1
|
Morton AB, Jacobsen NL, Diller AR, Kendra JA, Golpasandi S, Cornelison DDW, Segal SS. Inducible deletion of endothelial cell Efnb2 delays capillary regeneration and attenuates myofibre reinnervation following myotoxin injury in mice. J Physiol 2024; 602:4907-4927. [PMID: 39196901 PMCID: PMC11466691 DOI: 10.1113/jp285402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/22/2024] [Indexed: 08/30/2024] Open
Abstract
Acute injury of skeletal muscle disrupts myofibres, microvessels and motor innervation. Myofibre regeneration is well characterized, however its relationship with the regeneration of microvessels and motor nerves is undefined. Endothelial cell (EC) ephrin-B2 (Efnb2) is required for angiogenesis during embryonic development and promotes neurovascular regeneration in the adult. We hypothesized that, following acute injury to skeletal muscle, loss of EC Efnb2 would impair microvascular regeneration and the recovery of neuromuscular junction (NMJ) integrity. Mice (aged 3-6 months) were bred for EC-specific conditional knockout (CKO) of Efnb2 following tamoxifen injection with non-injected CKO mice as controls (CON). The gluteus maximus, tibialis anterior or extensor digitorum longus muscle was then injured with local injection of BaCl2. Intravascular staining with wheat germ agglutinin revealed diminished capillary area in the gluteus maximus of CKO vs. CON at 5 days post-injury (dpi); both recovered to uninjured (0 dpi) level by 10 dpi. At 0 dpi, tibialis anterior isometric force of CKO was less than CON. At 10 dpi, isometric force was reduced by half in both groups. During intermittent contractions (75 Hz, 330 ms s-1, 120 s), isometric force fell during indirect (sciatic nerve) stimulation whereas force was maintained during direct (electrical field) stimulation of myofibres. Neuromuscular transmission failure correlated with perturbed presynaptic (terminal Schwann cells) and postsynaptic (nicotinic acetylcholine receptors) NMJ morphology in CKO. Resident satellite cell number on extensor digitorum longus myofibres did not differ between groups. Following acute injury of skeletal muscle, loss of Efnb2 in ECs delays capillary regeneration and attenuates recovery of NMJ structure and function. KEY POINTS: The relationship between microvascular regeneration and motor nerve regeneration following skeletal muscle injury is undefined. Expression of Efnb2 in endothelial cells (ECs) is essential to vascular development and promotes neurovascular regeneration in the adult. To test the hypothesis that EfnB2 in ECs is required for microvascular regeneration and myofibre reinnervation, we induced conditional knockout of Efnb2 in ECs of mice. Acute injury was then induced by BaCl2 injection into gluteus maximus, tibialis anterior or extensor digitorum longus (EDL) muscle. Capillary regeneration was reduced at 5 days post-injury (dpi) in gluteus maximus of conditional knockout vs. controls; at 10 dpi, neither differed from uninjured. Nerve stimulation revealed neuromuscular transmission failure in tibialis anterior with perturbed neuromuscular junction structure. Resident satellite cell number on EDL myofibres did not differ between groups. Conditional knockout of EC Efnb2 delays capillary regeneration and attenuates recovery of neuromuscular junction structure and function.
Collapse
Affiliation(s)
- Aaron B. Morton
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | - Nicole L. Jacobsen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | | | - Jacob A. Kendra
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - Shadi Golpasandi
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - DDW Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Steven S. Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
- Dalton Cardiovascular Research Center, Columbia, MO 65211
- Department of Biomedical Sciences, University of Missouri; Columbia, MO 65201
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri; Columbia, MO 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
2
|
Li J, Wang D, Tang F, Ling X, Zhang W, Zhang Z. Pan-cancer integrative analyses dissect the remodeling of endothelial cells in human cancers. Natl Sci Rev 2024; 11:nwae231. [PMID: 39345334 PMCID: PMC11429526 DOI: 10.1093/nsr/nwae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 10/01/2024] Open
Abstract
Therapeutics targeting tumor endothelial cells (TECs) have been explored for decades, with only suboptimal efficacy achieved, partly due to an insufficient understanding of the TEC heterogeneity across cancer patients. We integrated single-cell RNA-seq data of 575 cancer patients from 19 solid tumor types, comprehensively charting the TEC phenotypic diversities. Our analyses uncovered underappreciated compositional and functional heterogeneity in TECs from a pan-cancer perspective. Two subsets, CXCR4 + tip cells and SELE + veins, represented the prominent angiogenic and proinflammatory phenotypes of TECs, respectively. They exhibited distinct spatial organization patterns, and compared to adjacent non-tumor tissues, tumor tissue showed an increased prevalence of CXCR4 + tip cells, yet with SELE + veins depleted. Such functional and spatial characteristics underlie their differential associations with the response of anti-angiogenic therapies and immunotherapies. Our integrative resources and findings open new avenues to understand and clinically intervene in the tumor vasculature.
Collapse
Affiliation(s)
- Jinhu Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Fei Tang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xinnan Ling
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjie Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Majid QA, Ghimire BR, Merkely B, Randi AM, Harding SE, Talman V, Földes G. Generation and characterisation of scalable and stable human pluripotent stem cell-derived microvascular-like endothelial cells for cardiac applications. Angiogenesis 2024; 27:561-582. [PMID: 38775849 PMCID: PMC11303486 DOI: 10.1007/s10456-024-09929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/09/2024] [Indexed: 08/07/2024]
Abstract
Coronary microvascular disease (CMD) and its progression towards major adverse coronary events pose a significant health challenge. Accurate in vitro investigation of CMD requires a robust cell model that faithfully represents the cells within the cardiac microvasculature. Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) offer great potential; however, they are traditionally derived via differentiation protocols that are not readily scalable and are not specified towards the microvasculature. Here, we report the development and comprehensive characterisation of a scalable 3D protocol enabling the generation of phenotypically stable cardiac hPSC-microvascular-like ECs (hPSC-CMVECs) and cardiac pericyte-like cells. These were derived by growing vascular organoids within 3D stirred tank bioreactors and subjecting the emerging 3D hPSC-ECs to high-concentration VEGF-A treatment (3DV). Not only did this promote phenotypic stability of the 3DV hPSC-ECs; single cell-RNA sequencing (scRNA-seq) revealed the pronounced expression of cardiac endothelial- and microvascular-associated genes. Further, the generated mural cells attained from the vascular organoid exhibited markers characteristic of cardiac pericytes. Thus, we present a suitable cell model for investigating the cardiac microvasculature as well as the endothelial-dependent and -independent mechanisms of CMD. Moreover, owing to their phenotypic stability, cardiac specificity, and high angiogenic potential, the cells described within would also be well suited for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Qasim A Majid
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary
| | - Anna M Randi
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sian E Harding
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Virpi Talman
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gábor Földes
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary.
| |
Collapse
|
4
|
Matsui Y, Muramatsu F, Nakamura H, Noda Y, Matsumoto K, Kishima H, Takakura N. Brain-derived endothelial cells are neuroprotective in a chronic cerebral hypoperfusion mouse model. Commun Biol 2024; 7:338. [PMID: 38499610 PMCID: PMC10948829 DOI: 10.1038/s42003-024-06030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Whether organ-specific regeneration is induced by organ-specific endothelial cells (ECs) remains unelucidated. The formation of white matter lesions due to chronic cerebral hypoperfusion causes cognitive decline, depression, motor dysfunction, and even acute ischemic stroke. Vascular ECs are an important target for treating chronic cerebral hypoperfusion. Brain-derived ECs transplanted into a mouse chronic cerebral hypoperfusion model showed excellent angiogenic potential. They were also associated with reducing both white matter lesions and brain dysfunction possibly due to the high expression of neuroprotective humoral factors. The in vitro coculture of brain cells with ECs from several diverse organs suggested the function of brain-derived endothelium is affected within a brain environment due to netrin-1 and Unc 5B systems. We found brain CD157-positive ECs were more proliferative and beneficial in a mouse model of chronic cerebral hypoperfusion than CD157-negative ECs upon inoculation. We propose novel methods to improve the symptoms of chronic cerebral hypoperfusion using CD157-positive ECs.
Collapse
Affiliation(s)
- Yuichi Matsui
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hajime Nakamura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshimi Noda
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kinnosuke Matsumoto
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
- World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Chen Z, Huang Y, Xing H, Tseng T, Edelman H, Perry R, Kyriakides TR. Novel muscle-derived extracellular matrix hydrogel promotes angiogenesis and neurogenesis in volumetric muscle loss. Matrix Biol 2024; 127:38-47. [PMID: 38325441 PMCID: PMC10958762 DOI: 10.1016/j.matbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Volumetric muscle loss (VML) represents a clinical challenge due to the limited regenerative capacity of skeletal muscle. Most often, it results in scar tissue formation and loss of function, which cannot be prevented by current therapies. Decellularized extracellular matrix (DEM) has emerged as a native biomaterial for the enhancement of tissue repair. Here, we report the generation and characterization of hydrogels derived from DEM prepared from WT or thrombospondin (TSP)-2 null muscle tissue. TSP2-null hydrogels, when compared to WT, displayed altered architecture, protein composition, and biomechanical properties and allowed enhanced invasion of C2C12 myocytes and chord formation by endothelial cells. They also displayed enhanced cell invasion, innervation, and angiogenesis following subcutaneous implantation. To evaluate their regenerative capacity, WT or TSP2 null hydrogels were used to treat VML injury to tibialis anterior muscles and the latter induced greater recruitment of repair cells, innervation, and blood vessel formation and reduced inflammation. Taken together, these observations indicate that TSP2-null hydrogels enhance angiogenesis and promote muscle repair in a VML model.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Departments of Pathology, Yale University, New Haven, CT 06519, USA; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA
| | - Yaqing Huang
- Departments of Pathology, Yale University, New Haven, CT 06519, USA; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA
| | - Hao Xing
- Biomedical Engineering, Yale University, New Haven, CT 06519, USA; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA
| | - Tiffany Tseng
- Departments of Pathology, Yale University, New Haven, CT 06519, USA; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA
| | - Hailey Edelman
- Cellular & Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Rachel Perry
- Cellular & Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Themis R Kyriakides
- Departments of Pathology, Yale University, New Haven, CT 06519, USA; Biomedical Engineering, Yale University, New Haven, CT 06519, USA; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.
| |
Collapse
|
6
|
Guidolin D, Tortorella C, De Caro R, Agnati LF. A Self-Similarity Logic May Shape the Organization of the Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 36:203-225. [PMID: 38468034 DOI: 10.1007/978-3-031-47606-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
From the morphological point of view, the nervous system exhibits a fractal, self-similar geometry at various levels of observations, from single cells up to cell networks. From the functional point of view, it is characterized by a hierarchical organization in which self-similar structures (networks) of different miniaturizations are nested within each other. In particular, neuronal networks, interconnected to form neuronal systems, are formed by neurons, which operate thanks to their molecular networks, mainly having proteins as components that via protein-protein interactions can be assembled in multimeric complexes working as micro-devices. On this basis, the term "self-similarity logic" was introduced to describe a nested organization where, at the various levels, almost the same rules (logic) to perform operations are used. Self-similarity and self-similarity logic both appear to be intimately linked to the biophysical evidence for the nervous system being a pattern-forming system that can flexibly switch from one coherent state to another. Thus, they can represent the key concepts to describe its complexity and its concerted, holistic behavior.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy.
| | | | | | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Patnam M, Dommaraju SR, Masood F, Herbst P, Chang JH, Hu WY, Rosenblatt MI, Azar DT. Lymphangiogenesis Guidance Mechanisms and Therapeutic Implications in Pathological States of the Cornea. Cells 2023; 12:319. [PMID: 36672254 PMCID: PMC9856498 DOI: 10.3390/cells12020319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Corneal lymphangiogenesis is one component of the neovascularization observed in several inflammatory pathologies of the cornea including dry eye disease and corneal graft rejection. Following injury, corneal (lymph)angiogenic privilege is impaired, allowing ingrowth of blood and lymphatic vessels into the previously avascular cornea. While the mechanisms underlying pathological corneal hemangiogenesis have been well described, knowledge of the lymphangiogenesis guidance mechanisms in the cornea is relatively scarce. Various signaling pathways are involved in lymphangiogenesis guidance in general, each influencing one or multiple stages of lymphatic vessel development. Most endogenous factors that guide corneal lymphatic vessel growth or regression act via the vascular endothelial growth factor C signaling pathway, a central regulator of lymphangiogenesis. Several exogenous factors have recently been repurposed and shown to regulate corneal lymphangiogenesis, uncovering unique signaling pathways not previously known to influence lymphatic vessel guidance. A strong understanding of the relevant lymphangiogenesis guidance mechanisms can facilitate the development of targeted anti-lymphangiogenic therapeutics for corneal pathologies. In this review, we examine the current knowledge of lymphatic guidance cues, their regulation of inflammatory states in the cornea, and recently discovered anti-lymphangiogenic therapeutic modalities.
Collapse
Affiliation(s)
- Mehul Patnam
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil R. Dommaraju
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Faisal Masood
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Computational Model Exploring Characteristic Pattern Regulation in Periventricular Vessels. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122069. [PMID: 36556434 PMCID: PMC9788473 DOI: 10.3390/life12122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The developing neocortical vasculature exhibits a distinctive pattern in each layer. In murine embryos, vessels in the cortical plate (CP) are vertically oriented, whereas those in the intermediate zone (IZ) and the subventricular zone (SVZ) form a honeycomb structure. The formation of tissue-specific vessels suggests that the behavior of endothelial cells is under a specific regulatory regime in each layer, although the mechanisms involved remain unknown. In the present study, we aimed to explore the conditions required to form these vessel patterns by conducting simulations using a computational model. We developed a novel model framework describing the collective migration of endothelial cells to represent the angiogenic process and performed a simulation using two-dimensional approximation. The attractive and repulsive guidance of tip cells was incorporated into the model based on the function and distribution of guidance molecules such as VEGF and Unc ligands. It is shown that an appropriate combination of guidance effects reproduces both the parallel straight pattern in the CP and meshwork patterns in the IZ/SVZ. Our model demonstrated how the guidance of the tip cell causes a variety of vessel patterns and predicted how tissue-specific vascular formation was regulated in the early development of neocortical vessels.
Collapse
|
9
|
Differentially Expressed microRNAs in Peritoneal Dialysis Effluent-Derived Exosomes from the Patients with Ultrafiltration Failure. Genet Res (Camb) 2022; 2022:2276175. [PMID: 36101746 PMCID: PMC9452989 DOI: 10.1155/2022/2276175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background Ultrafiltration failure remains one of the most severe complications of long-term peritoneal dialysis (PD), which results in death. This study aimed to characterize the circulating exosomal microRNA (miRNA) profiles associated with ultrafiltration failure and explore its underlying mechanisms. Methods Exosomes were isolated from the peritoneal dialysis effluent (PDE) of patients with ultrafiltration failure or success using the ultracentrifugation method, and then transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot were used for exosome characterization. After that, the isolated exosomes were sent for small RNA sequencing, and eight differentially expressed miRNAs (DE-miRNAs) were chosen for RT-qPCR validation. Results TEM, NTA, and western blot revealed that exosomes were successfully isolated. After sequencing, 70 DE-miRNAs involved in ultrafiltration were identified, including 41 upregulated ones and 29 downregulated ones. Functional analyses revealed that these DE-miRNAs were significantly enriched in pathways of cancer, ubiquitin-mediated proteolysis, axon orientation, and the Rap1 and Ras signaling pathways. In addition, the consistency rate of RT-qPCR and sequencing results was 75%, which indicated the relatively high reliability of the sequencing data. Conclusions Our findings implied that these DE-miRNAs may be potential biomarkers of ultrafiltration failure, which would help us to discover novel therapeutic targets/pathways for ultrafiltration failure in patients with end-stage renal disease.
Collapse
|
10
|
Shi J, Xu J, Li Y, Li B, Ming H, Nice EC, Huang C, Li Q, Wang C. Drug repurposing in cancer neuroscience: From the viewpoint of the autophagy-mediated innervated niche. Front Pharmacol 2022; 13:990665. [PMID: 36105204 PMCID: PMC9464986 DOI: 10.3389/fphar.2022.990665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Based on the bidirectional interactions between neurology and cancer science, the burgeoning field “cancer neuroscience” has been proposed. An important node in the communications between nerves and cancer is the innervated niche, which has physical contact with the cancer parenchyma or nerve located in the proximity of the tumor. In the innervated niche, autophagy has recently been reported to be a double-edged sword that plays a significant role in maintaining homeostasis. Therefore, regulating the innervated niche by targeting the autophagy pathway may represent a novel therapeutic strategy for cancer treatment. Drug repurposing has received considerable attention for its advantages in cost-effectiveness and safety. The utilization of existing drugs that potentially regulate the innervated niche via the autophagy pathway is therefore a promising pharmacological approach for clinical practice and treatment selection in cancer neuroscience. Herein, we present the cancer neuroscience landscape with an emphasis on the crosstalk between the innervated niche and autophagy, while also summarizing the underlying mechanisms of candidate drugs in modulating the autophagy pathway. This review provides a strong rationale for drug repurposing in cancer treatment from the viewpoint of the autophagy-mediated innervated niche.
Collapse
Affiliation(s)
- Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jia Xu
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qifu Li
- Department of Neurology and Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| |
Collapse
|
11
|
Malheiro A, Seijas-Gamardo A, Harichandan A, Mota C, Wieringa P, Moroni L. Development of an In Vitro Biomimetic Peripheral Neurovascular Platform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31567-31585. [PMID: 35815638 PMCID: PMC9305708 DOI: 10.1021/acsami.2c03861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nerves and blood vessels are present in most organs and are indispensable for their function and homeostasis. Within these organs, neurovascular (NV) tissue forms congruent patterns and establishes vital interactions. Several human pathologies, including diabetes type II, produce NV disruptions with serious consequences that are complicated to study using animal models. Complex in vitro organ platforms, with neural and vascular supply, allow the investigation of such interactions, whether in a normal or pathological context, in an affordable, simple, and direct manner. To date, a few in vitro models contain NV tissue, and most strategies report models with nonbiomimetic representations of the native environment. To this end, we have established here an NV platform that contains mature vasculature and neural tissue, composed of human microvascular endothelial cells (HMVECs), induced pluripotent stem cell (iPSCs)-derived sensory neurons, and primary rat Schwann cells (SCs) within a fibrin-embedded polymeric scaffold. First, we show that SCs can induce the formation of and stabilize vascular networks to the same degree as the traditional and more thoroughly studied human dermal fibroblasts (HDFs). We also show that through SC prepatterning, we are able to control vessel orientation. Using our NV platform, we demonstrate the concomitant formation of three-dimensional neural and vascular tissue, and the influence of different medium formulations and cell types on the NV tissue outcome. Finally, we propose a protocol to form mature NV tissue, via the integration of independent neural and vascular constituents. The platform described here provides a versatile and advanced model for in vitro research of the NV axis.
Collapse
Affiliation(s)
- Afonso Malheiro
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Adrián Seijas-Gamardo
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Abhishek Harichandan
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Carlos Mota
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Paul Wieringa
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration
Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands
| |
Collapse
|
12
|
Endothelial Cell Metabolism in Vascular Functions. Cancers (Basel) 2022; 14:cancers14081929. [PMID: 35454836 PMCID: PMC9031281 DOI: 10.3390/cancers14081929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Recent findings in the field of vascular biology are nourishing the idea that targeting the endothelial cell metabolism may be an alternative strategy to antiangiogenic therapy, as well as a novel therapeutic approach for cardiovascular disease. Deepening the molecular mechanisms regulating how ECs re-adapt their metabolic status in response to the changeable conditions of the tissue microenvironment may be beneficial to develop novel innovative treatments to counteract the aberrant growth of vasculature. Abstract The endothelium is the innermost layer of all blood and lymphatic vessels composed of a monolayer of specialized endothelial cells (ECs). It is regarded as a dynamic and multifunctional endocrine organ that takes part in essential processes, such as the control of blood fluidity, the modulation of vascular tone, the regulation of immune response and leukocyte trafficking into perivascular tissues, and angiogenesis. The inability of ECs to perform their normal biological functions, known as endothelial dysfunction, is multi-factorial; for instance, it implicates the failure of ECs to support the normal antithrombotic and anti-inflammatory status, resulting in the onset of unfavorable cardiovascular conditions such as atherosclerosis, coronary artery disease, hypertension, heart problems, and other vascular pathologies. Notably, it is emerging that the ability of ECs to adapt their metabolic status to persistent changes of the tissue microenvironment could be vital for the maintenance of vascular functions and to prevent adverse vascular events. The main purpose of the present article is to shed light on the unique metabolic plasticity of ECs as a prospective therapeutic target; this may lead to the development of novel strategies for cardiovascular diseases and cancer.
Collapse
|
13
|
Sheng J, Gong J, Shi Y, Wang X, Liu D. MicroRNA-22 coordinates vascular and motor neuronal pathfinding via sema4 during zebrafish development. Open Biol 2022; 12:210315. [PMID: 35382569 PMCID: PMC8984383 DOI: 10.1098/rsob.210315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A precise guiding signal is crucial to orchestrate directional migration and patterning of the complex vascular network and neural system. So far, limited studies have reported the discovery and functions of microRNAs (miRNAs) in guiding vascular and neural pathfinding. Currently, we showed that the deficiency of miRNA-22a, an endothelial-enriched miRNA, caused dramatic pathfinding defects both in intersegmental vessels (ISVs) and primary motor neurons (PMNs) in zebrafish embryos. Furthermore, we found the specific inhibition of miR-22a in endothelial cells (ECs) resulted in patterning defects of both ISVs and PMNs. Neuronal block of miR-22a mainly led to axonal defects of PMN. Sema4c was identified as a potential target of miR-22a through transcriptomic analysis and in silico analysis. Additionally, a luciferase assay and EGFP sensor assay confirmed the binding of miR-22a with 3'-UTR of sema4c. In addition, downregulation of sema4c in the miR-22a morphants significantly neutralized the aberrant patterning of vascular and neural networks. Then we demonstrated that endothelial miR-22a regulates PMNs axonal navigation. Our study revealed that miR-22a acted as a dual regulatory cue coordinating vascular and neuronal patterning, and expanded the repertoire of regulatory molecules, which might be of use therapeutically to guide vessels and nerves in the relevant diseases.
Collapse
Affiliation(s)
- Jiajing Sheng
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Jie Gong
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Yunwei Shi
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Xin Wang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| |
Collapse
|
14
|
Rodriguez D, Watts D, Gaete D, Sormendi S, Wielockx B. Hypoxia Pathway Proteins and Their Impact on the Blood Vasculature. Int J Mol Sci 2021; 22:ijms22179191. [PMID: 34502102 PMCID: PMC8431527 DOI: 10.3390/ijms22179191] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Every cell in the body requires oxygen for its functioning, in virtually every animal, and a tightly regulated system that balances oxygen supply and demand is therefore fundamental. The vascular network is one of the first systems to sense oxygen, and deprived oxygen (hypoxia) conditions automatically lead to a cascade of cellular signals that serve to circumvent the negative effects of hypoxia, such as angiogenesis associated with inflammation, tumor development, or vascular disorders. This vascular signaling is driven by central transcription factors, namely the hypoxia inducible factors (HIFs), which determine the expression of a growing number of genes in endothelial cells and pericytes. HIF functions are tightly regulated by oxygen sensors known as the HIF-prolyl hydroxylase domain proteins (PHDs), which are enzymes that hydroxylate HIFs for eventual proteasomal degradation. HIFs, as well as PHDs, represent attractive therapeutic targets under various pathological settings, including those involving vascular (dys)function. We focus on the characteristics and mechanisms by which vascular cells respond to hypoxia under a variety of conditions.
Collapse
|
15
|
Malheiro A, Wieringa P, Moroni L. Peripheral neurovascular link: an overview of interactions and in vitro models. Trends Endocrinol Metab 2021; 32:623-638. [PMID: 34127366 DOI: 10.1016/j.tem.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022]
Abstract
Nerves and blood vessels (BVs) establish extensive arborized networks to innervate tissues and deliver oxygen/metabolic support. Developmental cues direct the formation of these intricate and often overlapping patterns, which reflect close interactions within the peripheral neurovascular system. Besides the mutual dependence to survive and function, nerves and BVs share several receptors and ligands, as well as principles of differentiation, growth and pathfinding. Neurovascular (NV) interactions are maintained in adult life and are essential for certain regenerative mechanisms, such as wound healing. In pathological situations (e.g., type 2 diabetes mellitus), the NV system can be severely perturbed and become dysfunctional. Unwanted neural growth and vascularization are also associated with the progression of some pathologies, such as cancer and endometriosis. In this review, we describe the fundamental NV interactions in development, highlighting the similarities between both networks and wiring mechanisms. We also describe the NV contribution to regenerative processes and potential pathological dysfunctions. Finally, we provide an overview of current in vitro models used to replicate and investigate the NV ecosystem, addressing present limitations and future perspectives.
Collapse
Affiliation(s)
- Afonso Malheiro
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Paul Wieringa
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, The Netherlands.
| |
Collapse
|
16
|
Morton AB, Jacobsen NL, Segal SS. Functionalizing biomaterials to promote neurovascular regeneration following skeletal muscle injury. Am J Physiol Cell Physiol 2021; 320:C1099-C1111. [PMID: 33852364 PMCID: PMC8285637 DOI: 10.1152/ajpcell.00501.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022]
Abstract
During embryogenesis, blood vessels and nerves develop with similar branching structure in response to shared signaling pathways guiding network growth. With both systems integral to physiological homeostasis, dual targeting of blood vessels and nerves to promote neurovascular regeneration following injury is an emerging therapeutic approach in biomedical engineering. A limitation to this strategy is that the nature of cross talk between emergent vessels and nerves during regeneration in an adult is poorly understood. Following peripheral nerve transection, intraneural vascular cells infiltrate the site of injury to provide a migratory pathway for mobilized Schwann cells of regenerating axons. As Schwann cells demyelinate, they secrete vascular endothelial growth factor, which promotes angiogenesis. Recent advances point to concomitant restoration of neurovascular architecture and function through simultaneous targeting of growth factors and guidance cues shared by both systems during regeneration. In the context of traumatic injury associated with volumetric muscle loss, we consider the nature of biomaterials used to engineer three-dimensional scaffolds, functionalization of scaffolds with molecular signals that guide and promote neurovascular growth, and seeding scaffolds with progenitor cells. Physiological success is defined by each tissue component of the bioconstruct (nerve, vessel, muscle) becoming integrated with that of the host. Advances in microfabrication, cell culture techniques, and progenitor cell biology hold great promise for engineering bioconstructs able to restore organ function after volumetric muscle loss.
Collapse
Affiliation(s)
- Aaron B Morton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Nicole L Jacobsen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, Columbia, Missouri
| |
Collapse
|
17
|
Dlamini Z, Mathabe K, Padayachy L, Marima R, Evangelou G, Syrigos KN, Bianchi A, Lolas G, Hull R. Many Voices in a Choir: Tumor-Induced Neurogenesis and Neuronal Driven Alternative Splicing Sound Like Suspects in Tumor Growth and Dissemination. Cancers (Basel) 2021; 13:cancers13092138. [PMID: 33946706 PMCID: PMC8125307 DOI: 10.3390/cancers13092138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Significant progress has recently been made in understanding the role of the neuronal system in cancer biology, in many solid tumors such as prostate, breast, pancreatic, gastric and brain cancers. Solid tumors and the nervous system appear to influence each other’s development both directly and indirectly. A recurring element in such interactions is constituted by nerve-related substances such as neurotransmitters and neurotrophins, to which the first part of the current review is devoted. The second part of the review focuses on the potential role played by alternative splicing in cancer progression associated with neural signaling. Alternative splicing is the process where pre-mRNA is cut and re-ligated in different ways to give rise to multiple protein isoforms whose expression profile is often cancer specific. Alternative splicing is known to take place in the mRNA of genes that code for proteins involved in neuronal development and the creation of new nerve fibers. The change in alternative splicing patterns that occur as tumors develop and progress may make these splice variants potential targets for the development of drug treatments. They may also serve as diagnostic or prognostic biomarkers. Abstract During development, as tissues expand and grow, they require circulatory, lymphatic, and nervous system expansion for proper function and support. Similarly, as tumors arise and develop, they also require the expansion of these systems to support them. While the contribution of blood and lymphatic systems to the development and progression of cancer is well known and is targeted with anticancer drugs, the contribution of the nervous system is less well studied and understood. Recent studies have shown that the interaction between neurons and a tumor are bilateral and promote metastasis on one hand, and the formation of new nerve structures (neoneurogenesis) on the other. Substances such as neurotransmitters and neurotrophins being the main actors in such interplay, it seems reasonable to expect that alternative splicing and the different populations of protein isoforms can affect tumor-derived neurogenesis. Here, we report the different, documented ways in which neurons contribute to the development and progression of cancer and investigate what is currently known regarding cancer-neuronal interaction in several specific cancer types. Furthermore, we discuss the incidence of alternative splicing that have been identified as playing a role in tumor-induced neoneurogenesis, cancer development and progression. Several examples of changes in alternative splicing that give rise to different isoforms in nerve tissue that support cancer progression, growth and development have also been investigated. Finally, we discuss the potential of our knowledge in alternative splicing to improve tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Correspondence:
| | - Kgomotso Mathabe
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Department of Urology, University of Pretoria, Pretoria 0084, South Africa
| | - Llewellyn Padayachy
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Department of Neurosurgery, University of Pretoria, Pretoria 0084, South Africa
| | - Rahaba Marima
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
| | - George Evangelou
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | - Konstantinos N. Syrigos
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | | | - Georgios Lolas
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | - Rodney Hull
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
| |
Collapse
|
18
|
Arab JP, Cabrera D, Sehrawat TS, Jalan-Sakrikar N, Verma VK, Simonetto D, Cao S, Yaqoob U, Leon J, Freire M, Vargas JI, De Assuncao TM, Kwon JH, Guo Y, Kostallari E, Cai Q, Kisseleva T, Oh Y, Arrese M, Huebert RC, Shah VH. Hepatic stellate cell activation promotes alcohol-induced steatohepatitis through Igfbp3 and SerpinA12. J Hepatol 2020; 73:149-160. [PMID: 32087348 PMCID: PMC7305991 DOI: 10.1016/j.jhep.2020.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Steatohepatitis drives fibrogenesis in alcohol-related liver disease. Recent studies have suggested that hepatic stellate cells (HSCs) may regulate the parenchymal cell injury and inflammation that precedes liver fibrosis, although the mechanism remains incompletely defined. Neuropilin-1 (NRP-1) and synectin are membrane proteins implicated in HSC activation. In this study, we disrupted NRP-1 and synectin as models to evaluate the role of HSC activation on the development of steatohepatitis in response to alcohol feeding in mice. METHODS Mice with HSC-selective deletion of NRP (ColCre/Nrp1loxP) or synectin (ColCre/synectinloxP) vs. paired Nrp1loxP or synectinloxP mice were fed a control diet or the chronic/binge alcohol feeding model. Several markers of steatosis and inflammation were evaluated. RESULTS ColCre/Nrp1loxP mice showed less fibrosis, as expected, but also less inflammation and steatosis, with lower hepatic triglyceride content. Similar results were observed in the synectin model. Hepatocytes treated with supernatant of HSCs from ColCre/Nrp1loxP mice compared to supernatant from Nrp1loxP mice were protected against ethanol-induced lipid droplet formation. An adipokine and inflammatory protein array from the supernatant of HSCs with NRP-1 knockdown showed a significant reduction in Igfbp3 (a major insulin-like growth factor-binding protein with multiple metabolic functions) and an increase in SerpinA12 (a serine-protease inhibitor) secretion compared to wild-type HSCs. Recombinant Igfbp3 induced lipid droplets, triglyceride accumulation, and lipogenic genes in hepatocytes in vitro, while SerpinA12 was protective against ethanol-induced steatosis. Finally, Igfbp3 was increased, and SerpinA12 was decreased in serum and liver tissue from patients with alcoholic hepatitis. CONCLUSION Selective deletion of NRP-1 from HSCs attenuates alcohol-induced steatohepatitis through regulation of Igfbp3 and SerpinA12 signaling. LAY SUMMARY Hepatic stellate cells are known for their role in fibrosis (scarring of the liver). In this study, we describe their role in the modulation of fat deposition and inflammation in the liver, which occurs secondary to alcohol damage.
Collapse
Affiliation(s)
- Juan P Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile; Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O Higgins, Santiago, Chile
| | - Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Vikas K Verma
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Douglas Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jonathan Leon
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Mariela Freire
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jose I Vargas
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | - Jung H Kwon
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yi Guo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Qing Cai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California-San Diego, San Diego, CA, USA
| | - Youngman Oh
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Marco Arrese
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
20
|
Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, Shamseddine A. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Front Oncol 2020; 10:221. [PMID: 32175278 PMCID: PMC7056882 DOI: 10.3389/fonc.2020.00221] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor growth and metastasis rely on tumor vascular network for the adequate supply of oxygen and nutrients. Tumor angiogenesis relies on a highly complex program of growth factor signaling, endothelial cell (EC) proliferation, extracellular matrix (ECM) remodeling, and stromal cell interactions. Numerous pro-angiogenic drivers have been identified, the most important of which is the vascular endothelial growth factor (VEGF). The importance of pro-angiogenic inducers in tumor growth, invasion and extravasation make them an excellent therapeutic target in several types of cancers. Hence, the number of anti-angiogenic agents developed for cancer treatment has risen over the past decade, with at least eighty drugs being investigated in preclinical studies and phase I-III clinical trials. To date, the most common approaches to the inhibition of the VEGF axis include the blockade of VEGF receptors (VEGFRs) or ligands by neutralizing antibodies, as well as the inhibition of receptor tyrosine kinase (RTK) enzymes. Despite promising preclinical results, anti-angiogenic monotherapies led only to mild clinical benefits. The minimal benefits could be secondary to primary or acquired resistance, through the activation of alternative mechanisms that sustain tumor vascularization and growth. Mechanisms of resistance are categorized into VEGF-dependent alterations, non-VEGF pathways and stromal cell interactions. Thus, complementary approaches such as the combination of these inhibitors with agents targeting alternative mechanisms of blood vessel formation are urgently needed. This review provides an updated overview on the pathophysiology of angiogenesis during tumor growth. It also sheds light on the different pro-angiogenic and anti-angiogenic agents that have been developed to date. Finally, it highlights the preclinical evidence for mechanisms of angiogenic resistance and suggests novel therapeutic approaches that might be exploited with the ultimate aim of overcoming resistance and improving clinical outcomes for patients with cancer.
Collapse
Affiliation(s)
- Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Malek Kreidieh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Hiba El Hajj
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Sally Temraz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| |
Collapse
|
21
|
Aldosary M, Al-Bakheet A, Al-Dhalaan H, Almass R, Alsagob M, Al-Younes B, AlQuait L, Mustafa OM, Bulbul M, Rahbeeni Z, Alfadhel M, Chedrawi A, Al-Hassnan Z, AlDosari M, Al-Zaidan H, Al-Muhaizea MA, AlSayed MD, Salih MA, AlShammari M, Faiyaz-Ul-Haque M, Chishti MA, Al-Harazi O, Al-Odaib A, Kaya N, Colak D. Rett Syndrome, a Neurodevelopmental Disorder, Whole-Transcriptome, and Mitochondrial Genome Multiomics Analyses Identify Novel Variations and Disease Pathways. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:160-171. [PMID: 32105570 DOI: 10.1089/omi.2019.0192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder reported worldwide in diverse populations. RTT is diagnosed primarily in females, with clinical findings manifesting early in life. Despite the variable rates across populations, RTT has an estimated prevalence of ∼1 in 10,000 live female births. Among 215 Saudi Arabian patients with neurodevelopmental and autism spectrum disorders, we identified 33 patients with RTT who were subsequently examined by genome-wide transcriptome and mitochondrial genome variations. To the best of our knowledge, this is the first in-depth molecular and multiomics analyses of a large cohort of Saudi RTT cases with a view to informing the underlying mechanisms of this disease that impact many patients and families worldwide. The patients were unrelated, except for 2 affected sisters, and comprised of 25 classic and eight atypical RTT cases. The cases were screened for methyl-CpG binding protein 2 (MECP2), CDKL5, FOXG1, NTNG1, and mitochondrial DNA (mtDNA) variants, as well as copy number variations (CNVs) using a genome-wide experimental strategy. We found that 15 patients (13 classic and two atypical RTT) have MECP2 mutations, 2 of which were novel variants. Two patients had novel FOXG1 and CDKL5 variants (both atypical RTT). Whole mtDNA sequencing of the patients who were MECP2 negative revealed two novel mtDNA variants in two classic RTT patients. Importantly, the whole-transcriptome analysis of our RTT patients' blood and further comparison with previous expression profiling of brain tissue from patients with RTT revealed 77 significantly dysregulated genes. The gene ontology and interaction network analysis indicated potentially critical roles of MAPK9, NDUFA5, ATR, SMARCA5, RPL23, SRSF3, and mitochondrial dysfunction, oxidative stress response and MAPK signaling pathways in the pathogenesis of RTT genes. This study expands our knowledge on RTT disease networks and pathways as well as presents novel mutations and mtDNA alterations in RTT in a population sample that was not previously studied.
Collapse
Affiliation(s)
- Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - AlBandary Al-Bakheet
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Hesham Al-Dhalaan
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Banan Al-Younes
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Laila AlQuait
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Osama Mufid Mustafa
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mustafa Bulbul
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Genetics Division, Department of Pediatrics, King Abdullah Specialized Children Hospital, Riyadh, Saudi Arabia
| | - Aziza Chedrawi
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohammed AlDosari
- Center for Pediatric Neurosciences, Cleveland Clinic, Cleveland, Ohio
| | - Hamad Al-Zaidan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohammad A Al-Muhaizea
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Moeenaldeen D AlSayed
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mai AlShammari
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Mohammad Azhar Chishti
- Department of Biochemistry, King Khalid Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Al-Odaib
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Guo X, Ding S, Li T, Wang J, Yu Q, Zhu L, Xu X, Zou G, Peng Y, Zhang X. Macrophage-derived netrin-1 is critical for neuroangiogenesis in endometriosis. Int J Biol Macromol 2020; 148:226-237. [PMID: 31953174 DOI: 10.1016/j.ijbiomac.2020.01.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Netrin-1 is an extracellular guidance cue of neuronal navigation, mediated through interaction with its main receptors, and is known to be crucial in the development of multiple chronic inflammatory diseases. However, the expression pattern and mechanism of netrin-1 in endometriosis are currently undefined. Here we report that netrin-1 expression peaked in peritoneal macrophages found in endometriosis. Netrin-1 induced angiogenesis in ovarian endometriomas through interaction with CD146 in vascular endothelial cells. Through another receptor, neogenin, netrin-1 promoted neurite growth and sensitization in endometriosis through the up-regulation of MAP4, TAU, and CGRP. Targeted knockdown of neogenin in dorsal root ganglion (DRG) nerve cells compromised its response to netrin-1 through inhibiting phosphorylation of ERK1/2. The inhibition of netrin-1 using a neutralizing antibody reduced vascular and nerve infiltration in rat endometriotic lesions. In summary, our results suggest that netrin-1 is an important factor that promotes neuroangiogenesis in endometriosis.
Collapse
Affiliation(s)
- Xinyue Guo
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Shaojie Ding
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Tiantian Li
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Jianzhang Wang
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Qin Yu
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Libo Zhu
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Xinxin Xu
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Gen Zou
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Yangying Peng
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China
| | - Xinmei Zhang
- The Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou 310006, Zhejiang, PR China..
| |
Collapse
|
23
|
Cavalcanti CAJ, Germoglio V, de Azevêdo Silva J, Glesse N, Vianna P, Cechim G, Monticielo OA, Xavier RM, Brenol JCT, Brenol CV, Fragoso TS, Barbosa AD, Duarte ÂLBP, Oliveira RDR, Louzada-Júnior P, Donadi EA, Chies JAB, Crovella S, Sandrin-Garcia P. T-cell specific upregulation of Sema4A as risk factor for autoimmunity in systemic lupus erythematosus and rheumatoid arthritis. Autoimmunity 2019; 53:65-70. [PMID: 31876207 DOI: 10.1080/08916934.2019.1704273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of the present study was to evaluate the impact of SEMA4A genetic variants on expression of sema4A protein and its relation to autoimmunity development in Systemic Lupus Erythematosus and Rheumatoid Arthritis patients. A total of 541 SLE patients, 390 RA patients and 607 healthy individuals were genotyped. We also assessed SEMA4A mRNA expression from whole blood cells and the in vitro protein production from resting and activated T lymphocytes as well as mature dendritic cells from healthy individuals stratified according to their genotypes for SLE/RA associated SEMA4A variants. Our results showed that T/T genotype for rs3738581 SNP is associated with both RA and SLE development (p = .000053, OR = 2.35; p = .0019, OR = 2.07, respectively; statistical power = 100%) and also to an increased in vitro sema4A production in active T lymphocytes. Our findings are indicative of a T cell-specific upregulation of sema4A in the presence of T/T genotype, being a risk factor for SLE and RA.
Collapse
Affiliation(s)
- Catarina Addobbati Jordão Cavalcanti
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil.,Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Brazil
| | - Vanessa Germoglio
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | - Jaqueline de Azevêdo Silva
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil.,Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Brazil
| | - Nadine Glesse
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Priscila Vianna
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Giovana Cechim
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Odirlei Andre Monticielo
- Division of Rheumatology, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ricardo Machado Xavier
- Division of Rheumatology, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Carlos Tavares Brenol
- Division of Rheumatology, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Viegas Brenol
- Division of Rheumatology, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thiago Sotero Fragoso
- Rheumatology Service, Clinical Hospital, Federal University of Alagoas, Maceió, Brazil
| | | | | | - Renê Donizeti Ribeiro Oliveira
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo Louzada-Júnior
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo Antônio Donadi
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Artur Bogo Chies
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sergio Crovella
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil.,Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Brazil.,Institute for Maternal, Child Health "Burlo Garofolo," Trieste, Italy
| | - Paula Sandrin-Garcia
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil.,Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
24
|
Lee NG, Jeung IC, Heo SC, Song J, Kim W, Hwang B, Kwon MG, Kim YG, Lee J, Park JG, Shin MG, Cho YL, Son MY, Bae KH, Lee SH, Kim JH, Min JK. Ischemia-induced Netrin-4 promotes neovascularization through endothelial progenitor cell activation via Unc-5 Netrin receptor B. FASEB J 2019; 34:1231-1246. [PMID: 31914695 DOI: 10.1096/fj.201900866rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/11/2022]
Abstract
Endothelial progenitor cells (EPCs) promote neovascularization and tissue repair by migrating to vascular injury sites; therefore, factors that enhance EPC homing to damaged tissues are of interest. Here, we provide evidence of the prominent role of the Netrin-4 (NTN4)-Unc-5 Netrin receptor B (UNC5B) axis in EPC-specific promotion of ischemic neovascularization. Our results showed that NTN4 promoted the proliferation, chemotactic migration, and paracrine effects of small EPCs (SEPCs) and significantly increased the incorporation of large EPCs (LEPCs) into tubule networks. Additionally, NTN4 prominently augmented neovascularization in mice with hindlimb ischemia by increasing the homing of exogenously transplanted EPCs to the ischemic limb and incorporating EPCs into vessels. Moreover, silencing of UNC5B, an NTN4 receptor, abrogated the NTN4-induced cellular activities of SEPCs in vitro and blood-flow recovery and neovascularization in vivo in ischemic muscle by reducing EPC homing and incorporation. These findings suggest NTN4 as an EPC-based therapy for treating angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Na Geum Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - In Cheul Jeung
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soon Chul Heo
- Department of Physiology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jinhoi Song
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Wooil Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Min-Gi Kwon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Min-Gyeong Shin
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Young-Lai Cho
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Mi-Young Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Kwang-Hee Bae
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
25
|
Wu Q, Li T, Zhu D, Lv F, Qin X. Altered expression of long noncoding RNAs in peripheral blood mononuclear cells in patients with impaired leptomeningeal collaterals after acute anterior large vessel occlusions. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:523. [PMID: 31807505 DOI: 10.21037/atm.2019.10.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background In the event of acute ischemic stroke (AIS) due to anterior large vessel occlusion (aLVO), leptomeningeal collaterals (LMCs) status is a key factor to define the severity and functional prognosis of this disease. However, the extent of LMCs exhibits substantial variability among the patients, which is genetic determined. Long non-coding RNAs (lncRNAs) expression profiles in human peripheral blood have been found to be altered after AIS. But whether there are specific lncRNAs correlated with LMC status in aLVO has not yet been investigated. Methods Differential lncRNA expression panels in peripheral blood mononuclear cells (PBMCs) were assessed by microarray analysis and individual quantitative real-time polymerase chain reaction (RT-PCR) in three independent sets consist of 134 patients with aLVO and 73 healthy controls (HCs). LMCs Status in those patients was assessed based on baseline computed tomographic angiography (CTA). Results Microarray analysis showed 23 differentially expressed lncRNAs in patients with poor LMCs status. After independent validations by RT-PCR, lncRNA ENST00000422956 was found to be significantly downregulated in patients with poor LMCs status. Receiver-operating characteristic (ROC) analysis revealed the area under the ROC curve (AUC) for ENST00000422956 to predict poor LMCs status was 0.749. Moreover, ENST00000422956 expression level and baseline National Institutes of Health Stroke Scale (NIHSS) score were identified as independent predictors for impaired LMCs, and a significantly positive correlation was observed between ENST00000422956 expression level and LMCs status. Via cis-regulatory analysis, paired box 8 (Pax8) was identified as the target gene for ENST00000422956. Conclusions The dysregulated lncRNA ENST00000422956 in PBMCs was associated with impairment of LMCs in patients with aLVO, suggesting that measurement of circulatory lncRNAs might be included as possible biomarkers for evaluation of LMCs status in AIS. More importantly, this might be the foundation for understand the potential roles of lncRNAs in LMCs formation after ischemic stroke.
Collapse
Affiliation(s)
- Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
26
|
Mohiuddin M, Lee NH, Moon JY, Han WM, Anderson SE, Choi JJ, Shin E, Nakhai SA, Tran T, Aliya B, Kim DY, Gerold A, Hansen LM, Taylor WR, Jang YC. Critical Limb Ischemia Induces Remodeling of Skeletal Muscle Motor Unit, Myonuclear-, and Mitochondrial-Domains. Sci Rep 2019; 9:9551. [PMID: 31266969 PMCID: PMC6606576 DOI: 10.1038/s41598-019-45923-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Critical limb ischemia, the most severe form of peripheral artery disease, leads to extensive damage and alterations to skeletal muscle homeostasis. Although recent research has investigated the tissue-specific responses to ischemia, the role of the muscle stem cell in the regeneration of its niche components within skeletal muscle has been limited. To elucidate the regenerative mechanism of the muscle stem cell in response to ischemic insults, we explored cellular interactions between the vasculature, neural network, and muscle fiber within the muscle stem cell niche. Using a surgical murine hindlimb ischemia model, we first discovered a significant increase in subsynaptic nuclei and remodeling of the neuromuscular junction following ischemia-induced denervation. In addition, ischemic injury causes significant alterations to the myofiber through a muscle stem cell-mediated accumulation of total myonuclei and a concomitant decrease in myonuclear domain size, possibly to enhance the transcriptional and translation output and restore muscle mass. Results also revealed an accumulation of total mitochondrial content per myonucleus in ischemic myofibers to compensate for impaired mitochondrial function and high turnover rate. Taken together, the findings from this study suggest that the muscle stem cell plays a role in motor neuron reinnervation, myonuclear accretion, and mitochondrial biogenesis for skeletal muscle regeneration following ischemic injury.
Collapse
Affiliation(s)
- Mahir Mohiuddin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Nan Hee Lee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - June Young Moon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Woojin M Han
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shannon E Anderson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeongmoon J Choi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eunjung Shin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shadi A Nakhai
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Thu Tran
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Berna Aliya
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Do Young Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aimee Gerold
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Laura M Hansen
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - W Robert Taylor
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
27
|
Hsu MC, Pan MR, Hung WC. Two Birds, One Stone: Double Hits on Tumor Growth and Lymphangiogenesis by Targeting Vascular Endothelial Growth Factor Receptor 3. Cells 2019; 8:cells8030270. [PMID: 30901976 PMCID: PMC6468620 DOI: 10.3390/cells8030270] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factor receptor 3 (VEGFR3) has been known for its involvement in tumor-associated lymphangiogenesis and lymphatic metastasis. The VEGFR3 signaling is stimulated by its main cognate ligand, vascular endothelial growth factor C (VEGF-C), which in turn promotes tumor progression. Activation of VEGF-C/VEGFR3 signaling in lymphatic endothelial cells (LECs) was shown to enhance the proliferation of LECs and the formation of lymphatic vessels, leading to increased lymphatic metastasis of tumor cells. In the past decade, the expression and pathological roles of VEGFR3 in tumor cells have been described. Moreover, the VEGF-C/VEGFR3 axis has been implicated in regulating immune tolerance and suppression. Therefore, the inhibition of the VEGF-C/VEGFR3 axis has emerged as an important therapeutic strategy for the treatment of cancer. In this review, we discuss the current findings related to VEGF-C/VEGFR3 signaling in cancer progression and recent advances in the development of therapeutic drugs targeting VEGF-C/VEGFR3.
Collapse
Affiliation(s)
- Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Mei-Ren Pan
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
28
|
Tan C, Lu NN, Wang CK, Chen DY, Sun NH, Lyu H, Körbelin J, Shi WX, Fukunaga K, Lu YM, Han F. Endothelium-Derived Semaphorin 3G Regulates Hippocampal Synaptic Structure and Plasticity via Neuropilin-2/PlexinA4. Neuron 2019; 101:920-937.e13. [PMID: 30685224 DOI: 10.1016/j.neuron.2018.12.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/05/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023]
Abstract
The proper interactions between blood vessels and neurons are critical for maintaining the strength of neural circuits and cognitive function. However, the precise molecular events underlying these interactions remain largely unknown. Here, we report that the selective knockout of semaphorin 3G (Sema3G) in endothelial cells impaired hippocampal-dependent memory and reduced dendritic spine density in CA1 neurons in mice; these effects were reversed after restoration of Sema3G levels in the hippocampus by AAV transfection. We further show that Sema3G increased excitatory synapse density via neuropilin-2/PlexinA4 signaling and through activation of Rac1. These results provide the first evidence that, in the central nervous system, endothelial Sema3G serves as a vascular-derived synaptic organizer that regulates synaptic plasticity and hippocampal-dependent memory. Our findings highlight the role of vascular endothelial cells in regulating cognitive function through intercellular communication with neurons in the hippocampus.
Collapse
Affiliation(s)
- Chao Tan
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan-Nan Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng-Kun Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan-Yang Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ning-He Sun
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hang Lyu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jakob Körbelin
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck 23562, Germany; Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Wei-Xing Shi
- Departments of Pharmaceutical, Administrative, and Basic Sciences, Schools of Pharmacy and Medicine, Loma Linda University Health, CA 92350, USA
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Department of Neurobiology, Nanjing Medical University, Nanjing 211166, China.
| | - Feng Han
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
29
|
Zhou YF, Chen AQ, Wu JH, Mao L, Xia YP, Jin HJ, He QW, Miao QR, Yue ZY, Liu XL, Huang M, Li YN, Hu B. Sema3E/PlexinD1 signaling inhibits postischemic angiogenesis by regulating endothelial DLL4 and filopodia formation in a rat model of ischemic stroke. FASEB J 2019; 33:4947-4961. [PMID: 30653356 DOI: 10.1096/fj.201801706rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiogenesis is a crucial defense response to hypoxia that regulates the process of raising the promise of long-term neurologic recovery during the management of stroke. A high expression of antiangiogenic factors leads to the loss of neovascularization capacity in pathologic conditions. We have previously documented an impairment of the cerebral vessel perfusion and neovascularization in the cortex neighboring the stroke-induced lesion, which was accompanied by an activation of semaphorin 3E (Sema3E)/PlexinD1 after ischemic stroke. In this study, we employed micro-optical sectioning tomography to fully investigate the details of the vascular pattern, including the capillaries. We found that after transient middle cerebral artery occlusion, inhibiting PlexinD1 signaling led to an organized recovery of the vascular network in the ischemic area. We then further explored the possible mechanisms. In vivo, Sema3E substantially decreased dynamic delta-like 4 (DLL4) expression. In cultured brain microvascular endothelial cells, Sema3E down-regulated DLL4 expression via inhibiting Ras-related C3 botulinum toxin substrate 1-induced JNK phosphorylation. At the microcosmic level, Sema3E/PlexinD1 signaling promoted F-actin disassembly and focal adhesion reduction by activating the small guanosine triphosphatase Ras homolog family member J by releasing RhoGEF Tuba from direct binding to PlexinD1, thus mediating endothelial cell motility and filopodia retraction. Our study reveals that Sema3E/PlexinD1 signaling, which suppressed endothelial DLL4 expression, cell motility, and filopodia formation, is expected to be a novel druggable target for angiogenesis during poststroke progression.-Zhou, Y.-F., Chen, A.-Q., Wu, J.-H., Mao, L., Xia, Y.-P., Jin, H.-J., He, Q.-W., Miao, Q. R., Yue, Z.-Y., Liu, X.-L., Huang, M., Li, Y.-N., Hu, B. Sema3E/PlexinD1 signaling inhibits postischemic angiogenesis by regulating endothelial DLL4 and filopodia formation in a rat model of ischemic stroke.
Collapse
Affiliation(s)
- Yi-Fan Zhou
- Department of Neurology, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-Qi Chen
- Department of Neurology, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Hong Wu
- Department of Neurology, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute-Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute-Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhen-Yu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xiu-Li Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Department of Biomedical Engineering, Ministry of Education Key Laboratory for Biomedical Photonics-Huazhong University of Science and Technology, Wuhan, China; and
| | - Ming Huang
- Department of Neurology, the People's Hospital of China Three Gorges University, Institute of Translational Neuroscience, Three Gorges University College of Medicine, Yichang, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Kotini MP, Mäe MA, Belting HG, Betsholtz C, Affolter M. Sprouting and anastomosis in the Drosophila trachea and the vertebrate vasculature: Similarities and differences in cell behaviour. Vascul Pharmacol 2019; 112:8-16. [DOI: 10.1016/j.vph.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 01/25/2023]
|
31
|
Finney AC, Orr AW. Guidance Molecules in Vascular Smooth Muscle. Front Physiol 2018; 9:1311. [PMID: 30283356 PMCID: PMC6157320 DOI: 10.3389/fphys.2018.01311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Several highly conserved families of guidance molecules, including ephrins, Semaphorins, Netrins, and Slits, play conserved and distinct roles in tissue remodeling during tissue patterning and disease pathogenesis. Primarily, these guidance molecules function as either secreted or surface-bound ligands that interact with their receptors to activate a variety of downstream effects, including cell contractility, migration, adhesion, proliferation, and inflammation. Vascular smooth muscle cells, contractile cells comprising the medial layer of the vessel wall and deriving from the mural population, regulate vascular tone and blood pressure. While capillaries lack a medial layer of vascular smooth muscle, mural-derived pericytes contribute similarly to capillary tone to regulate blood flow in various tissues. Furthermore, pericyte coverage is critical in vascular development, as perturbations disrupt vascular permeability and viability. During cardiovascular disease, smooth muscle cells play a more dynamic role in which suppression of contractile markers, enhanced proliferation, and migration lead to the progression of aberrant vascular remodeling. Since many types of guidance molecules are expressed in vascular smooth muscle and pericytes, these may contribute to blood vessel formation and aberrant remodeling during vascular disease. While vascular development is a large focus of the existing literature, studies emerged to address post-developmental roles for guidance molecules in pathology and are of interest as novel therapeutic targets. In this review, we will discuss the roles of guidance molecules in vascular smooth muscle and pericyte function in development and disease.
Collapse
Affiliation(s)
- Alexandra Christine Finney
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
32
|
Rust R, Gantner C, Schwab ME. Pro- and antiangiogenic therapies: current status and clinical implications. FASEB J 2018; 33:34-48. [PMID: 30085886 DOI: 10.1096/fj.201800640rr] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Blood vessels nurture every part of the human body. Consequently, abnormalities in the vasculature are closely associated with a variety of diseases, including cerebral stroke, heart disease, retinopathy, and cancer. Pro- or antiangiogenic therapies can influence these diseases by regulating the growth of new blood vessels from a pre-existing vascular network or dampening excessive blood growth. However, clinical translation of these approaches is slow and challenging. In this review, we discuss recent preclinical approaches to regulate angiogenesis and their potential and risks in a clinical setting.-Rust, R., Gantner, C., Schwab, M. E. Pro- and antiangiogenic therapies: current status and clinical implications.
Collapse
Affiliation(s)
- Ruslan Rust
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; and
| | - Christina Gantner
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; and
| |
Collapse
|
33
|
Wan Y, Yang JS, Xu LC, Huang XJ, Wang W, Xie MJ. Roles of Eph/ephrin bidirectional signaling during injury and recovery of the central nervous system. Neural Regen Res 2018; 13:1313-1321. [PMID: 30106032 PMCID: PMC6108204 DOI: 10.4103/1673-5374.235217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple cellular components, including neuronal, glial and endothelial cells, are involved in the sophisticated pathological processes following central nervous system injury. The pathological process cannot reduce damage or improve functional recovery by merely targeting the molecular mechanisms of neuronal cell death after central nerve system injuries. Eph receptors and ephrin ligands have drawn wide attention since the discovery of their extensive distribution and unique bidirectional signaling between astrocytes and neurons. The roles of Eph/ephrin bidirectional signaling in the developmental processes have been reported in previous research. Recent observations suggest that Eph/ephrin bidirectional signaling continues to be expressed in most regions and cell types in the adult central nervous system, playing diverse roles. The Eph/ephrin complex mediates neurogenesis and angiogenesis, promotes glial scar formation, regulates endocrine levels, inhibits myelin formation and aggravates inflammation and nerve pain caused by injury. The interaction between Eph and ephrin is also considered to be the key to angiogenesis. This review focuses on the roles of Eph/ephrin bidirectional signaling in the repair of central nervous system injuries.
Collapse
Affiliation(s)
- Yue Wan
- Department of Neurology, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Jin-Shan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province; Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Li-Cai Xu
- Department of Neurological Rehabilitation Center, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Xiao-Jiang Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Min-Jie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
34
|
Involvement of the Urokinase Receptor and Its Endogenous Ligands in the Development of the Brain and the Formation of Cognitive Functions. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0525-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Abstract
Angiogenesis plays an important role in controlling tissue development and maintaining normal tissue function. Dysregulated angiogenesis is implicated in the pathogenesis of a variety of diseases, particularly diabetes, cancers, and neurodegenerative disorders. As the major regulator of angiogenesis, the vascular endothelial growth factor (VEGF) family is composed of a group of crucial members including VEGF-B. While the physiological roles of VEGF-B remain debatable, increasing evidence suggests that this protein is able to protect certain type of cells from apoptosis under pathological conditions. More importantly, recent studies reveal that VEGF-B is involved in lipid transport and energy metabolism, implicating this protein in obesity, diabetes and related metabolic complications. This article summarizes the current knowledge and understanding of VEGF-B in physiology and pathology, and shed light on the therapeutic potential of this crucial protein.
Collapse
Affiliation(s)
- Hongyu Zhu
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| | - Mingming Gao
- b Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , GA , USA
| | - Xiangdong Gao
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| | - Yue Tong
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
36
|
History and conceptual developments in vascular biology and angiogenesis research: a personal view. Angiogenesis 2017; 20:463-478. [DOI: 10.1007/s10456-017-9569-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023]
|
37
|
LOW SERUM BRAIN-DERIVED NEUROTROPHIC FACTOR BUT NOT BRAIN-DERIVED NEUROTROPHIC FACTOR GENE VAL66MET POLYMORPHISM IS ASSOCIATED WITH DIABETIC RETINOPATHY IN CHINESE TYPE 2 DIABETIC PATIENTS. Retina 2017; 37:350-358. [PMID: 27355244 DOI: 10.1097/iae.0000000000001132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND/PURPOSE The aim of our research was to investigate the potential role of brain-derived neurotrophic factor (BDNF) in diabetic retinopathy (DR). Measurement of serum circulating levels of BDNF and analysis of polymorphism of BDNF gene (Val66Met) were applied and compared with diabetic patients without DR. METHODS From February 2014 and March 2015, all eligible patients with Type 2 diabetic mellitus at our hospital were consecutively recruited (N = 404). Their serum BDNF levels were detected by enzyme-linked immunosorbent assay. BDNF val66met polymorphism genotyping was conducted according to the laboratory's standard protocol. At baseline, demographic and clinical data were taken. The relationship of BDNF with DR was investigated with the use of logistic regression models. Receiver operating characteristic curves were used to test the overall accuracy of BDNF and other markers. RESULTS Diabetic patients with DR and vision-threatening DR had significantly lower BDNF levels on admission (P < 0.0001 both). The BDNF genotyping results showed that there was no difference between the diabetic patients with DR and those without DR. Multivariate logistic regression analysis adjusted for common risk factors showed that serum BDNF levels were independent risk factors for DR (odds ratio = 0.86; 95% confidence interval [CI]: 0.80-0.92; P < 0.0001) and vision-threatening DR (odds ratio = 0.79; 95% CI: 0.75-0.85; P < 0.0001). Brain-derived neurotrophic factor improved the area under the receiver operating characteristic curve of the diabetes duration for DR from 0.69 (95% CI: 0.60-0.76) to 0.85 (95% CI: 0.79-0.90; P < 0.01) and for vision-threatening DR from 0.77 (95% CI: 0.67-0.87) to 0.86 (95% CI: 0.80-0.92; P < 0.01). CONCLUSION The present study demonstrated that, rather than Val66Met polymorphism, decreased serum levels of BDNF were associated with DR and vision-threatening DR in Chinese Type 2 diabetic patients, suggesting a possible role of BDNF in the pathogenesis of DR complications.
Collapse
|
38
|
Lee EJ, Han JC, Kee C. Nasalised distribution of peripapillary retinal nerve fibre layers in large discs. Br J Ophthalmol 2017; 101:1643-1648. [PMID: 28404668 DOI: 10.1136/bjophthalmol-2016-309436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/13/2016] [Accepted: 03/09/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND To describe the distribution pattern of the peripapillary retinal nerve fibre layer (RNFL) and major retinal vessel positions in patients with a large disc. METHODS The medical records of patients with a large disc and those of normal controls were reviewed retrospectively. Comprehensive ophthalmic examinations including Cirrus HD-optical coherence tomography (OCT) and Heidelberg Retinal Tomography III (HRT III) were performed. We divided patients into two groups (large disc group and control group) using an HRT-measured disc size of 2.5 mm2 as a reference point. We extracted RNFL thicknesses at 256 points with OCT, measured major retinal vessel positions and compared them between the two groups. RESULTS In total, 97 eyes of 97 patients were included, with 60 patients in the large disc group and 37 patients in the control group. All patients were free of any glaucomatous change. We observed nasal shifting of the second superior and inferior peaks in the large disc group compared with the controls. The superior major temporal retinal arteries in patients with large disc also showed significant nasal displacement. CONCLUSIONS We could observe nasalisation of the peripapillary RNFL and superior retinal artery in patients with a large disc. As this phenomenon may lead to false positive results in OCT-based RNFL thickness maps, results from our study may help prevent misdiagnosis of glaucoma and improve the sensitivity and specificity of glaucoma detection.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
Expression, prognosis and functional role of Thsd7a in esophageal squamous cell carcinoma of Kazakh patients, Xinjiang. Oncotarget 2017; 8:60539-60557. [PMID: 28947992 PMCID: PMC5601160 DOI: 10.18632/oncotarget.16966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Thsd7a (Thrombospondin type 1 domain containing 7a) is a critical transmembrane protein. Studies have indicated that Thsd7a was associated with cytoskeletal organization, cell migration and filopodia formation. However, the involvement of Thsd7a remains elusive in human Esophageal Squamous Cell Carcinoma (ESCC). Consequently, immunohistochemistry and reverse transcription-polymerase chain reaction were utilized to study the correlation between the expression of Thsd7a and clinical-pathological characteristics. The influence of Thsd7a on apoptosis, cell proliferating activity, cell cycle, migratory and invasive capacity was determined in Eca 109 and EC 9706 cell lines in vitro. And the influence on proliferating activity was testified using naked mice model in vivo. In addition, the potential molecular mechanism was tested by microarray. It was discovered that there is a certain correlation between Thsd7a and the Kazakh ESCC. By knocking out Thsd7a, the invasion, migration and proliferation could be decreased. And it could also arrest the cell cycle at G1 phase and increase the apoptosis rate. It was further verified that Thsd7a had obvious effect on proliferation in naked mice with xenograft of Eca109 cells. Finally, it was uncovered by microarray analysis that a variety of tumor genes and pathways related to Thsd7a. Together, it was demonstrated that Thsd7a might have a certain degree of carcinogenesis in ESCC.
Collapse
|
40
|
|
41
|
Shan K, Li CP, Liu C, Liu X, Yan B. RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction. Biochem Biophys Res Commun 2016; 482:777-783. [PMID: 27876564 DOI: 10.1016/j.bbrc.2016.11.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/19/2016] [Indexed: 01/19/2023]
Abstract
Retinal microvascular abnormality is an important pathological feature of diabetic retinopathy. Herein, we report the role of lncRNA-RNCR3 in diabetes mellitus-induced retinal microvascular abnormalities. We show that RNCR3 is significantly up-regulated upon high glucose stress in vivo and in vitro. RNCR3 knockdown alleviates retinal vascular dysfunction in vivo, as shown by decreased acellular capillaries, decreased vascular leakage, and reduced inflammatory response. RNCR3 knockdown decreases retinal endothelial cell proliferation, and reduces cell migration and tube formation in vitro. RNCR3 regulates endothelial cell function through RNCR3/KLF2/miR-185-5p regulatory network. RNCR3 inhibition may be a treatment option for the prevention of diabetes mellitus-induced retinal microvascular abnormalities.
Collapse
Affiliation(s)
- Kun Shan
- Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chao-Peng Li
- Huai' an First People's Hospital, Nanjing Medical University, Huai an, Jiangsu, China
| | - Chang Liu
- Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Liu
- Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Biao Yan
- Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| |
Collapse
|
42
|
Liu X, Uemura A, Fukushima Y, Yoshida Y, Hirashima M. Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1. Cell Rep 2016; 17:2299-2311. [DOI: 10.1016/j.celrep.2016.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/12/2016] [Accepted: 10/28/2016] [Indexed: 11/24/2022] Open
|
43
|
Rubina KA, Tkachuk VA. Guidance Receptors in the Nervous and Cardiovascular Systems. BIOCHEMISTRY (MOSCOW) 2016; 80:1235-53. [PMID: 26567567 DOI: 10.1134/s0006297915100041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Blood vessels and nervous fibers grow in parallel, for they express similar receptors for chemokine substances. Recently, much attention is being given to studying guidance receptors and their ligands besides the growth factors, cytokines, and chemokines necessary to form structures in the nervous and vascular systems. Such guidance molecules determine trajectory for growing axons and vessels. Guidance molecules include Ephrins and their receptors, Neuropilins and Plexins as receptors for Semaphorins, Robos as receptors for Slit-proteins, and UNC5B receptors binding Netrins. Apart from these receptors and their ligands, urokinase and its receptor (uPAR) and T-cadherin are also classified as guidance molecules. The urokinase system mediates local proteolysis at the leading edge of cells, thereby providing directed migration. T-cadherin is a repellent molecule that regulates the direction of growing axons and blood vessels. Guidance receptors also play an important role in the diseases of the nervous and cardiovascular systems.
Collapse
Affiliation(s)
- K A Rubina
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119192, Russia.
| | | |
Collapse
|
44
|
van den Meiracker AH, Danser AHJ. Mechanisms of Hypertension and Renal Injury During Vascular Endothelial Growth Factor Signaling Inhibition. Hypertension 2016; 68:17-23. [PMID: 27185750 DOI: 10.1161/hypertensionaha.116.07618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anton H van den Meiracker
- From the Division of Pharmacology and Cardiovascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | - A H Jan Danser
- From the Division of Pharmacology and Cardiovascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review. Histochem Cell Biol 2016; 145:239-74. [DOI: 10.1007/s00418-016-1417-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
46
|
Tumour-induced neoneurogenesis and perineural tumour growth: a mathematical approach. Sci Rep 2016; 6:20684. [PMID: 26861829 PMCID: PMC4748234 DOI: 10.1038/srep20684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/31/2015] [Indexed: 12/21/2022] Open
Abstract
It is well-known that tumours induce the formation of a lymphatic and a blood vasculature around themselves. A similar but far less studied process occurs in relation to the nervous system and is referred to as neoneurogenesis. The relationship between tumour progression and the nervous system is still poorly understood and is likely to involve a multitude of factors. It is therefore relevant to study tumour-nerve interactions through mathematical modelling: this may reveal the most significant factors of the plethora of interacting elements regulating neoneurogenesis. The present work is a first attempt to model the neurobiological aspect of cancer development through a system of differential equations. The model confirms the experimental observations that a tumour is able to promote nerve formation/elongation around itself, and that high levels of nerve growth factor and axon guidance molecules are recorded in the presence of a tumour. Our results also reflect the observation that high stress levels (represented by higher norepinephrine release by sympathetic nerves) contribute to tumour development and spread, indicating a mutually beneficial relationship between tumour cells and neurons. The model predictions suggest novel therapeutic strategies, aimed at blocking the stress effects on tumour growth and dissemination.
Collapse
|
47
|
Saban R. Angiogenic factors, bladder neuroplasticity and interstitial cystitis-new pathobiological insights. Transl Androl Urol 2016; 4:555-62. [PMID: 26816854 PMCID: PMC4708555 DOI: 10.3978/j.issn.2223-4683.2015.08.05] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is essential for normal embryonic development, and maintenance of adult vascular function. Originally described as a vascular permeability factor, VEGF alters tight cell junctions and contributes to maintenance of bladder permeability. VEGF and its receptors are not only expressed in bladder blood vessels but also in apical cells and intramural ganglia. VEGF receptors are fundamentally altered by inflammation and bladder diseases such as interstitial cystitis (IC). Experimental results indicate that VEGF exerts direct effects on bladder nerve density and function. Regardless of the etiology or initiating cause for IC, it is hypothesized that the urinary bladder responds to injury by increasing the production of VEGF that acts initially as a survival mechanism. However, VEGF also has the capacity to increase vascular permeability leading to glomerulations, edema, and inflammation. Moreover, due to elevated numbers of VEGF receptors in the urothelium, the increased levels of VEGF further increase bladder permeability and establish a vicioCus cycle of disease pathophysiology.
Collapse
Affiliation(s)
- Ricardo Saban
- 1 University Anhembi Morumbi, S.Paulo, SP 03164-000, Brazil ; 2 Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
48
|
Ye X, Qian Y, Wang Q, Yuan W, Mo X, Li Y, Jiang Z, Xu W, Deng Y, Wan Y, Fan X, Wu X, Wang Y. SMYD1, an SRF-Interacting Partner, Is Involved in Angiogenesis. PLoS One 2016; 11:e0146468. [PMID: 26799706 PMCID: PMC4723226 DOI: 10.1371/journal.pone.0146468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated that Smyd1 plays a critical role in cardiomyocyte differentiation, cardiac morphogenesis and myofibril organization. In this study, we uncovered a novel function of Smyd1 in the regulation of endothelial cells (ECs). Our data showed that Smyd1 is expressed in vascular endothelial cells, and knockdown of SMYD1 in endothelial cells impairs EC migration and tube formation. Furthermore, Co-IP and GST pull-down assays demonstrated that SMYD1 is associated with the Serum Response Factor (SRF). EMSA assays further showed that SMYD1 forms a complex with SRF and enhances SRF DNA binding activity. Our studies indicate that SMYD1 serves as an SRF-interacting protein, enhances SRF DNA binding activity, and is required for EC migration and tube formation to regulate angiogenesis.
Collapse
Affiliation(s)
- Xiangli Ye
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- College of Medicine, Hunan Normal University, Changsha, Hunan, 410013, China
| | - Yu Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qian Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wuzhou Yuan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoyang Mo
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yongqing Li
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhigang Jiang
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Wei Xu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yun Deng
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yongqi Wan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiongwei Fan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- * E-mail: (XF); (XW); (Y. Wang)
| | - Xiushan Wu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- * E-mail: (XF); (XW); (Y. Wang)
| | - Yuequn Wang
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- * E-mail: (XF); (XW); (Y. Wang)
| |
Collapse
|
49
|
Liu SY, Du XF, Ma X, Guo JL, Lu JM, Ma LS. Low plasma levels of brain derived neurotrophic factor are potential risk factors for diabetic retinopathy in Chinese type 2 diabetic patients. Mol Cell Endocrinol 2016; 420:152-8. [PMID: 26493466 DOI: 10.1016/j.mce.2015.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
Previous studies suggested that neurotrophins play a role in the diabetic retinopathy (DR). We therefore evaluated the role of plasma brain derived neurotrophic factor (BDNF) levels in Chinese type 2 diabetic patients with and without diabetic retinopathy (DR). Plasma levels of BDNF were determined in type 2 diabetic patients (N=344). At baseline, the demographical and clinical data were taken. Multivariate analyses were performed using logistic regression models. Receiver operating characteristic curves (ROC) was used to test the overall predict accuracy of BDNF and other markers. Diabetic patients with DR and vision-threatening diabetic retinopathy (VTDR) had significantly lower BDNF levels on admission (P<0.0001 both). BDNF improved the area under the receiver operating characteristic curve of the diabetes duration for DR from 0.76 (95% confidence interval [CI], 0.71-0.82) to 0.89 (95% CI, 0.82-0.95; P<0.01) and for VDTR from 0.84 (95% CI, 0.78-0.92) to 0.95 (95% CI, 0.90-0.98; P<0.01). Multivariate logistic regression analysis adjusted for common risk factors showed that plasma BDNF levels≤12.4 ng/mL(1(rd) quartiles) was an independent marker of DR (OR=3.92; 95%CI: 2.31-6.56) and VTDR (OR=4.88; 95%CI: 2.21-9.30). The present study demonstrated that decreased plasma levels of BDNF were independent markers for DR and VDTR in Chinese type 2 diabetic patients, suggesting a possible role of BDNF in the pathogenesis of DR complications.
Collapse
Affiliation(s)
- Shao-Yi Liu
- Department of Ophthalmology, Yuhuangding Hospital affiliated to Qingdao University, Yantai 264000, China.
| | - Xiao-Fang Du
- Department of Ophthalmology, Yantai Economic and Technological Development Zone Hospital, Yantai 264000, China
| | - Xiang Ma
- Department of Ophthalmology, The First Hospital Affiliated to Dalian Medical University, Dalian 116011, China
| | - Jian-Lian Guo
- Ophthalmology Center, The Eighth People's Hospital of Jinan, Jinan 250000, China
| | - Jian-Min Lu
- Department of Ophthalmology, The First Hospital Affiliated to Dalian Medical University, Dalian 116011, China
| | - Lu-Sheng Ma
- Department of Ophthalmology, Yuhuangding Hospital affiliated to Qingdao University, Yantai 264000, China
| |
Collapse
|
50
|
Jang HS, Cho KH, Murakami G, Cho BH. Topographical relationships of intramuscular nerves and vessels of the motor endplates in the thigh and gluteal regions of human fetuses: an immunohistochemical study. Surg Radiol Anat 2015; 38:587-96. [PMID: 26687078 DOI: 10.1007/s00276-015-1586-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to describe topography of vessels and nerves in striated muscles to understand individual muscle function. MATERIALS AND METHODS Immunohistochemistry for nerve and artery was used to examine the thigh and gluteal muscles of six human midterm fetuses. RESULTS The supplying nerves often accompanied arteries along epimysium bundling muscle fibers as well as in the covering fascia surrounding the entire muscle mass. However, courses of nerve twigs were usually independent of those of vessels in muscle bundles. Notably, irrespective of whether or not the vascular bundle accompanied the nerves at the muscle surface or hilus, most of the motor endplate bands did not accompany the vessels. CONCLUSION Since the motor endplates were low vascularised, a chemical induction of vessels for nerve terminal development (or the reversed induction) seemed unlikely in striated muscles. In contrast to proprioceptive neuromuscular facilitation, manual stimulation of the endplate bands may stimulate muscle activity without sympathetic reflexes through vessel-accompanying nerves.
Collapse
Affiliation(s)
- Hyung Suk Jang
- Faculty of Medical Science, Wonkwang University Graduate School, Iksan, Korea
| | - Kwang Ho Cho
- Department of Neurology, Wonkwang University School of Medicine, Institute of Wonkwang Medical Science, 895, Muwang-ro, Iksan, Jeonbuk, 570-711, Republic of Korea.
| | - Gen Murakami
- Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, Japan
| | - Baik Hwan Cho
- Department of Surgery, Chonbuk National University College of Medicine, Jeonju, Republic of Korea
| |
Collapse
|