1
|
Taylor IW, Patharkar OR, Mijar M, Hsu CW, Baer J, Niederhuth CE, Ohler U, Benfey PN, Walker JC. Arabidopsis uses a molecular grounding mechanism and a biophysical circuit breaker to limit floral abscission signaling. Proc Natl Acad Sci U S A 2024; 121:e2405806121. [PMID: 39453742 PMCID: PMC11536089 DOI: 10.1073/pnas.2405806121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/05/2024] [Indexed: 10/27/2024] Open
Abstract
Abscission is the programmed separation of plant organs. It is widespread in the plant kingdom with important functions in development and environmental response. In Arabidopsis, abscission of floral organs (sepals, petals, and stamens) is controlled by two receptor-like protein kinases HAESA (HAE) and HAESA LIKE-2 (HSL2), which orchestrate the programmed dissolution of the abscission zone connecting floral organs to the developing fruit. In this work, we use single-cell RNA sequencing to characterize the core HAE/HSL2 abscission gene expression program. We identify the MAP KINASE PHOSPHATASE-1/MKP1 gene as a negative regulator of this pathway. MKP1 acts prior to activation of HAE/HSL2 signaling to establish a signaling threshold required for the initiation of abscission. Furthermore, we use single-cell data to identify genes expressed in two subpopulations of abscission zone cells: those proximal and those distal to the plane of separation. We identify INFLORESCENCE DEFICIENT IN ABSCISSION/IDA family genes, encoding activating ligands of HAE/HSL2, as enriched in distal abscission zone cells at the base of the abscising organs. We show how this expression pattern forms a biophysical circuit breaker whereby, when the organ is shed, the source of the IDA peptides is removed, leading to cessation of HAE/HSL2 signaling. Overall, this work provides insight into the multiple control mechanisms acting on the abscission-signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - John Baer
- Washington University in St Louis, Saint Louis, MO63105
| | | | - Uwe Ohler
- Max-Delbruck-Centrum fur Molekulare Medizin in der Helmholtz-Gemeinschaft, Berlin10115, Germany
| | | | | |
Collapse
|
2
|
Brinley AR, Conner PJ, Yu F, Sarkhosh A, Liu T. Morphological and genetic characterization of the muscadine fruit abscission zone. HORTICULTURE RESEARCH 2024; 11:uhae227. [PMID: 39415976 PMCID: PMC11480701 DOI: 10.1093/hr/uhae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024]
Abstract
Muscadines face limitations to fresh market production due to high manual labor costs. Mechanical harvesting holds promise for reducing the costs associated with muscadine production but requires cultivars with easily detached fruit at maturity. This study aimed to determine muscadine fruit and pedicel characteristics influencing fruit detachment force (FDF) and to unravel the genes, hormones, and regulatory networks governing muscadine abscission. We characterized the FDF of muscadine fruit across 18 genotypes and at four developmental stages. Following this, we performed a transcriptome analysis using the mature pedicel tissue of two genotypes, a genotype with high FDF at maturity and a genotype with low FDF at maturity, to identify differentially expressed and uniquely expressed genes contributing to fruit detachment. We found that pedicel length, pedicel-fruit junction area, and fruit diameter positively correlated with FDF. This study also identified novel candidate genes, transcription factor families, and pathways associated with muscadine fruit abscission. These findings provide valuable knowledge on the progression of fruit abscission and insights for reducing FDF, particularly in developing machine-harvestable muscadine cultivars and fostering sustainability and efficiency in muscadine production.
Collapse
Affiliation(s)
- Alana R Brinley
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Patrick J Conner
- Department of Horticulture, University of Georgia, Tifton, GA 31793, USA
| | - Fahong Yu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Tie Liu
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Galindo-Trigo S, Khandare V, Roosjen M, Adams J, Wangler AM, Bayer M, Borst JW, Smakowska-Luzan E, Butenko MA. A multifaceted kinase axis regulates plant organ abscission through conserved signaling mechanisms. Curr Biol 2024; 34:3020-3030.e7. [PMID: 38917797 DOI: 10.1016/j.cub.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Plants have evolved mechanisms to abscise organs as they develop or when exposed to unfavorable conditions.1 Uncontrolled abscission of petals, fruits, or leaves can impair agricultural productivity.2,3,4,5 Despite its importance for abscission progression, our understanding of the IDA signaling pathway and its regulation remains incomplete. IDA is secreted to the apoplast, where it is perceived by the receptors HAESA (HAE) and HAESA-LIKE2 (HSL2) and somatic embryogenesis receptor kinase (SERK) co-receptors.6,7,8,9 These plasma membrane receptors activate an intracellular cascade of mitogen-activated protein kinases (MAPKs) by an unknown mechanism.10,11,12 Here, we characterize brassinosteroid signaling kinases (BSKs) as regulators of floral organ abscission in Arabidopsis. BSK1 localizes to the plasma membrane of abscission zone cells, where it interacts with HAESA receptors to regulate abscission. Furthermore, we demonstrate that YODA (YDA) has a leading role among other MAPKKKs in controlling abscission downstream of the HAESA/BSK complex. This kinase axis, comprising a leucine-rich repeat receptor kinase, a BSK, and an MAPKKK, is known to regulate stomatal patterning, early embryo development, and immunity.10,13,14,15,16 How specific cellular responses are obtained despite signaling through common effectors is not well understood. We show that the identified abscission-promoting allele of BSK1 also enhances receptor signaling in other BSK-mediated pathways, suggesting conservation of signaling mechanisms. Furthermore, we provide genetic evidence supporting independence of BSK1 function from its kinase activity in several developmental processes. Together, our findings suggest that BSK1 facilitates signaling between plasma membrane receptor kinases and MAPKKKs via conserved mechanisms across multiple facets of plant development.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Virendrasinh Khandare
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Mark Roosjen
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Julian Adams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Alexa-Maria Wangler
- University of Tuebingen, Centre for Plant Molecular Biology, 72076 Tuebingen, Germany
| | - Martin Bayer
- University of Tuebingen, Centre for Plant Molecular Biology, 72076 Tuebingen, Germany
| | - Jan Willem Borst
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Elwira Smakowska-Luzan
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
4
|
Ma X, He Z, Yuan Y, Liang Z, Zhang H, Lalun VO, Liu Z, Zhang Y, Huang Z, Huang Y, Li J, Zhao M. The transcriptional control of LcIDL1-LcHSL2 complex by LcARF5 integrates auxin and ethylene signaling for litchi fruitlet abscission. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1206-1226. [PMID: 38517216 DOI: 10.1111/jipb.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
At the physiological level, the interplay between auxin and ethylene has long been recognized as crucial for the regulation of organ abscission in plants. However, the underlying molecular mechanisms remain unknown. Here, we identified transcription factors involved in indoleacetic acid (IAA) and ethylene (ET) signaling that directly regulate the expression of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and its receptor HAESA (HAE), which are key components initiating abscission. Specifically, litchi IDA-like 1 (LcIDL1) interacts with the receptor HAESA-like 2 (LcHSL2). Through in vitro and in vivo experiments, we determined that the auxin response factor LcARF5 directly binds and activates both LcIDL1 and LcHSL2. Furthermore, we found that the ETHYLENE INSENSITIVE 3-like transcription factor LcEIL3 directly binds and activates LcIDL1. The expression of IDA and HSL2 homologs was enhanced in LcARF5 and LcEIL3 transgenic Arabidopsis plants, but reduced in ein3 eil1 mutants. Consistently, the expressions of LcIDL1 and LcHSL2 were significantly decreased in LcARF5- and LcEIL3-silenced fruitlet abscission zones (FAZ), which correlated with a lower rate of fruitlet abscission. Depletion of auxin led to an increase in 1-aminocyclopropane-1-carboxylic acid (the precursor of ethylene) levels in the litchi FAZ, followed by abscission activation. Throughout this process, LcARF5 and LcEIL3 were induced in the FAZ. Collectively, our findings suggest that the molecular interactions between litchi AUXIN RESPONSE FACTOR 5 (LcARF5)-LcIDL1/LcHSL2 and LcEIL3-LcIDL1 signaling modules play a role in regulating fruitlet abscission in litchi and provide a long-sought mechanistic explanation for how the interplay between auxin and ethylene is translated into the molecular events that initiate abscission.
Collapse
Affiliation(s)
- Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ye Yuan
- Dongguan Botanical Garden, Dongguan, 523128, China
| | - Zhijian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Vilde Olsson Lalun
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0316, Norway
| | - Zhuoyi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqing Zhang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhiqiang Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yulian Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Galindo-Trigo S, Bågman AM, Ishida T, Sawa S, Brady SM, Butenko MA. Dissection of the IDA promoter identifies WRKY transcription factors as abscission regulators in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2417-2434. [PMID: 38294133 PMCID: PMC11016851 DOI: 10.1093/jxb/erae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Plants shed organs such as leaves, petals, or fruits through the process of abscission. Monitoring cues such as age, resource availability, and biotic and abiotic stresses allow plants to abscise organs in a timely manner. How these signals are integrated into the molecular pathways that drive abscission is largely unknown. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) gene is one of the main drivers of floral organ abscission in Arabidopsis and is known to transcriptionally respond to most abscission-regulating cues. By interrogating the IDA promoter in silico and in vitro, we identified transcription factors that could potentially modulate IDA expression. We probed the importance of ERF- and WRKY-binding sites for IDA expression during floral organ abscission, with WRKYs being of special relevance to mediate IDA up-regulation in response to biotic stress in tissues destined for separation. We further characterized WRKY57 as a positive regulator of IDA and IDA-like gene expression in abscission zones. Our findings highlight the promise of promoter element-targeted approaches to modulate the responsiveness of the IDA signaling pathway to harness controlled abscission timing for improved crop productivity.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Anne-Maarit Bågman
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Siobhán M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
6
|
Li H, Wang X, Qin N, Hu D, Jia Y, Sun G, He L, Zhang H, Dai P, Peng Z, Pang N, Pan Z, Zhang X, Dong Q, Chen B, Gui H, Pang B, Zhang X, He S, Song M, Du X. Genomic loci associated with leaf abscission contribute to machine picking and environmental adaptability in upland cotton (Gossypium hirsutum L.). J Adv Res 2024; 58:31-43. [PMID: 37236544 PMCID: PMC10982856 DOI: 10.1016/j.jare.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION Defoliation by applying defoliants before machine picking is an important agricultural practice that enhances harvesting efficiency and leads to increased raw cotton purity. However, the fundamental characteristics of leaf abscission and the underlying genetic basis in cotton are not clearly understood. OBJECTIVES In this study, we aimed to (1) reveal the phenotypic variations in cotton leaf abscission, (2) discover the whole-genome differentiation sweeps and genetic loci related to defoliation, (3) identify and verify the functions of key candidate genes associated with defoliation, and (4) explore the relationship between haplotype frequency of loci and environmental adaptability. METHODS Four defoliation-related traits of 383 re-sequenced Gossypium hirsutum accessions were investigated in four environments. The genome-wide association study (GWAS), linkage disequilibrium (LD) interval genotyping and functional identification were conducted. Finally, the haplotype variation related to environmental adaptability and defoliation traits was revealed. RESULTS Our findings revealed the fundamental phenotypic variations of defoliation traits in cotton. We showed that defoliant significantly increased the defoliation rate without incurring yield and fiber quality penalties. The strong correlations between defoliation traits and growth period traits were observed. A genome-wide association study of defoliation traits identified 174 significant SNPs. Two loci (RDR7 on A02 and RDR13 on A13) that significantly associated with the relative defoliation rate were described, and key candidate genes GhLRR and GhCYCD3;1, encoding a leucine-rich repeat (LRR) family protein and D3-type cell cyclin 1 protein respectively, were functional verified by expression pattern analysis and gene silencing. We found that combining of two favorable haplotypes (HapRDR7 and HapRDR13) improved sensitivity to defoliant. The favorable haplotype frequency generally increased in high latitudes in China, enabling adaptation to the local environment. CONCLUSION Our findings lay an important foundation for the potentially broad application of leveraging key genetic loci in breeding machine-pickable cotton.
Collapse
Affiliation(s)
- Hongge Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangru Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Ning Qin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; College of Agriculture, Tarim University, Alar 843300, China
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yinhua Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang 455000, China
| | - Liangrong He
- College of Agriculture, Tarim University, Alar 843300, China
| | - Hengheng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Panhong Dai
- Anyang Institute of Technology, Anyang 455000, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Nianchang Pang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhaoe Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaomeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qiang Dong
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Baojun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Huiping Gui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Baoyin Pang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiling Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Meizhen Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
7
|
Song Z, Wang R, Zhang H, Tong Z, Yuan C, Li Y, Huang C, Zhao L, Wang Y, Di Y, Sui X. Comparative transcriptome analysis reveals nicotine metabolism is a critical component for enhancing stress response intensity of innate immunity system in tobacco. FRONTIERS IN PLANT SCIENCE 2024; 15:1338169. [PMID: 38595766 PMCID: PMC11003474 DOI: 10.3389/fpls.2024.1338169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
The pyridine alkaloid nicotine acts as one of best-studied plant resistant traits in tobacco. Previous research has shown that NtERF199 and NtERF189, acting as master regulators within the NIC1 and NIC2 locus, quantitatively contribute to nicotine accumulation levels in N. tabacum. Genome editing-created Nic1(Nterf199) and Nic2 (Nterf189) double mutant provides an ideal platform for precisely dissecting the defensive role of nicotine and the connection between the nicotine biosynthetic pathway with other putative metabolic networks. Taking this advantage, we performed a comparative transcriptomic analysis to reevaluate the potential physiological and metabolic changes in response to nicotine synthesis defect by comparing the nic1nic2 and NIC1NIC2 plants. Our findings revealed that nicotine reduction could systematically diminishes the expression intensities of genes associated with stimulus perception, signal transduction and regulation, as well as secondary metabolic flux. Consequently, this global expression reduction might compromise tobacco adaptions to environmental fitness, herbivore resistances, and plant growth and development. The up-regulation of a novel set of stress-responsive and metabolic pathway genes might signify a newly established metabolic reprogramming to tradeoff the detrimental effect of nicotine loss. These results offer additional compelling evidence regarding nicotine's critical defensive role in nature and highlights the tight link between nicotine biosynthesis and gene expression levels of quantitative resistance-related genes for better environmental adaptation.
Collapse
Affiliation(s)
- Zhongbang Song
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Ruixue Wang
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hongbo Zhang
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Zhijun Tong
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Cheng Yuan
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Yong Li
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Changjun Huang
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Lu Zhao
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Yuehu Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yingtong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xueyi Sui
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
8
|
Liu J, Li W, Wu G, Ali K. An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1305599. [PMID: 38362444 PMCID: PMC10868138 DOI: 10.3389/fpls.2024.1305599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
All living organisms must develop mechanisms to cope with and adapt to new environments. The transition of plants from aquatic to terrestrial environment provided new opportunities for them to exploit additional resources but made them vulnerable to harsh and ever-changing conditions. As such, the transmembrane receptor-like kinases (RLKs) have been extensively duplicated and expanded in land plants, increasing the number of RLKs in the advanced angiosperms, thus becoming one of the largest protein families in eukaryotes. The basic structure of the RLKs consists of a variable extracellular domain (ECD), a transmembrane domain (TM), and a conserved kinase domain (KD). Their variable ECDs can perceive various kinds of ligands that activate the conserved KD through a series of auto- and trans-phosphorylation events, allowing the KDs to keep the conserved kinase activities as a molecular switch that stabilizes their intracellular signaling cascades, possibly maintaining cellular homeostasis as their advantages in different environmental conditions. The RLK signaling mechanisms may require a coreceptor and other interactors, which ultimately leads to the control of various functions of growth and development, fertilization, and immunity. Therefore, the identification of new signaling mechanisms might offer a unique insight into the regulatory mechanism of RLKs in plant development and adaptations. Here, we give an overview update of recent advances in RLKs and their signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
9
|
Wang Q, Zhao X, Sun Q, Mou Y, Wang J, Yan C, Yuan C, Li C, Shan S. Genome-wide identification of the LRR-RLK gene family in peanut and functional characterization of AhLRR-RLK265 in salt and drought stresses. Int J Biol Macromol 2024; 254:127829. [PMID: 37926304 DOI: 10.1016/j.ijbiomac.2023.127829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) play important roles in plant developmental regulations and various stress responses. Peanut (Arachis hypogaea L.) is a worldwide important oil crop; however, no systematic identification or analysis of the peanut LRR-RLK gene family has been reported. In present study, 495 LRR-RLK genes in peanut were identified and analyzed. The 495 AhLRR-RLK genes were classed into 14 groups and 10 subgroups together with their Arabidopsis homologs according to phylogenetic analyses, and 491 of 495 AhLRR-RLK genes unequally located on 20 chromosomes. Analyses of gene structure and protein motif organization revealed similarity in exon/intron and motif organization among members of the same subgroup, further supporting the phylogenetic results. Gene duplication events were found in peanut LRR-RLK gene family via syntenic analysis, which were important in LRR-RLK gene family expansion in peanut. We found that the expression of AhLRR-RLK genes was detected in different tissues using RNA-seq data, implying that AhLRR-RLK genes may differ in function. In addition, Arabidopsis plants overexpressing stress-induced AhLRR-RLK265 displayed lower seed germination rates and root lengths compared to wild-type under exogenous ABA treatment. Notably, overexpression of AhLRR-RLK265 enhanced tolerance to salt and drought stresses in transgenic Arabidopsis. Moreover, the AhLRR-RLK265-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under salt and drought stress treatments. We believe these results may provide valuable information about the function of peanut LRR-RLK genes for further analysis.
Collapse
Affiliation(s)
- Qi Wang
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China.
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Yifei Mou
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China.
| |
Collapse
|
10
|
Gangurde SS, Khan AW, Janila P, Variath MT, Manohar SS, Singam P, Chitikineni A, Varshney RK, Pandey MK. Whole-genome sequencing based discovery of candidate genes and diagnostic markers for seed weight in groundnut. THE PLANT GENOME 2023; 16:e20265. [PMID: 36478184 DOI: 10.1002/tpg2.20265] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/16/2022] [Indexed: 06/17/2023]
Abstract
Seed weight in groundnut (Arachis hypogaea L.) has direct impact on yield as well as market price because of preference for bold seeds by consumers and industry, thereby making seed-size improvement as one of the most important objectives of groundnut breeding programs globally. Marker-based early generation selection can accelerate the process of breeding for developing large-seeded varieties. In this context, we deployed the quantitative trait locus-sequencing (QTL-seq) approach on a biparental mapping population (Chico × ICGV 02251) to identify candidate genes and develop markers for seed weight in groundnut. A total of 289.4-389.4 million reads sequencing data were generated from three libraries (ICGV 02251 and two extreme bulks) achieving 93.9-95.1% genome coverage and 8.34-9.29× average read depth. The analysis of sequencing data using QTL-seq pipeline identified five genomic regions (three on chromosome B06 and one each on chromosomes B08 and B09) for seed weight. Detailed analysis of above associated genomic regions detected 182 single-nucleotide polymorphisms (SNPs) in genic and intergenic regions, and 11 of these SNPs were nonsynonymous in the genomic regions of 10 candidate genes including Ulp proteases and BIG SEED locus genes. Kompetitive allele specific polymerase chain reaction (KASP) markers for 14 SNPs were developed, and four of these markers (snpAH0031, snpAH0033, snpAH0037, and snpAH0038) were successfully validated for deployment in breeding for large-seeded groundnut varieties.
Collapse
Affiliation(s)
- Sunil S Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
- Dep. of Genetics, Osmania Univ., Hyderabad, 500007, India
| | - Aamir W Khan
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pasupuleti Janila
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Murali T Variath
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Surendra S Manohar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | | | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch Univ., Murdoch, Western Australia, 6150, Australia
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| |
Collapse
|
11
|
Alling R, Galindo-Trigo S. Reproductive defects in the abscission mutant ida-2 are caused by T-DNA-induced genomic rearrangements. PLANT PHYSIOLOGY 2023; 193:2292-2297. [PMID: 37555453 PMCID: PMC10663105 DOI: 10.1093/plphys/kiad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Affiliation(s)
- Renate Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
12
|
Man J, Harrington TA, Lally K, Bartlett ME. Asymmetric Evolution of Protein Domains in the Leucine-Rich Repeat Receptor-Like Kinase Family of Plant Signaling Proteins. Mol Biol Evol 2023; 40:msad220. [PMID: 37787619 PMCID: PMC10588794 DOI: 10.1093/molbev/msad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
The coding sequences of developmental genes are expected to be deeply conserved, with cis-regulatory change driving the modulation of gene function. In contrast, proteins with roles in defense are expected to evolve rapidly, in molecular arms races with pathogens. However, some gene families include both developmental and defense genes. In these families, does the tempo and mode of evolution differ between genes with divergent functions, despite shared ancestry and structure? The leucine-rich repeat receptor-like kinase (LRR-RLKs) protein family includes members with roles in plant development and defense, thus providing an ideal system for answering this question. LRR-RLKs are receptors that traverse plasma membranes. LRR domains bind extracellular ligands; RLK domains initiate intracellular signaling cascades in response to ligand binding. In LRR-RLKs with roles in defense, LRR domains evolve faster than RLK domains. To determine whether this asymmetry extends to LRR-RLKs that function primarily in development, we assessed evolutionary rates and tested for selection acting on 11 subfamilies of LRR-RLKs, using deeply sampled protein trees. To assess functional evolution, we performed heterologous complementation assays in Arabidopsis thaliana (Arabidopsis). We found that the LRR domains of all tested LRR-RLK proteins evolved faster than their cognate RLK domains. All tested subfamilies of LRR-RLKs had strikingly similar patterns of molecular evolution, despite divergent functions. Heterologous transformation experiments revealed that multiple mechanisms likely contribute to the evolution of LRR-RLK function, including escape from adaptive conflict. Our results indicate specific and distinct evolutionary pressures acting on LRR versus RLK domains, despite diverse organismal roles for LRR-RLK proteins.
Collapse
Affiliation(s)
- Jarrett Man
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - T A Harrington
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Kyra Lally
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Madelaine E Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| |
Collapse
|
13
|
Singh P, Maurya SK, Singh D, Sane AP. The rose INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE genes, RbIDL1 and RbIDL4, regulate abscission in an ethylene-responsive manner. PLANT CELL REPORTS 2023; 42:1147-1161. [PMID: 37069436 DOI: 10.1007/s00299-023-03017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 06/16/2023]
Abstract
KEY MESSAGE RbIDL1 and RbIDL4 are up-regulated in an ethylene-responsive manner during rose petal abscission and restored the Arabidopsis ida-2 mutant abscission defect suggesting functional conservation of the IDA pathway in rose. Abscission is an ethylene-regulated developmental process wherein plants shed unwanted organs in a controlled manner. The INFLORESCENCE DEFICIENT IN ABSCISSION family has been identified as a key regulator of abscission in Arabidopsis, encoding peptides that interact with receptor-like kinases to activate abscission. Loss of function ida mutants show abscission deficiency in Arabidopsis. Functional conservation of the IDA pathway in other plant abscission processes is a matter of interest given the discovery of these genes in several plants. We have identified four members of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE family from the ethylene-sensitive, early-abscising fragrant rose, Rosa bourboniana. All four are conserved in sequence and possess well-defined PIP, mIDa and EPIP motifs. Three of these, RbIDL1, RbIDL2 and RbIDL4 show a three-fourfold increase in transcript levels in petal abscission zones (AZ) during ethylene-induced petal abscission as well as natural abscission. The genes are also expressed in other floral tissues but respond differently to ethylene in these tissues. RbIDL1 and RbIDL4, the more prominently expressed IDL genes in rose, can complement the abscission defect of the Arabidopsis ida-2 mutant; while, promoters of both genes can drive AZ-specific expression in an ethylene-responsive manner even in Arabidopsis silique AZs indicating recognition of AZ-specific and ethylene-responsive cis elements in their promoters by the abscission machinery of rose as well as Arabidopsis.
Collapse
Affiliation(s)
- Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Kumar Maurya
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Botany, Kishori Raman (PG) College, Mathura, India
| | - Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Wang P, Wu T, Jiang C, Huang B, Li Z. Brt9SIDA/IDALs as peptide signals mediate diverse biological pathways in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111642. [PMID: 36804389 DOI: 10.1016/j.plantsci.2023.111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
As signal molecules, plant peptides play key roles in intercellular communication during growth and development, as well as stress responses. The 14-amino-acid (aa) INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide was originally identified to play an essential role in the floral organ abscission of Arabidopsis. It is synthesized from its precursor, a small protein containing 77-aa residues with an N-terminal signal peptide sequence. Recently, the IDA/IDA-like (IDLs) genes are isolated in several angiosperms and are highly conserved in land plants. In addition, IDA/IDLs are not only involved in organ abscission but also function in multiple biological processes, including biotic and abiotic stress responses. Here, we summarize the post-translational modification and proteolytic processing, the evolutionary conservation, and the potential regulatory function of IDA/IDLs, and also present future perspectives to investigate the IDA/IDLs signaling pathway. We anticipate that this detailed knowledge will help to improve the understanding of the molecular mechanism of plant peptide signaling.
Collapse
Affiliation(s)
- Pingyu Wang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Ting Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Chen Jiang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
15
|
Hill T, Cassibba V, Joukhadar I, Tonnessen B, Havlik C, Ortega F, Sripolcharoen S, Visser BJ, Stoffel K, Thammapichai P, Garcia-Llanos A, Chen S, Hulse-Kemp A, Walker S, Van Deynze A. Genetics of destemming in pepper: A step towards mechanical harvesting. Front Genet 2023; 14:1114832. [PMID: 37007971 PMCID: PMC10064014 DOI: 10.3389/fgene.2023.1114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: The majority of peppers in the US for fresh market and processing are handpicked, and harvesting can account for 20-50% of production costs. Innovation in mechanical harvesting would increase availability; lower the costs of local, healthy vegetable products; and perhaps improve food safety and expand markets. Most processed peppers require removal of pedicels (stem and calyx) from the fruit, but lack of an efficient mechanical process for this operation has hindered adoption of mechanical harvest. In this paper, we present characterization and advancements in breeding green chile peppers for mechanical harvesting. Specifically, we describe inheritance and expression of an easy-destemming trait derived from the landrace UCD-14 that facilitates machine harvest of green chiles. Methods: A torque gauge was used for measuring bending forces similar to those of a harvester and applied to two biparental populations segregating for destemming force and rate. Genotyping by sequencing was used to generate genetic maps for quantitative trait locus (QTL) analyses. Results: A major destemming QTL was found on chromosome 10 across populations and environments. Eight additional population and/or environment-specific QTL were also identified. Chromosome 10 QTL markers were used to help introgress the destemming trait into jalapeño-type peppers. Low destemming force lines combined with improvements in transplant production enabled mechanical harvest of destemmed fruit at a rate of 41% versus 2% with a commercial jalapeńo hybrid. Staining for the presence of lignin at the pedicel/fruit boundary indicated the presence of an abscission zone and homologs of genes known to affect organ abscission were found under several QTL, suggesting that the easy-destemming trait may be due to the presence and activation of a pedicel/fruit abscission zone. Conclusion: Presented here are tools to measure the easy-destemming trait, its physiological basis, possible molecular pathways, and expression of the trait in various genetic backgrounds. Mechanical harvest of destemmed mature green chile fruits was achieved by combining easy-destemming with transplant management.
Collapse
Affiliation(s)
- Theresa Hill
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Vincenzo Cassibba
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Israel Joukhadar
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Bradley Tonnessen
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Charles Havlik
- Los Lunas Agricultural Science Center, Los Lunas, NM, United States
| | - Franchesca Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | | | | | - Kevin Stoffel
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Paradee Thammapichai
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Armando Garcia-Llanos
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Shiyu Chen
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Amanda Hulse-Kemp
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Stephanie Walker
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Lu L, Arif S, Yu JM, Lee JW, Park YH, Tucker ML, Kim J. Involvement of IDA-HAE Module in Natural Development of Tomato Flower Abscission. PLANTS (BASEL, SWITZERLAND) 2023; 12:185. [PMID: 36616314 PMCID: PMC9823658 DOI: 10.3390/plants12010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The unwanted detachment of organs such as flowers, leaves, and fruits from the main body of a plant (abscission) has significant effects on agricultural practice. Both timely and precise regulation of organ abscission from a plant is crucial as it influences the agricultural yield. The tomato (Solanum lycopersicum) has become a model system for research on organ abscission. Here, we characterized four tomato natural abscission variants named jointless (j), functionally impaired jointless (fij), functionally impaired jointless like (fij like), and normal joint (NJ), based on their cellular features within the flower abscission zones (AZ). Using eight INFLORESCENCE DEFICIENT IN ABSCISSION (SlIDA) genes and eight HAESA genes (SlHAE) identified in the genome sequence of tomato, we analyzed the pattern of gene expression during flower abscission. The AZ-specific expression for three tomato abscission polygalacturonases (SlTAPGs) in the development of flower AZ, and the progression of abscission validated our natural abscission system. Compared to that of j, fij, and fij like variants, the AZ-specific expression for SlIDA, SlIDL2, SlIDL3, SlIDL4, and SlIDL5 in the NJ largely corelated and increased with the process of abscission. Of eight SlHAE genes examined, the expression for SlHSL6 and SlHSL7 were found to be AZ-specific and increased as abscission progressed in the NJ variant. Unlike the result of gene expression obtained from natural abscission system, an in silico analysis of transcriptional binding sites uncovered that SlIDA genes (SlIDA, SlIDL6, and SlIDL7) are predominantly under the control of environmental stress, while most of the SlHSL genes are affiliated with the broader context in developmental processes and stress responses. Our result presents the potential bimodal transcriptional regulation of the tomato IDA-HAE module associated with flower abscission in tomatoes.
Collapse
Affiliation(s)
- Lu Lu
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Samiah Arif
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun Myoung Yu
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - June Woo Lee
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
- Quality Assurance Team, Quality Assurance Department, Nongwoobio Co., Ltd., Yeoju 12655, Republic of Korea
| | - Young-Hoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Mark Leo Tucker
- Soybean Genomics and Improvement Lab, Agriculture Research Service, United States Department of Agriculture, Building 006, BARC-West, Beltsville, MD 20705, USA
| | - Joonyup Kim
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
17
|
Verma A, Lin M, Smith D, Walker JC, Hewezi T, Davis EL, Hussey RS, Baum TJ, Mitchum MG. A novel sugar beet cyst nematode effector 2D01 targets the Arabidopsis HAESA receptor-like kinase. MOLECULAR PLANT PATHOLOGY 2022; 23:1765-1782. [PMID: 36069343 PMCID: PMC9644282 DOI: 10.1111/mpp.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Plant-parasitic cyst nematodes use a stylet to deliver effector proteins produced in oesophageal gland cells into root cells to cause disease in plants. These effectors are deployed to modulate plant defence responses and developmental programmes for the formation of a specialized feeding site called a syncytium. The Hg2D01 effector gene, coding for a novel 185-amino-acid secreted protein, was previously shown to be up-regulated in the dorsal gland of parasitic juveniles of the soybean cyst nematode Heterodera glycines, but its function has remained unknown. Genome analyses revealed that Hg2D01 belongs to a highly diversified effector gene family in the genomes of H. glycines and the sugar beet cyst nematode Heterodera schachtii. For functional studies using the model Arabidopsis thaliana-H. schachtii pathosystem, we cloned the orthologous Hs2D01 sequence from H. schachtii. We demonstrate that Hs2D01 is a cytoplasmic effector that interacts with the intracellular kinase domain of HAESA (HAE), a cell surface-associated leucine-rich repeat (LRR) receptor-like kinase (RLK) involved in signalling the activation of cell wall-remodelling enzymes important for cell separation during abscission and lateral root emergence. Furthermore, we show that AtHAE is expressed in the syncytium and, therefore, could serve as a viable host target for Hs2D01. Infective juveniles effectively penetrated the roots of HAE and HAESA-LIKE2 (HSL2) double mutant plants; however, fewer nematodes developed on the roots, consistent with a role for this receptor family in nematode infection. Taken together, our results suggest that the Hs2D01-AtHAE interaction may play an important role in sugar beet cyst nematode parasitism.
Collapse
Affiliation(s)
- Anju Verma
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| | - Marriam Lin
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Boyle Frederickson Intellectual Property LawMilwaukeeWisconsinUSA
| | - Dante Smith
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Conagra Brands, Inc., Corporate Microbiology, Research and DevelopmentOmahaNebraskaUSA
| | - John C. Walker
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Eric L. Davis
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Richard S. Hussey
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowaUSA
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
18
|
Meir S, Philosoph‐Hadas S, Salim S, Segev A, Riov J. Reevaluation of ethylene role in Arabidopsis cauline leaf abscission induced by water stress and rewatering. PLANT DIRECT 2022; 6:e444. [PMID: 36091878 PMCID: PMC9444853 DOI: 10.1002/pld3.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
It was previously reported that cauline leaf abscission in Arabidopsis is induced by a cycle of water stress and rewatering, which is regulated by the complex of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), HAESA (HAE), and HAESA-LIKE2 (HSL2) kinases. However, the involvement of ethylene in this process was ruled out. Because this conclusion contradicts the well-established role of ethylene in organ abscission induced by a cycle of water stress and rewatering, our present study was aimed to reevaluate the possible involvement of ethylene in this process. For this purpose, we examined the endogenous ethylene production during water stress and following rewatering, as well as the effects of exogenous ethylene and 1-methylcyclopropene (1-MCP), on cauline leaf abscission of Arabidopsis wild type. Additionally, we examined whether this stress induces cauline leaf abscission in ethylene-insensitive Arabidopsis mutants. The results of the present study demonstrated that ethylene production rates increased significantly in cauline leaves at 4 h after rewatering of stressed plants and remained high for at least 24 h in plants water-stressed to 40 and 30% of system weight. Ethylene treatment applied to well-watered plants induced cauline leaf abscission, which was inhibited by 1-MCP. Cauline leaf abscission was also inhibited by 1-MCP applied during a cycle of water stress and rewatering. Finally, no abscission occurred in two ethylene-insensitive mutants, ein2-1 and ein2-5, following a cycle of water stress and rewatering. Taken together, these results clearly indicate that ethylene is involved in Arabidopsis cauline leaf abscission induced by water stress and rewatering. Our results show that ethylene is involved in Arabidopsis cauline leaf abscission induced by water stress and rewatering, similar to leaf abscission in other plants.
Collapse
Affiliation(s)
- Shimon Meir
- Department of Postharvest Science, Agricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Sonia Philosoph‐Hadas
- Department of Postharvest Science, Agricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Shoshana Salim
- Department of Postharvest Science, Agricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Adi Segev
- Department of Postharvest Science, Agricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Joseph Riov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
19
|
Chen J, Li Y, He D, Bai M, Li B, Zhang Q, Luo L. Cytological, physiological and transcriptomic analysis of variegated Leaves in Primulina pungentisepala offspring. BMC PLANT BIOLOGY 2022; 22:419. [PMID: 36045322 PMCID: PMC9434889 DOI: 10.1186/s12870-022-03808-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Primulina pungentisepala is suitable for use as a potted plant because of its beautiful leaf variegation, which is significantly different in its selfed offspring. However, the mechanism of P. pungentisepala leaf variegation is unclear. In this study, two types of offspring showing the greatest differences were compared in terms of leaf structure, chlorophyll contents, chlorophyll fluorescence parameters and transcriptomes to provide a reference for studying the molecular mechanism of structural leaf variegation. RESULTS Air spaces were found between water storage tissue, and the palisade tissue cells were spherical in the white type. The content of chlorophyll a and total chlorophyll (chlorophyll a + b) was significantly lower in the white type, but there were no significant differences in the content of chlorophyll b, chlorophyll a/b or chlorophyll fluorescence parameters between the white and green types. We performed transcriptomic sequencing to identify differentially expressed genes (DEGs) involved in cell division and differentiation, chlorophyll metabolism and photosynthesis. Among these genes, the expression of the cell division- and differentiation-related leucine-rich repeat receptor-like kinases (LRR-RLKs), xyloglucan endotransglycosylase/hydrolase (XET/H), pectinesterase (PE), expansin (EXP), cellulose synthase-like (CSL), VARIEGATED 3 (VAR3), and ZAT10 genes were downregulated in the white type, which might have promoted the development air spaces and variant palisade cells. Chlorophyll biosynthesis-related hydroxymethylbilane synthase (HEMC) and the H subunit of magnesium chelatase (CHLH) were downregulated, while chlorophyll degradation-related chlorophyllase-2 (CHL2) was upregulated in the white type, which might have led to lower chlorophyll accumulation. CONCLUSION Leaf variegation in P. pungentisepala was caused by a combination of mechanisms involving structural variegation and low chlorophyll levels. Our research provides significant insights into the molecular mechanisms of structural leaf variegation.
Collapse
Affiliation(s)
- Jiancun Chen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Yueya Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Dong He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Meng Bai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Bo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Le Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| |
Collapse
|
20
|
Zheng B, Bai Q, Li C, Wang L, Wei Q, Ali K, Li W, Huang S, Xu H, Li G, Ren H, Wu G. Pan-brassinosteroid signaling revealed by functional analysis of NILR1 in land plants. THE NEW PHYTOLOGIST 2022; 235:1455-1469. [PMID: 35570834 DOI: 10.1111/nph.18228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Brassinosteroid (BR) signaling has been identified from the ligand BRs sensed by the receptor Brassinosteroid Insensitive 1 (BRI1) to the final activation of Brassinozole Resistant 1/bri1 EMS-Suppressor 1 through a series of transduction events. Extensive studies have been conducted to characterize the role of BR signaling in various biological processes. Our previous study has shown that Excess Microsporocytes 1 (EMS1) and BRI1 control different aspects of plant growth and development via conserved intracellular signaling. Here, we reveal that another receptor, NILR1, can complement the bri1 mutant in the absence of BRs, indicating a pathway that resembles BR signaling activated by NILR1. Genetic analysis confirms the intracellular domains of NILR1, BRI1 and EMS1 have a common signal output. Furthermore, we demonstrate that NILR1 and BRI1 share the coreceptor BRI1 Associated Kinase 1 and substrate BSKs. Notably, the NILR1-mediated downstream pathway is conserved across land plants. In summary, we provide evidence for the signaling cascade of NILR1, suggesting pan-brassinosteroid signaling initiated by a group of distant receptor-ligand pairs in land plants.
Collapse
Affiliation(s)
- Bowen Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qunwei Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Chenxi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihaitian Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qiang Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenjuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengdi Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongxing Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyan Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
21
|
Wang Y, Chen W, Ou Y, Zhu Y, Li J. Arabidopsis ROOT ELONGATION RECEPTOR KINASES negatively regulate root growth putatively via altering cell wall remodeling gene expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1502-1513. [PMID: 35587568 DOI: 10.1111/jipb.13282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Receptor-like kinases (RLKs) play key roles in regulating various physiological aspects in plant growth and development. In Arabidopsis thaliana, there are at least 223 leucine-rich repeat (LRR) RLKs. The functions of the majority of RLKs in the LRR XI subfamily were previously revealed. Only three RLKs were not characterized. Here we report that two independent triple mutants of these RLKs, named ROOT ELONGATION RECEPTOR KINASES (REKs), exhibit increased cell numbers in the root apical meristem and enhanced cell size in the elongation and maturation zones. The promoter activities of a number of Quiescent Center marker genes are significantly up-regulated in the triple mutant. However, the promoter activities of several marker genes known to control root stem cell niche activities are not altered. RNA-seq analysis revealed that a number of cell wall remodeling genes are significantly up-regulated in the triple mutant. Our results suggest that these REKs play key roles in regulating root development likely via negatively regulating the expression of a number of key cell wall remodeling genes.
Collapse
Affiliation(s)
- Yanze Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weiyue Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingying Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
22
|
Guo C, Li X, Zhang Z, Wang Q, Zhang Z, Wen L, Liu C, Deng Z, Chu Y, Liu T, Guo Y. The INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 Peptide Functions as a Positive Modulator of Leaf Senescence in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:909378. [PMID: 35845701 PMCID: PMC9280484 DOI: 10.3389/fpls.2022.909378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is a highly coordinated process and has a significant impact on agriculture. Plant peptides are known to act as important cell-to-cell communication signals that are involved in multiple biological processes such as development and stress responses. However, very limited number of peptides has been reported to be associated with leaf senescence. Here, we report the characterization of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 (IDL6) peptide as a regulator of leaf senescence. The expression of IDL6 was up-regulated in senescing leaves. Exogenous application of synthetic IDL6 peptides accelerated the process of leaf senescence. The idl6 mutant plants showed delayed natural leaf senescence as well as senescence included by darkness, indicating a regulatory role of IDL6 peptides in leaf senescence. The role of IDL6 as a positive regulator of leaf senescence was further supported by the results of overexpression analysis and complementation test. Transcriptome analysis revealed differential expression of phytohormone-responsive genes in idl6 mutant plants. Further analysis indicated that altered expression of IDL6 led to changes in leaf senescence phenotypes induced by ABA and ethylene treatments. The results from this study suggest that the IDL6 peptide positively regulates leaf senescence in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Cun Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Zenglin Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Qi Wang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Zhenbiao Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lichao Wen
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- QuJing Tobacco Company, Qujing, China
| | - Zhichao Deng
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumeng Chu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Tao Liu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| |
Collapse
|
23
|
Chen D, Guo H, Chen S, Yue Q, Wang P, Chen X. Receptor-like kinase HAESA-like 1 positively regulates seed longevity in Arabidopsis. PLANTA 2022; 256:21. [PMID: 35763091 DOI: 10.1007/s00425-022-03942-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Based on the phenotypic, physiological and transcriptomic analysis, receptor-like kinase HAESA-like 1 was demonstrated to positively affect seed longevity in Arabidopsis. Seed longevity is very important for both genetic resource conservation and crop production. Receptor-like kinases (RLKs) are widely involved in plant growth, development and stress responses. However, the role of most RLKs, especially in seed longevity, is largely unknown. In this study, we report that Arabidopsis HAESA-like 1 (AtHSL1) positively regulated seed longevity. Disruption of HSL1 significantly decreased the germination rate to 50% at 7 days after cold stratification (DAC), compared with that of the wild type (93.5% at 7 DAC), after accelerated aging treatment. Expression of the HSL1 gene in hsl1 basically restored the defective phenotype (86.3%), while HSL1-overexpressing lines (98.3%) displayed slower accelerated aging than WT (93.5%). GUS staining revealed HSL1 was highly expressed universally, especially in young seedlings, mature seeds and embryos of imbibed seeds, and its expression could be induced by accelerated aging. No difference in the dyeing color and area of mucilage were identified between WT and hsl1. The soluble pectin content also was not different, while the adherent pectin content was significantly increased in hsl1. Global transcriptomics revealed that disruption of HSL1 mainly downregulated genes involved in trehalose synthesis, nucleotide sugar metabolism and protection and repair mechanisms. Therefore, an increase in adherent pectin content and downregulation of genes involved in trehalose synthesis may be the main reasons for decreasing seed longevity owing to disruption of HSL1 in Arabidopsis. Our work provides valuable information for understanding the function and mechanism of a receptor-like kinase, AtHSL1, in seed longevity.
Collapse
Affiliation(s)
- Defu Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongye Guo
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shuai Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qianying Yue
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Pei Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiwen Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
24
|
Su Y, Peng X, Shen S. Identification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in paper mulberry and their potential roles in response to cold stress. Comput Biol Chem 2022; 97:107622. [DOI: 10.1016/j.compbiolchem.2022.107622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
|
25
|
Xu L, Deng ZN, Wu KC, Malviya MK, Solanki MK, Verma KK, Pang T, Li YJ, Liu XY, Kashyap BK, Dessoky ES, Wang WZ, Huang HR. Transcriptome Analysis Reveals a Gene Expression Pattern That Contributes to Sugarcane Bud Propagation Induced by Indole-3-Butyric Acid. FRONTIERS IN PLANT SCIENCE 2022; 13:852886. [PMID: 35371161 PMCID: PMC8969426 DOI: 10.3389/fpls.2022.852886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 05/30/2023]
Abstract
Sugarcane is a cash crop that plays an integral part in the sugar industry. The Sustainable Sugarcane Initiative (SSI) has been adopted globally, ensuring enough and aiming for more yield, helping increase disease-free sugarcane cultivation. Single-bud seeds could be the best approach for sugarcane cultivation. Indole-3-butyric acid (IBA) is a rooting agent utilized significantly in seedling propagation. Greenhouse experiment results discovered the significant growth promotion in sugarcane seedlings and accumulation of plant hormones at 100 ppm IBA. Next, we performed transcriptomic analysis of sugarcane buds using RNA sequencing and compared their gene expression during root development due to affect of IBA (100 ppm). A total of 113,475 unigenes were annotated with an average length of 836 bp (N50 = 1,536). The comparative RNA-seq study between the control (CK) and IBA-treated (T) buds showed significant differentially expressed unigenes (494 upregulated and 2086 downregulated). The IBA influenced major biological processes including metabolic process, the cellular process, and single-organism process. For cellular component category, cell, cell part, organelle, membrane, and organelle part were mainly affected. In addition, catalytic activity and binding were primarily affected in the molecular function categories. Furthermore, the expression of genes related to plant hormones and signaling pathways was analyzed by qRT-PCR, which was consistent with the RNA-seq expression profile. This study provides new insights into the IBA response to the bud sprouting in sugarcane based on RNA sequencing, and generated information could help further research on breeding improvement of sugarcane.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhi-Nian Deng
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Kai-Chao Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tian Pang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yi-Jie Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiao-Yan Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India
| | - Eldessoky S. Dessoky
- Department of Plant Genetic Transformation, Agriculture Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Wei-Zan Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hai-Rong Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
26
|
Escobar E, Oladzad A, Simons K, Miklas P, Lee RK, Schroder S, Bandillo N, Wunsch M, McClean PE, Osorno JM. New genomic regions associated with white mold resistance in dry bean using a MAGIC population. THE PLANT GENOME 2022; 15:e20190. [PMID: 35106945 DOI: 10.1002/tpg2.20190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Dry bean (Phaseolus vulgaris L.) production in many regions is threatened by white mold (WM) [Sclerotinia sclerotiorum (Lib.) de Bary]. Seed yield losses can be up to 100% under conditions favorable for the pathogen. The low heritability, polygenic inheritance, and cumbersome screening protocols make it difficult to breed for improved genetic resistance. Some progress in understanding genetic resistance and germplasm improvement has been accomplished, but cultivars with high levels of resistance are yet to be released. A WM multiparent advanced generation inter-cross (MAGIC) population (n = 1060) was developed to facilitate mapping and breeding efforts. A seedling straw test screening method provided a quick assay to phenotype the population for response to WM isolate 1980. Nineteen MAGIC lines were identified with improved resistance. For genome-wide association studies (GWAS), the data was transformed into three phenotypic distributions-quantitative, polynomial, and binomial-and coupled with ∼52,000 single-nucleotide polymorphisms (SNPs). The three phenotypic distributions identified 30 significant genomic intervals [-log10 (P value) ≥ 3.0]. However, across distributions, four new genomic regions as well as two regions previously reported were found to be associated with resistance. Cumulative R2 values were 57% for binomial distribution using 13 genomic intervals, 41% for polynomial using eight intervals, and 40% for quantitative using 11 intervals. New resistant germplasm as well as new genomic regions associated with resistance are now available for further investigation.
Collapse
Affiliation(s)
- Edgar Escobar
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Atena Oladzad
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
- Genomics and Bioinformatics Program, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Kristin Simons
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Phillip Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA, 99350, USA
| | - Rian K Lee
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
- Genomics and Bioinformatics Program, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Stephan Schroder
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
- Breeding Technology, Hazera, Netherlands
| | - Nonoy Bandillo
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Michael Wunsch
- Carrington Research and Extension Center, North Dakota State Univ, Carrington, ND, 58421-0219, USA
| | - Phillip E McClean
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
- Genomics and Bioinformatics Program, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Juan M Osorno
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| |
Collapse
|
27
|
Zhou H, Xiao F, Zheng Y, Liu G, Zhuang Y, Wang Z, Zhang Y, He J, Fu C, Lin H. PAMP-INDUCED SECRETED PEPTIDE 3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants. THE PLANT CELL 2022; 34:927-944. [PMID: 34865139 PMCID: PMC8824610 DOI: 10.1093/plcell/koab292] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 05/27/2023]
Abstract
High soil salinity negatively affects plant growth and development, leading to a severe decrease in crop production worldwide. Here, we report that a secreted peptide, PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3), plays an essential role in plant salt tolerance through RECEPTOR-LIKE KINASE 7 (RLK7) in Arabidopsis (Arabidopsis thaliana). The gene encoding the PIP3 precursor, prePIP3, was significantly induced by salt stress. Plants overexpressing prePIP3 exhibited enhanced salt tolerance, whereas a prePIP3 knockout mutant had a salt-sensitive phenotype. PIP3 physically interacted with RLK7, a leucine-rich repeat RLK, and salt stress enhanced PIP3-RLK7 complex formation. Functional analyses revealed that PIP3-mediated salt tolerance is dependent on RLK7. Exogenous application of synthetic PIP3 peptide activated RLK7, and salt treatment significantly induced RLK7 phosphorylation in a PIP3-dependent manner. Notably, MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 were downstream of the PIP3-RLK7 module in salt response signaling. Activation of MPK3/6 was attenuated in pip3 or rlk7 mutants under saline conditions. Therefore, MPK3/6 might amplify salt stress response signaling in plants for salt tolerance. Collectively, our work characterized a novel ligand-receptor signaling cascade that modulates plant salt tolerance in Arabidopsis. This study contributes to our understanding of how plants respond to salt stress.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Fei Xiao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yuan Zheng
- Department of Biology, Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Guoyong Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yufen Zhuang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhiyue Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yiyi Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jiaxian He
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Ma X, Ying P, He Z, Wu H, Li J, Zhao M. The LcKNAT1-LcEIL2/3 Regulatory Module Is Involved in Fruitlet Abscission in Litchi. FRONTIERS IN PLANT SCIENCE 2022; 12:802016. [PMID: 35126427 PMCID: PMC8813966 DOI: 10.3389/fpls.2021.802016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 06/12/2023]
Abstract
Large and premature organ abscission may limit the industrial development of fruit crops by causing serious economic losses. It is well accepted that ethylene (ET) is a strong inducer of organ abscission in plants. However, the mechanisms underlying the control of organ abscission by ET are largely unknown. We previously revealed that LcKNAT1, a KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1)-like protein, acted as a negative regulator in control of fruitlet abscission through suppressing the expression of ET biosynthetic genes in litchi. In this study, we further reported that LcKNAT1 could also directly repress the transcription of LcEIL2 and LcEIL3, two ETHYLENE INSENSITIVE 3-like (EIL) homologs in litchi, which functioned as positive regulators in ET-activated fruitlet abscission by directly promoting the expression of genes responsible for ET biosynthesis and cell wall degradation. The expression level of LcKNAT1 was downregulated, while LcEIL2/3 was upregulated at the abscission zone (AZ) accompanying the fruitlet abscission in litchi. The results of electrophoretic mobility shift assays (EMSAs) and transient expression showed that LcKNAT1 could directly bind to the promoters of LcEIL2 and LcEIL3 and repress their expression. Furthermore, the genetic cross demonstrated that the β-glucuronidase (GUS) expression driven by the promoters of LcEIL2 or LcEIL3 at the floral AZ was obviously suppressed by LcKNAT1 under stable transformation in Arabidopsis. Taken together, our findings suggest that the LcKNAT1-LcEIL2/3 regulatory module is likely involved in the fruitlet abscission in litchi, and we propose that LcKNAT1 could suppress both ET biosynthesis and signaling to regulate litchi fruit abscission.
Collapse
Affiliation(s)
- Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Cui Y, Lu X, Gou X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. PLANT COMMUNICATIONS 2022; 3:100273. [PMID: 35059634 PMCID: PMC8760141 DOI: 10.1016/j.xplc.2021.100273] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 05/30/2023]
Abstract
Reproduction is a crucial process in the life span of flowering plants, and directly affects human basic requirements in agriculture, such as grain yield and quality. Typical receptor-like protein kinases (RLKs) are a large family of membrane proteins sensing extracellular signals to regulate plant growth, development, and stress responses. In Arabidopsis thaliana and other plant species, RLK-mediated signaling pathways play essential roles in regulating the reproductive process by sensing different ligand signals. Molecular understanding of the reproductive process is vital from the perspective of controlling male and female fertility. Here, we summarize the roles of RLKs during plant reproduction at the genetic and molecular levels, including RLK-mediated floral organ development, ovule and anther development, and embryogenesis. In addition, the possible molecular regulatory patterns of those RLKs with unrevealed mechanisms during reproductive development are discussed. We also point out the thought-provoking questions raised by the research on these plant RLKs during reproduction for future investigation.
Collapse
|
30
|
Khalilzadeh M, Weber KC, Dutt M, El-Mohtar CA, Levy A. Comparative transcriptome analysis of Citrus macrophylla tree infected with Citrus tristeza virus stem pitting mutants provides new insight into the role of phloem regeneration in stem pitting disease. FRONTIERS IN PLANT SCIENCE 2022; 13:987831. [PMID: 36267951 PMCID: PMC9577373 DOI: 10.3389/fpls.2022.987831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 05/21/2023]
Abstract
Stem pitting is a complex and economically important virus-associated disease of perennial woody plants. Molecular mechanisms and pathways occurring during virus-plant interaction that result in this phenomenon are still obscure. Previous studies indicated that different Citrus tristeza virus (CTV) mutants induce defined stem pitting phenotypes ranging from mild (CTVΔp13) to severe (CTVΔp33) in Citrus macrophylla trees. In this study, we conducted comparative transcriptome analyses of C. macrophylla trees infected with CTV mutants (CTVΔp13 and CTVΔp33) and a full-length virus in comparison to healthy plants as control. The mild CTV stem pitting mutant had very few differentially expressed genes (DEGs) related to plant defense mechanism and plant growth and development. In contrast, substantial gene expression changes were observed in plants infected with the severe mutant and the full-length virus, indicating that both the p13 and p33 proteins of CTV acted as a regulator of symptom production by activating and modulating plant responses, respectively. The analysis of transcriptome data for CTVΔp33 and the full-length virus suggested that xylem specification has been blocked by detecting several genes encoding xylem, cell wall and lignin degradation, and cell wall loosening enzymes. Furthermore, stem pitting was accompanied by downregulation of transcription factors involved in regulation of xylem differentiation and downregulation of some genes involved in lignin biosynthesis, showing that the xylem differentiation and specification program has been shut off. Upregulation of genes encoding transcription factors associated with phloem and cambium development indicated the activation of this program in stem pitting disease. Furthermore, we detected the induction of several DEGs encoding proteins associated with cell cycle re-entry such as chromatin remodeling factors and cyclin, and histone modification. This kind of expression pattern of genes related to xylem differentiation and specification, phloem and cambium development, and cell cycle re-entry is demonstrated during secondary vascular tissue (SVT) regeneration. The microscopy analysis confirmed that the regeneration of new phloem is associated with stem pitting phenotypes. The findings of this study, thus, provide evidence for the association between stem pitting phenotypes and SVT regeneration, suggesting that the expression of these genes might play important roles in development of stem pitting symptoms. Overall, our findings suggest that phloem regeneration contributes to development of stem pitting symptoms.
Collapse
Affiliation(s)
- Maryam Khalilzadeh
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Kyle Clark Weber
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Choaa Amine El-Mohtar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Amit Levy
| |
Collapse
|
31
|
Ventimilla D, Velázquez K, Ruiz-Ruiz S, Terol J, Pérez-Amador MA, Vives MC, Guerri J, Talon M, Tadeo FR. IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like peptides and HAE (HAESA)-like receptors regulate corolla abscission in Nicotiana benthamiana flowers. BMC PLANT BIOLOGY 2021; 21:226. [PMID: 34020584 PMCID: PMC8139003 DOI: 10.1186/s12870-021-02994-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Abscission is an active, organized, and highly coordinated cell separation process enabling the detachment of aerial organs through the modification of cell-to-cell adhesion and breakdown of cell walls at specific sites on the plant body known as abscission zones. In Arabidopsis thaliana, abscission of floral organs and cauline leaves is regulated by the interaction of the hormonal peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), a pair of redundant receptor-like protein kinases, HAESA (HAE) and HAESA-LIKE2 (HSL2), and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors. However, the functionality of this abscission signaling module has not yet been demonstrated in other plant species. RESULTS The expression of the pair of NbenIDA1 homeologs and the receptor NbenHAE.1 was supressed at the base of the corolla tube by the inoculation of two virus-induced gene silencing (VIGS) constructs in Nicotiana benthamiana. These gene suppression events arrested corolla abscission but did not produce any obvious effect on plant growth. VIGS plants retained a higher number of corollas attached to the flowers than control plants, an observation related to a greater corolla breakstrength. The arrest of corolla abscission was associated with the preservation of the parenchyma tissue at the base of the corolla tube that, in contrast, was virtually collapsed in normal corollas. In contrast, the inoculation of a viral vector construct that increased the expression of NbenIDA1A at the base of the corolla tube negatively affected the growth of the inoculated plants accelerating the timing of both corolla senescence and abscission. However, the heterologous ectopic overexpression of citrus CitIDA3 and Arabidopsis AtIDA in N. benthamiana did not alter the standard plant phenotype suggesting that the proteolytic processing machinery was unable to yield active peptides. CONCLUSION Here, we demonstrate that the pair of NbenIDA1 homeologs encoding small peptides of the IDA-like family and the receptor NbenHAE.1 control cellular breakdown at the base of the corolla tube awhere an adventitious AZ should be formed and, therefore, corolla abscission in N. benthamiana flowers. Altogether, our results provide the first evidence supporting the notion that the IDA-HAE/HSL2 signaling module is conserved in angiosperms.
Collapse
Affiliation(s)
- Daniel Ventimilla
- Centro de Genómica - Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain
| | - Karelia Velázquez
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain
| | - Susana Ruiz-Ruiz
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain
| | - Javier Terol
- Centro de Genómica - Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain
| | - Miguel A. Pérez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de Valencia. CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain
| | - Mª. Carmen Vives
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain
| | - José Guerri
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain
| | - Manuel Talon
- Centro de Genómica - Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain
| | - Francisco R. Tadeo
- Centro de Genómica - Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain
| |
Collapse
|
32
|
Guo C, Wang Q, Li Z, Sun J, Zhang Z, Li X, Guo Y. Bioinformatics and Expression Analysis of IDA-Like Genes Reveal Their Potential Functions in Flower Abscission and Stress Response in Tobacco ( Nicotiana tabacum L.). Front Genet 2021; 12:670794. [PMID: 33986773 PMCID: PMC8110903 DOI: 10.3389/fgene.2021.670794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/04/2022] Open
Abstract
The inflorescence deficient in abscission-like (IDL) genes have been shown to play critical roles in floral organ abscission, lateral root formation and various stress responses in Arabidopsis. The IDL gene family has been characterized in a number of plant species, while limited information is available about IDL genes of tobacco. In the current study, 15 NtIDL members were identified in the tobacco genome, and were classified into six groups together with IDL members from other species. Evolution analysis suggested that the NtIDL members form group VI might have originated from duplication events. Notably, NtIDL06 shared high similarities with AtIDA in the EPIP sequence, and its encoding gene was highly expressed in the abscission zone of flowers at late developmental stages, implying that NtIDL06 might regulate tobacco flower abscission. In addition, the results from cis-elements analysis of promoters and expression after stress treatments suggested that NtIDL members might be involved in various stress responses of tobacco. The results from this study provide information for further functional analysis related to flower abscission and stress responses of NtIDL genes.
Collapse
Affiliation(s)
- Cun Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinhao Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
33
|
Ogawa S, Wakatake T, Spallek T, Ishida JK, Sano R, Kurata T, Demura T, Yoshida S, Ichihashi Y, Schaller A, Shirasu K. Subtilase activity in intrusive cells mediates haustorium maturation in parasitic plants. PLANT PHYSIOLOGY 2021; 185:1381-1394. [PMID: 33793894 PMCID: PMC8133603 DOI: 10.1093/plphys/kiaa001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/28/2020] [Indexed: 05/11/2023]
Abstract
Parasitic plants that infect crops are devastating to agriculture throughout the world. These parasites develop a unique inducible organ called the haustorium that connects the vascular systems of the parasite and host to establish a flow of water and nutrients. Upon contact with the host, the haustorial epidermal cells at the interface with the host differentiate into specific cells called intrusive cells that grow endophytically toward the host vasculature. Following this, some of the intrusive cells re-differentiate to form a xylem bridge (XB) that connects the vasculatures of the parasite and host. Despite the prominent role of intrusive cells in host infection, the molecular mechanisms mediating parasitism in the intrusive cells remain poorly understood. In this study, we investigated differential gene expression in the intrusive cells of the facultative parasite Phtheirospermum japonicum in the family Orobanchaceae by RNA-sequencing of laser-microdissected haustoria. We then used promoter analyses to identify genes that are specifically induced in intrusive cells, and promoter fusions with genes encoding fluorescent proteins to develop intrusive cell-specific markers. Four of the identified intrusive cell-specific genes encode subtilisin-like serine proteases (SBTs), whose biological functions in parasitic plants are unknown. Expression of SBT inhibitors in intrusive cells inhibited both intrusive cell and XB development and reduced auxin response levels adjacent to the area of XB development. Therefore, we propose that subtilase activity plays an important role in haustorium development in P. japonicum.
Collapse
Affiliation(s)
- Satoshi Ogawa
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Present address: Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97082, Germany
| | - Thomas Spallek
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart 70599, Germany
| | - Juliane K Ishida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryosuke Sano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tetsuya Kurata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart 70599, Germany
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Author for communication: , Present address: Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Di Vittori V, Bitocchi E, Rodriguez M, Alseekh S, Bellucci E, Nanni L, Gioia T, Marzario S, Logozzo G, Rossato M, De Quattro C, Murgia ML, Ferreira JJ, Campa A, Xu C, Fiorani F, Sampathkumar A, Fröhlich A, Attene G, Delledonne M, Usadel B, Fernie AR, Rau D, Papa R. Pod indehiscence in common bean is associated with the fine regulation of PvMYB26. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1617-1633. [PMID: 33247939 PMCID: PMC7921299 DOI: 10.1093/jxb/eraa553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/22/2020] [Indexed: 05/25/2023]
Abstract
In legumes, pod shattering occurs when mature pods dehisce along the sutures, and detachment of the valves promotes seed dispersal. In Phaseolus vulgaris (L)., the major locus qPD5.1-Pv for pod indehiscence was identified recently. We developed a BC4/F4 introgression line population and narrowed the major locus down to a 22.5 kb region. Here, gene expression and a parallel histological analysis of dehiscent and indehiscent pods identified an AtMYB26 orthologue as the best candidate for loss of pod shattering, on a genomic region ~11 kb downstream of the highest associated peak. Based on mapping and expression data, we propose early and fine up-regulation of PvMYB26 in dehiscent pods. Detailed histological analysis establishes that pod indehiscence is associated with the lack of a functional abscission layer in the ventral sheath, and that the key anatomical modifications associated with pod shattering in common bean occur early during pod development. We finally propose that loss of pod shattering in legumes resulted from histological convergent evolution and that it is the result of selection at orthologous loci.
Collapse
Affiliation(s)
- Valerio Di Vittori
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
- Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg, Potsdam-Golm, Germany
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Monica Rodriguez
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, Università degli Studi di Sassari, SS 127bis, km 28.500 Surigheddu, Alghero, Italy
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Elisa Bellucci
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Laura Nanni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Tania Gioia
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, viale dell’Ateneo Lucano, Potenza, Italy
| | - Stefania Marzario
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, viale dell’Ateneo Lucano, Potenza, Italy
| | - Giuseppina Logozzo
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, viale dell’Ateneo Lucano, Potenza, Italy
| | - Marzia Rossato
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Cà Vignal, Strada Le Grazie, Verona, Italy
| | - Concetta De Quattro
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Cà Vignal, Strada Le Grazie, Verona, Italy
| | - Maria L Murgia
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, Sassari, Italy
| | - Juan José Ferreira
- Plant Genetics Group, Agri-Food Research and Development Regional Service (SERIDA), Asturias, Spain
| | - Ana Campa
- Plant Genetics Group, Agri-Food Research and Development Regional Service (SERIDA), Asturias, Spain
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Fabio Fiorani
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg, Potsdam-Golm, Germany
| | - Anja Fröhlich
- Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg, Potsdam-Golm, Germany
| | - Giovanna Attene
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, Università degli Studi di Sassari, SS 127bis, km 28.500 Surigheddu, Alghero, Italy
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Cà Vignal, Strada Le Grazie, Verona, Italy
| | - Björn Usadel
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Domenico Rau
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, Sassari, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| |
Collapse
|
35
|
Fooyontphanich K, Morcillo F, Joët T, Dussert S, Serret J, Collin M, Amblard P, Tangphatsornruang S, Roongsattham P, Jantasuriyarat C, Verdeil JL, Tranbarger TJ. Multi-scale comparative transcriptome analysis reveals key genes and metabolic reprogramming processes associated with oil palm fruit abscission. BMC PLANT BIOLOGY 2021; 21:92. [PMID: 33573592 PMCID: PMC7879690 DOI: 10.1186/s12870-021-02874-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. RESULTS Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. CONCLUSIONS The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.
Collapse
Affiliation(s)
- Kim Fooyontphanich
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
- Grow A Green Co, Ltd. 556 Maha Chakraphat Rd. Namaung, Chachoengsao, Chachoengsao Province, 24000, Thailand
| | - Fabienne Morcillo
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
- CIRAD, DIADE, F-34398, Montpellier, France
| | - Thierry Joët
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | - Stéphane Dussert
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | - Julien Serret
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | - Myriam Collin
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | | | - Sithichoke Tangphatsornruang
- National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Pathum Thani, Thailand
| | - Peerapat Roongsattham
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
- Department of Genetics, Faculty of Science, Kasetsart University Bangkhen Campus, 50 Phahonyothin Road Jatujak, Bangkok, Thailand
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University Bangkhen Campus, 50 Phahonyothin Road Jatujak, Bangkok, Thailand
| | - Jean-Luc Verdeil
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Timothy J Tranbarger
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France.
| |
Collapse
|
36
|
Ou Y, Kui H, Li J. Receptor-like Kinases in Root Development: Current Progress and Future Directions. MOLECULAR PLANT 2021; 14:166-185. [PMID: 33316466 DOI: 10.1016/j.molp.2020.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Cell-to-cell and cell-to-environment communications are critical to the growth and development of plants. Cell surface-localized receptor-like kinases (RLKs) are mainly involved in sensing various extracellular signals to initiate their corresponding cellular responses. As important vegetative organs for higher plants to adapt to a terrestrial living situation, roots play a critical role for the survival of plants. It has been demonstrated that RLKs control many biological processes during root growth and development. In this review, we summarize several key regulatory processes during Arabidopsis root development in which RLKs play critical roles. We also put forward a number of relevant questions that are required to be explored in future studies.
Collapse
Affiliation(s)
- Yang Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
37
|
Zhu C, Liu L, Crowell O, Zhao H, Brutnell TP, Jackson D, Kellogg EA. The CLV3 Homolog in Setaria viridis Selectively Controls Inflorescence Meristem Size. FRONTIERS IN PLANT SCIENCE 2021; 12:636749. [PMID: 33659018 PMCID: PMC7917188 DOI: 10.3389/fpls.2021.636749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/21/2021] [Indexed: 05/17/2023]
Abstract
The CLAVATA pathway controls meristem size during inflorescence development in both eudicots and grasses, and is initiated by peptide ligands encoded by CLV3/ESR-related (CLE) genes. While CLV3 controls all shoot meristems in Arabidopsis, evidence from cereal grasses indicates that different meristem types are regulated by different CLE peptides. The rice peptide FON2 primarily controls the size of the floral meristem, whereas the orthologous peptides CLE7 and CLE14 in maize have their most dramatic effects on inflorescence and branch meristems, hinting at diversification among CLE responses in the grasses. Setaria viridis is more closely related to maize than to rice, so can be used to test whether the maize CLE network can be generalized to all members of subfamily Panicoideae. We used CRISPR-Cas9 in S. viridis to knock out the SvFON2 gene, the closest homolog to CLV3 and FON2. Svfon2 mutants developed larger inflorescence meristems, as in maize, but had normal floral meristems, unlike Osfon2, suggesting a panicoid-specific CLE network. Vegetative traits such as plant height, tiller number and leaf number were not significantly different between mutant and wild type plants, but time to heading was shorter in the mutants. In situ hybridization showed strong expression of Svfon2 in the inflorescence and branch meristems, consistent with the mutant phenotype. Using bioinformatic analysis, we predicted the co-expression network of SvFON2 and its signaling components, which included genes known to control inflorescence architecture in maize as well as genes of unknown function. The similarity between SvFON2 function in Setaria and maize suggests that its developmental specialization in inflorescence meristem control may be shared among panicoid grasses.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Olivia Crowell
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Hui Zhao
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- Institute of Tropical Bioscience and Biotechnology and Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Thomas P. Brutnell
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Elizabeth A. Kellogg
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- *Correspondence: Elizabeth A. Kellogg
| |
Collapse
|
38
|
Ali K, Li W, Qin Y, Wang S, Feng L, Wei Q, Bai Q, Zheng B, Li G, Ren H, Wu G. Kinase Function of Brassinosteroid Receptor Specified by Two Allosterically Regulated Subdomains. FRONTIERS IN PLANT SCIENCE 2021; 12:802924. [PMID: 35095975 PMCID: PMC8792736 DOI: 10.3389/fpls.2021.802924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 05/07/2023]
Abstract
Plants acquire the ability to adapt to the environment using transmembrane receptor-like kinases (RLKs) to sense the challenges from their surroundings and respond appropriately. RLKs perceive a variety of ligands through their variable extracellular domains (ECDs) that activate the highly conserved intracellular kinase domains (KDs) to control distinct biological functions through a well-developed downstream signaling cascade. A new study has emerged that brassinosteroid-insensitive 1 (BRI1) family and excess microsporocytes 1 (EMS1) but not GASSHO1 (GSO1) and other RLKs control distinct biological functions through the same signaling pathway, raising a question how the signaling pathway represented by BRI1 is specified. Here, we confirm that BRI1-KD is not functionally replaceable by GSO1-KD since the chimeric BRI1-GSO1 cannot rescue bri1 mutants. We then identify two subdomains S1 and S2. BRI1 with its S1 and S2 substituted by that of GSO1 cannot rescue bri1 mutants. Conversely, chimeric BRI1-GSO1 with its S1 and S2 substituted by that of BRI1 can rescue bri1 mutants, suggesting that S1 and S2 are the sufficient requirements to specify the signaling function of BRI1. Consequently, all the other subdomains in the KD of BRI1 are functionally replaceable by that of GSO1 although the in vitro kinase activities vary after replacements, suggesting their functional robustness and mutational plasticity with diverse kinase activity. Interestingly, S1 contains αC-β4 loop as an allosteric hotspot and S2 includes kinase activation loop, proposedly regulating kinase activities. Further analysis reveals that this specific function requires β4 and β5 in addition to αC-β4 loop in S1. We, therefore, suggest that BRI1 specifies its kinase function through an allosteric regulation of these two subdomains to control its distinct biological functions, providing a new insight into the kinase evolution.
Collapse
|
39
|
Galindo-Trigo S, Blümke P, Simon R, Butenko MA. Emerging mechanisms to fine-tune receptor kinase signaling specificity. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:41-51. [PMID: 32623322 DOI: 10.1016/j.pbi.2020.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/02/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Organisms need to constantly inform their cellular machinery about the biochemical and physical status of their surroundings to adapt and thrive. While some external signals are also sensed intracellularly, a considerable share of external information is registered already at the plasma membrane (PM). Receptor kinases (RKs) are crucial for plant cells to integrate such cues from the environment, from microbes, or from other cells to coordinate their physiological response and their development. Early studies on RK signaling depicted the path from external signal to internal response in a linear fashion, but recent findings show that these cellular information highways are highly interconnected and pass signals through molecular intersections. In this review, we first discuss how individual RKs simultaneously contribute to the transduction and deconvolution of a multitude of signals by controlled assembly into diverse RK complexes, exemplified by FERONIA signaling versatility. We then elaborate on how cells can exert highly localized control over the assembly, interaction and composition of such complexes in order to attain essential cellular output specificity.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Patrick Blümke
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
40
|
Genome-Wide Characterization, Evolution, and Expression Analysis of the Leucine-Rich Repeat Receptor-Like Protein Kinase (LRR-RLK) Gene Family in Medicago truncatula. Life (Basel) 2020; 10:life10090176. [PMID: 32899802 PMCID: PMC7555646 DOI: 10.3390/life10090176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) constitute the largest subfamily of receptor-like kinases (RLKs) in plants. They play roles in plant growth and developmental and physiological processes, but less is known about the functions of LRR-RLKs in Medicago truncatula. Our genome-wide analysis revealed 329 LRR-RLK genes in the M.truncatula genome. Phylogenetic and classification analysis suggested that these genes could be classified into 15 groups and 24 subgroups. A total of 321 genes were mapped onto all chromosomes, and 23 tandem duplications (TDs) involving 56 genes were distributed on each chromosome except 4. Twenty-seven M.truncatula LRR-RLK segmental duplication gene pairs were colinearly related. The exon/intron organization, motif composition and arrangements were relatively conserved among members of the same groups or subgroups. Using publicly available RNAseq data and quantitative real-time polymerase chain reaction (qRT-PCR), expression profiling suggested that LRR-RLKs were differentially expressed among different tissues, while some were expressed specifically in the roots and nodules. The expression of LRR-RLKs in A17 and 4 nodule mutants under rhizobial infection showed that 36 LRR-RKLs were highly upregulated in the sickle (skl) mutant [an ethylene (ET)-insensitive, Nod factor-hypersensitive mutant] after 12 h of rhizobium inoculation. Among these LRR-RLKs, six genes were also expressed specifically in the roots and nodules, which might be specific to the Nod factor and involved in autoregulation of the nodulation signal. Our results provide information on the LRR-RLK gene family in M. truncatula and serve as a guide for functional research of the LRR-RLKs.
Collapse
|
41
|
Zhao M, Li C, Ma X, Xia R, Chen J, Liu X, Ying P, Peng M, Wang J, Shi CL, Li J. KNOX protein KNAT1 regulates fruitlet abscission in litchi by repressing ethylene biosynthetic genes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4069-4082. [PMID: 32227110 DOI: 10.1093/jxb/eraa162] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/27/2020] [Indexed: 05/25/2023]
Abstract
Abscission is triggered by multiple environmental and developmental cues, including endogenous plant hormones. KNOTTED-LIKE HOMEOBOX (KNOX) transcription factors (TFs) play an important role in controlling abscission in plants. However, the underlying molecular mechanism of KNOX TFs in abscission is largely unknown. Here, we identified LcKNAT1, a KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1)-like protein from litchi, which regulates abscission by modulating ethylene biosynthesis. LcKNAT1 is expressed in the fruit abscission zone and its expression decreases during fruitlet abscission. Furthermore, the expression of the ethylene biosynthetic genes LcACS1, LcACS7, and LcACO2 increases in the fruit abscission zone, in parallel with the emission of ethylene in fruitlets. In vitro and in vivo assays revealed that LcKNAT1 inhibits the expression of LcACS/ACO genes by directly binding to their promoters. Moreover, ectopic expression of LcKNAT1 represses flower abscission in tomatoes. Transgenic plants expressing LcKNAT1 also showed consistently decreased expression of ACS/ACO genes. Collectively, these results indicate that LcKNAT1 represses abscission via the negative regulation of ethylene biosynthesis.
Collapse
Affiliation(s)
- Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Manjun Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chun-Lin Shi
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
42
|
Gaafar YZA, Ziebell H. Aphid transmission of nanoviruses. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21668. [PMID: 32212397 DOI: 10.1002/arch.21668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The genus Nanovirus consists of plant viruses that predominantly infect legumes leading to devastating crop losses. Nanoviruses are transmitted by various aphid species. The transmission occurs in a circulative nonpropagative manner. It was long suspected that a virus-encoded helper factor would be needed for successful transmission by aphids. Recently, a helper factor was identified as the nanovirus-encoded nuclear shuttle protein (NSP). The mode of action of NSP is currently unknown in contrast to helper factors from other plant viruses that, for example, facilitate binding of virus particles to receptors within the aphids' stylets. In this review, we are summarizing the current knowledge about nanovirus-aphid vector interactions.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
43
|
Kućko A, Wilmowicz E, Pokora W, Alché JDD. Disruption of the Auxin Gradient in the Abscission Zone Area Evokes Asymmetrical Changes Leading to Flower Separation in Yellow Lupine. Int J Mol Sci 2020; 21:E3815. [PMID: 32471291 PMCID: PMC7312349 DOI: 10.3390/ijms21113815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022] Open
Abstract
How auxin transport regulates organ abscission is a long-standing and intriguing question. Polar auxin transport across the abscission zone (AZ) plays a more important role in the regulation of abscission than a local concentration of this hormone. We recently reported the existence of a spatiotemporal sequential pattern of the indole-3-acetic acid (IAA) localization in the area of the yellow lupine AZ, which is a place of flower detachment. In this study, we performed analyses of AZ following treatment with an inhibitor of polar auxin transport (2,3,5-triiodobenzoic acid (TIBA)). Once we applied TIBA directly onto the AZ, we observed a strong response as demonstrated by enhanced flower abscission. To elucidate the molecular events caused by the inhibition of auxin movement, we divided the AZ into the distal and proximal part. TIBA triggered the formation of the IAA gradient between these two parts. The AZ-marker genes, which encode the downstream molecular components of the inflorescence deficient in abscission (IDA)-signaling system executing the abscission, were expressed in the distal part. The accumulation of IAA in the proximal area accelerated the biosynthesis of abscisic acid and ethylene (stimulators of flower separation), which was also reflected at the transcriptional level. Accumulated IAA up-regulated reactive oxygen species (ROS) detoxification mechanisms. Collectively, we provide new information regarding auxin-regulated processes operating in specific areas of the AZ.
Collapse
Affiliation(s)
- Agata Kućko
- Department of Plant Physiology, Institute of Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland
| | - Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Juan De Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain;
| |
Collapse
|
44
|
Yu YK, Li YL, Ding LN, Sarwar R, Zhao FY, Tan XL. Mechanism and Regulation of Silique Dehiscence, Which Affects Oil Seed Production. FRONTIERS IN PLANT SCIENCE 2020; 11:580. [PMID: 32670302 PMCID: PMC7326126 DOI: 10.3389/fpls.2020.00580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Silique dehiscence is an important physiological process during natural growth that enables mature seeds to be released from plants, which then undergo reproduction and ensure the survival of future generations. In agricultural production, the time and degree of silique dehiscence affect the harvest time and processing of crops. Premature silique dehiscence leads to seeds being shed before harvest, resulting in substantial reductions to yields. Conversely, late silique dehiscence is not conducive to harvesting, and grain weight and oil content will be reduced due to the respiratory needs of seeds. In this paper, the mechanisms and regulation of silique dehiscence, and its application in agricultural production is reviewed.
Collapse
|
45
|
Lee Y. More than cell wall hydrolysis: orchestration of cellular dynamics for organ separation. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:37-43. [PMID: 31030063 DOI: 10.1016/j.pbi.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 05/22/2023]
Abstract
Plants' ability to cope with the ever-changing environment is one of the hallmarks that distinguishes plants from animals. Plants stationed in one place have evolved to remodel their architecture in response to the environmental factors by continuously creating new organ systems and removing existing organs through abscission. Herein, I provide insights into developmental plasticity of plants, focusing on the exit strategy (abscission). When plants start developing organs, the elimination tactics are also established in the form of abscission zones (AZ), that is, specialized cell layers for organ separation. Herein, recent advances in understanding the spatial regulatory mechanism of AZ in terms of cellular dynamics, coordination, and reconfiguration of the physical barrier of the cell wall to achieve precise abscission are discussed.
Collapse
Affiliation(s)
- Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
46
|
Heo S, Chung YS. Validation of MADS-box genes from apple fruit pedicels during early fruit abscission by transcriptome analysis and real-time PCR. Genes Genomics 2019; 41:1241-1251. [PMID: 31350732 DOI: 10.1007/s13258-019-00852-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fruit abscission in an isolated region called abscission zone (AZ) is regulated by several genes including JOINTLESS, MACROCALYX and SEPALLATA, MADS-box genes, in tomato. OBJECTIVE The surviving central pedicels and the abscised lateral pedicels were examined in fruit clusters in order to investigate apple MADS-box genes from fruit pedicels of self-abscising apple 'Saika' during early fruit abscission. METHODS After performing RNA-Seq, transcription profiling was conducted on the MADS-box genes from apple central and lateral pedicels. The JOINTLESS homolog of apple (MdJOINTLESS) was amplified using degenerate primers annealing to a highly conserved domain based on the orthologous genes of various crops, including JOINTLESS gene of tomato. The expression pattern of MdJOINTLESS was investigated in central and lateral pedicles by real-time PCR. RESULTS Some homologs were found which similar to JOINTLESS, MACROCALYX and SEPALLATA of tomato MADS-box genes from transcriptome analysis and RACE. Using phylogenetic analyses with the MADS-box gene family, MdJOINTLESS was classified into the SHORT VEGETATIVE PHASE (SVP) clade that included Arabidopsis and other crops. The expression level of MdJOINTLESS in central pedicel was more than twice as high as that of lateral pedicel. CONCLUSION In the current study, we could find apple homologs of JOINTLESS, MACROCALYX, SEPALLATA, which were known to regulate pedicel AZ development in tomato. Furthermore, MdJOINTLESS might contribute to auxin gradation, influencing hierarchical ranking of auxin transport between fruit pedicels of self-abscising apple.
Collapse
Affiliation(s)
- Seong Heo
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, 39000, South Korea
- Department of Plant Science, Seoul National University, Seoul, 08826, South Korea
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
47
|
Botton A, Ruperti B. The Yes and No of the Ethylene Involvement in Abscission. PLANTS 2019; 8:plants8060187. [PMID: 31242577 PMCID: PMC6630578 DOI: 10.3390/plants8060187] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 02/04/2023]
Abstract
Abscission has significant implications in agriculture and several efforts have been addressed by researchers to understand its regulatory steps in both model and crop species. Among the main players in abscission, ethylene has exhibited some fascinating features, in that it was shown to be involved at different stages of abscission induction and, in some cases, with interesting roles also within the abscising organ at the very early stages of the process. This review summarizes the current knowledge about the role of ethylene both at the level of the abscission zone and within the shedding organ, pointing out the missing pieces of the very complicated puzzle of the abscission process in the different species.
Collapse
Affiliation(s)
- Alessandro Botton
- Department of Agronomy, Food, Natural resources, Animals and Environment-DAFNAE, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy.
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural resources, Animals and Environment-DAFNAE, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy.
| |
Collapse
|
48
|
Kim J, Chun JP, Tucker ML. Transcriptional Regulation of Abscission Zones. PLANTS 2019; 8:plants8060154. [PMID: 31174352 PMCID: PMC6631628 DOI: 10.3390/plants8060154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Precise and timely regulation of organ separation from the parent plant (abscission) is consequential to improvement of crop productivity as it influences both the timing of harvest and fruit quality. Abscission is tightly associated with plant fitness as unwanted organs (petals, sepals, filaments) are shed after fertilization while seeds, fruits, and leaves are cast off as means of reproductive success or in response to abiotic/biotic stresses. Floral organ abscission in Arabidopsis has been a useful model to elucidate the molecular mechanisms that underlie the separation processes, and multiple abscission signals associated with the activation and downstream pathways have been uncovered. Concomitantly, large-scale analyses of omics studies in diverse abscission systems of various plants have added valuable insights into the abscission process. The results suggest that there are common molecular events linked to the biosynthesis of a new extracellular matrix as well as cell wall disassembly. Comparative analysis between Arabidopsis and soybean abscission systems has revealed shared and yet disparate regulatory modules that affect the separation processes. In this review, we discuss our current understanding of the transcriptional regulation of abscission in several different plants that has improved on the previously proposed four-phased model of organ separation.
Collapse
Affiliation(s)
- Joonyup Kim
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jong-Pil Chun
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA Bldg. 006, 10300 Baltimore Ave., Beltsville, MD 20705, USA.
| |
Collapse
|
49
|
Zhao W, Baldwin EA, Bai J, Plotto A, Irey M. Comparative analysis of the transcriptomes of the calyx abscission zone of sweet orange insights into the huanglongbing-associated fruit abscission. HORTICULTURE RESEARCH 2019; 6:71. [PMID: 31231529 PMCID: PMC6544638 DOI: 10.1038/s41438-019-0152-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 05/27/2023]
Abstract
Citrus greening disease or huanglongbing (HLB) is associated with excessive pre-harvest fruit drop. To understand the mechanisms of the HLB-associated fruit abscission, transcriptomes were analyzed by RNA sequencing of calyx abscission zones (AZ-C) of dropped "Hamlin" oranges from HLB-diseased trees upon shaking the trees (Dd), retained oranges on diseased trees (Rd), dropped oranges from healthy shaken trees (Dh), and retained oranges on healthy trees (Rh). Cluster analysis of transcripts indicated that Dd had the largest distances from all other groups. Comparisons of transcriptomes revealed 1047, 1599, 813, and 764 differentially expressed genes (DEGs) between Dd/Rd, Dd/Dh, Dh/Rh, and Rd/Rh. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated hormone signaling, defense response, and secondary metabolism were involved in HLB-associated fruit abscission. Ethylene (ET) and jasmonic acid (JA) synthesis/signaling-related genes were upregulated in Dd, while other phytohormone-related genes were generally downregulated. In addition, genes related to JA/ET-activated defense response were upregulated in Dd as well. Consistent with the phytohormone gene expression data, increased levels (p < 0.05) of ET and JA, and a decreased level (p < 0.05) of abscisic acid were found in Dd compared with Rd, Dh or Rh. Lasiodiploidia theobromae level in Dd AZ-C was higher than the other fruit types, confirmed by qPCR, indicating AZ-C secondary fungal infection of HLB fruit may exacerbate their abscission. This information will help formulate effective strategies to control HLB-related abscission.
Collapse
Affiliation(s)
- Wei Zhao
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Elizabeth A. Baldwin
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Jinhe Bai
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Anne Plotto
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Mike Irey
- Southern Gardens Citrus Nursery, 111 Ponce de Leon Avenue, Clewiston, FL 33440 USA
| |
Collapse
|
50
|
Tranbarger TJ, Domonhédo H, Cazemajor M, Dubreuil C, Fischer U, Morcillo F. The PIP Peptide of INFLORESCENCE DEFICIENT IN ABSCISSION Enhances Populus Leaf and Elaeis guineensis Fruit Abscission. PLANTS (BASEL, SWITZERLAND) 2019; 8:E143. [PMID: 31151222 PMCID: PMC6630328 DOI: 10.3390/plants8060143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
The programmed loss of a plant organ is called abscission, which is an important cell separation process that occurs with different organs throughout the life of a plant. The use of floral organ abscission in Arabidopsis thaliana as a model has allowed greater understanding of the complexities of organ abscission, but whether the regulatory pathways are conserved throughout the plant kingdom and for all organ abscission types is unknown. One important pathway that has attracted much attention involves a peptide ligand-receptor signalling system that consists of the secreted peptide IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) and at least two leucine-rich repeat (LRR) receptor-like kinases (RLK), HAESA (HAE) and HAESA-LIKE2 (HSL2). In the current study we examine the bioactive potential of IDA peptides in two different abscission processes, leaf abscission in Populus and ripe fruit abscission in oil palm, and find in both cases treatment with IDA peptides enhances cell separation and abscission of both organ types. Our results provide evidence to suggest that the IDA-HAE-HSL2 pathway is conserved and functions in these phylogenetically divergent dicot and monocot species during both leaf and fruit abscission, respectively.
Collapse
Affiliation(s)
- Timothy John Tranbarger
- UMR DIADE, Institut de Recherche pour le Développement, Université de Montpellier, 34394 Montpellier, France.
- Ecology and Genetics Laboratory, Pontificia Universidad Católica del Ecuador (PUCE), 17-01-21-84 Quito, Ecuador.
| | | | - Michel Cazemajor
- CRAPP, INRAB, BP 1 Pobè, Benin.
- PalmElit SAS, F-34980 Montferrier-sur-Lez, France.
| | - Carole Dubreuil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
- DRT DPACA, CEA Tech Cadarache, 13108 Saint Paul Lez Durance, France.
| | - Urs Fischer
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
- KWS SAAT SE, RD-BT, 37574 Einbeck, Germany.
| | | |
Collapse
|