1
|
Wang B, Bian Q. SATB1 prevents immune cell infiltration by regulating chromatin organization and gene expression of a chemokine gene cluster in T cells. Commun Biol 2024; 7:1304. [PMID: 39394451 PMCID: PMC11470149 DOI: 10.1038/s42003-024-07021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
SATB1, a key regulator of T cell development, governs lineage-specific transcriptional programs upon T cell activation. The absence of SATB1 has been linked to the initiation and progression of autoimmunity. However, its precise roles in this process remain incompletely understood. Here we show that conditional knockout of Satb1 in CD4+ T cells in mice led to T cell hyperactivation and inflammatory cell infiltration across multiple organs. Transcriptional profiling on activated T cells revealed that the loss of SATB1 led to aberrant upregulation of CC chemokines. Treating Satb1 conditional knockout mice with CC chemokine receptor inhibitor alleviated inflammatory cell infiltration. Intriguingly, SATB1's transcriptional regulation of chemokine genes could not be attributed to its direct binding to chemokine promoters. Instead, SATB1 exerted its regulatory effects by controlling higher-order chromatin organization at a CC chemokine locus. The loss of SATB1 led to the emergence of a new chromatin domain encompassing the Ccl3, Ccl4, Ccl5, Ccl6, and Ccl9 genes and a distal enhancer, resulting in increased contacts between the enhancer and all five chemokine genes, thus inducing their upregulation. Collectively, these results demonstrate that SATB1 protects organs from immune cell infiltration by regulating chemokine expression, providing valuable insights into the development of autoimmunity-related phenotypes.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wutikeli H, Yu Y, Zhang T, Cao J, Nawy S, Shen Y. Role of Elavl-like RNA-binding protein in retinal development and signal transduction. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167518. [PMID: 39307290 DOI: 10.1016/j.bbadis.2024.167518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
RNA-binding proteins (RBPs) play central roles in post-transcriptional gene regulation. However, the function of RBP in retinal progenitor cell differentiation and synaptic signal transmission are largely unexplored. Previously we have shown that Elavl2 regulates amacrine cell (AC) differentiation during retinogenesis, by directly binding to Nr4a2 and Barhl2. Elavl2 is expressed in early neuronal progenitors to mature neurons, and Elavl4 expression begins slightly later, during cortical neuron development as a paralog. Here, Retinal-specific Elavl2 and Elavl4 double knockout mice were made to further explore the role of Elavl2 and Elavl4 in retinal development and signal transduction. We disclose that Elavl4 binds to Satb1 to regulate Neurod1, then promoting retinal progenitor and amacrine cells differentiation. We were also surprised to find that Elavl2 interacted with GABAB receptors at the RNA and protein levels. In conclusion, Elavl2 and Elavl4 regulate amacrine cells differentiation through different pathways, leading to decreased scotopic vision. Our findings reveal the roles of Elavl2 and Elavl4 in retinal amacrine cells differentiation in modulating visual functions.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Yao Yu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Tianlu Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | | | - Scott Nawy
- University of California Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Zhang Y, Jia C, Li S, Wang S, He Z, Wu G, Yu M, Lu Y, Yu D. Comparative genome-wide association study on body weight in Chinese native ducks using four models. Poult Sci 2024; 103:103899. [PMID: 38909509 PMCID: PMC11253684 DOI: 10.1016/j.psj.2024.103899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The Jinling White duck represents a newly developed breed characterized by a rapid growth rate and a superior meat quality, offering significant economic value and research potential; however, the genetic basis underlying their body weight traits remains less understood. Here, we performed whole-genome resequencing for 201 diverse Jinling White male ducks and conducted population genomic analyses, suggesting a rich genetic diversity within the Jinling White duck population. Equipped with our genomic resources, we applied genome-wide association analysis for body weight on birth (BWB), body weight on 1 wk (BW1), body weight on 3 wk (BW3), body weight on 5 wk (BW5) and body weight on 7 wk (BW7) using 4 statistical models. Comparative studies indicated that factored spectrally transformed linear mixed models (FaST-LMM) demonstrated the most superior efficiency, yielding more results with the minimal false positives. We discovered that PUS7, FBXO11, FOXN2, MSH6, and SLC4A4 were associated with BWB. RAG2, and TMEFF2 were candidate genes for BW1, and STARD13, Klotho, ZAR1L are likely candidates for BW3 and BW5. PLXNC1, ATP1A1, CD58, FRYL, OCIAD1, and OCIAD2 were linked to BW7. These findings provide a genetic reference for the selection and breeding of Jinling White ducks, while also deepened our understanding of Growth and development phenotypic in ducks.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chao Jia
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shiwei Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Sike Wang
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Zongliang He
- Nanjing Academy of Animal Husbandry and Poultry, Nanjing, Jiangsu, 210000, China
| | - Guansuo Wu
- Nanjing Academy of Animal Husbandry and Poultry, Nanjing, Jiangsu, 210000, China
| | - Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
4
|
Qi W, Bai J, Wang R, Zeng X, Zhang L. SATB1, senescence and senescence-related diseases. J Cell Physiol 2024; 239:e31327. [PMID: 38801120 DOI: 10.1002/jcp.31327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Aging leads to an accumulation of cellular mutations and damage, increasing the risk of senescence, apoptosis, and malignant transformation. Cellular senescence, which is pivotal in aging, acts as both a guard against cellular transformation and as a check against cancer progression. It is marked by stable cell cycle arrest, widespread macromolecular changes, a pro-inflammatory profile, and altered gene expression. However, it remains to be determined whether these differing subsets of senescent cells result from unique intrinsic programs or are influenced by their environmental contexts. Multiple transcription regulators and chromatin modifiers contribute to these alterations. Special AT-rich sequence-binding protein 1 (SATB1) stands out as a crucial regulator in this process, orchestrating gene expression by structuring chromatin into loop domains and anchoring DNA elements. This review provides an overview of cellular senescence and delves into the role of SATB1 in senescence-related diseases. It highlights SATB1's potential in developing antiaging and anticancer strategies, potentially contributing to improved quality of life and addressing aging-related diseases.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Jinping Bai
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Lihui Zhang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
5
|
Wang B, Bian Q. Regulation of 3D genome organization during T cell activation. FEBS J 2024. [PMID: 38944686 DOI: 10.1111/febs.17211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Within the three-dimensional (3D) nuclear space, the genome organizes into a series of orderly structures that impose important influences on gene regulation. T lymphocytes, crucial players in adaptive immune responses, undergo intricate transcriptional remodeling upon activation, leading to differentiation into specific effector and memory T cell subsets. Recent evidence suggests that T cell activation is accompanied by dynamic changes in genome architecture at multiple levels, providing a unique biological context to explore the functional relevance and molecular mechanisms of 3D genome organization. Here, we summarize recent advances that link the reorganization of genome architecture to the remodeling of transcriptional programs and conversion of cell fates during T cell activation and differentiation. We further discuss how various chromatin architecture regulators, including CCCTC-binding factor and several transcription factors, collectively modulate the genome architecture during this process.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai lnstitute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Qian Bian
- Shanghai lnstitute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
6
|
Gao M, Shi J, Xiao X, Yao Y, Chen X, Wang B, Zhang J. PD-1 regulation in immune homeostasis and immunotherapy. Cancer Lett 2024; 588:216726. [PMID: 38401888 DOI: 10.1016/j.canlet.2024.216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Harnessing the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is pivotal in autoimmunity and cancer immunotherapy. PD-1 receptors on immune cells engage with one of its ligands, PD-L1 or PD-L2, expressed on antigen-presenting cells or tumor cells, driving T-cell dysfunction and tumor immune escape. Thus, targeting PD-1/PD-L1 revitalizes cytotoxic T cells for cancer elimination. However, a majority of cancer patients don't respond to PD-1/PD-L1 blockade, and the underlying mechanisms remain partially understood. Recent studies have revealed that PD-1 expression levels or modifications impact the effectiveness of anti-PD-1/PD-L1 treatments. Therefore, understanding the molecular mechanisms governing PD-1 expression and modifications is crucial for innovating therapeutic strategies to enhance the efficacy of PD-1/PD-L1 inhibition. This article presents a comprehensive overview of advancements in PD-1 regulation and highlights their potential in modulating immune homeostasis and cancer immunotherapy, aiming to refine clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jie Shi
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangling Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yingmeng Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Chen
- Chongqing University Medical School, Chongqing, 400044, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Yu KQ, Li CF, Ye L, Song Y, Wang YH, Lin YR, Liao ST, Mei ZC, Lv L. Long Non-Coding RNA ANRIL Regulates Inflammatory Factor Expression in Ulcerative Colitis Via the miR-191-5p/SATB1 Axis. Inflammation 2024; 47:513-529. [PMID: 37985573 DOI: 10.1007/s10753-023-01925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Ulcerative colitis, an inflammatory bowel disease, manifests with symptoms such as abdominal pain, diarrhea, and mucopurulent feces. The long non-coding RNA (lncRNA) ANRIL exhibits significantly reduced expression in UC, yet its specific mechanism is unknown. This study revealed that ANRIL is involved in the progression of UC by inhibiting IL-6 and TNF-α via miR-191-5P/SATB1 axis. We found that in patients with UC, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were significantly overexpressed in inflamed colon sites, whereas ANRIL was significantly under-expressed and associated with disease severity. The downregulation of ANRIL resulted in the increased expression of IL-6 and TNF-α in LPS-treated FHCs. ANRIL directly targeted miR-191-5p, thereby inhibiting its expression and augmenting SATB1 expression. Moreover, overexpression of miR-191-5p abolished ANRIL-mediated inhibition of IL-6 and TNF-α production. Dual luciferase reporter assays revealed the specific binding of miR-191-5p to ANRIL and SATB1. Furthermore, the downregulation of ANRIL promoted DSS-induced colitis in mice. Together, we provide evidence that ANRIL plays a critical role in regulating IL-6 and TNF-α expression in UC by modulating the miR-191-5p/SATB1 axis. Our study provides novel insights into progression and molecular therapeutic strategies in UC.
Collapse
Affiliation(s)
- Ke-Qi Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Chuan-Fei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Lu Ye
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Ya Song
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Yan-Hui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Yu-Ru Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Sheng-Tao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China.
| | - Zhe-Chuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China.
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China.
| |
Collapse
|
8
|
Örnek S, Ozekinci S, Ipin T, Kocaturk E. TOX, TWIST1, STAT4, and SATB1 protein expressions in early-stage mycosis fungoides. J Cutan Pathol 2024; 51:232-238. [PMID: 37932931 DOI: 10.1111/cup.14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Diagnosis of early mycosis fungoides (eMF) is challenging and often delayed as many of its clinical and histopathologic features may mimic various benign inflammatory dermatoses (BIDs). The products of the thymocyte selection-associated high mobility group box (TOX), twist family BHLH transcription factor 1 (TWIST1), signal transducer and activator of transcription 4 (STAT4), and special AT-rich sequence-binding protein 1 (SATB1) genes function as transcription factors and are involved in the pathogenesis of MF. OBJECTIVES We aim to determine the diagnostic value of TOX, TWIST1, STAT4, and SATB1 protein expressions in eMF. METHODS This non-randomized, controlled, prospective analytic study was conducted by performing immunohistochemistry staining with TOX, TWIST1, STAT4, and SATB1 polyclonal antibodies in lesional skin biopsies of eMF and BID patients. Nuclear staining of lymphocytes was compared between eMF and BIDs, and the capacity of these antibodies to predict eMF was determined. RESULTS Immunostainings with anti-TWIST1 showed an increase in protein expression (p = 0.003) and showed a decrease with anti-SATB1 antibodies in eMF compared to BIDs (p = 0.005) while anti-TOX and anti-STAT4 antibodies did not exhibit significant differences (p = 0.384; p = 0.150). Receiver operating characteristic analysis showed that immunohistochemical evaluations of TWIST1 and SATB1 protein expressions can differentiate eMF (area under the curve [AUC]: 0.728, 95% confidence interval [CI]: 0.605-0.851, p = 0.002; AUC: 0.686, 95% CI: 0.565-0.807, p = 0.013). CONCLUSIONS TWIST1 and SATB1 are potential diagnostic markers for the histologic diagnosis of eMF.
Collapse
Affiliation(s)
- Sinem Örnek
- Department of Dermatology, Health Sciences University Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Selver Ozekinci
- Department of Pathology, Dicle University Hospital, Diyarbakir, Turkey
| | - Tugba Ipin
- Department of Pathology, Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Emek Kocaturk
- Department of Dermatology, Koc University School of Medicine, Istanbul, Turkey
- Institute of Allergy, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Miyano M, LaBarge MA. ELF5: A Molecular Clock for Breast Aging and Cancer Susceptibility. Cancers (Basel) 2024; 16:431. [PMID: 38275872 PMCID: PMC10813895 DOI: 10.3390/cancers16020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is predominantly an age-related disease, with aging serving as the most significant risk factor, compounded by germline mutations in high-risk genes like BRCA1/2. Aging induces architectural changes in breast tissue, particularly affecting luminal epithelial cells by diminishing lineage-specific molecular profiles and adopting myoepithelial-like characteristics. ELF5 is an important transcription factor for both normal breast and breast cancer development. This review focuses on the role of ELF5 in normal breast development, its altered expression throughout aging, and its implications in cancer. It discusses the lineage-specific expression of ELF5, its regulatory mechanisms, and its potential as a biomarker for breast-specific biological age and cancer risk.
Collapse
Affiliation(s)
- Masaru Miyano
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Center for Cancer and Aging, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Mark A. LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Center for Cancer and Aging, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Center for Cancer Biomarkers Research, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
10
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
11
|
Bremmer F, Bohnenberger H, Findeisen P, Welter S, von Hammerstein-Equord A, Hinterthaner M, Müller D, Küffer S, Okada S, Marx A, Ströbel P. Proteomic analysis identifies argininosuccinate synthetase 1 and special AT-rich sequence binding protein 1 as reliable markers for the immunohistochemical distinction between WHO types A and B3 thymomas. Histopathology 2023; 83:607-616. [PMID: 37308176 DOI: 10.1111/his.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
AIMS The reliable classification of type A versus type B3 thymomas has prognostic and therapeutic relevance, but can be problematic due to considerably overlapping morphology. No immunohistochemical markers aiding in this distinction have been published so far. METHODS AND RESULTS We identified and quantified numerous differentially expressed proteins using an unbiased proteomic screen by mass spectrometry in pooled protein lysates from three type A and three type B3 thymomas. From these, candidates were validated in a larger series of paraffin-embedded type A and B3 thymomas. We identified argininosuccinate synthetase 1 (ASS1) and special AT-rich sequence binding protein 1 (SATB1) as highly discriminatory between 34 type A and 20 type B3 thymomas (94% sensitivity, 98% specificity and 96% accuracy). Although not the focus of this study, the same markers also proved helpful in the diagnosis of type AB (n = 14), B1 (n = 4) and B2 thymomas (n = 10). CONCLUSIONS Mutually exclusive epithelial expression of ASS1 in 100% of type B3 thymomas and ectopic nuclear expression of SATB1 in 92% of type A thymomas support the distinction between type A and type B3 thymomas with 94% sensitivity, 98% specificity and 96% accuracy.
Collapse
Affiliation(s)
- Felix Bremmer
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | | | | | - Stefan Welter
- Thoracic Surgery Department, Lung Clinic Hemer, Hemer, Germany
| | | | - Marc Hinterthaner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | - Denise Müller
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Satoru Okada
- Institute of Pathology, University Medical Center, Göttingen, Germany
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Prefectural University of Medicine, Kyoto, Japan
| | - Alexander Marx
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center, Göttingen, Germany
| |
Collapse
|
12
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
13
|
Turovsky EA, Tarabykin VS, Varlamova EG. Deletion of the Neuronal Transcription Factor Satb1 Induced Disturbance of the Kinome and Mechanisms of Hypoxic Preconditioning. BIOLOGY 2023; 12:1207. [PMID: 37759606 PMCID: PMC10667992 DOI: 10.3390/biology12091207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
Genetic disorders affecting the functioning of the brain lead not only to the development of numerous hereditary diseases but also to the development of neurodegenerative and cognitive disorders. The result of this may be the disability of part of the able-bodied population. Almost all pathological states of the brain are characterized by serious defects in the intracellular and intercellular signaling of neurons and glial cells. At the same time, the mechanisms of disruption of these signaling cascades are not well understood due to the large number of molecules, including transcription factors that, when mutated, cause brain malformations. The transcription factor Satb1 is one of the least studied factors in the cerebral cortex, and the effects of its deletion in the postnatal brain are practically not studied. Hyperexcitability of neurons is observed in many genetic diseases of the nervous system (Hirschsprung's disease, Martin-Bell syndrome, Huntington's disease, Alzheimer's, etc.), as well as in ischemic brain phenomena and convulsive and epileptic conditions of the brain. In turn, all these disorders of brain physiology are associated with defects in intracellular and intercellular signaling and are often the result of genetic disorders. Using Satb1 mutant mice and calcium neuroimaging, we show that Satb1 deletion in projection neurons of the neocortex causes downregulation of protein kinases PKC, CaMKII, and AKT/PKB, while a partial deletion does not cause a dramatic disruption of kinome and Ca2+ signaling. As a result, Satb1-null neurons are characterized by increased spontaneous Ca2+ activity and hyperexcitability when modeling epileptiform activity. As a result of the deletion of Satb1, preconditioning mechanisms are disrupted in neurons during episodes of hypoxia. This occurs against the background of increased sensitivity of neurons to a decrease in the partial pressure of oxygen, which may indicate the vulnerability of neuronal networks and be accompanied by impaired expression of the Satb1 transcription factor. Here, we show that Satb1 deletion impaired the expression of a number of key kinases and neuronal hyperexcitation in models of epileptiform activity and hypoxia.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia;
| | - Viktor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia;
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
14
|
Zelenka T, Papamatheakis DA, Tzerpos P, Panagopoulos G, Tsolis KC, Papadakis VM, Mariatos Metaxas D, Papadogkonas G, Mores E, Kapsetaki M, Papamatheakis J, Stanek D, Spilianakis C. A novel SATB1 protein isoform with different biophysical properties. Front Cell Dev Biol 2023; 11:1242481. [PMID: 37635874 PMCID: PMC10457122 DOI: 10.3389/fcell.2023.1242481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Intra-thymic T cell development is coordinated by the regulatory actions of SATB1 genome organizer. In this report, we show that SATB1 is involved in the regulation of transcription and splicing, both of which displayed deregulation in Satb1 knockout murine thymocytes. More importantly, we characterized a novel SATB1 protein isoform and described its distinct biophysical behavior, implicating potential functional differences compared to the commonly studied isoform. SATB1 utilized its prion-like domains to transition through liquid-like states to aggregated structures. This behavior was dependent on protein concentration as well as phosphorylation and interaction with nuclear RNA. Notably, the long SATB1 isoform was more prone to aggregate following phase separation. Thus, the tight regulation of SATB1 isoforms expression levels alongside with protein post-translational modifications, are imperative for SATB1's mode of action in T cell development. Our data indicate that deregulation of these processes may also be linked to disorders such as cancer.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Petros Tzerpos
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | | | - Konstantinos C. Tsolis
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Vassilis M. Papadakis
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | | - George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Eleftherios Mores
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Manouela Kapsetaki
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Joseph Papamatheakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - David Stanek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology—Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| |
Collapse
|
15
|
Nomura A, Kobayashi T, Seo W, Ohno-Oishi M, Kakugawa K, Muroi S, Yoshida H, Endo TA, Moro K, Taniuchi I. Identification of a novel enhancer essential for Satb1 expression in T H2 cells and activated ILC2s. Life Sci Alliance 2023; 6:e202301897. [PMID: 37193606 PMCID: PMC10189277 DOI: 10.26508/lsa.202301897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
The genome organizer, special AT-rich binding protein-1 (SATB1), functions to globally regulate gene networks during primary T cell development and plays a pivotal role in lineage specification in CD4+ helper-, CD8+ cytotoxic-, and FOXP3+ regulatory-T cell subsets. However, it remains unclear how Satb1 gene expression is controlled, particularly in effector T cell function. Here, by using a novel reporter mouse strain expressing SATB1-Venus and genome editing, we have identified a cis-regulatory enhancer, essential for maintaining Satb1 expression specifically in TH2 cells. This enhancer is occupied by STAT6 and interacts with Satb1 promoters through chromatin looping in TH2 cells. Reduction of Satb1 expression, by the lack of this enhancer, resulted in elevated IL-5 expression in TH2 cells. In addition, we found that Satb1 is induced in activated group 2 innate lymphoid cells (ILC2s) through this enhancer. Collectively, these results provide novel insights into how Satb1 expression is regulated in TH2 cells and ILC2s during type 2 immune responses.
Collapse
Affiliation(s)
- Aneela Nomura
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Hideyuki Yoshida
- Laboratory for YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School for Medicine, Osaka University, Osaka, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences(IMS), Yokohama, Japan
| |
Collapse
|
16
|
Wilkes MC, Chae HD, Scanlon V, Cepika AM, Wentworth EP, Saxena M, Eskin A, Chen Z, Glader B, Grazia Roncarolo M, Nelson SF, Sakamoto KM. SATB1 Chromatin Loops Regulate Megakaryocyte/Erythroid Progenitor Expansion by Facilitating HSP70 and GATA1 Induction. Stem Cells 2023; 41:560-569. [PMID: 36987811 PMCID: PMC10267687 DOI: 10.1093/stmcls/sxad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/30/2023]
Abstract
Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with severe anemia, congenital malformations, and an increased risk of developing cancer. The chromatin-binding special AT-rich sequence-binding protein-1 (SATB1) is downregulated in megakaryocyte/erythroid progenitors (MEPs) in patients and cell models of DBA, leading to a reduction in MEP expansion. Here we demonstrate that SATB1 expression is required for the upregulation of the critical erythroid factors heat shock protein 70 (HSP70) and GATA1 which accompanies MEP differentiation. SATB1 binding to specific sites surrounding the HSP70 genes promotes chromatin loops that are required for the induction of HSP70, which, in turn, promotes GATA1 induction. This demonstrates that SATB1, although gradually downregulated during myelopoiesis, maintains a biological function in early myeloid progenitors.
Collapse
Affiliation(s)
- Mark C Wilkes
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Hee-Don Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Vanessa Scanlon
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Alma-Martina Cepika
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ethan P Wentworth
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mallika Saxena
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ascia Eskin
- Department of Pathology and Laboratory Medicine¸ David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Zugen Chen
- Department of Pathology and Laboratory Medicine¸ David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Bert Glader
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Maria Grazia Roncarolo
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine¸ David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Wang B, Ji L, Bian Q. SATB1 regulates 3D genome architecture in T cells by constraining chromatin interactions surrounding CTCF-binding sites. Cell Rep 2023; 42:112323. [PMID: 37000624 DOI: 10.1016/j.celrep.2023.112323] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
Special AT-rich sequence binding protein 1 (SATB1) has long been proposed to act as a global chromatin loop organizer in T cells. However, the exact functions of SATB1 in spatial genome organization remain elusive. Here we show that the depletion of SATB1 in human and murine T cells leads to transcriptional dysregulation for genes involved in T cell activation, as well as alterations of 3D genome architecture at multiple levels, including compartments, topologically associating domains, and loops. Importantly, SATB1 extensively colocalizes with CTCF throughout the genome. Depletion of SATB1 leads to increased chromatin contacts among and across the SATB1/CTCF co-occupied sites, thereby affecting the transcription of critical regulators of T cell activation. The loss of SATB1 does not affect CTCF occupancy but significantly reduces the retention of CTCF in the nuclear matrix. Collectively, our data show that SATB1 contributes to 3D genome organization by constraining chromatin topology surrounding CTCF-binding sites.
Collapse
Affiliation(s)
- Bao Wang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Luzhang Ji
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
18
|
Lozano D, López JM, Jiménez S, Morona R, Ruíz V, Martínez A, Moreno N. Expression of SATB1 and SATB2 in the brain of bony fishes: what fish reveal about evolution. Brain Struct Funct 2023; 228:921-945. [PMID: 37002478 PMCID: PMC10147777 DOI: 10.1007/s00429-023-02632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
AbstractSatb1 and Satb2 belong to a family of homeodomain proteins with highly conserved functional and regulatory mechanisms and posttranslational modifications in evolution. However, although their distribution in the mouse brain has been analyzed, few data exist in other non-mammalian vertebrates. In the present study, we have analyzed in detail the sequence of SATB1 and SATB2 proteins and the immunolocalization of both, in combination with additional neuronal markers of highly conserved populations, in the brain of adult specimens of different bony fish models at key evolutionary points of vertebrate diversification, in particular including representative species of sarcopterygian and actinopterygian fishes. We observed a striking absence of both proteins in the pallial region of actinopterygians, only detected in lungfish, the only sarcopterygian fish. In the subpallium, including the amygdaloid complex, or comparable structures, we identified that the detected expressions of SATB1 and SATB2 have similar topologies in the studied models. In the caudal telencephalon, all models showed significant expression of SATB1 and SATB2 in the preoptic area, including the acroterminal domain of this region, where the cells were also dopaminergic. In the alar hypothalamus, all models showed SATB2 but not SATB1 in the subparaventricular area, whereas in the basal hypothalamus the cladistian species and the lungfish presented a SATB1 immunoreactive population in the tuberal hypothalamus, also labeled with SATB2 in the latter and colocalizing with the gen Orthopedia. In the diencephalon, all models, except the teleost fish, showed SATB1 in the prethalamus, thalamus and pretectum, whereas only lungfish showed also SATB2 in prethalamus and thalamus. At the midbrain level of actinopterygian fish, the optic tectum, the torus semicircularis and the tegmentum harbored populations of SATB1 cells, whereas lungfish housed SATB2 only in the torus and tegmentum. Similarly, the SATB1 expression in the rhombencephalic central gray and reticular formation was a common feature. The presence of SATB1 in the solitary tract nucleus is a peculiar feature only observed in non-teleost actinopterygian fishes. At these levels, none of the detected populations were catecholaminergic or serotonergic. In conclusion, the protein sequence analysis revealed a high degree of conservation of both proteins, especially in the functional domains, whereas the neuroanatomical pattern of SATB1 and SATB2 revealed significant differences between sarcopterygians and actinopterygians, and these divergences may be related to the different functional involvement of both in the acquisition of various neural phenotypes.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Víctor Ruíz
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ana Martínez
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain.
| |
Collapse
|
19
|
Wu T, Wu Y, Jiang D, Sun W, Zou M, Vasamsetti SB, Dutta P, Leers SA, Di W, Li G. SATB2, coordinated with CUX1, regulates IL-1β-induced senescence-like phenotype in endothelial cells by fine-tuning the atherosclerosis-associated p16 INK4a expression. Aging Cell 2023; 22:e13765. [PMID: 36633253 PMCID: PMC9924951 DOI: 10.1111/acel.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies (GWAS) have validated a strong association of atherosclerosis with the CDKN2A/B locus, a locus harboring three tumor suppressor genes: p14ARF , p15INK4b , and p16INK4a . Post-GWAS functional analysis reveals that CUX is a transcriptional activator of p16INK4a via its specific binding to a functional SNP (fSNP) rs1537371 on the atherosclerosis-associated CDKN2A/B locus, regulating endothelial senescence. In this work, we characterize SATB2, another transcription factor that specifically binds to rs1537371. We demonstrate that even though both CUX1 and SATB2 are the homeodomain transcription factors, unlike CUX1, SATB2 is a transcriptional suppressor of p16INK4a and overexpression of SATB2 competes with CUX1 for its binding to rs1537371, which inhibits p16INK4a and p16INK4a -dependent cellular senescence in human endothelial cells (ECs). Surprisingly, we discovered that SATB2 expression is transcriptionally repressed by CUX1. Therefore, upregulation of CUX1 inhibits SATB2 expression, which enhances the binding of CUX1 to rs1537371 and subsequently fine-tunes p16INK4a expression. Remarkably, we also demonstrate that IL-1β, a senescence-associated secretory phenotype (SASP) gene itself and a biomarker for atherosclerosis, induces cellular senescence also by upregulating CUX1 and/or downregulating SATB2 in human ECs. A model is proposed to reconcile our findings showing how both primary and secondary senescence are activated via the atherosclerosis-associated p16INK4a expression.
Collapse
Affiliation(s)
- Ting Wu
- Department of Cardiovascular Medicine, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yuwei Wu
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Medicine, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Danli Jiang
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPennsylvaniaPittsburghUSA
| | - Meijuan Zou
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sathish Babu Vasamsetti
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPennsylvaniaPittsburghUSA
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPennsylvaniaPittsburghUSA
| | - Steven A. Leers
- UPMC Vascular LaboratoriesUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Wu Di
- Department of PeriodontologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gang Li
- Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Medicine, Division of CardiologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
20
|
Baguma-Nibasheka M, Kablar B. Mechanics of Lung Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:131-150. [PMID: 37955774 DOI: 10.1007/978-3-031-38215-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We summarize how skeletal muscle and lung developmental biology fields have been bridged to benefit from mouse genetic engineering technologies and to explore the role of fetal breathing-like movements (FBMs) in lung development, by using skeletal muscle-specific mutant mice. It has been known for a long time that FBMs are essential for the lung to develop properly. However, the cellular and molecular mechanisms transducing the mechanical forces of muscular activity into specific genetic programs that propel lung morphogenesis (development of the shape, form and size of the lung, its airways, and gas exchange surface) as well as its differentiation (acquisition of specialized cell structural and functional features from their progenitor cells) are only starting to be revealed. This chapter is a brief synopsis of the cumulative findings from that ongoing quest. An update on and the rationale for our recent International Mouse Phenotyping Consortium (IMPC) search is also provided.
Collapse
Affiliation(s)
- Mark Baguma-Nibasheka
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
21
|
Yu W, Chakravarthi VP, Borosha S, Dilower I, Lee EB, Ratri A, Starks RR, Fields PE, Wolfe MW, Faruque MO, Tuteja G, Rumi MAK. Transcriptional regulation of Satb1 in mouse trophoblast stem cells. Front Cell Dev Biol 2022; 10:918235. [PMID: 36589740 PMCID: PMC9795202 DOI: 10.3389/fcell.2022.918235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
SATB homeobox proteins are important regulators of developmental gene expression. Among the stem cell lineages that emerge during early embryonic development, trophoblast stem (TS) cells exhibit robust SATB expression. Both SATB1 and SATB2 act to maintain the trophoblast stem-state. However, the molecular mechanisms that regulate TS-specific Satb expression are not yet known. We identified Satb1 variant 2 as the predominant transcript in trophoblasts. Histone marks, and RNA polymerase II occupancy in TS cells indicated an active state of the promoter. A novel cis-regulatory region with active histone marks was identified ∼21 kbp upstream of the variant 2 promoter. CRISPR/Cas9 mediated disruption of this sequence decreased Satb1 expression in TS cells and chromosome conformation capture analysis confirmed looping of this distant regulatory region into the proximal promoter. Scanning position weight matrices across the enhancer predicted two ELF5 binding sites in close proximity to SATB1 sites, which were confirmed by chromatin immunoprecipitation. Knockdown of ELF5 downregulated Satb1 expression in TS cells and overexpression of ELF5 increased the enhancer-reporter activity. Interestingly, ELF5 interacts with SATB1 in TS cells, and the enhancer activity was upregulated following SATB overexpression. Our findings indicate that trophoblast-specific Satb1 expression is regulated by long-range chromatin looping of an enhancer that interacts with ELF5 and SATB proteins.
Collapse
Affiliation(s)
- Wei Yu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rebekah R. Starks
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael W. Wolfe
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - M. Omar Faruque
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: M. A. Karim Rumi,
| |
Collapse
|
22
|
Zelenka T, Klonizakis A, Tsoukatou D, Papamatheakis DA, Franzenburg S, Tzerpos P, Tzonevrakis IR, Papadogkonas G, Kapsetaki M, Nikolaou C, Plewczynski D, Spilianakis C. The 3D enhancer network of the developing T cell genome is shaped by SATB1. Nat Commun 2022; 13:6954. [PMID: 36376298 PMCID: PMC9663569 DOI: 10.1038/s41467-022-34345-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanisms of tissue-specific gene expression regulation via 3D genome organization are poorly understood. Here we uncover the regulatory chromatin network of developing T cells and identify SATB1, a tissue-specific genome organizer, enriched at the anchors of promoter-enhancer loops. We have generated a T-cell specific Satb1 conditional knockout mouse which allows us to infer the molecular mechanisms responsible for the deregulation of its immune system. H3K27ac HiChIP and Hi-C experiments indicate that SATB1-dependent promoter-enhancer loops regulate expression of master regulator genes (such as Bcl6), the T cell receptor locus and adhesion molecule genes, collectively being critical for cell lineage specification and immune system homeostasis. SATB1-dependent regulatory chromatin loops represent a more refined layer of genome organization built upon a high-order scaffold provided by CTCF and other factors. Overall, our findings unravel the function of a tissue-specific factor that controls transcription programs, via spatial chromatin arrangements complementary to the chromatin structure imposed by ubiquitously expressed genome organizers.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Despina Tsoukatou
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | | - Petros Tzerpos
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032, Hungary
| | | | - George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Manouela Kapsetaki
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", 16672, Vari, Greece
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece.
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
23
|
Álvarez L, Marín-García PJ, Rentero-Garrido P, Llobat L. Immune and Genomic Analysis of Boxer Dog Breed and Its Relationship with Leishmania infantum Infection. Vet Sci 2022; 9:vetsci9110608. [PMID: 36356085 PMCID: PMC9693926 DOI: 10.3390/vetsci9110608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Leishmaniosis is a zoonotic disease, endemic in 88 countries, including those from the Mediterranean region. Several authors indicate differences in susceptibility and resistance to leishmaniosis in different canine breeds, with boxer being one of the breeds with a higher prevalence of the disease. This study analyzes the serum profiles of cytokines related to the immune response, together with the screening of genomic variants fixed in boxer breed samples, to understand their differential susceptibility to L. infantum infection. The results of this study indicate new pathways related to L. infantum infection and immune response in boxers, involving genes related to interleukin and toll-like receptors, as well as to the immune system and the regulation of expression. Future studies are required to elucidate the role of specific genes in the L. infantum infection mechanism in this canine breed. Abstract Leishmaniosis, one of the most important zoonoses in Europe, is caused by Leishmania infantum, an intracellular protozoan parasite. This disease is endemic in the Mediterranean area, where the main reservoir is the dog. Several studies indicate a possible susceptibility to L. infantum infection with clinical signs in some canine breeds. One of them is the boxer breed, which shows a high prevalence of disease. In this study, immunological and genomic characterization of serum samples from boxer dogs living in the Mediterranean area were evaluated to analyze the immune response and the possible genetic explanation for this susceptibility. Serum levels of cytokines IFN-γ, IL-2, IL-6, IL-8, and IL-18 were determined by ELISA commercial tests, while the genotyping study was performed using the CanineHD DNA Analysis BeadChip. The results show relevant differences in the serum levels of cytokines compared to published data on other canine breeds, as well as sequence changes that could explain the high susceptibility of the boxer breed to the disease. Concretely, polymorphic variants in the CIITA, HSF2BP, LTBP1, MITF, NOXA1, PKIB, RAB38, RASEF, TLE1, and TLR4 genes were found, which could explain the susceptibility of this breed to L. infantum infection.
Collapse
Affiliation(s)
- Luis Álvarez
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain
| | - Pablo-Jesús Marín-García
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain
| | - Pilar Rentero-Garrido
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain
- Precision Medicine Unit, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Lola Llobat
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
24
|
Chromatin organizer SATB1 controls the cell identity of CD4 + CD8 + double-positive thymocytes by regulating the activity of super-enhancers. Nat Commun 2022; 13:5554. [PMID: 36138028 PMCID: PMC9500044 DOI: 10.1038/s41467-022-33333-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
CD4+ and CD8+ double-positive (DP) thymocytes play a crucial role in T cell development in the thymus. DP cells rearrange the T cell receptor gene Tcra to generate T cell receptors with TCRβ. DP cells differentiate into CD4 or CD8 single-positive (SP) thymocytes, regulatory T cells, or invariant nature kill T cells (iNKT) in response to TCR signaling. Chromatin organizer SATB1 is highly expressed in DP cells and is essential in regulating Tcra rearrangement and differentiation of DP cells. Here we explored the mechanism of SATB1 orchestrating gene expression in DP cells. Single-cell RNA sequencing shows that Satb1 deletion changes the cell identity of DP thymocytes and down-regulates genes specifically and highly expressed in DP cells. Super-enhancers regulate the expressions of DP-specific genes, and our Hi-C data show that SATB1 deficiency in thymocytes reduces super-enhancer activity by specifically decreasing interactions among super-enhancers and between super-enhancers and promoters. Our results reveal that SATB1 plays a critical role in thymocyte development to promote the establishment of DP cell identity by globally regulating super-enhancers of DP cells at the chromatin architectural level.
Collapse
|
25
|
Nüssing S, Miosge LA, Lee K, Olshansky M, Barugahare A, Roots CM, Sontani Y, Day EB, Koutsakos M, Kedzierska K, Goodnow CC, Russ BE, Daley SR, Turner SJ. SATB1 ensures appropriate transcriptional programs within naïve CD8
+
T cells. Immunol Cell Biol 2022; 100:636-652. [PMID: 35713361 PMCID: PMC9542893 DOI: 10.1111/imcb.12566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Simone Nüssing
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Lisa A Miosge
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - Kah Lee
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Moshe Olshansky
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | | | - Carla M Roots
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - Yovina Sontani
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - E Bridie Day
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity University of Melbourne Parkville VIC Australia
| | - Christopher C Goodnow
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
- Garvan Institute of Medical Research & Cellular Genomics Futures Institute University of New South Wales Darlinghurst NSW Australia
| | - Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Stephen R Daley
- John Curtin School of Medical Research Australian National University Canberra ACT Australia
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health Queensland University of Technology Brisbane QLD Australia
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| |
Collapse
|
26
|
Raugh A, Allard D, Bettini M. Nature vs. nurture: FOXP3, genetics, and tissue environment shape Treg function. Front Immunol 2022; 13:911151. [PMID: 36032083 PMCID: PMC9411801 DOI: 10.3389/fimmu.2022.911151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
The importance of regulatory T cells (Tregs) in preventing autoimmunity has been well established; however, the precise alterations in Treg function in autoimmune individuals and how underlying genetic associations impact the development and function of Tregs is still not well understood. Polygenetic susceptibly is a key driving factor in the development of autoimmunity, and many of the pathways implicated in genetic association studies point to a potential alteration or defect in regulatory T cell function. In this review transcriptomic control of Treg development and function is highlighted with a focus on how these pathways are altered during autoimmunity. In combination, observations from autoimmune mouse models and human patients now provide insights into epigenetic control of Treg function and stability. How tissue microenvironment influences Treg function, lineage stability, and functional plasticity is also explored. In conclusion, the current efficacy and future direction of Treg-based therapies for Type 1 Diabetes and other autoimmune diseases is discussed. In total, this review examines Treg function with focuses on genetic, epigenetic, and environmental mechanisms and how Treg functions are altered within the context of autoimmunity.
Collapse
Affiliation(s)
- Arielle Raugh
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Denise Allard
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Maria Bettini
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Maria Bettini,
| |
Collapse
|
27
|
Papadogkonas G, Papamatheakis DA, Spilianakis C. 3D Genome Organization as an Epigenetic Determinant of Transcription Regulation in T Cells. Front Immunol 2022; 13:921375. [PMID: 35812421 PMCID: PMC9257000 DOI: 10.3389/fimmu.2022.921375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
In the heart of innate and adaptive immunity lies the proper spatiotemporal development of several immune cell lineages. Multiple studies have highlighted the necessity of epigenetic and transcriptional regulation in cell lineage specification. This mode of regulation is mediated by transcription factors and chromatin remodelers, controlling developmentally essential gene sets. The core of transcription and epigenetic regulation is formulated by different epigenetic modifications determining gene expression. Apart from “classic” epigenetic modifications, 3D chromatin architecture is also purported to exert fundamental roles in gene regulation. Chromatin conformation both facilitates cell-specific factor binding at specified regions and is in turn modified as such, acting synergistically. The interplay between global and tissue-specific protein factors dictates the epigenetic landscape of T and innate lymphoid cell (ILC) lineages. The expression of global genome organizers such as CTCF, YY1, and the cohesin complexes, closely cooperate with tissue-specific factors to exert cell type-specific gene regulation. Special AT-rich binding protein 1 (SATB1) is an important tissue-specific genome organizer and regulator controlling both long- and short-range chromatin interactions. Recent indications point to SATB1’s cooperation with the aforementioned factors, linking global to tissue-specific gene regulation. Changes in 3D genome organization are of vital importance for proper cell development and function, while disruption of this mechanism can lead to severe immuno-developmental defects. Newly emerging data have inextricably linked chromatin architecture deregulation to tissue-specific pathophysiological phenotypes. The combination of these findings may shed light on the mechanisms behind pathological conditions.
Collapse
Affiliation(s)
- George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- *Correspondence: Charalampos Spilianakis,
| |
Collapse
|
28
|
Ozawa T, Fujii K, Sudo T, Doi Y, Nakai R, Shingai Y, Ueda T, Baba Y, Hosen N, Yokota T. Special AT-Rich Sequence-Binding Protein 1 Supports Survival and Maturation of Naive B Cells Stimulated by B Cell Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1937-1946. [PMID: 35379742 DOI: 10.4049/jimmunol.2101097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
Abstract
Epigenetic mechanisms underpin the elaborate activities of essential transcription factors in lymphocyte development. Special AT-rich sequence-binding protein 1 (SATB1) is a chromatin remodeler that orchestrates the spatial and temporal actions of transcription factors. Previous studies have revealed the significance of SATB1 in T cell lineage. However, whether and how SATB1 controls B cell lineage development is yet to be clarified. In this study, we show that SATB1 is an important factor during splenic B cell maturation. By analyzing SATB1/Tomato reporter mice, we determined the dynamic fluctuation of SATB1 expression in the B cell lineage. Although SATB1 expression decreased to minimal levels during B cell differentiation in the bone marrow, it resurged markedly in naive B cells in the spleen. The expression was dramatically downregulated upon Ag-induced activation. Splenic naive B cells were subdivided into two categories, namely SATB1high and SATB1-/low, according to their SATB1 expression levels. SATB1high naive B cells were less susceptible to death and greater proliferative than were SATB1-/low cells during incubation with an anti-IgM Ab. Additionally, SATB1high cells tended to induce the expression of MHC class II, CD86, and CD83. Accordingly, naive B cells from B lineage-specific SATB1 conditional knockout mice were more susceptible to apoptosis than that in the control group upon anti-IgM Ab stimulation in vitro. Furthermore, conditional knockout mice were less capable of producing Ag-specific B cells after immunization. Collectively, our findings suggest that SATB1 expression increases in naive B cells and plays an important role in their survival and maturation.
Collapse
Affiliation(s)
- Takayuki Ozawa
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kentaro Fujii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Takao Sudo
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukiko Doi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ritsuko Nakai
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Shingai
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan; and.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan;
| |
Collapse
|
29
|
Durślewicz J, Klimaszewska-Wiśniewska A, Jóźwicki J, Antosik P, Smolińska-Świtała M, Gagat M, Kowalewski A, Grzanka D. Prognostic Significance of TLR2, SMAD3 and Localization-dependent SATB1 in Stage I and II Non-Small-Cell Lung Cancer Patients. Cancer Control 2021; 28:10732748211056697. [PMID: 34818944 PMCID: PMC8640983 DOI: 10.1177/10732748211056697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study aimed to explore the prognostic value of SATB1, SMAD3, and TLR2 expression in non-small-cell lung carcinoma patients with clinical stages I-II. To investigate, we evaluated immunohistochemical staining to each of these markers using tissue sections from 69 patients from our cohort and gene expression data for The Cancer Genome Atlas (TCGA) cohort. We found that, in our cohort, high expression levels of nuclear SATB1n and SMAD3 were independent prognostic markers for better overall survival (OS) in NSCLC patients. Interestingly, expression of cytoplasmic SATB1c exhibited a significant but inverse association with survival rate, and it was an independent predictor of unfavorable prognosis. Likewise, TLR2 was a negative outcome biomarker for NSCLC even when adjusting for covariates. Importantly, stratification of NSCLCs with respect to combined expression of the three biomarkers allowed us to identify subgroups of patients with the greatest difference in duration of survival. Specifically, expression profile of SATB1n-high/SMAD3high/TLR2low was associated with the best OS, and it was superior to each single protein alone in predicting patient prognosis. Furthermore, based on the TCGA dataset, we found that overexpression of SATB1 mRNA was significantly associated with better OS, whereas high mRNA levels of SMAD3 and TLR2 with poor OS. In conclusion, the present study identified a set of proteins that may play a significant role in predicting prognosis of NSCLC patients with clinical stages I-II.
Collapse
Affiliation(s)
- Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Marta Smolińska-Świtała
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| | - Adam Kowalewski
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland.,Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, 49577Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
30
|
Kim RY, Sunkara KP, Bracke KR, Jarnicki AG, Donovan C, Hsu AC, Ieni A, Beckett EL, Galvão I, Wijnant S, Ricciardolo FL, Di Stefano A, Haw TJ, Liu G, Ferguson AL, Palendira U, Wark PA, Conickx G, Mestdagh P, Brusselle GG, Caramori G, Foster PS, Horvat JC, Hansbro PM. A microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Sci Transl Med 2021; 13:eaav7223. [PMID: 34818056 DOI: 10.1126/scitranslmed.aav7223] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Krishna P Sunkara
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia.,Graduate School of Health, Discipline of Pharmacy, University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Intensive Care Unit, John Hunter Hospital, Newcastle, New South Wales 2308, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Andrew G Jarnicki
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria 3010, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina 98100, Italy
| | - Emma L Beckett
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sara Wijnant
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Fabio Lm Ricciardolo
- Rare Lung Disease Unit, Department of Clinical and Biological Sciences, University of Torino, San Luigi Gonzaga University Hospital Orbassano, Torino 10043, Italy
| | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, SpA Società Benefit, Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Veruno, Novara 28100, Italy
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Angela L Ferguson
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia.,Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2006, Australia
| | - Umamainthan Palendira
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Griet Conickx
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium.,Ablynx N.V., a Sanofi company, Ghent 9052, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina 98100, Italy
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| |
Collapse
|
31
|
Gao Y, Liu F, Sun J, Wen Y, Tu P, Kadin ME, Wang Y. Differential SATB1 Expression Reveals Heterogeneity of Cutaneous T-Cell Lymphoma. J Invest Dermatol 2020; 141:607-618.e6. [PMID: 32771472 DOI: 10.1016/j.jid.2020.05.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022]
Abstract
SATB1 is an important T-cell specific chromatin organizer in cutaneous T-cell lymphoma, whereas its expression and function in mycosis fungoides (MF) remain ambiguous. Our study aimed to investigate the clinicopathological significance of SATB1 in a cohort of 170 patients with MF. SATB1 expression was heterogeneous among the patients with MF in each clinical stage. High SATB1 expression was associated with epidermal hyperplasia, eosinophil infiltration, less large-cell transformation, and favorable prognosis in MF cases. SATB1 and CD30 coexpression distinguished cutaneous CD30+ lymphoproliferative disorders from MF large-cell transformation. SATB1 silencing in MF lines showed that SATB1 upregulated the genes involved in eosinophil recruitment, including signal transducer and activator of transcription 3 and IL13, and downregulated the genes in cell-cycle progression, which may explain the inferior prognosis for low SATB1-expressing cases. Moreover, SATB1 was inversely correlated with PD-1 expression, indicating an exhausted status of SATB1-negative malignant T cells. SATB1 was positively correlated with toll-like receptors expression, suggesting innate immune activation in high SATB1-expressing MF cases. Therefore, variable SATB1 expression promotes heterogeneity in pathology and clinical outcome of patients with MF.
Collapse
Affiliation(s)
- Yumei Gao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yujie Wen
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Marshall E Kadin
- Department of Dermatology, Roger Williams Medical Center, Boston University, Providence, Rhode Island, USA; Department of Pathology and Laboratory Medicine, Brown Alpert School of Medicine, Providence, Rhode Island, USA
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
| |
Collapse
|
32
|
Zilenaite D, Rasmusson A, Augulis R, Besusparis J, Laurinaviciene A, Plancoulaine B, Ostapenko V, Laurinavicius A. Independent Prognostic Value of Intratumoral Heterogeneity and Immune Response Features by Automated Digital Immunohistochemistry Analysis in Early Hormone Receptor-Positive Breast Carcinoma. Front Oncol 2020; 10:950. [PMID: 32612954 PMCID: PMC7308549 DOI: 10.3389/fonc.2020.00950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Immunohistochemistry (IHC) for ER, PR, HER2, and Ki67 is used to predict outcome and therapy response in breast cancer patients. The current IHC assessment, visual or digital, is based mostly on global biomarker expression levels in the tissue sample. In our study, we explored the prognostic value of digital image analysis of conventional breast cancer IHC biomarkers supplemented with their intratumoral heterogeneity and tissue immune response indicators. Surgically excised tumor samples from 101 female patients with hormone receptor-positive breast cancer (HRBC) were stained for ER, PR, HER2, Ki67, SATB1, CD8, and scanned at 20x. Digital image analysis was performed using the HALO™ platform. Subsequently, hexagonal tiling was used to compute intratumoral heterogeneity indicators for ER, PR and Ki67 expression. Multiple Cox regression analysis revealed three independent predictors of the patient's overall survival: Haralick's texture entropy of PR (HR = 0.19, p = 0.0005), Ki67 Ashman's D bimodality (HR = 3.0, p = 0.01), and CD8+SATB1+ cell density in tumor tissue (HR = 0.32, p = 0.02). Remarkably, the PR and Ki67 intratumoral heterogeneity indicators were prognostically more informative than the rates of their expression. In particular, a distinct non-linear relationship between the rate of PR expression and its intratumoral heterogeneity was observed and revealed a non-linear prognostic effect of PR expression. The independent prognostic significance of CD8+SATB1+ cells infiltrating the tumor could indicate their role in anti-tumor immunity. In conclusion, we suggest that prognostic modeling, based entirely on the computational image-based IHC biomarkers, is possible in HRBC patients. The intratumoral heterogeneity and immune response indicators outperformed both conventional breast cancer IHC and clinicopathological variables while markedly increasing the power of the model.
Collapse
Affiliation(s)
- Dovile Zilenaite
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Allan Rasmusson
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Renaldas Augulis
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Justinas Besusparis
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Aida Laurinaviciene
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Benoit Plancoulaine
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,ANTICIPE, Inserm (UMR 1086), Cancer Center F. Baclesse, Normandy University, Caen, France
| | - Valerijus Ostapenko
- Department of Breast Surgery and Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania.,National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| |
Collapse
|
33
|
ZBTB7B (ThPOK) Is Required for Pathogenesis of Cerebral Malaria and Protection against Pulmonary Tuberculosis. Infect Immun 2020; 88:IAI.00845-19. [PMID: 31792077 DOI: 10.1128/iai.00845-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/20/2022] Open
Abstract
We used a genome-wide screen in N-ethyl-N-nitrosourea (ENU)-mutagenized mice to identify genes in which recessive loss-of-function mutations protect against pathological neuroinflammation. We identified an R367Q mutation in the ZBTB7B (ThPOK) protein in which homozygosity causes protection against experimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. Zbtb7bR367Q homozygous mice show a defect in the lymphoid compartment expressed as severe reduction in the number of single-positive CD4 T cells in the thymus and in the periphery, reduced brain infiltration of proinflammatory leukocytes in P. berghei ANKA-infected mice, and reduced production of proinflammatory cytokines by primary T cells ex vivo and in vivo Dampening of proinflammatory immune responses in Zbtb7bR367Q mice is concomitant to increased susceptibility to infection with avirulent (Mycobacterium bovis BCG) and virulent (Mycobacterium tuberculosis H37Rv) mycobacteria. The R367Q mutation maps to the first DNA-binding zinc finger domain of ThPOK and causes loss of base contact by R367 in the major groove of the DNA, which is predicted to impair DNA binding. Global immunoprecipitation of ThPOK-containing chromatin complexes coupled to DNA sequencing (ChIP-seq) identified transcriptional networks and candidate genes likely to play key roles in CD4+ CD8+ T cell development and in the expression of lineage-specific functions of these cells. This study highlights ThPOK as a global regulator of immune function in which alterations may affect normal responses to infectious and inflammatory stimuli.
Collapse
|
34
|
Palm Tocotrienol-Adjuvanted Dendritic Cells Decrease Expression of the SATB1 Gene in Murine Breast Cancer Cells and Tissues. Vaccines (Basel) 2019; 7:vaccines7040198. [PMID: 31783698 PMCID: PMC6963955 DOI: 10.3390/vaccines7040198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to evaluate the effectiveness of immunotherapy using dendritic cells (DC) pulsed with tumor lysate (a DC vaccine) in combination with daily supplementation of tocotrienol-rich fraction (TRF) to potentiate anti-tumor immune responses. We had previously reported that DC-vaccine immunotherapy together with TRF supplementation induced protective immunity to tumor challenge. Breast cancer was induced in female BALB/c mice. The mice were randomly assigned into the treatment groups. At autopsy, peripheral blood was collected in heparinized tube and the expression of cell surface molecules (CD40, CD80, CD83, and CD86) that are crucial for T-cell activation and survival were analyzed by flow cytometry. Tumor was excised from each animal and snap-frozen. Total RNA was extracted from each tumor tissue for microarray and gene expression analysis. Total protein was extracted from tumor tissue for protein expression studies using Western blotting. The results show that systemic administration of 1 mg TRF daily in combination with DC-vaccine immunotherapy (DC + TL + TRF) caused a marked reduction (p < 0.05) of tumor size and increased (p < 0.05) the survival rates of the tumor-inoculated mice. The expression of CD40, CD80, CD83, and CD86 were upregulated in peripheral blood from the DC + TL + TRF group compared to other groups. In addition, there was higher expression of FasL in tumor-excised mice from the DC + TL + TRF group compared to other groups. FasL plays an important role in maintaining immune privilege and is required for cytotoxic T-lymphocyte (CTL) activity. Microarray analysis identified several genes involved in the regulation of cancer. In this study, we focused on the special AT rich binding protein 1 (SATB1) gene, which was reported to have dual functions, one of which was to induce aggressive growth in breast cancer cells. Tumors from DC + TL + TRF mice showed lower (p < 0.05) expression of SATB1 gene. Further study will be conducted to investigate the molecular functions of and the role of SATB1 in 4T1 mammary cancer cells and DC. In conclusion, TRF supplementation can potentiate the effectiveness of DC-vaccine immunotherapy.
Collapse
|
35
|
Koay HF, Su S, Amann-Zalcenstein D, Daley SR, Comerford I, Miosge L, Whyte CE, Konstantinov IE, d'Udekem Y, Baldwin T, Hickey PF, Berzins SP, Mak JYW, Sontani Y, Roots CM, Sidwell T, Kallies A, Chen Z, Nüssing S, Kedzierska K, Mackay LK, McColl SR, Deenick EK, Fairlie DP, McCluskey J, Goodnow CC, Ritchie ME, Belz GT, Naik SH, Pellicci DG, Godfrey DI. A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. Sci Immunol 2019; 4:eaay6039. [PMID: 31757835 PMCID: PMC10627559 DOI: 10.1126/sciimmunol.aay6039] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022]
Abstract
MR1-restricted mucosal-associated invariant T (MAIT) cells play a unique role in the immune system. These cells develop intrathymically through a three-stage process, but the events that regulate this are largely unknown. Here, using bulk and single-cell RNA sequencing-based transcriptomic analysis in mice and humans, we studied the changing transcriptional landscape that accompanies transition through each stage. Many transcripts were sharply modulated during MAIT cell development, including SLAM (signaling lymphocytic activation molecule) family members, chemokine receptors, and transcription factors. We also demonstrate that stage 3 "mature" MAIT cells comprise distinct subpopulations including newly arrived transitional stage 3 cells, interferon-γ-producing MAIT1 cells and interleukin-17-producing MAIT17 cells. Moreover, the validity and importance of several transcripts detected in this study are directly demonstrated using specific mutant mice. For example, MAIT cell intrathymic maturation was found to be halted in SLAM-associated protein (SAP)-deficient and CXCR6-deficient mouse models, providing clear evidence for their role in modulating MAIT cell development. These data underpin a model that maps the changing transcriptional landscape and identifies key factors that regulate the process of MAIT cell differentiation, with many parallels between mice and humans.
Collapse
Affiliation(s)
- H-F Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S Su
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - D Amann-Zalcenstein
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - S R Daley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - I Comerford
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - L Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - C E Whyte
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - I E Konstantinov
- Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
- Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Murdoch Children's Research Institute, Victoria 3052, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - Y d'Udekem
- Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
- Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Murdoch Children's Research Institute, Victoria 3052, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - T Baldwin
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - P F Hickey
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - S P Berzins
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Federation University Australia, Ballarat, Victoria 3350, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia
| | - J Y W Mak
- Division of Chemistry and Structural Biology, and Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Y Sontani
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - C M Roots
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - T Sidwell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - A Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Z Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S Nüssing
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - K Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - L K Mackay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S R McColl
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - E K Deenick
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Sydney, Australia
| | - D P Fairlie
- Division of Chemistry and Structural Biology, and Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - J McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - C C Goodnow
- Garvan Institute of Medical Research, Sydney, Australia
- UNSW Cellular Genomics Futures Institute, UNSW, Sydney, Australia
| | - M E Ritchie
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - G T Belz
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - S H Naik
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - D G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - D I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
36
|
Doi Y, Yokota T, Satoh Y, Okuzaki D, Tokunaga M, Ishibashi T, Sudo T, Ueda T, Shingai Y, Ichii M, Tanimura A, Ezoe S, Shibayama H, Kohwi-Shigematsu T, Takeda J, Oritani K, Kanakura Y. Variable SATB1 Levels Regulate Hematopoietic Stem Cell Heterogeneity with Distinct Lineage Fate. Cell Rep 2019; 23:3223-3235. [PMID: 29898394 DOI: 10.1016/j.celrep.2018.05.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/05/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cells (HSCs) comprise a heterogeneous population exhibiting self-renewal and differentiation capabilities; however, the mechanisms involved in maintaining this heterogeneity remain unclear. Here, we show that SATB1 is involved in regulating HSC heterogeneity. Results in conditional Satb1-knockout mice revealed that SATB1 was important for the self-renewal and lymphopoiesis of adult HSCs. Additionally, HSCs from Satb1/Tomato-knockin reporter mice were classified based on SATB1/Tomato intensity, with transplantation experiments revealing stronger differentiation toward the lymphocytic lineage along with high SATB1 levels, whereas SATB1- HSCs followed the myeloid lineage in agreement with genome-wide transcription and cell culture studies. Importantly, SATB1- and SATB1+ HSC populations were interconvertible upon transplantation, with SATB1+ HSCs showing higher reconstituting and lymphopoietic potentials in primary recipients relative to SATB1- HSCs, whereas both HSCs exhibited equally efficient reconstituted lympho-hematopoiesis in secondary recipients. These results suggest that SATB1 levels regulate the maintenance of HSC multipotency, with variations contributing to HSC heterogeneity.
Collapse
Affiliation(s)
- Yukiko Doi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yusuke Satoh
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Lifestyle Studies, Kobe Shoin Women's University, Kobe, Japan
| | - Daisuke Okuzaki
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masahiro Tokunaga
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohiko Ishibashi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Takao Sudo
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuhiro Shingai
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Tanimura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sachiko Ezoe
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Terumi Kohwi-Shigematsu
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Junji Takeda
- Department of Genome Biology Graduate School of Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenji Oritani
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
37
|
Dowrey T, Schwager EE, Duong J, Merkuri F, Zarate YA, Fish JL. Satb2 regulates proliferation and nuclear integrity of pre-osteoblasts. Bone 2019; 127:488-498. [PMID: 31325654 PMCID: PMC6708767 DOI: 10.1016/j.bone.2019.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Special AT-rich sequence binding protein 2 (Satb2) is a matrix attachment region (MAR) binding protein. Satb2 impacts skeletal development by regulating gene transcription required for osteogenic differentiation. Although its role as a high-order transcription factor is well supported, other roles for Satb2 in skeletal development remain unclear. In particular, the impact of dosage sensitivity (heterozygous mutations) and variance on phenotypic severity is still not well understood. To further investigate molecular and cellular mechanisms of Satb2-mediated skeletal defects, we used the CRISPR/Cas9 system to generate Satb2 mutations in MC3T3-E1 cells. Our data suggest that, in addition to its role in differentiation, Satb2 regulates progenitor proliferation. We also find that mutations in Satb2 cause chromatin defects including nuclear blebbing and donut-shaped nuclei. These defects may contribute to a slight increase in apoptosis in mutant cells, but apoptosis is insufficient to explain the proliferation defects. Satb2 expression exhibits population-level variation and is most highly expressed from late G1 to late G2. Based on these data, we hypothesize that Satb2 may regulate proliferation through two separate mechanisms. First, Satb2 may regulate the expression of genes necessary for cell cycle progression in pre-osteoblasts. Second, similar to other MAR-binding proteins, Satb2 may participate in DNA replication. We also hypothesize that variation in the severity or penetrance of Satb2-mediated proliferation defects is due to stochastic variation in Satb2 binding to DNA, which may be buffered in some genetic backgrounds. Further elucidation of the role of Satb2 in proliferation has potential impacts on our understanding of both skeletal defects and cancer.
Collapse
Affiliation(s)
- Todd Dowrey
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Julieann Duong
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America.
| |
Collapse
|
38
|
"Hierarchy" and "Holacracy"; A Paradigm of the Hematopoietic System. Cells 2019; 8:cells8101138. [PMID: 31554248 PMCID: PMC6830102 DOI: 10.3390/cells8101138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
The mammalian hematopoietic system has long been viewed as a hierarchical paradigm in which a small number of hematopoietic stem cells (HSCs) are located at the apex. HSCs were traditionally thought to be homogeneous and quiescent in a homeostatic state. However, recent observations, through extramedullary hematopoiesis and clonal assays, have cast doubt on the validity of the conventional interpretation. A key issue is understanding the characteristics of HSCs from different viewpoints, including dynamic physics and social network theory. The aim of this literature review is to propose a new paradigm of our hematopoietic system, in which individual HSCs are actively involved.
Collapse
|
39
|
Glatzel-Plucińska N, Piotrowska A, Dzięgiel P, Podhorska-Okołów M. The Role of SATB1 in Tumour Progression and Metastasis. Int J Mol Sci 2019; 20:E4156. [PMID: 31450715 PMCID: PMC6747166 DOI: 10.3390/ijms20174156] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Carcinogenesis is a long-drawn, multistep process, in which metastatic spread is an unequivocal hallmark of a poor prognosis. The progression and dissemination of epithelial cancers is commonly thought to rely on the epidermal-mesenchymal transition (EMT) process. During EMT, epithelial cells lose their junctions and apical-basal polarity, and they acquire a mesenchymal phenotype with its migratory and invasive capabilities. One of the proteins involved in cancer progression and EMT may be SATB1 (Special AT-Rich Binding Protein 1)-a chromatin organiser and a global transcriptional regulator. SATB1 organizes chromatin into spatial loops, providing a "docking site" necessary for the binding of further transcription factors and chromatin modifying enzymes. SATB1 has the ability to regulate whole sets of genes, even those located on distant chromosomes. SATB1 was found to be overexpressed in numerous malignancies, including lymphomas, breast, colorectal, prostate, liver, bladder and ovarian cancers. In the solid tumours, an elevated SATB1 level was observed to be associated with an aggressive phenotype, presence of lymph node, distant metastases, and a poor prognosis. In this review, we briefly describe the prognostic significance of SATB1 expression in most common human cancers, and analyse its impact on EMT and metastasis.
Collapse
Affiliation(s)
- Natalia Glatzel-Plucińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland
| | | |
Collapse
|
40
|
Ghosh RP, Shi Q, Yang L, Reddick MP, Nikitina T, Zhurkin VB, Fordyce P, Stasevich TJ, Chang HY, Greenleaf WJ, Liphardt JT. Satb1 integrates DNA binding site geometry and torsional stress to differentially target nucleosome-dense regions. Nat Commun 2019; 10:3221. [PMID: 31324780 PMCID: PMC6642133 DOI: 10.1038/s41467-019-11118-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/20/2019] [Indexed: 01/12/2023] Open
Abstract
The Satb1 genome organizer regulates multiple cellular and developmental processes. It is not yet clear how Satb1 selects different sets of targets throughout the genome. Here we have used live-cell single molecule imaging and deep sequencing to assess determinants of Satb1 binding-site selectivity. We have found that Satb1 preferentially targets nucleosome-dense regions and can directly bind consensus motifs within nucleosomes. Some genomic regions harbor multiple, regularly spaced Satb1 binding motifs (typical separation ~1 turn of the DNA helix) characterized by highly cooperative binding. The Satb1 homeodomain is dispensable for high affinity binding but is essential for specificity. Finally, we find that Satb1-DNA interactions are mechanosensitive. Increasing negative torsional stress in DNA enhances Satb1 binding and Satb1 stabilizes base unpairing regions against melting by molecular machines. The ability of Satb1 to control diverse biological programs may reflect its ability to combinatorially use multiple site selection criteria.
Collapse
Affiliation(s)
- Rajarshi P Ghosh
- Bioengineering, Stanford University, Stanford, CA, 94305, USA
- BioX Institute, Stanford University, Stanford, CA, 94305, USA
- ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Cell Biology Division, Stanford Cancer Institute, Stanford, CA, 94305, USA
| | - Quanming Shi
- Bioengineering, Stanford University, Stanford, CA, 94305, USA
- BioX Institute, Stanford University, Stanford, CA, 94305, USA
- ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Cell Biology Division, Stanford Cancer Institute, Stanford, CA, 94305, USA
| | - Linfeng Yang
- Bioengineering, Stanford University, Stanford, CA, 94305, USA
- BioX Institute, Stanford University, Stanford, CA, 94305, USA
- ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Cell Biology Division, Stanford Cancer Institute, Stanford, CA, 94305, USA
| | - Michael P Reddick
- Bioengineering, Stanford University, Stanford, CA, 94305, USA
- BioX Institute, Stanford University, Stanford, CA, 94305, USA
- ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Cell Biology Division, Stanford Cancer Institute, Stanford, CA, 94305, USA
- Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Tatiana Nikitina
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Victor B Zhurkin
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Polly Fordyce
- Bioengineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology and the Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO, USA
| | - Howard Y Chang
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Jan T Liphardt
- Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- BioX Institute, Stanford University, Stanford, CA, 94305, USA.
- ChEM-H, Stanford University, Stanford, CA, 94305, USA.
- Cell Biology Division, Stanford Cancer Institute, Stanford, CA, 94305, USA.
| |
Collapse
|
41
|
SATB1 Expression of Colorectal Adenomatous Polyps is Higher than that of Colorectal Carcinomas. Appl Immunohistochem Mol Morphol 2019; 28:532-537. [PMID: 31290787 DOI: 10.1097/pai.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
"Special AT-rich sequence-binding protein-1" (SATB1) is a global genome organizer and is found to have effects on carcinogenesis and progression of various malignancies including colorectal carcinoma (CRC). We aimed to investigate the expression of SATB1 in CRC and colorectal adenomatous polyps (CAP), the correlation between clinicopathologic parameters, and overall survival. We examined 227 CRCs and 129 CAPs. SATB1 protein expression was evaluated by immunohistochemistry. We found higher SATB1 expression in adenomatous epithelium than in CRC tissues (55.0% vs. 42.7%, respectively) (P<0.05). None of the adjacent normal colorectal mucosa stained positive in CRC cases, and only one of the adjacent normal mucosa of the CAP cases was positive. SATB1 expression of left-sided CRC was higher than that of right-sided CRC (46.3% vs. 28.6%, respectively) (P<0.05), and SATB1 expression of conventional adenocarcinomas was higher than that of mucinous carcinomas (45.5% vs. 6.3%, respectively) (P<0.05). SATB1 expression was higher in CAPs consisting of high-grade dysplasia than in polyps with low-grade dysplasia (77.8% vs. 51.4%) (P<0.05). SATB1 expression did not correlate with patients' overall survival. In conclusion, due to the higher expression of SATB1 in CAP than in CRC, we think SATB1 may have a role in the early stages of carcinogenesis of CRCs. This is the first study investigating SATB1 expression in CAPs. Besides this is the first report that shows different SATB1 expressions in conventional colorectal adenocarcinoma and mucinous carcinoma, and also in right-sided and left-sided CRC. Our results, with supporting new studies, can provide SATB1 as a possible candidate for targeted therapy for CRC patients.
Collapse
|
42
|
Dietary DHA/EPA supplementation ameliorates diabetic nephropathy by protecting from distal tubular cell damage. Cell Tissue Res 2019; 378:301-317. [PMID: 31256287 DOI: 10.1007/s00441-019-03058-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
The aim was to explore the influence of experimental diabetes mellitus type 1 (DM1) and potential protective/deleterious effects of different dietary n-6/n-3 PUFA ratios on renal phospholipid composition and pathological changes caused by DM1. Male Wistar rats were injected with 55 mg/kg streptozotocin or citrate buffer (control group). Control (C) and diabetic groups (STZ) were fed with n-6/n-3 ratio of ≈ 7, STZ + N6 with n-6/n-3 ratio ≈ 60 and STZ + DHA with n-6/n-3 ratio of ≈ 1 containing 16% EPA and 19% DHA. Tissues were harvested 30 days after DM1 induction. Blood and kidneys were collected and analysed for phospholipid fatty acid composition, pathohystological changes, ectopic lipid accumulation and expression of VEGF, NF-kB and special AT-rich sequence-binding protein-1 (SATB1). Pathological changes were studied also by using transmission electron microscopy, after immunostaining for VEGF. Substantial changes in renal phospholipid fatty acid composition resulted from DM1 and dietary PUFA manipulation. Extensive vacuolization of distal tubular cells (DTCs) was found in DM1, but it was attenuated in the STZ + DHA group, in which the highest renal NF-kB expression was observed. The ectopic lipid accumulation was observed in proximal tubular cells (PTCs) of all diabetic animals, but it was worsened in the STZ + N6 group. In DM1, we found disturbance of VEGF-transporting vesicular PTCs system, which was substantially worsened in STZ + DHA and STZ + N6. Results have shown that the early phase of DN is characterized with extent damage and vacuolization of DTCs, which could be attenuated by DHA/EPA supplementation. We concluded that dietary fatty acid composition can strongly influence the outcomes of DN.
Collapse
|
43
|
Zikmund T, Kokavec J, Turkova T, Savvulidi F, Paszekova H, Vodenkova S, Sedlacek R, Skoultchi AI, Stopka T. ISWI ATPase Smarca5 Regulates Differentiation of Thymocytes Undergoing β-Selection. THE JOURNAL OF IMMUNOLOGY 2019; 202:3434-3446. [PMID: 31068388 DOI: 10.4049/jimmunol.1801684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 01/13/2023]
Abstract
Development of lymphoid progenitors requires a coordinated regulation of gene expression, DNA replication, and gene rearrangement. Chromatin-remodeling activities directed by SWI/SNF2 superfamily complexes play important roles in these processes. In this study, we used a conditional knockout mouse model to investigate the role of Smarca5, a member of the ISWI subfamily of such complexes, in early lymphocyte development. Smarca5 deficiency results in a developmental block at the DN3 stage of αβ thymocytes and pro-B stage of early B cells at which the rearrangement of Ag receptor loci occurs. It also disturbs the development of committed (CD73+) γδ thymocytes. The αβ thymocyte block is accompanied by massive apoptotic depletion of β-selected double-negative DN3 cells and premitotic arrest of CD4/CD8 double-positive cells. Although Smarca5-deficient αβ T cell precursors that survived apoptosis were able to undergo a successful TCRβ rearrangement, they exhibited a highly abnormal mRNA profile, including the persistent expression of CD44 and CD25 markers characteristic of immature cells. We also observed that the p53 pathway became activated in these cells and that a deficiency of p53 partially rescued the defect in thymus cellularity (in contrast to early B cells) of Smarca5-deficient mice. However, the activation of p53 was not primarily responsible for the thymocyte developmental defects observed in the Smarca5 mutants. Our results indicate that Smarca5 plays a key role in the development of thymocytes undergoing β-selection, γδ thymocytes, and also B cell progenitors by regulating the transcription of early differentiation programs.
Collapse
Affiliation(s)
- Tomas Zikmund
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Juraj Kokavec
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Tereza Turkova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Filipp Savvulidi
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague 12853, Czech Republic
| | - Helena Paszekova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague 14220, Czech Republic.,Third Faculty of Medicine, Charles University, Prague 10000, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 25250, Czech Republic; and
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx 10461, NY
| | - Tomas Stopka
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic;
| |
Collapse
|
44
|
Poglio S, Merlio JP. SATB1 Is a Pivotal Epigenetic Biomarker in Cutaneous T-Cell Lymphomas. J Invest Dermatol 2019; 138:1694-1696. [PMID: 30032787 DOI: 10.1016/j.jid.2018.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022]
Abstract
The SATB1 protein has been the focus of two recent studies of cutaneous T-cell lymphomas. Fredholm et al. observed a stage-related decrease of SATB1 expression in epidermotropic cutaneous T-cell lymphomas. SATB1 was negatively regulated by STAT5 through microRNA-155, which in turn triggered enhanced expression of T helper type 2 cytokines such as IL-5 and IL-9. In parallel, Sun et al. found that SATB1 expression was up-regulated by promoter demethylation in a subset of cutaneous anaplastic lymphoma and was associated with T helper type 17 polarization in patients with better therapeutic responses.
Collapse
Affiliation(s)
- Sandrine Poglio
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France
| | - Jean-Philippe Merlio
- INSERM U1053, Bordeaux Research in Translational Oncology University Bordeaux, Bordeaux, France; Tumor Bank and Tumor Biology Laboratory, Centre Hospitalier Universitaire de Bordeaux, Pessac, France.
| |
Collapse
|
45
|
Khare SP, Shetty A, Biradar R, Patta I, Chen ZJ, Sathe AV, Reddy PC, Lahesmaa R, Galande S. NF-κB Signaling and IL-4 Signaling Regulate SATB1 Expression via Alternative Promoter Usage During Th2 Differentiation. Front Immunol 2019; 10:667. [PMID: 31001272 PMCID: PMC6454056 DOI: 10.3389/fimmu.2019.00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
SATB1 is a genome organizer protein that is expressed in a lineage specific manner in CD4+ T-cells. SATB1 plays a crucial role in expression of multiple genes throughout the thymic development and peripheral differentiation of T cells. Although SATB1 function has been subjected to intense investigation, regulation of SATB1 gene expression remains poorly understood. Analysis of RNA-seq data revealed multiple transcription start sites at the upstream regulatory region of SATB1. We further demonstrated that SATB1 gene is expressed via alternative promoters during T-helper (Th) cell differentiation. The proximal promoter “P1” is used more by the naïve and activated CD4+ T-cells whereas the middle “P2” and the distal “P3” promoters are used at a significantly higher level by polarized T-helper cells. Cytokine and TCR signaling play crucial roles toward SATB1 alternative promoter usage. Under Th2 polarization conditions, transcription factor STAT6, which operates downstream of the cytokine signaling binds to the P2 and P3 promoters. Genetic perturbation by knockout and chemical inhibition of STAT6 activation resulted in the loss of P2 and P3 promoter activity. Moreover, chemical inhibition of activation of NF-κB, a transcription factor that operates downstream of the TCR signaling, also resulted in reduced P2 and P3 promoter usage. Furthermore, usage of the P1 promoter correlated with lower SATB1 protein expression whereas P2 and P3 promoter usage correlated with higher SATB1 protein expression. Thus, the promoter switch might play a crucial role in fine-tuning of SATB1 protein expression in a cell type specific manner.
Collapse
Affiliation(s)
- Satyajeet P Khare
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India.,Symbiosis School of Biological Sciences, Pune, India
| | - Ankitha Shetty
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India.,Turku Center for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Rahul Biradar
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Indumathi Patta
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Zhi Jane Chen
- Turku Center for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Ameya V Sathe
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Puli Chandramouli Reddy
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Riitta Lahesmaa
- Turku Center for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Sanjeev Galande
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
46
|
Reversible regulation of SATB1 ubiquitination by USP47 and SMURF2 mediates colon cancer cell proliferation and tumor progression. Cancer Lett 2019; 448:40-51. [DOI: 10.1016/j.canlet.2019.01.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
|
47
|
Harris LJ, Hughes KL, Ehrhart EJ, Labadie JD, Yoshimoto J, Avery AC. Canine CD4+ T-cell lymphoma identified by flow cytometry exhibits a consistent histomorphology and gene expression profile. Vet Comp Oncol 2019; 17:253-264. [PMID: 30684308 DOI: 10.1111/vco.12460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
T-cell lymphomas (TCL) are a diverse group of neoplasms with variable diagnostic features, pathophysiologies, therapeutic responses and clinical outcomes. In dogs, TCL includes indolent and aggressive tumours such as T-zone lymphoma (TZL) and peripheral T-cell lymphoma (PTCL), respectively. Delineation of molecular subtypes and investigation into underlying pathophysiologies of aggressive TCLs remains inadequate. We investigate the correlations between flow cytometry and histopathology of 73 cases of nodal TCL. The majority of cases (82.2%) were characterized as CD4+ TCL by flow cytometry. Fewer cases were classified as CD8+ TCL (6.8%) or CD4- CD8- TCL (11.0%). All cases, regardless of immunophenotype, exhibited conserved histologic features consistent with the WHO classification of PTCL. Histologic subsets of PTCL corresponding to immunophenotypic features were not identified. Neoplastic cell size determined by flow cytometry correlated significantly with mitotic rate. RNA-seq was performed on a subset of CD4+ PTCL cases (n = 6) and compared with sorted control CD4+ T-cells. The gene expression pattern of CD4+ PTCL was similar between all cases regardless of breed. PTCL was enriched in pathways representing G-coupled protein receptor signalling, extracellular matrix remodelling and vascular development, immune signalling and mitotic activity. Furthermore, global gene expression changes were consistent with downregulation of PTEN signalling and upregulation of the MTOR-PI3K-ATK axis. In this study, we evaluated the correlations between flow cytometry, histopathology and gene expression within a large cohort of nodal TCLs. We further demonstrate the ability of flow cytometry to identify a subtype of T-cell lymphoma, CD4+ PTCL, with a uniform histomorphology and gene expression profile.
Collapse
Affiliation(s)
- Lauren J Harris
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Kelly L Hughes
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - E J Ehrhart
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Ethos Diagnostic Science Division, Ethos Veterinary Health, San Diego, California
| | - Julia D Labadie
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Janna Yoshimoto
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Anne C Avery
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
48
|
Nüssing S, Koay HF, Sant S, Loudovaris T, Mannering SI, Lappas M, D Udekem Y, Konstantinov IE, Berzins SP, Rimmelzwaan GF, Turner SJ, Clemens EB, Godfrey DI, Nguyen TH, Kedzierska K. Divergent SATB1 expression across human life span and tissue compartments. Immunol Cell Biol 2019; 97:498-511. [PMID: 30803026 PMCID: PMC6618325 DOI: 10.1111/imcb.12233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 01/01/2023]
Abstract
Special AT-rich binding protein-1 (SATB1) is a global chromatin organizer capable of activating or repressing gene transcription in mice and humans. The role of SATB1 is pivotal for T-cell development, with SATB1-knockout mice being neonatally lethal, although the exact mechanism is unknown. Moreover, SATB1 is dysregulated in T-cell lymphoma and proposed to suppress transcription of the Pdcd1 gene, encoding the immune checkpoint programmed cell death protein 1 (PD-1). Thus, SATB1 expression in T-cell subsets across different tissue compartments in humans is of potential importance for targeting PD-1. Here, we comprehensively analyzed SATB1 expression across different human tissues and immune compartments by flow cytometry and correlated this with PD-1 expression. We investigated SATB1 protein levels in pediatric and adult donors and assessed expression dynamics of this chromatin organizer across different immune cell subsets in human organs, as well as in antigen-specific T cells directed against acute and chronic viral infections. Our data demonstrate that SATB1 expression in humans is the highest in T-cell progenitors in the thymus, and then becomes downregulated in mature T cells in the periphery. Importantly, SATB1 expression in peripheral mature T cells is not static and follows fine-tuned expression dynamics, which appear to be tissue- and antigen-dependent. Furthermore, SATB1 expression negatively correlates with PD-1 expression in virus-specific CD8+ T cells. Our study has implications for understanding the role of SATB1 in human health and disease and suggests an approach for modulating PD-1 in T cells, highly relevant to human malignancies or chronic viral infections.
Collapse
Affiliation(s)
- Simone Nüssing
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Parkville, VIC, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics & Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Yves D Udekem
- Department of Cardiothoracic Surgery, Royal Children's Hospital and Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Parkville, VIC, Australia
| | - Igor E Konstantinov
- Department of Cardiothoracic Surgery, Royal Children's Hospital and Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Parkville, VIC, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,School of Health and Life Sciences, Federation University Australia, Ballarat, VIC, Australia.,Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.,Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Stephen J Turner
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Parkville, VIC, Australia
| | - Thi Ho Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
49
|
Hosokawa H, Ungerbäck J, Wang X, Matsumoto M, Nakayama KI, Cohen SM, Tanaka T, Rothenberg EV. Transcription Factor PU.1 Represses and Activates Gene Expression in Early T Cells by Redirecting Partner Transcription Factor Binding. Immunity 2019; 48:1119-1134.e7. [PMID: 29924977 DOI: 10.1016/j.immuni.2018.04.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/21/2018] [Accepted: 04/19/2018] [Indexed: 01/09/2023]
Abstract
Transcription factors normally regulate gene expression through their action at sites where they bind to DNA. However, the balance of activating and repressive functions that a transcription factor can mediate is not completely understood. Here, we showed that the transcription factor PU.1 regulated gene expression in early T cell development both by recruiting partner transcription factors to its own binding sites and by depleting them from the binding sites that they preferred when PU.1 was absent. The removal of partner factors Satb1 and Runx1 occurred primarily from sites where PU.1 itself did not bind. Genes linked to sites of partner factor "theft" were enriched for genes that PU.1 represses despite lack of binding, both in a model cell line system and in normal T cell development. Thus, system-level competitive recruitment dynamics permit PU.1 to affect gene expression both through its own target sites and through action at a distance.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonas Ungerbäck
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Division of Molecular Hematology, Lund University, Sweden
| | - Xun Wang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Sarah M Cohen
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Japan; AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
50
|
Yasuda K, Kitagawa Y, Kawakami R, Isaka Y, Watanabe H, Kondoh G, Kohwi-Shigematsu T, Sakaguchi S, Hirota K. Satb1 regulates the effector program of encephalitogenic tissue Th17 cells in chronic inflammation. Nat Commun 2019; 10:549. [PMID: 30710091 PMCID: PMC6358604 DOI: 10.1038/s41467-019-08404-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
The genome organizer, special AT-rich sequence-binding protein-1 (Satb1), plays a pivotal role in the regulation of global gene networks in a cell type-dependent manner and is indispensable for the development of multiple cell types, including mature CD4+ T, CD8+ T, and Foxp3+ regulatory T cells in the thymus. However, it remains unknown how the differentiation and effector program of the Th subsets in the periphery are regulated by Satb1. Here, we demonstrate that Satb1 differentially regulates gene expression profiles in non-pathogenic and pathogenic Th17 cells and promotes the pathogenic effector program of encephalitogenic Th17 cells by regulating GM-CSF via Bhlhe40 and inhibiting PD-1 expression. However, Satb1 is dispensable for the differentiation and non-pathogenic functions of Th17 cells. These results indicate that Satb1 regulates the specific gene expression and function of effector Th17 cells in tissue inflammation.
Collapse
Affiliation(s)
- Keiko Yasuda
- Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yohko Kitagawa
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ryoji Kawakami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.
| | - Keiji Hirota
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|