (cdr2) is expressed in the central nervous system, and its ectopic expression in tumor cells of patients with gynecological malignancies elicits immune responses by cdr2-specific autoantibodies and T lymphocytes, leading to neurological symptoms. However, little is known about the regulation and function of cdr2 in neurodegenerative diseases. Because we found that cdr2 is highly expressed in the midbrain, we investigated the role of cdr2 in experimental models of Parkinson's disease (PD). We found that cdr2 levels were significantly reduced after stereotaxic injection of 1-methyl-4-phenylpyridinium (MPP(+)) into the striatum. cdr2 levels were also decreased in the brains of post-mortem PD patients. Using primary cultures of mesencephalic neurons and MN9D cells, we confirmed that MPP(+) reduces cdr2 in tyrosine hydroxylase-positive dopaminergic neuronal cells. The MPP(+)-induced decrease of cdr2 was primarily caused by calpain- and ubiquitin proteasome system-mediated degradation, and cotreatment with pharmacological inhibitors of these enzymes or overexpression of calcium-binding protein rendered cells less vulnerable to MPP(+)-mediated cytotoxicity. Consequently, overexpression of cdr2 rescued cells from MPP(+)-induced cytotoxicity, whereas knockdown of cdr2 accelerated toxicity. Collectively, our findings provide insights into the novel regulatory mechanism and potentially protective role of onconeural protein during dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- J-Y Hwang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - J Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - C-K Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - H W Kang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - I-Y Hwang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - J W Um
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - H C Park
- Graduate School of Medicine, Korea University, Ansan 425-707, Gyeonggi-do, Korea
| | - S Kim
- Graduate School of Medicine, Korea University, Ansan 425-707, Gyeonggi-do, Korea
| | - J-H Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Gyeonggi-do, Korea
| | - W-Y Park
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Gyeonggi-do, Korea
| | - R B Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - H-D Um
- Division of Radiation Cancer Biology, Korean Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - K C Chung
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - K Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | - Y J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| |
Collapse
|
25
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
26
|
Humoral Immune Response against Neural Antigens and Its Effects on Cognition in Lung Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 911:59-66. [PMID: 26987335 DOI: 10.1007/5584_2016_211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cognitive impairment develops as a clinical manifestation of immune-mediated indirect effects of malignancy in lung cancer patients. This study aimed to evaluate the effects of humoral immune response on cognition in lung cancer patients. Fifty-one lung cancer patients were subjected to neurological examination: Mini Mental State Examination (MMSE), Trail Making Test (TMT), and Hamilton scale. The Psychology Experiment Building Language software was used for the evaluation of digit span, simple reaction time (SRT), and choice reaction time (CRT) tests. Serum samples were tested for the presence of onconeuronal antibodies and antineural antibodies. The results demonstrate that autoantibodies were found in 31 % patients. MMSE scores were lower (26.7 ± 2.7) in seropositive patients than in seronegative subjects (28.7 ± 1.2; p = 0.013). Executive functions were also influenced by the presence of autoantibodies. The humoral immune response in lung cancer patients affected both SRT and CRT. We conclude that the humoral immune response in lung cancer patients is associated with cognitive impairment. Cognitive impairment is associated with both specific reactions against onconeuronal or antineural antigens and non-organ specific reactions against nucleosome antigens.
Collapse
|
27
|
Jarius S, Wildemann B. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. J Neuroinflammation 2015; 12:168. [PMID: 26377319 PMCID: PMC4573944 DOI: 10.1186/s12974-015-0358-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/23/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Ng YRY, Ho CD, Ng WLV, Tan SM. Paraneoplastic cerebellar degeneration and dermatomyositis as first manifestations of underlying breast malignancy: a report of two cases and a brief review of the subject. Surg Case Rep 2015; 1:59. [PMID: 26366356 PMCID: PMC4560124 DOI: 10.1186/s40792-015-0063-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/07/2015] [Indexed: 01/05/2023] Open
Abstract
Paraneoplastic syndromes are rare first manifestations of breast cancer. In this report, we present two cases of a 58-year-old woman and a 69-year-old woman presenting with acute symptoms of paraneoplastic cerebellar degeneration (PCD) and dermatomyositis, respectively, as the first sign of breast malignancy. The patient diagnosed with PCD presented initially with ataxia, was serum anti-Yo antibody negative, and subsequently investigated to have poorly differentiated intraductal breast carcinoma. Cerebellar symptoms regressed following breast cancer surgery and chemotherapy, highlighting the better neurological prognosis associated with anti-Yo antibody negative PCD. The rarity of these presentations highlights the necessity to include an occult malignancy in the differential diagnosis when attending to such patients.
Collapse
Affiliation(s)
- Ying Ru Yvonne Ng
- Department of General Surgery, Changi General Hospital, 2 Simei Street, Singapore, 529 889 Singapore
| | - Chunyin Derek Ho
- Department of General Surgery, Changi General Hospital, 2 Simei Street, Singapore, 529 889 Singapore
| | - Weng Leong Victor Ng
- Department of Laboratory Medicine, Changi General Hospital, Singapore, Singapore
| | - Su-Ming Tan
- Department of General Surgery, Changi General Hospital, 2 Simei Street, Singapore, 529 889 Singapore
| |
Collapse
|
29
|
Paraneoplastic CDR2 and CDR2L antibodies affect Purkinje cell calcium homeostasis. Acta Neuropathol 2014; 128:835-52. [PMID: 25341622 PMCID: PMC4231287 DOI: 10.1007/s00401-014-1351-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022]
Abstract
Paraneoplastic cerebellar degeneration (PCD) is characterized by loss of Purkinje cells (PCs) associated with progressive pancerebellar dysfunction in the presence of onconeural Yo antibodies. These antibodies recognize the cerebellar degeneration-related antigens CDR2 and CDR2L. Response to PCD therapy is disappointing due to limited understanding of the neuropathological mechanisms. Here, we report the pathological role of CDR antibodies on the calcium homeostasis in PCs. We developed an antibody-mediated PCD model based on co-incubation of cerebellar organotypic slice culture with human patient serum or rabbit CDR2 and CDR2L antibodies. The CDR antibody-induced pathology was investigated by high-resolution multiphoton imaging and biochemical analysis. Both human and rabbit CDR antibodies were rapidly internalized by PCs and led to reduced immunoreactivity of calbindin D28K (CB) and L7/Pcp-2 as well as reduced dendritic arborizations in the remaining PCs. Washout of the CDR antibodies partially recovered CB immunoreactivity, suggesting a transient structural change in CB calcium-binding site. We discovered that CDR2 and CB co-immunoprecipitate. Furthermore, the expression levels of voltage-gated calcium channel Cav2.1, protein kinase C gamma and calcium-dependent protease, calpain-2, were increased after CDR antibody internalization. Inhibition of these signaling pathways prevented or attenuated CDR antibody-induced CB and L7/Pcp-2 immunoreactivity loss, morphological changes and increased protein expression. These results signify that CDR antibody internalization causes dysregulation of cell calcium homeostasis. Hence, drugs that modulate these events may represent novel neuroprotective therapies that limit the damaging effects of CDR antibodies and prevent PC neurodegeneration.
Collapse
|
30
|
Bhargava A, Bhushan B, Kasundra GM, Shubhakaran K, Pujar GS, Banakar B. Response to abdominal hysterectomy with bilateral salpingo-oophorectomy in postmenopausal woman with anti-yo antibody mediated paraneoplastic cerebellar degeneration. Ann Indian Acad Neurol 2014; 17:355-7. [PMID: 25221413 PMCID: PMC4162030 DOI: 10.4103/0972-2327.138528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/01/2014] [Accepted: 06/06/2014] [Indexed: 11/25/2022] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare neurological disorder characterized by a widespread loss of Purkinje cells associated with a progressive pancerebellar dysfunction. PCD often precedes the cancer diagnosis by months to years. Here, we report a case of 44-year old postmenopausal woman who presented with PCD symptoms and high levels of anti-Yo antibodies titer since 8 months. We failed to conclude any neoplastic focus after thorough laboratory and imaging study. She minimally responded to methylprednisolone and immunoglobulin therapies. Despite therapy she was severely disabled. Planned abdominal hysterectomy with bilateral salpingo-oophorectomy (AHBSO) was done, histology revealed grade IIA borderline serous papillary carcinoma of ovary. Her neurological deficit responded dramatically to AHBSO. It is first case report who emphasize the response of AHBSO with presentation of anti-Yo antibody-mediated PCD and hidden nidus in post menopausal women.
Collapse
Affiliation(s)
- Amita Bhargava
- Department of Neurology, Dr. Sampurnanand Medical College, Jodhpur, Rajasthan, India
| | - Bharat Bhushan
- Department of Neurology, Dr. Sampurnanand Medical College, Jodhpur, Rajasthan, India
| | - Gaurav M Kasundra
- Department of Neurology, Dr. Sampurnanand Medical College, Jodhpur, Rajasthan, India
| | - Khichar Shubhakaran
- Department of Neurology, Dr. Sampurnanand Medical College, Jodhpur, Rajasthan, India
| | - Guruprasad S Pujar
- Department of Neurology, Dr. Sampurnanand Medical College, Jodhpur, Rajasthan, India
| | - Basavaraj Banakar
- Department of Neurology, Dr. Sampurnanand Medical College, Jodhpur, Rajasthan, India
| |
Collapse
|
31
|
Paraneoplastic neurological syndromes associated with ovarian tumors. J Cancer Res Clin Oncol 2014; 141:99-108. [PMID: 24965744 PMCID: PMC4282879 DOI: 10.1007/s00432-014-1745-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/10/2014] [Indexed: 01/10/2023]
Abstract
Introduction Paraneoplastic neurological syndromes (PNS) are neurologic deficits triggered by an underlying remote tumor. PNS can antedate clinical manifestation of ovarian malignancy and enable its diagnosis at an early stage. Interestingly, neoplasms associated with PNS are less advanced and metastasize less commonly than those without PNS. This suggests that PNS may be associated with a naturally occurring antitumor response. Methods We review the literature on the diagnosis, pathogenesis and management of PNS associated with ovarian tumors: paraneoplastic cerebellar degeneration (PCD) and anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis. An approach to the diagnostic workup of underlying tumors is discussed. Results PCD can precede the manifestation of ovarian carcinoma. Anti-NMDAR encephalitis in young women appears often as a result of ovarian teratoma. Since ovarian tumors and nervous tissue share common antigens (e.g., cdr2, NMDAR), autoimmune etiology is a probable mechanism of these neurologic disorders. The concept of cross-presentation, however, seems insufficient to explain entirely the emergence of PNS. Early resection of ovarian tumors is a significant part of PNS management and improves the outcome. Conclusions The diagnosis of PNS potentially associated with ovarian tumor indicates a need for a thorough diagnostic procedure in search of the neoplasm. In some patients, explorative laparoscopy/laparotomy can be considered.
Collapse
|
32
|
Cell-mediated immune responses in paraneoplastic neurological syndromes. Clin Dev Immunol 2013; 2013:630602. [PMID: 24575143 PMCID: PMC3932176 DOI: 10.1155/2013/630602] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/15/2013] [Accepted: 11/23/2013] [Indexed: 12/18/2022]
Abstract
Paraneoplastic neurological syndromes (PNS) are disorders of the nervous system that are associated with remote effects of malignancy. PNS are considered to have an autoimmune pathology. It has been suggested that immune antitumor responses are the origin of improved outcome in PNS. We describe cell-mediated immune responses in PNS and their potential contributions to antitumor reactions. Experimental and neuropathological studies have revealed infiltrates in nervous tissue and disturbances in lymphocyte populations in both cerebrospinal fluid and peripheral blood. A predominance of cytotoxic T lymphocytes (CTLs) over T helper cells has been observed. CTLs can be specifically aggressive against antigens shared by tumors and nervous tissue. Based on genetic studies, a common clonal origin of lymphocytes from blood, tumor, and nervous tissue is suggested. Suppressive regulatory T (Treg) lymphocytes are dysfunctional. Simultaneously, in tumor tissue, more intense cell-mediated immune responses are observed, which often coincide with a less aggressive course of neoplastic disease. An increased titer of onconeural antibodies is also related to better prognoses in patients without PNS. The evaluation of onconeural and neuronal surface antibodies was recommended in current guidelines. The link between PNS emergence and antitumor responses may result from more active CTLs and less functional Treg lymphocytes.
Collapse
|
33
|
Saraya A, Mahavihakanont A, Shuangshoti S, Sittidetboripat N, Deesudchit T, Callahan M, Wacharapluesadee S, Wilde H, Hemachudha T. Autoimmune causes of encephalitis syndrome in Thailand: prospective study of 103 patients. BMC Neurol 2013; 13:150. [PMID: 24139084 PMCID: PMC3853593 DOI: 10.1186/1471-2377-13-150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023] Open
Abstract
Background Data on encephalitis in Thailand have not been completely described. Etiologies remain largely unknown. We prospectively analyzed 103 Thai patients from 27 provinces for the causes of encephalitis using clinical, microbiological and neuroimaging indices; caseswithout a diagnosis were evaluated for autoimmune causes of encephalitis. Methods Patients with encephalitis and/or myelitis were prospectively studied between October 2010 and August 2012. Cases associated with bacterial, rickettsial and mycobacterial diseases were excluded. Herpes viruses 1-6 and enteroviruses infection was diagnosed using PCR evaluation of CSF; dengue and JE viruses infection, by serology. The serum of test-negative patients was evaluated for the presence of autoantibodies. Results 103 patients were recruited. Fifty-three patients (52%) had no etiologies identified. Twenty-five patients (24%) were associated with infections. Immune encephalitis was found in 25 (24%); neuropsychiatric lupus erythematosus (4), demyelinating diseases (3), Behcet’s disease (1) and the remaining had antibodies to NMDAR (5), ANNA-2 (6), Yo (2), AMPA (1), GABA (1), VGKC (1) and NMDA coexisting with ANNA-2 (1). Presenting symptoms in the autoimmune group included behavioral changes in 6/25 (versus 12/25 in infectious and 13/53 in unknown group) and as psychosis in 6/25 (versus 0/25 infectious and 2/53 unknown). Seizures were found in 6/25 autoimmune, 4/25 infectious and 19/53 unknown group. Two patients with anti-ANNA-2 and one anti-Yo had temporal lobe involvement by magnetic resonance imaging. Two immune encephalitis patients with antibodies to NMDAR and ANNA-2 had ovarian tumors. Conclusions Autoantibody-associated encephalitis should be considered in the differential diagnosis and management algorithm regardless of clinical and neuroimaging features.
Collapse
Affiliation(s)
- Abhinbhen Saraya
- Neuroscience Centre for Research and Development, Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Anti-yo associated paraneoplastic cerebellar degeneration in a man with large cell cancer of the lung. Case Rep Neurol Med 2013; 2013:725936. [PMID: 24167748 PMCID: PMC3792504 DOI: 10.1155/2013/725936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/25/2013] [Indexed: 01/09/2023] Open
Abstract
Purkinje cell cytoplasmic antibody type 1 (PCA-1), or anti-Yo, is the most frequently detected autoantibody in paraneoplastic cerebellar degeneration (PCD). The vast majority of cases of anti-Yo PCD, however, occur in females over 60 years old and are associated with gynecologic tumors. Only 10 cases have been reported in males, and only 2 were associated with cancer of the lung. Here we describe the youngest known case of PCA-1 positive PCD in a male, whose lung tumor was undetectable even on FDG-PET.
Collapse
|
35
|
Kaufmann MR, Schraml P, Hermanns T, Wenger RH, Camenisch G. Onconeuronal antigen Cdr2 correlates with HIF prolyl-4-hydroxylase PHD1 and worse prognosis in renal cell carcinoma. Exp Mol Pathol 2013; 94:453-7. [DOI: 10.1016/j.yexmp.2013.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
|
36
|
ALAVI S. Paraneoplastic neurologic syndromes in children: a review article. IRANIAN JOURNAL OF CHILD NEUROLOGY 2013; 7:6-14. [PMID: 24665300 PMCID: PMC3943073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/11/2013] [Accepted: 07/07/2012] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Paraneoplastic neurological syndromes (PNS) were initially defined as neurological syndromes with unknown etiology that often associate with cancer. This broad definition may lead to misconception that any neurological syndrome, which coincides with a cancer might be considered as PNS. In the last two decades it has been suggested that PNSs are mainly immune-mediated. The detection of onconeural antibodies has been very helpful in indicating the existence of a tumor and defining a given neurological syndrome as paraneoplastic. However, PNS may occur without onconeural antibodies, and the antibodies can occur with no neurological syndrome; thus, their presence should not be the only condition to define a neurological syndrome as paraneoplastic. Diagnosis of paraneoplastic syndromes in children may result in early detection and treatment of the pediatric cancer and can reduce the neurological damage that is the major source of morbidity in children with successfully treated tumors. This study reviews the presenting symptoms, immunology, and management options for paraneoplastic syndromes, focusing on those most commonly reported in children.
Collapse
Affiliation(s)
- Samin ALAVI
- Pediatric Congenital Hematologic Disorders Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Russo AE, Scalone S, Leonardi GC, Scalisi A, Giorda G, Sorio R. Paraneoplastic cerebellar degeneration associated with ovarian cancer. Oncol Lett 2012; 5:681-683. [PMID: 23420048 PMCID: PMC3572954 DOI: 10.3892/ol.2012.1016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/03/2012] [Indexed: 11/06/2022] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare neurological disorder characterized by a widespread loss of Purkinje cells associated with a progressive pancerebellar dysfunction. PCD often precedes the cancer diagnosis by months to years. Here, we report the case of a 64-year-old woman who developed PCD symptoms, associated with high levels of anti-Yo antibodies, one year after a previous diagnosis of ovarian cancer. Clinical features, pathogenesis and treatment of PCD associated with cancer are discussed according to previous studies.
Collapse
Affiliation(s)
- Alessia Erika Russo
- Department of Biomedical Sciences, Section of Pathology and Oncology, Laboratory of Translational Oncology and Functional Genomics, University of Catania, Catania 95124; ; Department of Medical Oncology C, National Cancer Institute, IRCCS, Aviano 33081
| | | | | | | | | | | |
Collapse
|
38
|
Pajer K, Andrus BM, Gardner W, Lourie A, Strange B, Campo J, Bridge J, Blizinsky K, Dennis K, Vedell P, Churchill GA, Redei EE. Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression. Transl Psychiatry 2012; 2:e101. [PMID: 22832901 PMCID: PMC3337072 DOI: 10.1038/tp.2012.26] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early-onset major depressive disorder (MDD) is a serious and prevalent psychiatric illness in adolescents and young adults. Current treatments are not optimally effective. Biological markers of early-onset MDD could increase diagnostic specificity, but no such biomarker exists. Our innovative approach to biomarker discovery for early-onset MDD combined results from genome-wide transcriptomic profiles in the blood of two animal models of depression, representing the genetic and the environmental, stress-related, etiology of MDD. We carried out unbiased analyses of this combined set of 26 candidate blood transcriptomic markers in a sample of 15-19-year-old subjects with MDD (N=14) and subjects with no disorder (ND, N=14). A panel of 11 blood markers differentiated participants with early-onset MDD from the ND group. Additionally, a separate but partially overlapping panel of 18 transcripts distinguished subjects with MDD with or without comorbid anxiety. Four transcripts, discovered from the chronic stress animal model, correlated with maltreatment scores in youths. These pilot data suggest that our approach can lead to clinically valid diagnostic panels of blood transcripts for early-onset MDD, which could reduce diagnostic heterogeneity in this population and has the potential to advance individualized treatment strategies.
Collapse
Affiliation(s)
- K Pajer
- Department of Psychiatry, Dalhousie University Faculty of Medicine
| | - B M Andrus
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - W Gardner
- Department of Psychiatry, Dalhousie University Faculty of Medicine,Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - A Lourie
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - B Strange
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - J Campo
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - J Bridge
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - K Blizinsky
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - K Dennis
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P Vedell
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - E E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. E-mail:
| |
Collapse
|
39
|
McKeon A, Pittock SJ. Paraneoplastic encephalomyelopathies: pathology and mechanisms. Acta Neuropathol 2011; 122:381-400. [PMID: 21938556 DOI: 10.1007/s00401-011-0876-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022]
Abstract
The last three decades have seen major advances in the understanding of paraneoplastic and idiopathic autoimmune disorders affecting the central nervous system (CNS). Neural-specific autoantibodies and their target antigens have been discovered, immunopathology and neuroimaging patterns recognized and pathogenic mechanisms elucidated. Disorders accompanied by autoantibody markers of neural peptide-specific cytotoxic effector T cells [such as anti-neuronal nuclear antibody type 1 (ANNA-1, aka anti-Hu), Purkinje cell antibody type 1 (PCA-1, aka anti-Yo) and CRMP-5 IgG] are generally poorly responsive to immunotherapy. Disorders accompanied by neural plasma membrane-reactive autoantibodies [the effectors of synaptic disorders, which include antibodies targeting voltage-gated potassium channel (VGKC) complex proteins, NMDA and GABA-B receptors] generally respond well to early immunotherapy. Here we describe in detail the neuropathological findings and pathophysiology of paraneoplastic CNS disorders with reference to antigen-specific serology and neurological and oncological contexts.
Collapse
|
40
|
Conacci-Sorrell M, Eisenman RN. Post-translational control of Myc function during differentiation. Cell Cycle 2011; 10:604-10. [PMID: 21293188 DOI: 10.4161/cc.10.4.14794] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myc proteins are deeply involved in multiple biological processes including cell proliferation, growth, metabolism, apoptosis, differentiation, and tumorigenesis. Paradoxically, Myc proteins have been found to be capable of both inhibiting and facilitating differentiation depending on the biological context. Recently we identified a new mode of Myc regulation in differentiating muscle cells in which c-Myc protein is proteolytically cleaved by calcium-dependent calpains in the cytoplasm. This cleavage serves two purposes. First, it inactivates the transcriptional function of Myc by removing its C-terminus, a region responsible for the interaction of Myc with Max and DNA. Second, it alters cytoskeletal architecture and accelerates muscle differentiation through the activity of the remaining N-terminal cleavage product (termed Myc-nick). Here we discuss the roles and regulation of full-length Myc and Myc-nick in terminal differentiation and propose a model in which calpain-mediated cleavage of Myc operates as a functional switch.
Collapse
|
41
|
Totland C, Aarskog NK, Eichler TW, Haugen M, Nøstbakken JK, Monstad SE, Salvesen HB, Mørk S, Haukanes BI, Vedeler CA. CDR2 antigen and Yo antibodies. Cancer Immunol Immunother 2010; 60:283-9. [PMID: 21080165 PMCID: PMC3024499 DOI: 10.1007/s00262-010-0943-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/30/2010] [Indexed: 12/17/2022]
Abstract
Paraneoplastic cerebellar degeneration (PCD) is often associated with Yo antibodies that are directed against human cerebellar degeneration-related protein 2 (CDR2). Such antibodies may also be found in ovarian cancer patients without PCD. We studied if there was an association between Yo antibody production and differences in CDR2 cDNA sequence, mRNA or CDR2 expression in ovarian cancers. We found similar CDR2 cDNA sequence, mRNA and protein levels in primary ovarian cancers, with or without associated Yo antibodies. CDR2 was also present in other cancers, as well as in normal ovary tissue. The results suggest that Yo antibodies are not only related to the expression of CDR2 alone, but also to immune dysregulation.
Collapse
Affiliation(s)
- Cecilie Totland
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Conacci-Sorrell M, Ngouenet C, Eisenman RN. Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation. Cell 2010; 142:480-93. [PMID: 20691906 DOI: 10.1016/j.cell.2010.06.037] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/02/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
The Myc oncoprotein family comprises transcription factors that control multiple cellular functions and are widely involved in oncogenesis. Here we report the identification of Myc-nick, a cytoplasmic form of Myc generated by calpain-dependent proteolysis at lysine 298 of full-length Myc. Myc-nick retains conserved Myc box regions but lacks nuclear localization signals and the bHLHZ domain essential for heterodimerization with Max and DNA binding. Myc-nick induces alpha-tubulin acetylation and altered cell morphology by recruiting histone acetyltransferase GCN5 to microtubules. During muscle differentiation, while the levels of full-length Myc diminish, Myc-nick and acetylated alpha-tubulin levels are increased. Ectopic expression of Myc-nick accelerates myoblast fusion, triggers the expression of myogenic markers, and permits Myc-deficient fibroblasts to transdifferentiate in response to MyoD. We propose that the cleavage of Myc by calpain abrogates the transcriptional inhibition of differentiation by full-length Myc and generates Myc-nick, a driver of cytoplasmic reorganization and differentiation.
Collapse
|
43
|
Abstract
Recent medical advances have improved the understanding, diagnosis, and treatment of paraneoplastic syndromes. These disorders arise from tumor secretion of hormones, peptides, or cytokines or from immune cross-reactivity between malignant and normal tissues. Paraneoplastic syndromes may affect diverse organ systems, most notably the endocrine, neurologic, dermatologic, rheumatologic, and hematologic systems. The most commonly associated malignancies include small cell lung cancer, breast cancer, gynecologic tumors, and hematologic malignancies. In some instances, the timely diagnosis of these conditions may lead to detection of an otherwise clinically occult tumor at an early and highly treatable stage. Because paraneoplastic syndromes often cause considerable morbidity, effective treatment can improve patient quality of life, enhance the delivery of cancer therapy, and prolong survival. Treatments include addressing the underlying malignancy, immunosuppression (for neurologic, dermatologic, and rheumatologic paraneoplastic syndromes), and correction of electrolyte and hormonal derangements (for endocrine paraneoplastic syndromes). This review focuses on the diagnosis and treatment of paraneoplastic syndromes, with emphasis on those most frequently encountered clinically. Initial literature searches for this review were conducted using PubMed and the keyword paraneoplastic in conjunction with keywords such as malignancy, SIADH, and limbic encephalitis, depending on the particular topic. Date limitations typically were not used, but preference was given to recent articles when possible.
Collapse
Affiliation(s)
| | - David E. Gerber
- Individual reprints of this article are not available. Address correspondence to David. E. Gerber, MD, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Mail Code 8852, Dallas, TX 75390-8852 ()
| |
Collapse
|
44
|
Tanaka M, Tanaka K. Pathogenesis and treatment of paraneoplastic neurologic syndrome. Expert Rev Neurother 2010; 2:901-9. [PMID: 19810923 DOI: 10.1586/14737175.2.6.901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Paraneoplastic neurologic syndrome, a rare complication of carcinoma, includes various neurologic disorders, such as encephalomyelitis, paraneoplastic cerebellar degeneration, subacute sensory neuronopathy, retinal paraneoplastic syndrome, opsoclonus-myoclonus syndrome and stiff-person syndrome. Several antibodies to malignant tumor cells and neurons are detected in sera and cerebrospinal fluids of patients with this syndrome, however, there is no direct evidence of antiYo or antiHu antibodies' causative roles in neuronal loss. Recent studies showed cytotoxic T-cell activities against peptides of an antigen protein recognized by antibodies in the peripheral blood of patients with paraneoplastic cerebellar degeneration and antiYo antibodies, as well as in patients with antiHu syndrome. Treatment of paraneoplastic neurologic syndrome with plasmapheresis, immunosuppresive drugs, or intravenous immunoglobulin therapy has been attempted. Here, we discuss previous reports and theoretical treatments based on recent etiological hypothesis of paraneoplastic cerebellar degeneration.
Collapse
Affiliation(s)
- Masami Tanaka
- Department of Neurology and Clinical Research Center, Nishi-Niigata Central Hospital, Niigata, Japan.
| | | |
Collapse
|
45
|
O'Donovan KJ, Diedler J, Couture GC, Fak JJ, Darnell RB. The onconeural antigen cdr2 is a novel APC/C target that acts in mitosis to regulate c-myc target genes in mammalian tumor cells. PLoS One 2010; 5:e10045. [PMID: 20383333 PMCID: PMC2850929 DOI: 10.1371/journal.pone.0010045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 03/08/2010] [Indexed: 02/06/2023] Open
Abstract
Cdr2 is a tumor antigen expressed in a high percentage of breast and ovarian tumors and is the target of a naturally occurring tumor immune response in patients with paraneoplastic cerebellar degeneration, but little is known of its regulation or function in cancer cells. Here we find that cdr2 is cell cycle regulated in tumor cells with protein levels peaking in mitosis. As cells exit mitosis, cdr2 is ubiquitinated by the anaphase promoting complex/cyclosome (APC/C) and rapidly degraded by the proteasome. Previously we showed that cdr2 binds to the oncogene c-myc, and here we extend this observation to show that cdr2 and c-myc interact to synergistically regulate c-myc-dependent transcription during passage through mitosis. Loss of cdr2 leads to functional consequences for dividing cells, as they show aberrant mitotic spindle formation and impaired proliferation. Conversely, cdr2 overexpression is able to drive cell proliferation in tumors. Together, these data indicate that the onconeural antigen cdr2 acts during mitosis in cycling cells, at least in part through interactions with c-myc, to regulate a cascade of actions that may present new targeting opportunities in gynecologic cancer.
Collapse
Affiliation(s)
- Kevin J. O'Donovan
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute and The Rockefeller University, New York, New York, United States of America
| | - Jennifer Diedler
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute and The Rockefeller University, New York, New York, United States of America
| | - Graeme C. Couture
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute and The Rockefeller University, New York, New York, United States of America
| | - John J. Fak
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute and The Rockefeller University, New York, New York, United States of America
| | - Robert B. Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute and The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Totland C, Bredholt G, Haugen M, Haukanes BI, Vedeler CA. Antibody to CCDC104 is associated with a paraneoplastic antibody to CDR2 (anti-Yo). Cancer Immunol Immunother 2010; 59:231-7. [PMID: 19680650 PMCID: PMC11031010 DOI: 10.1007/s00262-009-0742-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 07/11/2009] [Indexed: 11/30/2022]
Abstract
Patients with cancer may develop paraneoplastic neurological syndromes (PNS) in which onconeural antibodies are important diagnostic findings. As the functional role of onconeural antibodies is largely unknown, insight gained by identifying associated antibodies may help to clarify the pathogenesis of the PNS. In this study, we identified patients with Yo antibodies who also had antibodies to an uncharacterized protein called coiled-coil domain-containing protein 104 (CCDC104). We found a significant association between CCDC104 and Yo antibodies (4 of 38, 10.5%), but not other onconeural antibodies (0 of 158) (P = 0.007, Fisher's exact test). The prevalence of CCDC104 antibodies was approximately similar in patients with cancer (8 of 756, 1.1%) and in healthy blood donors (2 of 300, 0.7%). CCDC104 antibodies were not associated with PNS, as this was found in only two of the ten CCDC104-positive patients. The CCDC104 protein, whose function is unknown, is expressed in various human tissues, including the brain, and is localized mainly to the nucleus, but is also found in the cytoplasm. The association between Yo and CCDC104 antibodies may indicate functional similarities.
Collapse
Affiliation(s)
- Cecilie Totland
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | |
Collapse
|
47
|
Kao LR, Megraw TL. Centrocortin cooperates with centrosomin to organize Drosophila embryonic cleavage furrows. Curr Biol 2009; 19:937-42. [PMID: 19427213 DOI: 10.1016/j.cub.2009.04.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/21/2009] [Accepted: 04/07/2009] [Indexed: 11/25/2022]
Abstract
In the Drosophila early embryo, the centrosome coordinates assembly of cleavage furrows. Currently, the molecular pathway that links the centrosome and the cortical microfilaments is unknown. In centrosomin (cnn) mutants, in which the centriole forms but the centrosome pericentriolar material (PCM) fails to assemble, actin microfilaments are not organized into furrows at the syncytial cortex [6]. Although CNN is required for centrosome assembly and function, little is known of its molecular activities. Here, we show the novel protein Centrocortin (CEN), which associates with centrosomes and also with cleavage furrows in early embryos, is required for cleavage furrow assembly. CEN binds to CNN within CNN Motif 2 (CM2), a conserved 60 amino acid domain at CNN's C terminus. The cnn(B4) allele, which contains a missense mutation at a highly conserved residue within CM2, blocks the binding of CEN and disrupts cleavage furrow assembly. Together, these findings show that the C terminus of CNN coordinates cleavage furrow formation through binding to CEN, thereby providing a molecular link between the centrosome and cleavage furrow assembly.
Collapse
Affiliation(s)
- Ling-Rong Kao
- Department of Pharmacology and The Cecil and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9051, USA
| | | |
Collapse
|
48
|
Ogita S, Llaguna OH, Feldman SM, Blum R. Paraneoplastic cerebellar degeneration with anti-Yo antibody in a patient with HER2/neu overexpressing breast cancer: a case report with a current literature review. Breast J 2008; 14:382-4. [PMID: 18540952 DOI: 10.1111/j.1524-4741.2008.00604.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare paraneoplastic syndrome, occurring in <1% of breast cancers. We describe a 32-year-old female presenting with ataxia subsequently diagnosed with poorly differentiated breast cancer. She was serum anti-Yo antibody positive, with estrogen/progesterone receptor negative and HER2/neu receptor positive breast cancer. Neurological symptoms progressed despite modified radical mastectomy, supraclavicular lymphadenectomy, intravenous immunoglobulin, corticosteroids, transtuzumab, and combination chemotherapy. We performed a literature search, which found a possible association between anti-Yo positive PCD and HER2/neu-expressing breast cancer.
Collapse
Affiliation(s)
- Shin Ogita
- Department of Medicine, Beth Israel Medical Center, Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
49
|
Kashyap P, Farrugia G. Enteric autoantibodies and gut motility disorders. Gastroenterol Clin North Am 2008; 37:397-410, vi-vii. [PMID: 18499027 PMCID: PMC2448392 DOI: 10.1016/j.gtc.2008.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that a subset of gastrointestinal motility disorders is associated with the presence of circulating antibodies. These antibodies are directed against various molecular targets, the best known being anti-neuronal nuclear antibody (ANNA-1 or anti-Hu) associated with paraneoplastic motility disorders. There is also evidence that the presence of distinct autoantibody profiles is associated with non-paraneoplastic motility disorders. This review focuses on the types of antibodies associated with gastrointestinal motility disorders and the significance of these antibodies. Algorithms are suggested for the work-up and treatment of patients with circulating antibodies associated with gastrointestinal motility disorders.
Collapse
Affiliation(s)
- Purna Kashyap
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, MN
| | - Gianrico Farrugia
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, MN
| |
Collapse
|
50
|
Chen ZG, Li H, Zhou D, Yang J, Zhou T, Qin JM. Correlation between auto-antibodies and esophageal cancer: an analysis of 92 cases. Shijie Huaren Xiaohua Zazhi 2008; 16:526-529. [DOI: 10.11569/wcjd.v16.i5.526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the positive rate of auto-antibodies, locations of their target antigens in esophageal cancer patients and correlation between auto-antibodies and esophageal cancer.
METHODS: Auto-antibodies in sera of 92 esophageal cancer patients and 135 healthy controls were detected with indirect immunofluorescence (IIF).
RESULTS: The positive rate of auto-antibodies in esophageal cancer patients was significantly higher than that in normal controls (55.43% vs 20.00%, P < 0.01). A significant difference was found in the fluorescence pattern and location of target antigens between the two groups. Although the positive rate of auto-antibodies increased with increasing age (P < 0.05, χ2 = 4.68, χ2 = 3.93; P < 0.05, χ2 = 5.93, χ2 = 3.86), it was significantly higher in esophageal cancer patients than in normal controls (P < 0.05, χ2 = 5.01; P < 0.01, χ2 = 9.43, χ2 = 18.1). The positive rate of auto-antibodies was significantly higher in normal controls and in women with esophageal cancer than in males with esophageal cancer (P < 0.01, χ2 = 8.34, χ2 = 6.90).
CONCLUSION: The spectra of auto-antibodies in esophageal cancer patients are different from those in normal controls and patients with autoimmune disease, thus contributing to the differentiation between healthy persons and cancer patients.
Collapse
|