1
|
Fan J, Liu X, Duan Z, Zhao H, Chang Z, Li L. The Regulatory Role of miRNAs in Zebrafish Fin Regeneration. Int J Mol Sci 2024; 25:10542. [PMID: 39408869 PMCID: PMC11477159 DOI: 10.3390/ijms251910542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Since Teleostei fins have a strong regenerative capacity, further research was conducted on the regulation of gene expression during fin regeneration. This research focuses on miRNA, which is a key post-transcriptional regulatory molecule. In this study, a miRNA library for the fin regeneration of zebrafish was constructed to reveal the differential expression of miRNA during fin regeneration and to explore the regulatory pathway for fin regeneration. Following the injection of miRNA agomir into zebrafish, the proliferation of blastema cells and the overall fin regeneration area were significantly reduced. It was observed that the miRNAs impaired blastocyte formation by affecting fin regeneration through the inhibition of the expressions of genes and proteins associated with blastocyte formation (including yap1 and Smad1/5/9), which is an effect associated with the Hippo pathway. Furthermore, it has been demonstrated that miRNAs can impair the patterns and mineralization of newly formed fin rays. The miRNAs influenced fin regeneration by inhibiting the expression of a range of bone-related genes and proteins in osteoblast lineages, including sp7, runx2a, and runx2b. This study provides a valuable reference for the further exploration of morphological bone reconstruction in aquatic vertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Li
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, China; (J.F.)
| |
Collapse
|
2
|
Xiong N, An JS, Yoon H, Ryoo HM, Lim WH. Runx2 heterozygosity alters homeostasis of the periodontal complex. J Periodontal Res 2024; 59:151-161. [PMID: 37882070 DOI: 10.1111/jre.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Haploinsufficiency of Runx2 (Runx2+/- ) causes dental anomalies. However, little is known about the involvement of Runx2 in the maintenance of dentin, cementum, and the periodontal ligament (PDL) during adulthood. This study aimed to observe the effects of Runx2+/- on homeostasis of the periodontal complex. MATERIALS AND METHODS A total of 14 three-month-old Runx2+/- mice and their wild-type littermates were examined using micro-computed tomography, histology, and immunohistochemistry. Phenotypic alterations in the dentin, cementum, and PDL were characterized and quantified. RESULTS Haploinsufficiency of Runx2 caused cellular changes in the PDL space including reduction of cell proliferation and apoptosis, and irregular attachment of the collagen fibers in the PDL space into the cementum. Absence of continuous thickness of cementum was also observed in Runx2+/- mice. CONCLUSION Runx2 is critical for cementum integrity and attachment of periodontal fibers. Because of its importance to cementum homeostasis, Runx2 is essential for homeostasis of periodontal complex.
Collapse
Affiliation(s)
- Ni Xiong
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jung-Sub An
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Heein Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Won Hee Lim
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Yu L, Zhao Y, Zhao Y. Advances in the pharmacological effects and molecular mechanisms of emodin in the treatment of metabolic diseases. Front Pharmacol 2023; 14:1240820. [PMID: 38027005 PMCID: PMC10644045 DOI: 10.3389/fphar.2023.1240820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. are traditional Chinese medicines that have been used for thousands of years. They are formulated into various preparations and are widely used. Emodin is a traditional Chinese medicine monomer and the main active ingredient in Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. Modern research shows that it has a variety of pharmacological effects, including promoting lipid and glucose metabolism, osteogenesis, and anti-inflammatory and anti-autophagy effects. Research on the toxicity and pharmacokinetics of emodin can promote its clinical application. This review aims to provide a basis for further development and clinical research of emodin in the treatment of metabolic diseases. We performed a comprehensive summary of the pharmacology and molecular mechanisms of emodin in treating metabolic diseases by searching databases such as Web of Science, PubMed, ScienceDirect, and CNKI up to 2023. In addition, this review also analyzes the toxicity and pharmacokinetics of emodin. The results show that emodin mainly regulates AMPK, PPAR, and inflammation-related signaling pathways, and has a good therapeutic effect on obesity, hyperlipidemia, non-alcoholic fatty liver disease, diabetes and its complications, and osteoporosis. In addition, controlling toxic factors and improving bioavailability are of great significance for its clinical application.
Collapse
Affiliation(s)
- Linyuan Yu
- Department of Traditional Chinese Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
- Department of Pharmacy, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yongliang Zhao
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongli Zhao
- Department of Traditional Chinese Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| |
Collapse
|
4
|
Piao M, Lee SH, Li Y, Choi JK, Yeo CY, Lee KY. Cyclophilin E (CypE) Functions as a Positive Regulator in Osteoblast Differentiation by Regulating the Transcriptional Activity of Runx2. Cells 2023; 12:2549. [PMID: 37947627 PMCID: PMC10648996 DOI: 10.3390/cells12212549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Cyclophilin E (CypE) belongs to the cyclophilin family and exhibits peptidyl-prolyl cis-trans isomerase (PPIase) activity. It participates in various biological processes through the regulation of peptidyl-prolyl isomerization. However, the specific role of CypE in osteoblast differentiation has not yet been elucidated. In this study, we first discovered the positive impact of CypE on osteoblast differentiation through gain or loss of function experiments. Mechanistically, CypE enhances the transcriptional activity of Runx2 through its PPIase activity. Furthermore, we identified the involvement of the Akt signaling pathway in CypE's function in osteoblast differentiation. Taken together, our findings indicate that CypE plays an important role in osteoblast differentiation as a positive regulator by increasing the transcriptional activity of Runx2.
Collapse
Affiliation(s)
- Meiyu Piao
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Sung Ho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Yuankuan Li
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National University, Cheong-Ju 28644, Republic of Korea;
| | - Chang-Yeol Yeo
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman’s University, Seoul 03760, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| |
Collapse
|
5
|
Luo D, Peng S, Li Q, Rao P, Tao G, Wang L, Xiao J. Methyltransferase-like 3 modulates osteogenic differentiation of adipose-derived stem cells in osteoporotic rats. J Gene Med 2023; 25:e3481. [PMID: 36782035 DOI: 10.1002/jgm.3481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is a metabolic bone disease involving reduced bone mass. Adipose-derived stem cells (ASCs) play an important role in bone regeneration. Emerging evidence suggests that methyltransferase-like 3 (METTL3) plays a significant role in bone development and metabolism. Therefore, this study investigates changes to METTL3 in the osteogenic differentiation of adipose stem cells in osteoporotic rats (OP-ASCs) and explores ways to enhance their osteogenic ability. METHODS An animal model of osteoporosis was established by removing both ovaries in rats. Real-time PCR and western blotting were performed to detect the expression of METTL3 and bone-related molecules, including runt-related transcription factor 2 (Runx2) and osteopontin (Opn). Furthermore, alkaline phosphatase staining was used to confirm the osteogenic potential of stem cells. Mettl3 small interfering RNA and Mettl3 overexpression lentivirus were used to assess the role of METTL3 in osteogenic differentiation of ASCs and OP-ASCs. RESULTS The osteogenic differentiation capacity and Mettl3 expression significantly decreased in OP-ASCs. Moreover, Mettl3 silencing down-regulated the osteogenic ability of ASCs, and overexpression of Mettl3 recovered the impaired osteogenic capacity in OP-ASCs in vitro. CONCLUSION The Mettl3 expression levels and osteogenic potential of OP-ASCs decreased. However, overexpression of METTL3 rescued the osteogenic ability of OP-ASCs, providing a new target for treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Daowen Luo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Pengcheng Rao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Lang Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.,Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.,Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Madani P, Hesaraki S, Saeedifar M, Ahmadi Nasab N. The controlled release, bioactivity and osteogenic gene expression of Quercetin-loaded gelatin/tragacanth/ nano-hydroxyapatite bone tissue engineering scaffold. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:217-242. [PMID: 35960146 DOI: 10.1080/09205063.2022.2113293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, a Gelatin/Tragacanth/Nano-hydroxyapatite scaffold was fabricated via freeze-drying method. A highly porous scaffold with an average pore diameter of 142 µm and porosity of 86% was found by the micro-computed tomography. The mean compressive strength of the scaffold was about 1.5 MPa, a value in the range of the spongy bone. The scaffold lost 10 wt.% of its initial weight after 28 days soaking in PBS that shows a fair degradation rate for a bone tissue engineering scaffold. Apatite formation ability of the scaffold was confirmed via scanning electron microscopy, X-ray diffraction and Fourier transforming infrared spectroscopy, after 28 days soaking in simulated body fluid. The scaffold was able to deliver 93% of the loaded drug, Quercetin, during 120 h in phosphate-buffered solution, in a sustainable manner. The MTT assay using human bone mesenchymal stem cells showed 84% cell viability of the Quercetin-loaded scaffold. The expression of the osteogenic genes including Col I, Runx-2, BGLAP (gene of osteocalcin), bFGF, SP7 (gene of osterix) and SPP1 (gene of osteopontin) were all upregulated when Quercetin was loaded on the scaffold, which indicates the synergetic effect of the drug and the scaffold.
Collapse
Affiliation(s)
- Parisa Madani
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Saeed Hesaraki
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Maryam Saeedifar
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Navid Ahmadi Nasab
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
7
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
8
|
Bai Z, Hu K, Shou Z, Yu J, Meng H, Zhou H, Chen L, Yu T, Lu R, Li N, Chen C. Layer-by-layer assembly of procyanidin and collagen promotes mesenchymal stem cell proliferation and osteogenic differentiation in vitro and in vivo. Regen Biomater 2022; 10:rbac107. [PMID: 36683760 PMCID: PMC9847536 DOI: 10.1093/rb/rbac107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
Collagen, commonly used in tissue engineering, is widespread in various tissues. During bone tissue regeneration, collagen can stimulate the cellular response and determine the fate of cells. In this work, we integrated collagen type II with procyanidin (PC) onto an implant coating by applying a layer-by-layer technique to demonstrate that collagen and PC can participate in the construction of new biomaterials and serve as multifunctional components. The effects of PC/collagen multilayers on the viability of cocultured bone marrow mesenchymal stem cells (BMSCs) were analyzed by cell counting kit-8 analysis and phalloidin staining. The reactive oxygen species level of BMSCs was revealed through immunofluorescent staining and flow cytometry. Osteogenesis-related genes were detected, and in vivo experiment was performed to reveal the effect of newly designed material on the osteogenic differentiation of BMSCs. Our data demonstrated that in BMSCs PC/collagen multilayers accelerated the proliferation and osteogenic differentiation through Wnt/β-catenin signaling pathway and enhanced bone generation around the implant in the bone defect model of rabbit femurs. In summary, combination of collagen and PC provided a new sight for the research and development of implant materials or coatings in the future.
Collapse
Affiliation(s)
- Zhibiao Bai
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, P.R. China.,Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Kai Hu
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Zeyu Shou
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Jiahuan Yu
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Hongming Meng
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Han Zhou
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Liangyan Chen
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Tiantian Yu
- Wenzhou Key Laboratory of Perioperative Medicine, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P.R. China.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Na Li
- Wenzhou Key Laboratory of Perioperative Medicine, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P.R. China
| | - Chun Chen
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, P.R. China.,Wenzhou Medical University, Wenzhou 325000, P.R. China
| |
Collapse
|
9
|
Chang GRL, Lin WY, Fan HC, Tu MY, Liu YH, Yen CC, Cidem A, Chen W, Chen CM. Kefir peptides ameliorate osteoporosis in AKR1A1 knockout mice with vitamin C deficiency by promoting osteoblastogenesis and inhibiting osteoclastogenesis. Biomed Pharmacother 2022; 156:113859. [DOI: 10.1016/j.biopha.2022.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022] Open
|
10
|
Ryan CNM, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs MJ, Griffin MD, Zeugolis DI. The synergistic effect of physicochemical in vitro microenvironment modulators in human bone marrow stem cell cultures. BIOMATERIALS ADVANCES 2022; 144:213196. [PMID: 36455498 DOI: 10.1016/j.bioadv.2022.213196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Modern bioengineering utilises biomimetic cell culture approaches to control cell fate during in vitro expansion. In this spirit, herein we assessed the influence of bidirectional surface topography, substrate rigidity, collagen type I coating and macromolecular crowding (MMC) in human bone marrow stem cell cultures. In the absence of MMC, surface topography was a strong modulator of cell morphology. MMC significantly increased extracellular matrix deposition, albeit in a globular manner, independently of the surface topography, substrate rigidity and collagen type I coating. Collagen type I coating significantly increased cell metabolic activity and none of the assessed parameters affected cell viability. At day 14, in the absence of MMC, none of the assessed genes was affected by surface topography, substrate rigidity and collagen type I coating, whilst in the presence of MMC, in general, collagen type I α1 chain, tenascin C, osteonectin, bone sialoprotein, aggrecan, cartilage oligomeric protein and runt-related transcription factor were downregulated. Interestingly, in the presence of the MMC, the 1000 kPa grooved substrate without collagen type I coating upregulated aggrecan, cartilage oligomeric protein, scleraxis homolog A, tenomodulin and thrombospondin 4, indicative of tenogenic differentiation. This study further supports the notion for multifactorial bioengineering to control cell fate in culture.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Peadar Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md Nahidul Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - Manus J Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Matthew D Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
11
|
Saberi EA, Farhad Mollashahi N, Ejeian F, Nematollahi M, Shahraki O, Pirhaji A, Nasr-Esfahani MH. Assessment of Cytotoxicity and Odontogenic/Osteogenic Differentiation Potential of Nano-Dentine Cement Against Stem Cells from Apical Papilla. CELL JOURNAL 2022; 24:637-646. [PMID: 36377213 PMCID: PMC9663962 DOI: 10.22074/cellj.2022.8126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Assessment of the cytotoxicity of novel calcium silicate-based cement is imperative in endodontics. This experimental study aimed to assess the cytotoxicity and odontogenic/osteogenic differentiation potential of a new calcium silicate/pectin cement called Nano-dentine against stem cells from the apical papilla (SCAPs). MATERIALS AND METHODS In this experimental study, the cement powder was synthesized by the sol-gel technique. Zirconium oxide was added as opacifier and Pectin, a plant-based polymer, and calcium chloride as the liquid to prepare the nano-based dental cement. Thirty-six root canal dentin blocks of human extracted single-canal premolars with 2 mm height, flared with #1, 2 and 3 Gates-Glidden drills were used to prepare the cement specimens. The cement, namely mineral trioxide aggregate (MTA), Biodentine, and the Nano-dentine were mixed according to the manufacturers' instructions and applied to the roots of canal dentin blocks. The cytotoxicity and odontogenic/osteogenic potential of the cement were evaluated by using SCAPs. RESULTS SCAPs were characterized by the expression of routine mesenchymal cell markers and differentiation potential to adipocytes, osteoblasts, and chondrocytes. Cement displayed no significant differences in cytotoxicity or calcified nodules formation. Gene expression analysis showed that all three types of cement induced significant down- regulation of COLA1; however, the new cement induced significant up-regulation of RUNX2 and SPP1 compared to the control group and MTA. The new cement also induced significant up-regulation of TGFB1 and inducible nitric oxide synthase (iNOS) compared with Biodentine and MTA. CONCLUSION The new Nano-dentin cement has higher odontogenic/osteogenic potential compared to Biodentine and MTA for differentiation of SCAPs to adipocytes, osteoblasts, and chondrocytes.
Collapse
Affiliation(s)
- Eshagh Ali Saberi
- Department of Endodontics, Faculty of Dentistry, Oral and Dental Diseases Research Center, Zahedan University of Medical Sciences,
Zahedan, Iran
| | - Narges Farhad Mollashahi
- Department of Endodontics, Faculty of Dentistry, Oral and Dental Diseases Research Center, Zahedan University of Medical Sciences,
Zahedan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marzieh Nematollahi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Arezoo Pirhaji
- Department of Endodontics, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran,P.O.Box: 9817699693Department of EndodonticsFaculty of DentistryZahedan University of Medical
SciencesZahedanIranP.O.Box: 8159358686Department of Animal BiotechnologyCell Science Research CenterRoyan Institute for BiotechnologyACECRIsfahanIran
Emails:,
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran,P.O.Box: 9817699693Department of EndodonticsFaculty of DentistryZahedan University of Medical
SciencesZahedanIranP.O.Box: 8159358686Department of Animal BiotechnologyCell Science Research CenterRoyan Institute for BiotechnologyACECRIsfahanIran
Emails:,
| |
Collapse
|
12
|
Zeng L, He H, Sun M, Gong X, Zhou M, Hong Y, Wu Y, Chen X, Chen Q. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther 2022; 13:486. [PMID: 36175952 PMCID: PMC9524038 DOI: 10.1186/s13287-022-03140-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Dental follicles are necessary for tooth eruption, surround the enamel organ and dental papilla, and regulate both the formation and resorption of alveolar bone. Dental follicle progenitor cells (DFPCs), which are stem cells found in dental follicles, differentiate into different kinds of cells that are necessary for tooth formation and eruption. Runt‐related transcription factor 2 (Runx2) is a transcription factor that is essential for osteoblasts and osteoclasts differentiation, as well as bone remodeling. Mutation of Runx2 causing cleidocranial dysplasia negatively affects osteogenesis and the osteoclastic ability of dental follicles, resulting in tooth eruption difficulties. Among a variety of cells and molecules, Nel-like molecule type 1 (Nell-1) plays an important role in neural crest-derived tissues and is strongly expressed in dental follicles. Nell-1 was originally identified in pathologically fused and fusing sutures of patients with unilateral coronal synostosis, and it plays indispensable roles in bone remodeling, including roles in osteoblast differentiation, bone formation and regeneration, craniofacial skeleton development, and the differentiation of many kinds of stem cells. Runx2 was proven to directly target the Nell-1 gene and regulate its expression. These studies suggested that Runx2/Nell-1 axis may play an important role in the process of tooth eruption by affecting DFPCs. Studies on short and long regulatory noncoding RNAs have revealed the complexity of RNA-mediated regulation of gene expression at the posttranscriptional level. This ceRNA network participates in the regulation of Runx2 and Nell-1 gene expression in a complex way. However, non-study indicated the potential connection between Runx2 and Nell-1, and further researches are still needed.
Collapse
Affiliation(s)
- Li Zeng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Hong He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Mingjie Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xinyi Gong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Mengqi Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yaya Hong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yongjia Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
13
|
Jing Z, Liang Z, Yang L, Du W, Yu T, Tang H, Li C, Wei W. Bone formation and bone repair: The roles and crosstalk of osteoinductive signaling pathways. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Li SJ, Cheng WL, Kao YH, Chung CC, Trang NN, Chen YJ. Melatonin Inhibits NF-κB/CREB/Runx2 Signaling and Alleviates Aortic Valve Calcification. Front Cardiovasc Med 2022; 9:885293. [PMID: 35795373 PMCID: PMC9251177 DOI: 10.3389/fcvm.2022.885293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is linked to high mortality. Melatonin inhibits nuclear factor-kappa B (NF-κB)/cyclic AMP response element-binding protein (CREB), contributing to CAVD progression. This study determined the role of melatonin/MT1/MT2 signaling in valvular interstitial cell (VIC) calcification. Western blotting and Alizarin red staining were used to analyze NF-κB/CREB/runt-related transcription factor 2 (Runx2) signaling in porcine VICs treated with an osteogenic (OST) medium without (control) or with melatonin for 5 days. Chromatin immunoprecipitation (ChIP) assay was used to analyze NF-κB's transcription regulation of NF-κB on the Runx2 promoter. OST medium-treated VICs exhibited a greater expression of NF-κB, CREB, and Runx2 than control VICs. Melatonin treatment downregulated the effects of the OST medium and reduced VIC calcification. The MT1/MT2 antagonist (Luzindole) and MT1 receptor neutralized antibody blocked the anticalcification effect of melatonin, but an MT2-specific inhibitor (4-P-PDOT) did not. Besides, the NF-κB inhibitor (SC75741) reduced OST medium-induced VIC calcification to a similar extent to melatonin at 10 nmol/L. The ChIP assay demonstrated that melatonin attenuated OST media increased NF-κB binding activity to the promoter region of Runx2. Activation of the melatonin/MT1-axis significantly reduced VIC calcification by targeting the NF-κB/CREB/Runx2 pathway. Targeting melatonin/MT1 signaling may be a potential therapeutic strategy for CAVD.
Collapse
Affiliation(s)
- Shao-Jung Li
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chih Chung
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Yi-Jen Chen
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Yi-Jen Chen
| |
Collapse
|
15
|
Karsenty G, Khosla S. The crosstalk between bone remodeling and energy metabolism: A translational perspective. Cell Metab 2022; 34:805-817. [PMID: 35545088 PMCID: PMC9535690 DOI: 10.1016/j.cmet.2022.04.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022]
Abstract
Genetics in model organisms has progressively broken down walls that previously separated different disciplines of biology. One example of this holistic evolution is the recognition of the complex relationship that exists between the control of bone mass (bone remodeling) and energy metabolism in mammals. Numerous hormones orchestrate this crosstalk. In particular, the study of the leptin-mediated regulation of bone mass has not only revealed the existence of a central control of bone mass but has also led to the realization that sympathetic innervation is a major regulator of bone remodeling. This happened at a time when the use of drugs aiming at treating osteoporosis, the most frequent bone disease, has dwindled. This review will highlight the main aspects of the leptin-mediated regulation of bone mass and how this led to the realization that β-blockers, which block the effects of the sympathetic nervous system, may be a viable option to prevent osteoporosis.
Collapse
Affiliation(s)
- Gerard Karsenty
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Sundeep Khosla
- Kogod Center of Aging and Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
16
|
Benayahu D. Mesenchymal stem cell differentiation and usage for biotechnology applications: tissue engineering and food manufacturing. BIOMATERIALS TRANSLATIONAL 2022; 3:17-23. [PMID: 35837346 PMCID: PMC9255789 DOI: 10.12336/biomatertransl.2022.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 11/05/2022]
Abstract
Recent advances in the field of stem cell research now enable their utilisation for biotechnology applications in regenerative medicine and food tech. The first use of stem cells as biomedical devices employed a combination of cells and scaffold to restore, improve, or replace damaged tissues and to grow new viable tissue for replacement organs. This approach has also been adopted to replace meat production in the food industry. Mesenchymal stem cells are the source material used to induce cells to differentiate into the desired lineage. These technologies require mass propagation and rely on supplying the regulatory factors that direct differentiation. Mesenchymal stem cells can differentiate into fibroblastic and skeletal cells; fibroblastic/chondrogenic/osteogenic/myogenic and adipogenic lineages. Each differentiation fate requires specific key molecular regulators and appropriate activation conditions. Stem cell commitment determination involves a concerted effort of coordinated activation and silencing of lineage-specific genes. Transcription factors which bind gene promoters and chromatin-remodelling proteins are key players in the control process of lineage commitment and differentiation from embryogenesis through adulthood. Consequently, a major research challenge is to characterise such molecular pathways that coordinate lineage-specific differentiation and function. Revealing the mechanisms of action and the main factors will provide the knowledge necessary to control activation and regulation to achieve a specific lineage. Growing cells on a scaffold is a support system that mimics natural tissue and transduces the appropriate signals of the tissue niche for appropriate cellular function. The outcome of such research will deepen the understanding of cell differentiation to promote and advance the biotech, allowing the cell expansion required for their usage in therapy or the development of food tech.
Collapse
|
17
|
Abstract
Scales, as key structures of fish skin, play an important role in physiological function. The study of fish scale development mechanisms provides a basis for exploring the molecular-level developmental differences between scaled and non-scaled fishes. In this study, alizarin red staining was used to divide the different stages of zebrafish (Danio rerio) scale development. Four developmental stages, namely stage I (~17 dpf, scales have not started to grow), stage II (~33 dpf, the point at which scales start to grow), stage III (~41 dpf, the period in which the scales almost cover the whole body), and stage IV (~3 mpf, scales cover the whole body), were determined and used for subsequent transcriptome analysis. WGCNA (weighted correlation network analysis) and DEG (differentially expressed gene) analysis were used for screening the key genes. Based on the comparison between stage II and stage I, 54 hub-genes were identified by WGCNA analysis. Key genes including the Scpp family (Scpp7, Scpp6, Scpp5, and Scpp8), the Fgf family (Fgfr1b and Fgfr3), Tcf7, Wnt10b, Runx2b, and Il2rb were identified by DEG analysis, which indicated that these genes played important roles in the key nodes of scale development signal pathways. Combined with this analysis, the TGF-β, Wnt/β-catenin, and FGF signaling pathways were suggested to be the most important signal pathways for scales starting to grow. This study laid a foundation for exploring the scale development mechanism of other fishes. The scale development candidate genes identified in the current study will facilitate functional gene identifications in the future.
Collapse
|
18
|
Thyroid-Stimulating Hormone Favors Runx2-Mediated Matrix Mineralization in HOS and SaOS2 Cells: An In Vitro and In Silico Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030613. [PMID: 35163879 PMCID: PMC8838199 DOI: 10.3390/molecules27030613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Osteoporosis is a skeletal disease that is both systemic and silent characterized by an unbalanced activity of bone remodeling leading to bone loss. Rising evidences demonstrate that thyroid stimulating hormone (TSH) has an important role in the regulation on the metabolism of bone. However, TSH regulation on human osteoblast essential transcriptional factors has not been identified. Current study examined the role of TSH on human osteoblastic Runx2 expression and their functional genes by in vitro and in slico analysis. Human osteoblast like (HOS and SaoS-2) cells were cultured with DMEM and treated with hTSH at the concentration of 0.01 ng/mL and 10 ng/mL. After treatment, osteoblastic Runx2 and IGF-1R beta expression were studied using RT-PCR and western blot analysis. TSH treatment induced osteoblastic essential transcriptional factor, Runx2 in HOS and SaOS2 cells on 48 h duration and elevated the expression of IGF-IR β gene and Protein in SaoS-2 cells. TSH also promotes Runx2 responsive genes such as ALP, Collagen and osteocalcin in SaOS2 cells on day 2 to day 14 of 10 ng/mL of treatment and favors' matrix mineralization matrix in these cells. In addition, TSH facilitated human osteoblastic cells to mineralize their matrix confirmed by day 21 of alizarin red calcium staining. In silico study was performed to check CREB and ELK1 interaction with Runx2. Results of in silico analysis showed that TSH mediated signalling molecules such as CREB and ELK1 showed interaction with Runx2 which involve in osteobalstic gene expression and differentiation. Present findings confirm that TSH promotes Runx2 expression, osteoblastic responsive genes and bone matrix formation.
Collapse
|
19
|
Itoh Y, Itoh S, Naruse H, Kagioka T, Hue MT, Abe M, Hayashi M. Intracellular density is a novel indicator of differentiation stages of murine osteoblast lineage cells. J Cell Biochem 2021; 122:1805-1816. [PMID: 34427353 DOI: 10.1002/jcb.30135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 11/12/2022]
Abstract
Osteoblasts are primary bone-making cells originating from mesenchymal stem cells (MSCs) in the bone marrow. The differentiation of MSCs to mature osteoblasts involves an intermediate stage called preosteoblasts, but the details of this process remain unclear. This study focused on the intracellular density of immature osteoblast lineage cells and hypothesized that the density might vary during differentiation and might be associated with the differentiation stages of osteoblast lineage cells. This study aimed to clarify the relationship between intracellular density and differentiation stages using density gradient centrifugation. Primary murine bone marrow stromal cell cultures were prepared in an osteogenic induction medium, and cells were separated into three fractions (low, intermediate, and high-density). The high-density fraction showed elevated expression of osteoblast differentiation markers (Sp7, Col1a1, Spp1, and Bglap) and low expression of MSC surface markers (Sca-1, CD73, CD105, and CD106). In contrast, the low-density fraction showed a high expression of MSC surface markers. These results indicated that intracellular density increased during differentiation from preosteoblasts to committed osteoblasts. Intracellular density may be a novel indicator for osteoblast differentiation stages. Density gradient centrifugation is a novel technique to study the process by which preosteoblasts transform into bone-forming cells.
Collapse
Affiliation(s)
- Yuki Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Haruna Naruse
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Takumi Kagioka
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mai Thi Hue
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
20
|
Divya D, Bhattacharya TK. Bone morphogenetic proteins (BMPs) and their role in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D. Divya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - T. K. Bhattacharya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
21
|
Munmun F, Witt-Enderby PA. Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J Pineal Res 2021; 71:e12749. [PMID: 34085304 DOI: 10.1111/jpi.12749] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Melatonin is the primary circadian output signal from the brain and is mainly synthesized in pinealocytes. The rhythm and secretion of melatonin are under the control of an endogenous oscillator located in the SCN or the master biological clock. Disruptions in circadian rhythms by shift work, aging, or light at night are associated with bone loss and increased fracture risk. Restoration of nocturnal melatonin peaks to normal levels or therapeutic levels through timed melatonin supplementation has been demonstrated to provide bone-protective actions in various models. Melatonin is a unique molecule with diverse molecular actions targeting melatonin receptors located on the plasma membrane or mitochondria or acting independently of receptors through its actions as an antioxidant or free radical scavenger to stimulate osteoblastogenesis, inhibit osteoclastogenesis, and improve bone density. Its additional actions on entraining circadian rhythms and improving quality of life in an aging population coupled with its safety profile make it an ideal therapeutic candidate for protecting against bone loss in susceptible populations. The intent of this review is to provide a focused discussion on bone loss and disorders of the bone as it relates to melatonin and conditions that modify melatonin levels with the hope that future therapies include those that include melatonin and correct those factors that modify melatonin levels like circadian disruption.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Son HE, Jang WG. Cip2A modulates osteogenic differentiation via the ERK-Runx2 pathway in MG63 cells. Biofactors 2021; 47:658-664. [PMID: 34077593 DOI: 10.1002/biof.1760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/08/2021] [Indexed: 01/25/2023]
Abstract
Cancerous inhibitor of protein phosphatase 2A (Cip2A) is an oncoprotein that promotes the development of several types of cancer. However, its molecular function in osteoblast differentiation remains unclear. In this study, we found that Cip2A was upregulated under osteogenic conditions in MG63 cells. Besides, overexpression of Cip2A significantly increased the expression of Runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP). Inversely, the knockdown of Cip2A in MG63 cells suppressed osteoblast differentiation. Cip2A expression during osteogenic differentiation was mediated by extracellular signal-regulated kinase (ERK) activation. Taken together, our results suggest that Cip2A plays important role in regulating osteoblast differentiation by inducing ERK phosphorylation in MG63 cells.
Collapse
Affiliation(s)
- Hyo-Eun Son
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| |
Collapse
|
23
|
Rauch A, Mandrup S. Transcriptional networks controlling stromal cell differentiation. Nat Rev Mol Cell Biol 2021; 22:465-482. [PMID: 33837369 DOI: 10.1038/s41580-021-00357-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/02/2023]
Abstract
Stromal progenitors are found in many different tissues, where they play an important role in the maintenance of tissue homeostasis owing to their ability to differentiate into parenchymal cells. These progenitor cells are differentially pre-programmed by their tissue microenvironment but, when cultured and stimulated in vitro, these cells - commonly referred to as mesenchymal stromal cells (MSCs) - exhibit a marked plasticity to differentiate into many different cell lineages. Loss-of-function studies in vitro and in vivo have uncovered the involvement of specific signalling pathways and key transcriptional regulators that work in a sequential and coordinated fashion to activate lineage-selective gene programmes. Recent advances in omics and single-cell technologies have made it possible to obtain system-wide insights into the gene regulatory networks that drive lineage determination and cell differentiation. These insights have important implications for the understanding of cell differentiation, the contribution of stromal cells to human disease and for the development of cell-based therapeutic applications.
Collapse
Affiliation(s)
- Alexander Rauch
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
24
|
Wang C, Li Y, Yu K, Jiang Z, Wang Y, Yang G. HOXA10 inhibit the osteogenic differentiation of periodontal ligament stem cells by regulating β-catenin localization and DKK1 expression. Connect Tissue Res 2021; 62:393-401. [PMID: 32299243 DOI: 10.1080/03008207.2020.1756271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Human periodontal ligament stem cells (hPDLSCs) are stem cells found near the tooth periodontal ligament. These cels are involved in the regeneration of the periodontal ligament and alveolar bone during orthodontic treatment and chronic periodontitis.Objectives: The Homeobox gene HOXA10 regulates the osteogenic differentiation of stem cells. However, the role of HOXA10 in hPDLSCs remains unclear. Therefore, we studied the effects of HOXA10 on human PDLSC osteogenic differentiation in vitro.Methods: First, hPDLSCs were isolated and characterized. Second, we assessed the effects of overexpression and knockdown of HOXA10 on PDLSC osteogenic differentiation. Finally, the specific Wnt signaling pathway activator lithium chloride (LiCl) and inhibitor ICG-001 were used to investigate the involvement of the Wnt signaling pathway in HOXA10-induced regulation of osteogenic differentiation.Results: Overexpressing HOXA10 inhibited PDLSC osteogenic differentiation in vitro, shown by ALP and Alizarin Red staining, while HOXA10 knockdown demonstrated the opposite effects. HOXA10 negatively regulated nuclear β-catenin and osteogenic differentiation markers including alkaline phosphatase (ALPL) and integrin-binding sialoprotein (IBSP). Upregulating HOXA10 reduced nuclear β-catenin and increased DKK1 expression. However, HOXA10 knockdown enhanced nuclear β-catenin accumulation and reduced DKK1 expression. These negative effects on osteogenic differentiation by HOXA10 overexpression were restored by the Wnt/β-catenin pathway activator LiCl. The increased osteogenic differentiation effects of HOXA10 knockdown were antagonized by ICG-001, a Wnt pathway inhibitor.Conclusion: These data demonstrate that HOXA10 inhibits the osteogenic differentiation of periodontal ligament stem cells by regulating β-catenin localization and DKK1.
Collapse
Affiliation(s)
- Chengze Wang
- The Affiliated Stomatology Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yongzheng Li
- The Affiliated Stomatology Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Ke Yu
- The Affiliated Stomatology Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Zhiwei Jiang
- The Affiliated Stomatology Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Ying Wang
- The Affiliated Stomatology Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Guoli Yang
- The Affiliated Stomatology Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
25
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
26
|
Wang B, Yang J, Fan L, Wang Y, Zhang C, Wang H. Osteogenic effects of antihypertensive drug benidipine on mouse MC3T3-E1 cells in vitro. J Zhejiang Univ Sci B 2021; 22:410-420. [PMID: 33973422 DOI: 10.1631/jzus.b2000628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypertension is a prevalent systemic disease in the elderly, who can suffer from several pathological skeletal conditions simultaneously, including osteoporosis. Benidipine (BD), which is widely used to treat hypertension, has been proved to have a beneficial effect on bone metabolism. In order to confirm the osteogenic effects of BD, we investigated its osteogenic function using mouse MC3T3-E1 preosteoblast cells in vitro. The proliferative ability of MC3T3-E1 cells was significantly associated with the concentration of BD, as measured by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and cell cycle assay. With BD treatment, the osteogenic differentiation and maturation of MC3T3-E1 cells were increased, as established by the alkaline phosphatase (ALP) activity test, matrix mineralized nodules formation, osteogenic genetic test, and protein expression analyses. Moreover, our data showed that the BMP2/Smad pathway could be the partial mechanism for the promotion of osteogenesis by BD, while BD might suppress the possible function of osteoclasts through the OPG/RANKL/RANK (receptor activator of nuclear factor-κB (NF-κB)) pathway. The hypothesis that BD bears a considerable potential in further research on its dual therapeutic effect on hypertensive patients with poor skeletal conditions was proved within the limitations of the present study.
Collapse
Affiliation(s)
- Baixiang Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Jiakang Yang
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Lijie Fan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Yu Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Chenqiu Zhang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China.
| |
Collapse
|
27
|
Liu M, He L, Wang H, Su W, Li H. Comparison of in vitro biocompatibility and antibacterial activity of two calcium silicate-based materials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:52. [PMID: 33900464 PMCID: PMC8076131 DOI: 10.1007/s10856-021-06523-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This study is aimed at comparing and evaluating the biocompatibility and antibacterial activities of mineral trioxide aggregate (MTA) and iRoot BP Plus as novel retro-filling materials. Discs of both materials were prepared and incubated for 72 h to obtain material extracts in medium. Flow cytometry and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay were used to assess the rate of apoptosis and proliferation of human periodontal ligament stem cells (hPDLSCs) when exposed to eluates of both materials. The expression levels of alkaline phosphatase, collagen type I, osteocalcin, Runt-related transcription factor-2, and Osterix were tested for evaluating the osteogenic differentiation of hPDLSCs. The antibacterial activities of both materials were compared by the direct contact test. The hPDLSCs stimulated by MTA or iRoot BP Plus eluates showed significantly higher cell viability than that of the control group with no eluates. No significant differences were observed among the percentages of necrotic and apoptotic cells stimulated by MTA and iRoot BP Plus eluates and the control group. The expression of all osteogenic differentiation markers of hPDLSCs in both experimental groups were significantly higher than those of the control group, while the increment values in MTA group were significantly higher than those of the iRoot BP Plus group. The antibacterial activity against Enterococcus faecalis showed no significant difference between MTA and iRoot BP Plus. Therefore, both materials may be suitable for retro-filling applications.
Collapse
Affiliation(s)
- Mingxiang Liu
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Lu He
- Affiliated Stomatology Hospital of Guangzhou Medical University, School of Stomatology, Guangzhou Medical University, Guangdong, 510140, China
| | - Hongyuan Wang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Wenpei Su
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Hong Li
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
28
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
29
|
Donsante S, Palmisano B, Serafini M, Robey PG, Corsi A, Riminucci M. From Stem Cells to Bone-Forming Cells. Int J Mol Sci 2021; 22:ijms22083989. [PMID: 33924333 PMCID: PMC8070464 DOI: 10.3390/ijms22083989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Bone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators. In this review, we briefly define the cellular identity and function of osteoblasts and discuss the main populations of osteoprogenitor cells identified to date. We also provide examples of long-known and recently recognized regulatory pathways and mechanisms involved in the specification of the osteogenic lineage, as assessed by studies on mice models and human genetic skeletal diseases.
Collapse
Affiliation(s)
- Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA;
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Correspondence:
| |
Collapse
|
30
|
Lim YJ, Kim KM, Jang WG. Chrysophanol increases osteoblast differentiation via AMPK/Smad1/5/9 phosphorylation in vitro and in vivo. Clin Exp Pharmacol Physiol 2021; 48:515-523. [PMID: 33300218 DOI: 10.1111/1440-1681.13443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 01/20/2023]
Abstract
Chrysophanol (Chrysophanic acid; CA) is a natural anthraquinone found in Senna tora and rhubarb that has various characteristic features, including the ability to suppress adipogenesis. However, its effects on osteoblast differentiation have not been investigated. Herein, this study aimed to demonstrate the mechanism by which CA induces the osteoblast differentiation. CA increased the expression of osteogenic genes. The staining levels Alkaline phosphatase (ALP) and Alizarin Red S (ARS) were increased by chrysophanol. CA induced osteoblast differentiation through AMP-activated protein kinase (AMPK)/Small mothers against decapentaplegic (Smad1/5/9) activation in MC3T3-E1 cells. In addition, compound C, AMPK inhibitor (Comp. C)-induced cells suppressed osteogenic genes expression and AMPK/Smad1/5/9 activation. Interestingly, AMPK in the CA-induced AMPK/Smad1/5/9 signalling pathway was an upstream regulator of Smad1/5/9. In order to further dissect in bone development, we used a zebrafish model to investigate the effect of CA on bone development. These results suggest that CA stimulated bone development via AMPK/Smad1/5/9. Overall, our results demonstrate that CA promotes osteoblast differentiation via AMPK/Smad1/5/9 expression in vitro and in vivo.
Collapse
Affiliation(s)
- Young-Ju Lim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Korea
| | - Kyeong-Min Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Korea
| | - Won-Gu Jang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Korea
| |
Collapse
|
31
|
Amler AK, Thomas A, Tüzüner S, Lam T, Geiger MA, Kreuder AE, Palmer C, Nahles S, Lauster R, Kloke L. 3D bioprinting of tissue-specific osteoblasts and endothelial cells to model the human jawbone. Sci Rep 2021; 11:4876. [PMID: 33649412 PMCID: PMC7921109 DOI: 10.1038/s41598-021-84483-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Jawbone differs from other bones in many aspects, including its developmental origin and the occurrence of jawbone-specific diseases like MRONJ (medication-related osteonecrosis of the jaw). Although there is a strong need, adequate in vitro models of this unique environment are sparse to date. While previous approaches are reliant e.g. on scaffolds or spheroid culture, 3D bioprinting enables free-form fabrication of complex living tissue structures. In the present work, production of human jawbone models was realised via projection-based stereolithography. Constructs were bioprinted containing primary jawbone-derived osteoblasts and vasculature-like channel structures optionally harbouring primary endothelial cells. After 28 days of cultivation in growth medium or osteogenic medium, expression of cell type-specific markers was confirmed on both the RNA and protein level, while prints maintained their overall structure. Survival of endothelial cells in the printed channels, co-cultured with osteoblasts in medium without supplementation of endothelial growth factors, was demonstrated. Constructs showed not only mineralisation, being one of the characteristics of osteoblasts, but also hinted at differentiation to an osteocyte phenotype. These results indicate the successful biofabrication of an in vitro model of the human jawbone, which presents key features of this special bone entity and hence appears promising for application in jawbone-specific research.
Collapse
Affiliation(s)
- Anna-Klara Amler
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany. .,Department of Medical Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| | - Alexander Thomas
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.,Department of Medical Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Selin Tüzüner
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.,Department of Medical Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Tobias Lam
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | | | - Anna-Elisabeth Kreuder
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.,Department of Medical Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Chris Palmer
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Susanne Nahles
- Department of Oral- and Maxillofacial Surgery, Charité Campus Virchow, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Roland Lauster
- Department of Medical Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Lutz Kloke
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|
32
|
Zhou Z, Zhao D, Zhang P, Zhang M, Leng X, Yao B. The enzymatic hydrolysates from deer sinew promote MC3T3-E1 cell proliferation and extracellular matrix synthesis by regulating multiple functional genes. BMC Complement Med Ther 2021; 21:59. [PMID: 33568122 PMCID: PMC7877118 DOI: 10.1186/s12906-021-03240-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Background Deer Sinew serves as a medicinal food, and has been used for treating skeletal diseases, especially bone diseases in a long history. Thus, it could become an alternative option for the prevention and therapeutic remedy of bone-related diseases. In our previous study, we established an optimal extraction process of the enzymatic hydrolysates from Chinese Sika deer sinews (DSEH), and we demonstrated that DSEH significantly promoted the proliferation of MC3T3-E1 cells (an osteoblast-like cell line) with a certain dose-effect relationship. However, the precise molecular mechanism of deer sinew in regulating bone strength is still largely unknown. The aim of this study was to explore the underlying molecular mechanism of DSEH on MC3T3-E1 cells proliferation and extracellular matrix synthesis. Methods Preparation and quality control were performed as previously described. The effect of DSEH at different administrated concentrations on cell proliferation was measured using both CCK-8 and MTT assays, and the capacity of DSEH on extracellular matrix synthesis was detected by Alizarin red staining and quantification. The gene expression pattern change of MC3T3-E1 cells under the treatment of DSEH was investigated by RNA-seq analysis accompanied with validation methods. Results We demonstrated that DSEH promoted MC3T3-E1 cell proliferation and extracellular matrix synthesis by regulating multiple functional genes. DSEH significantly increased the expression levels of genes that promoted cell proliferation such as Gstp1, Timp1, Serpine1, Cyr61, Crlf1, Thbs1, Ctgf, P4ha2, Sod3 and Nqo1. However, DSEH significantly decreased the expression levels of genes that inhibited cell proliferation such as Mt1, Cdc20, Gas1, Nrp2, Cmtm3, Dlk2, Sema3a, Rbm25 and Hspb6. Furthermore, DSEH mildly increased the expression levels of osteoblast gene markers. Conclusions Our findings suggest that DSEH facilitate MC3T3-E1 cell proliferation and extracellular matrix synthesis to consolidate bone formation and stability, but prevent MC3T3-E1 cells from oxidative stress-induced damage, apoptosis and further differentiation. These findings deepened the current understanding of DSEH on regulating bone development, and provided theoretical support for the discovery of optional prevention and treatment for bone-related diseases.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Pengcheng Zhang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
33
|
Deng XS, Meng X, Fullerton D, Stone M, Jaggers J. Complement Upregulates Runx-2 to Induce Profibrogenic Change in Aortic Valve Interstitial Cells. Ann Thorac Surg 2021; 112:1962-1972. [PMID: 33545156 DOI: 10.1016/j.athoracsur.2020.12.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/06/2020] [Accepted: 12/14/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Calcium accumulation and fibrotic activities are principal mechanisms for calcific aortic valve disease (CAVD). Active complement products are observed in human stenotic aortic valves. Runt-related transcription factor 2 (Runx-2) is involved in tissue calcification. We hypothesized that complement upregulates Runx-2 to induce profibrogenic change in human aortic valve interstitial cells (AVICs). METHODS AVICs were isolated from 6 normal and 6 CAVD donor valves. Cells were treated with complement cocktails. Profibrogenic activities and associated signaling molecules were analyzed by Western blot assay and collagen staining. RESULTS Complement time and dose dependently enhanced profibrogenic activities in AVICs, and complement exposure also induced total collagen deposition in AVICs. Complement-induced profibrogenic responses were associated with increased Runx-2 expression and phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Genetic silencing of Runx-2 decreased both matrix metalloproteinase 9 (MMP-9) and collagen I levels. Pharmacological inhibition of ERK1/2 decreased complement-mediated MMP-9, collagen I, and Runx-2 expression as well as total collagen deposition in human AVICs. Further, treating AVICs with heat-deactivated complement resulted in reduced MMP-9, collagen I, and Runx-2 levels compared with active complement treatment. CONCLUSIONS Complement induced profibrogenic activities in AVICs by activation of ERK1/2-mediated Runx-2 signaling pathways. This study demonstrates a potential role for complement-mediated CAVD pathogenesis, establishing a possible therapeutic target to limit CAVD progression.
Collapse
Affiliation(s)
- Xin-Sheng Deng
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xianzhong Meng
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Fullerton
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew Stone
- Cardiothoracic Surgery, Children's Hospital Colorado, University of Colorado, Aurora, Colorado
| | - James Jaggers
- Cardiothoracic Surgery, Children's Hospital Colorado, University of Colorado, Aurora, Colorado.
| |
Collapse
|
34
|
Rozenfeld PA, Crivaro AN, Ormazabal M, Mucci JM, Bondar C, Delpino MV. Unraveling the mystery of Gaucher bone density pathophysiology. Mol Genet Metab 2021; 132:76-85. [PMID: 32782168 DOI: 10.1016/j.ymgme.2020.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is caused by pathogenic mutations in GBA1, the gene that encodes the lysosomal enzyme β-glucocerebrosidase. Despite the existence of a variety of specific treatments for GD, they cannot completely reverse bone complications. Many studies have evidenced the impairment in bone tissue of GD, and molecular mechanisms of bone density alterations in GD are being studied during the last years and different reports emphasized its efforts trying to unravel why and how bone tissue is affected. The cause of skeletal density affection in GD is a matter of debates between research groups. and there are two opposing hypotheses trying to explain reduced bone mineral density in GD: increased bone resorption versus impaired bone formation. In this review, we discuss the diverse mechanisms of bone alterations implicated in GD revealed until the present, along with a presentation of normal bone physiology and its regulation. With this information in mind, we discuss effectiveness of specific therapies, introduce possible adjunctive therapies and present a novel model for GD-associated bone density pathogenesis. Under the exposed evidence, we may conclude that both sides of the balance of remodeling process are altered. In GD the observed osteopenia/osteoporosis may be the result of contribution of both reduced bone formation and increased bone resorption.
Collapse
Affiliation(s)
- P A Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina.
| | - A N Crivaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M Ormazabal
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - J M Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - C Bondar
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M V Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Av. Córdoba 2351, (C1120ABG), Buenos Aires, Argentina
| |
Collapse
|
35
|
Erucic Acid-Rich Yellow Mustard Oil Improves Insulin Resistance in KK-A y Mice. Molecules 2021; 26:molecules26030546. [PMID: 33494317 PMCID: PMC7864507 DOI: 10.3390/molecules26030546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is a major risk factor for some metabolic disorders including type 2 diabetes. Enhancement of peroxisome proliferator-activated receptor (PPAR) γ, a master regulator of adipocyte differentiation, is known to increase insulin-sensitive small adipocytes. In contrast, decreased PPARγ activity is also reported to improve insulin resistance. We have previously identified erucic acid as a novel natural component suppressing PPARγ transcriptional activity. In this study, we investigated the effect of erucic acid-rich yellow mustard oil (YMO) on obese/diabetic KK-Ay mice. An in vitro luciferase reporter assay and mesenchymal stem cell (MSC) differentiation assay revealed that 25 µg/mL YMO significantly inhibited PPARγ transcriptional activity and differentiation of MSCs into adipocytes but promoted their differentiation into osteoblasts. In KK-Ay mice, dietary intake of 7.0% (w/w) YMO significantly decreased the surrogate indexes for insulin resistance and the infiltration of macrophages into adipose tissue. Furthermore, 7.0% YMO increased bone mineral density. These results suggest that YMO can ameliorate obesity-induced metabolic disorders.
Collapse
|
36
|
Tang CY, Wu M, Zhao D, Edwards D, McVicar A, Luo Y, Zhu G, Wang Y, Zhou HD, Chen W, Li YP. Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways. PLoS Genet 2021; 17:e1009233. [PMID: 33476325 PMCID: PMC7819607 DOI: 10.1371/journal.pgen.1009233] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Runx1 is highly expressed in osteoblasts, however, its function in osteogenesis is unclear. We generated mesenchymal progenitor-specific (Runx1f/fTwist2-Cre) and osteoblast-specific (Runx1f/fCol1α1-Cre) conditional knockout (Runx1 CKO) mice. The mutant CKO mice with normal skeletal development displayed a severe osteoporosis phenotype at postnatal and adult stages. Runx1 CKO resulted in decreased osteogenesis and increased adipogenesis. RNA-sequencing analysis, Western blot, and qPCR validation of Runx1 CKO samples showed that Runx1 regulates BMP signaling pathway and Wnt/β-catenin signaling pathway. ChIP assay revealed direct binding of Runx1 to the promoter regions of Bmp7, Alk3, and Atf4, and promoter mapping demonstrated that Runx1 upregulates their promoter activity through the binding regions. Bmp7 overexpression rescued Alk3, Runx2, and Atf4 expression in Runx1-deficient BMSCs. Runx2 expression was decreased while Runx1 was not changed in Alk3 deficient osteoblasts. Atf4 overexpression in Runx1-deficient BMSCs did not rescue expression of Runx1, Bmp7, and Alk3. Smad1/5/8 activity was vitally reduced in Runx1 CKO cells, indicating Runx1 positively regulates the Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 signaling pathway. Notably, Runx1 overexpression in Runx2-/- osteoblasts rescued expression of Atf4, OCN, and ALP to compensate Runx2 function. Runx1 CKO mice at various osteoblast differentiation stages reduced Wnt signaling and caused high expression of C/ebpα and Pparγ and largely increased adipogenesis. Co-culture of Runx1-deficient and wild-type cells demonstrated that Runx1 regulates osteoblast-adipocyte lineage commitment both cell-autonomously and non-autonomously. Notably, Runx1 overexpression rescued bone loss in OVX-induced osteoporosis. This study focused on the role of Runx1 in different cell populations with regards to BMP and Wnt signaling pathways and in the interacting network underlying bone homeostasis as well as adipogenesis, and has provided new insight and advancement of knowledge in skeletal development. Collectively, Runx1 maintains adult bone homeostasis from bone loss though up-regulating Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 and WNT/β-Catenin signaling pathways, and targeting Runx1 potentially leads to novel therapeutics for osteoporosis.
Collapse
Affiliation(s)
- Chen-Yi Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Department of Metabolism & Endocrinology, Hunan provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Dongfeng Zhao
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Shanghai University of Traditional Chinese Medicine, Pudong, Shanghai, China P.R
| | - Diep Edwards
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Abigail McVicar
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Yuan Luo
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Yongjun Wang
- Shanghai University of Traditional Chinese Medicine, Pudong, Shanghai, China P.R
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, Hunan provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- * E-mail: (WC); (Y-PL)
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- * E-mail: (WC); (Y-PL)
| |
Collapse
|
37
|
Liu XW, Ma B, Zi Y, Xiang LB, Han TY. Effects of rutin on osteoblast MC3T3-E1 differentiation, ALP activity and Runx2 protein expression. Eur J Histochem 2021; 65. [PMID: 33478200 PMCID: PMC7856824 DOI: 10.4081/ejh.2021.3195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
As a flavonoid, rutin has been found to have a wide range of biological functions, such as resisting inflammation and oxidation, and preventing cerebral hemorrhage and hypertension. It has been found to play an important role in osteoporosis and other orthopedic diseases in recent years. MC3T3-E1 cells were randomly divided into a control group, a rutin-1 group (0.01 mmol/L), a rutin-2 group (0.05 mmol/L) and a rutin-3 group (0.1 mmol/L). Osteogenic differentiation of cells was induced by osteogenic induction fluid. The control group was treated with the maximum dose of drug solvent. 2~3 days later, the solvent was replaced with fresh osteogenic induction fluid containing rutin. After a certain period of routine culture, the cells were collected for subsequent experiments. The expression of Runx2 gene in cells in all groups was detected by Real-time PCR; the expression of Runx2 protein was detected by Western blot and immunocytochemistry (IHC); the activity of ALP was detected by reagent kit method; osteogenic differentiation was analyzed by alizarin red staining. The results of Real-time PCR showed that, compared with the control group, the treatment of cells with rutin can significantly increase the expression of Runx2 gene (p<0.05); the higher the concentration, the higher the expression of Runx2 gene, and significant differences were found among groups in which different concentrations were used (p<0.05); the results of Western blot and IHC showed that the expression trend of Runx2 protein in each group was consistent with PCR results. In drug treatment groups, the activity of ALP was significantly higher than that in the control group (p<0.05); there were significant differences among groups in which different concentrations were used (p<0.05). The results of alizarin red staining showed that calcified nodules were formed in all groups and that the area of calcified nodules formed in groups treated with rutin was greater than that in the control group; the greater the concentration, the larger the area. Rutin can promote osteoblastic differentiation; and the greater the concentration, the more effective it is.
Collapse
Affiliation(s)
- Xin-Wei Liu
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning.
| | - Bin Ma
- Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai.
| | - Ying Zi
- Department of Emergency Medicine, Air Force Hospital of the Northern Theater of Chinese People's Liberation Army (PLA), Shenyang, Liaoning.
| | - Liang-Bi Xiang
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning.
| | - Tian-Yu Han
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning.
| |
Collapse
|
38
|
Amler AK, Dinkelborg PH, Schlauch D, Spinnen J, Stich S, Lauster R, Sittinger M, Nahles S, Heiland M, Kloke L, Rendenbach C, Beck-Broichsitter B, Dehne T. Comparison of the Translational Potential of Human Mesenchymal Progenitor Cells from Different Bone Entities for Autologous 3D Bioprinted Bone Grafts. Int J Mol Sci 2021; 22:E796. [PMID: 33466904 PMCID: PMC7830021 DOI: 10.3390/ijms22020796] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Reconstruction of segmental bone defects by autologous bone grafting is still the standard of care but presents challenges including anatomical availability and potential donor site morbidity. The process of 3D bioprinting, the application of 3D printing for direct fabrication of living tissue, opens new possibilities for highly personalized tissue implants, making it an appealing alternative to autologous bone grafts. One of the most crucial hurdles for the clinical application of 3D bioprinting is the choice of a suitable cell source, which should be minimally invasive, with high osteogenic potential, with fast, easy expansion. In this study, mesenchymal progenitor cells were isolated from clinically relevant human bone biopsy sites (explant cultures from alveolar bone, iliac crest and fibula; bone marrow aspirates; and periosteal bone shaving from the mastoid) and 3D bioprinted using projection-based stereolithography. Printed constructs were cultivated for 28 days and analyzed regarding their osteogenic potential by assessing viability, mineralization, and gene expression. While viability levels of all cell sources were comparable over the course of the cultivation, cells obtained by periosteal bone shaving showed higher mineralization of the print matrix, with gene expression data suggesting advanced osteogenic differentiation. These results indicate that periosteum-derived cells represent a highly promising cell source for translational bioprinting of bone tissue given their superior osteogenic potential as well as their minimally invasive obtainability.
Collapse
Affiliation(s)
- Anna-Klara Amler
- Department of Medical Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.-K.A.); (D.S.); (R.L.)
- Cellbricks GmbH, 13355 Berlin, Germany;
| | - Patrick H. Dinkelborg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Oral and Maxillofacial Surgery, and Berlin Institute of Health, 13353 Berlin, Germany; (S.N.); (M.H.); (C.R.); (B.B.-B.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Rheumatology, and Berlin Institute of Health, 10117 Berlin, Germany; (J.S.); (S.S.); (M.S.); (T.D.)
| | - Domenic Schlauch
- Department of Medical Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.-K.A.); (D.S.); (R.L.)
- Cellbricks GmbH, 13355 Berlin, Germany;
| | - Jacob Spinnen
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Rheumatology, and Berlin Institute of Health, 10117 Berlin, Germany; (J.S.); (S.S.); (M.S.); (T.D.)
| | - Stefan Stich
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Rheumatology, and Berlin Institute of Health, 10117 Berlin, Germany; (J.S.); (S.S.); (M.S.); (T.D.)
| | - Roland Lauster
- Department of Medical Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.-K.A.); (D.S.); (R.L.)
| | - Michael Sittinger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Rheumatology, and Berlin Institute of Health, 10117 Berlin, Germany; (J.S.); (S.S.); (M.S.); (T.D.)
| | - Susanne Nahles
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Oral and Maxillofacial Surgery, and Berlin Institute of Health, 13353 Berlin, Germany; (S.N.); (M.H.); (C.R.); (B.B.-B.)
| | - Max Heiland
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Oral and Maxillofacial Surgery, and Berlin Institute of Health, 13353 Berlin, Germany; (S.N.); (M.H.); (C.R.); (B.B.-B.)
| | | | - Carsten Rendenbach
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Oral and Maxillofacial Surgery, and Berlin Institute of Health, 13353 Berlin, Germany; (S.N.); (M.H.); (C.R.); (B.B.-B.)
| | - Benedicta Beck-Broichsitter
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Oral and Maxillofacial Surgery, and Berlin Institute of Health, 13353 Berlin, Germany; (S.N.); (M.H.); (C.R.); (B.B.-B.)
| | - Tilo Dehne
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Department of Rheumatology, and Berlin Institute of Health, 10117 Berlin, Germany; (J.S.); (S.S.); (M.S.); (T.D.)
| |
Collapse
|
39
|
Chen Y, Zhao X, Wu H. Transcriptional Programming in Arteriosclerotic Disease: A Multifaceted Function of the Runx2 (Runt-Related Transcription Factor 2). Arterioscler Thromb Vasc Biol 2021; 41:20-34. [PMID: 33115268 PMCID: PMC7770073 DOI: 10.1161/atvbaha.120.313791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite successful therapeutic strategies in the prevention and treatment of arteriosclerosis, the cardiovascular complications remain a major clinical and societal issue worldwide. Increased vascular calcification promotes arterial stiffness and accelerates cardiovascular morbidity and mortality. Upregulation of the Runx2 (Runt-related transcription factor 2), an essential osteogenic transcription factor for bone formation, in the cardiovascular system has emerged as an important regulator for adverse cellular events that drive cardiovascular pathology. This review discusses the regulatory mechanisms that are critical for Runx2 expression and function and highlights the dynamic and complex cross talks of a wide variety of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and O-linked β-N-acetylglucosamine modification, in regulating Runx2 stability, cellular localization, and osteogenic transcriptional activity. How the activation of an array of signaling cascades by circulating and local microenvironmental factors upregulates Runx2 in vascular cells and promotes Runx2-mediated osteogenic transdifferentiation of vascular smooth muscle cells and expression of inflammatory cytokines that accelerate macrophage infiltration and vascular osteoclast formation is summarized. Furthermore, the increasing appreciation of a new role of Runx2 upregulation in promoting vascular smooth muscle cell phenotypic switch, and Runx2 modulated by O-linked β-N-acetylglucosamine modification and Runx2-dependent repression of smooth muscle cell-specific gene expression are discussed. Further exploring the regulation of this key osteogenic transcription factor and its new perspectives in the vasculature will provide novel insights into the transcriptional regulation of vascular smooth muscle cell phenotype switch, reprograming, and vascular inflammation that promote the pathogenesis of arteriosclerosis.
Collapse
Affiliation(s)
- Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | - Xinyang Zhao
- Department of Biochemistry, University of Alabama at Birmingham
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, Oregon 97239
| |
Collapse
|
40
|
Dos Santos Trento G, Hassumi JS, Buzo Frigério P, Farnezi Bassi AP, Okamoto R, Gabrielli MAC, Pereira-Filho VA. Gene expression, immunohistochemical and microarchitectural evaluation of bone formation around two implant surfaces placed in bone defects filled or not with bone substitute material. Int J Implant Dent 2020; 6:80. [PMID: 33258065 PMCID: PMC7704835 DOI: 10.1186/s40729-020-00279-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
Objective The aim of this study is to evaluate through gene expression, immunohistochemical and microtomographic (micro-CT) analysis the response of peri-implant bone tissue around titanium implants with different surface treatments, placed in bone defects filled or not with bone substitute materials. In addition, to investigate the hypothesis that porous-hydrophilic surface induces a faster bone formation. Materials and methods Twenty-six animals were divided into two groups according to implant surface treatment. In each tibia, a bone defect was created followed by the placement of one implant. On the left tibia, the defect was filled with blood clot (BC), and on the right tibia, the defect was filled with biphasic hydroxyapatite/β-tricalcium-phosphate (HA/TCP) generating four subgroups: BC-N: bone defect filled with blood clot and porous surface titanium implant installed; BC-A: bone defect filled with blood clot and porous-hydrophilic surface titanium implant installed; HA/TCP-N: bone defect filled with bone substitute material and porous surface titanium implant installed; and HA/TCP-A: bone defect filled with bone substitute material and porous-hydrophilic surface titanium implant installed. The animals were submitted to euthanasia at 15, 30, and 60 days after implant installation. The expression of two genes was evaluated: RUNX2 and BSP. Immunohistochemical analyses were performed for detection of RUNX2, OPN, OCN, OPG, and RANKL antibodies and bone matrix proteins. Finally, four parameters were chosen for micro-CT analysis: trabecular number, separation and thickness, and connectivity density. Results Descriptive analysis showed similar findings among the experimental groups. Moreover, porous-hydrophilic surfaces presented a higher expression of RUNX2, which is probably an indicative of better osteogenesis; although the data from this study may be considered an insufficient support for a concrete statement. Conclusion Porous hydrophilic surface can improve and accelerate protein expression and bone formation.
Collapse
Affiliation(s)
- Guilherme Dos Santos Trento
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (Unesp), 1680th Humaitá Street, Araraquara, SP, 14801-903, Brazil.
| | - Jaqueline Suemi Hassumi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Paula Buzo Frigério
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Ana Paula Farnezi Bassi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Roberta Okamoto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Marisa Aparecida Cabrini Gabrielli
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (Unesp), 1680th Humaitá Street, Araraquara, SP, 14801-903, Brazil
| | - Valfrido Antonio Pereira-Filho
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (Unesp), 1680th Humaitá Street, Araraquara, SP, 14801-903, Brazil
| |
Collapse
|
41
|
The Transcription Factor HAND1 Is Involved in Cortical Bone Mass through the Regulation of Collagen Expression. Int J Mol Sci 2020; 21:ijms21228638. [PMID: 33207791 PMCID: PMC7697595 DOI: 10.3390/ijms21228638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 01/17/2023] Open
Abstract
Temporal and/or spatial alteration of collagen family gene expression results in bone defects. However, how collagen expression controls bone size remains largely unknown. The basic helix-loop-helix transcription factor HAND1 is expressed in developing long bones and is involved in their morphogenesis. To understand the functional role of HAND1 and collagen in the postnatal development of long bones, we overexpressed Hand1 in the osteochondroprogenitors of model mice and found that the bone volumes of cortical bones decreased in Hand1Tg/+;Twist2-Cre mice. Continuous Hand1 expression downregulated the gene expression of type I, V, and XI collagen in the diaphyses of long bones and was associated with decreased expression of Runx2 and Sp7/Osterix, encoding transcription factors involved in the transactivation of fibril-forming collagen genes. Members of the microRNA-196 family, which target the 3' untranslated regions of COL1A1 and COL1A2, were significantly upregulated in Hand1Tg/+;Twist2-Cre mice. Mass spectrometry revealed that the expression ratios of alpha 1(XI), alpha 2(XI), and alpha 2(V) in the diaphysis increased during postnatal development in wild-type mice, which was delayed in Hand1Tg/+;Twist2-Cre mice. Our results demonstrate that HAND1 regulates bone size and morphology through osteochondroprogenitors, at least partially by suppressing postnatal expression of collagen fibrils in the cortical bones.
Collapse
|
42
|
Lee JY, Park SJ, Kim DA, Lee SH, Koh JM, Kim BJ. Muscle-Derived Lumican Stimulates Bone Formation via Integrin α2β1 and the Downstream ERK Signal. Front Cell Dev Biol 2020; 8:565826. [PMID: 33240876 PMCID: PMC7677261 DOI: 10.3389/fcell.2020.565826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle and bone are highly interrelated, and previous proteomic analyses suggest that lumican is one of muscle-derived factors. To further understand the role of lumican as a myokine affecting adjacent bone metabolism, we investigated the effects of lumican on osteoblast biology. Lumican expression was significantly higher in the cell lysates and conditioned media (CM) of myotubes than those of undifferentiated myoblasts, and the known anabolic effects of myotube CM on osteoblasts were reduced by excluding lumican from the CM. Lumican stimulated preosteoblast viability and differentiation, resulting in increased calvaria bone formation. The expression of osteoblast differentiation markers was consistently increased by lumican. Lumican increased the phosphorylation of ERK, whereas ERK inhibitors completely reversed lumican-mediated stimulation of Runx2 and ALP activities in osteoblasts. Results of a binding ELISA experiment in osteoblasts show that transmembrane integrin α2β1 directly interacted with lumican, and an integrin α2β1 inhibitor attenuated the stimulation of ERK and ALP activities by lumican. Taken together, the results indicate that muscle-derived lumican stimulates bone formation via integrin α2β1 and the downstream ERK signal, indicating that this is a potential therapeutic target for metabolic bone diseases.
Collapse
Affiliation(s)
- Jin Young Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - So Jeong Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Da Ae Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
43
|
Functions of Osteocalcin in Bone, Pancreas, Testis, and Muscle. Int J Mol Sci 2020; 21:ijms21207513. [PMID: 33053789 PMCID: PMC7589887 DOI: 10.3390/ijms21207513] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Osteocalcin (Ocn), which is specifically produced by osteoblasts, and is the most abundant non-collagenous protein in bone, was demonstrated to inhibit bone formation and function as a hormone, which regulates glucose metabolism in the pancreas, testosterone synthesis in the testis, and muscle mass, based on the phenotype of Ocn-/- mice by Karsenty's group. Recently, Ocn-/- mice were newly generated by two groups independently. Bone strength is determined by bone quantity and quality. The new Ocn-/- mice revealed that Ocn is not involved in the regulation of bone formation and bone quantity, but that Ocn regulates bone quality by aligning biological apatite (BAp) parallel to the collagen fibrils. Moreover, glucose metabolism, testosterone synthesis and spermatogenesis, and muscle mass were normal in the new Ocn-/- mice. Thus, the function of Ocn is the adjustment of growth orientation of BAp parallel to the collagen fibrils, which is important for bone strength to the loading direction of the long bone. However, Ocn does not play a role as a hormone in the pancreas, testis, and muscle. Clinically, serum Ocn is a marker for bone formation, and exercise increases bone formation and improves glucose metabolism, making a connection between Ocn and glucose metabolism.
Collapse
|
44
|
Xu Z, Chen H, Fan F, Shi P, Cheng S, Tu M, Ei-Seedi HR, Du M. Pharmacokinetics and Transport of an Osteogenic Dodecapeptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9961-9967. [PMID: 32786858 DOI: 10.1021/acs.jafc.0c02779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A dodecapeptide with the amino acid sequence of IEELEEELEAER (PIE), identified from Mytilus edulis proteolysis hydrolysates, has shown good bone-forming activity in previous studies. The pharmacokinetics and transport of the PIE peptide in vivo or in vitro were investigated in this study. The results showed that the PIE peptide can be transported into monolayer Caco-2 cells, and the PIE peptide was identified in the serum after the mice reached the highest value of 173.60 ± 60.30 ng/mL, in which it was quantified by an optimized mass spectrometry method. In addition, the PIE peptide has a promoting effect on the bone morphogenetic protein pathway at the gene and protein levels. According to the distribution of PIE-FITC in ovariectomized mice after orally administrated PIE-FITC, it was confirmed that it can enter the gastrointestinal tract and serum, and reach the bones. Taken together, the PIE peptide can be absorbed well both in vitro and in vivo, and it could promote pre-osteoblast differentiation factors.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Pujie Shi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hesham R Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala 75 123, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
45
|
Zhao W, Wang G, Zhou C, Zhao Q. The regulatory roles of long noncoding RNAs in osteoporosis. Am J Transl Res 2020; 12:5882-5907. [PMID: 33042467 PMCID: PMC7540091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Osteoporosis is a common metabolic bone disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which leads to decreased bone strength and increased fracture risk. Osteoporosis mainly results from a disruption of the balance between bone formation mediated by osteoblasts and bone resorption mediated by osteoclasts. At present, the molecular mechanisms underlying osteoporosis are still not fully understood. Long noncoding RNAs (lncRNAs) are RNA molecules that exceed 200 nucleotides (nt) in length and have limited or no protein-coding capacity. Over the past decade, numerous lncRNAs have been demonstrated to participate in multiple biological processes and to play essential roles in the pathogenesis of various diseases. In this review, we summarize recent progress in research on lncRNAs in osteoporosis and mainly focus on their regulatory roles in osteogenesis and osteoclastogenesis. Moreover, we briefly discuss the potential clinical applications of lncRNAs in osteoporosis.
Collapse
Affiliation(s)
- Weisong Zhao
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, China
- First Clinical College, Xinxiang Medical UniversityXinxiang 453000, Henan, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, China
| | - Chenghao Zhou
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, China
| | - Qinghua Zhao
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, China
| |
Collapse
|
46
|
Pathogenic Mechanisms of Myeloma Bone Disease and Possible Roles for NRF2. Int J Mol Sci 2020; 21:ijms21186723. [PMID: 32937821 PMCID: PMC7555756 DOI: 10.3390/ijms21186723] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022] Open
Abstract
Osteolytic bone lesions are one of the central features of multiple myeloma (MM) and lead to bone pain, fractures, decreased quality of life, and decreased survival. Dysfunction of the osteoclast (OC)/osteoblast (OB) axis plays a key role in the development of myeloma-associated osteolytic lesions. Many signaling pathways and factors are associated with myeloma bone diseases (MBDs), including the RANKL/OPG and NF-κB pathways. NRF2, a master regulator of inflammatory signaling, might play a role in the regulation of bone metabolism via anti-inflammatory signaling and decreased reactive oxygen species (ROS) levels. The loss of NRF2 expression in OCs reduced bone mass via the RANK/RANKL pathway and other downstream signaling pathways that affect osteoclastogenesis. The NRF2 level in OBs could interfere with interleukin (IL)-6 expression, which is associated with bone metabolism and myeloma cells. In addition to direct impact on OCs and OBs, the activity of NRF2 on myeloma cells and mesenchymal stromal cells influences the inflammatory stress/ROS level in these cells, which has an impact on OCs, OBs, and osteocytes. The interaction between these cells and OCs affects the osteoclastogenesis of myeloma bone lesions associated with NRF2. Therefore, we have reviewed the effects of NRF2 on OCs and OBs in MBDs.
Collapse
|
47
|
Lee H, Kim SHL, Yoon H, Ryu J, Park HH, Hwang NS, Park TH. Intracellular Delivery of Recombinant RUNX2 Facilitated by Cell-Penetrating Protein for the Osteogenic Differentiation of hMSCs. ACS Biomater Sci Eng 2020; 6:5202-5214. [PMID: 33455270 DOI: 10.1021/acsbiomaterials.0c00827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are a commonly used cell source for cell therapy and tissue engineering because of their easy accessibility and multipotency. Runt-related transcription factor 2 (RUNX2) is a master regulator of the osteogenic commitment of hMSCs. Either recombinant plasmid delivery or viral transduction has been utilized to activate RUNX2 gene expression for effective hMSC differentiation. In this study, recombinant RUNX2 fused with cell-penetrating 30Kc19α protein (30Kc19α-RUNX2) was delivered into hMSCs for osteogenic commitment. Fusion of recombinant RUNX2 with 30Kc19α resulted in successful delivery of the protein into cells and enhanced soluble expression of the protein. Intracellular delivery of the 30Kc19α-RUNX2 fusion protein enhanced the osteogenic differentiation of hMSCs in vitro. 30Kc19α-RUNX2 treatment resulted in increased ALP accumulation and elevated calcium deposition. Finally, implantation of hMSCs treated with 30Kc19α-RUNX2 showed osteogenesis via cell delivery into the subcutaneous tissue and bone regeneration in a cranial defect mouse model. Therefore, we suggest that 30Kc19α-RUNX2, an osteoinductive recombinant protein, is an efficient tool for bone tissue engineering.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungro Yoon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jina Ryu
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,BioMax/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,BioMax/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
48
|
BMP-induced Atoh8 attenuates osteoclastogenesis by suppressing Runx2 transcriptional activity and reducing the Rankl/Opg expression ratio in osteoblasts. Bone Res 2020; 8:32. [PMID: 32923015 PMCID: PMC7463266 DOI: 10.1038/s41413-020-00106-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/03/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
Adult bone structural integrity is maintained by remodeling via the coupling of osteoclastic bone resorption and osteoblastic bone formation. Osteocytes or osteoblasts express receptor activator of nuclear factor κ-B ligand (Rankl) or osteoprotegerin (Opg) to promote or inhibit osteoclastogenesis, respectively. Bone morphogenetic protein (BMP) is a potent bone inducer, but its major role in adult bone is to induce osteocytes to upregulate sclerostin (Sost) and increase the Rankl/Opg expression ratio, resulting in promotion of osteoclastogenesis. However, the precise effect of BMP-target gene(s) in osteoblasts on the Rankl/Opg expression ratio remains unclear. In the present study, we identified atonal homolog 8 (Atoh8), which is directly upregulated by the BMP-Smad1 axis in osteoblasts. In vivo, Atoh8 was detected in osteoblasts but not osteocytes in adult mice. Although global Atoh8-knockout mice showed only a mild phenotype in the neonate skeleton, the bone volume was decreased and osteoclasts were increased in the adult phase. Atoh8-null marrow stroma cells were more potent than wild-type cells in inducing osteoclastogenesis in marrow cells. Atoh8 loss in osteoblasts increased Runx2 expression and the Rankl/Opg expression ratio, while Runx2 knockdown normalized the Rankl/Opg expression ratio. Moreover, Atoh8 formed a protein complex with Runx2 to inhibit Runx2 transcriptional activity and decrease the Rankl/Opg expression ratio. These results suggest that bone remodeling is regulated elaborately by BMP signaling; while BMP primarily promotes bone resorption, it simultaneously induces Atoh8 to inhibit Runx2 and reduce the Rankl/Opg expression ratio in osteoblasts, suppressing osteoclastogenesis and preventing excessive BMP-mediated bone resorption.
Collapse
|
49
|
Moriishi T, Komori T. Lack of reproducibility in osteocalcin-deficient mice. PLoS Genet 2020; 16:e1008939. [PMID: 32589663 PMCID: PMC7319276 DOI: 10.1371/journal.pgen.1008939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022] Open
Affiliation(s)
- Takeshi Moriishi
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
50
|
Funato N, Srivastava D, Shibata S, Yanagisawa H. TBX1 Regulates Chondrocyte Maturation in the Spheno-occipital Synchondrosis. J Dent Res 2020; 99:1182-1191. [PMID: 32442036 DOI: 10.1177/0022034520925080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The synchondrosis in the cranial base is an important growth center for the craniofacial region. Abnormalities in the synchondroses affect the development of adjacent regions, including the craniofacial skeleton. Here, we report that the transcription factor TBX1, the candidate gene for DiGeorge syndrome, is expressed in mesoderm-derived chondrocytes and plays an essential and specific role in spheno-occipital synchondrosis development by inhibiting the expression of genes involved in chondrocyte hypertrophy and osteogenesis. In Tbx1-deficient mice, the spheno-occipital synchondrosis was completely mineralized at birth. TBX1 interacts with RUNX2, a master molecule of osteoblastogenesis and a regulator of chondrocyte maturation, and suppresses its transcriptional activity. Indeed, deleting Tbx1 triggers accelerated mineralization due to accelerated chondrocyte differentiation, which is associated with ectopic expression of downstream targets of RUNX2 in the spheno-occipital synchondrosis. These findings reveal that TBX1 acts as a regulator of chondrocyte maturation and osteogenesis during the spheno-occipital synchondrosis development. Thus, the tight regulation of endochondral ossification by TBX1 is crucial for the normal progression of chondrocyte differentiation in the spheno-occipital synchondrosis.
Collapse
Affiliation(s)
- N Funato
- Department of Signal Gene Regulation, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - D Srivastava
- Gladstone Institute of Cardiovascular Disease and Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - S Shibata
- Department of Maxillofacial Anatomy, Tokyo Medical and Dental University, Tokyo, Japan
| | - H Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|