1
|
Liu X, Zhu Y, Huang W, Chen J, Lan J, Long X, Zhou J. MYG1 interacts with HSP90 to promote breast cancer progression through Wnt/β-catenin and Notch signaling pathways. Exp Cell Res 2025; 446:114448. [PMID: 39956425 DOI: 10.1016/j.yexcr.2025.114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND As an evolutionarily conserved gene involved in embryonic development, cell differentiation, and immune metabolism, MYG1 exhibits a dynamic expression pattern related to development in human and mouse embryonic tissues, especially upregulates in undifferentiated or pluripotent stem cells. However, MYG1 has been poorly studied in breast cancer and its functional mechanism still remains unclear. METHOD Immunohistochemistry and immunofluorescence were used to study MYG1 expression and localization in breast cancer. Lentivirus transfection combined with CCK8, colony formation, matrix gel experiment and breast fat pad tumor formation in nude mice were used for in vivo and in vitro functional assessment. GSEA enrichment analysis, immunofluorescence and Western blot were conducted to explore functional mechanism. RESULT MYG1 expression was upregulated in breast cancer and its higher expression correlated with a variety of clinicopathological characteristics indicating poor prognosis. In vitro and in vivo experiments showed that overexpression of MYG1 promoted breast cancer cells proliferation, migration, invasion and tumorigenesis, while downregulation of MYG1 had an opposite effect. Mechanistically, MYG1 interacted with HSP90 to significantly activate Wnt/β-catenin and Notch signaling pathways in breast cancer cells, thus promoting EMT, cell cycle process and breast cancer progression. CONCLUSION MYG1 is highly expressed in breast cancer and functions as an oncogene. Mechanistically, MYG1 interacts with HSP90 to accelerate EMT and cell cycle process by activating both Wnt/β-catenin and Notch signaling pathways.
Collapse
Affiliation(s)
- Xuming Liu
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yurong Zhu
- Department of Pathology, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, 78 Wandao Road, Dongguan, 523039, China; Dongguan Clinical Pathology Diagnosis Center, 14 Yuhua Road, Dongguan, 523001, China; Dongguan Key Laboratory of Clinical Pathology, 14 Yuhua Road, Dongguan, 523001, China
| | - Wenqing Huang
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Jianxiong Chen
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Jiawen Lan
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xiaoli Long
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou North Road, Guangzhou, 510515, China; Department of Pathology, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, 78 Wandao Road, Dongguan, 523039, China; Dongguan Clinical Pathology Diagnosis Center, 14 Yuhua Road, Dongguan, 523001, China; Dongguan Key Laboratory of Clinical Pathology, 14 Yuhua Road, Dongguan, 523001, China.
| |
Collapse
|
2
|
Caragine CM, Le VT, Mustafa M, Diaz BJ, Morris JA, Müller S, Mendez-Mancilla A, Geller E, Liscovitch-Brauer N, Sanjana NE. Comprehensive dissection of cis-regulatory elements in a 2.8 Mb topologically associated domain in six human cancers. Nat Commun 2025; 16:1611. [PMID: 39948336 PMCID: PMC11825950 DOI: 10.1038/s41467-025-56568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Cis-regulatory elements (CREs), such as enhancers and promoters, are fundamental regulators of gene expression and, across different cell types, the MYC locus utilizes a diverse regulatory architecture driven by multiple CREs. To better understand differences in CRE function, we perform pooled CRISPR inhibition (CRISPRi) screens to comprehensively probe the 2.8 Mb topologically-associated domain containing MYC in 6 human cancer cell lines with nucleotide resolution. We map 32 CREs where inhibition leads to changes in cell growth, including 8 that overlap previously identified enhancers. Targeting specific CREs decreases MYC expression by as much as 60%, and cell growth by as much as 50%. Using 3-D enhancer contact mapping, we find that these CREs almost always contact MYC but less than 10% of total MYC contacts impact growth when silenced, highlighting the utility of our approach to identify phenotypically-relevant CREs. We also detect an enrichment of lineage-specific transcription factors (TFs) at MYC CREs and, for some of these TFs, find a strong, tumor-specific correlation between TF and MYC expression not found in normal tissue. Taken together, these CREs represent systematically identified, functional regulatory regions and demonstrate how the same region of the human genome can give rise to complex, tissue-specific gene regulation.
Collapse
Affiliation(s)
- Christina M Caragine
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Victoria T Le
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Meer Mustafa
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Bianca Jay Diaz
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - John A Morris
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Simon Müller
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Alejandro Mendez-Mancilla
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Evan Geller
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Noa Liscovitch-Brauer
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Tosello V, Di Martino L, Papathanassiu AE, Santa SD, Pizzi M, Mussolin L, Liu J, Van Vlierberghe P, Piovan E. BCAT1 is a NOTCH1 target and sustains the oncogenic function of NOTCH1. Haematologica 2025; 110:350-367. [PMID: 39234857 PMCID: PMC11788623 DOI: 10.3324/haematol.2024.285552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
High levels of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) have been associated with tumor aggressiveness and drug resistance in several cancer types. Nevertheless, the mechanistic role of BCAT1 in T-cell acute lymphoblastic leukemia (T-ALL) remains uncertain. We provide evidence that Bcat1 was over-expressed following NOTCH1-induced transformation of leukemic progenitors and that NOTCH1 directly controlled BCAT1 expression by binding to a BCAT1 promoter. Further, using a NOTCH1 gain-of-function retroviral model of T-ALL, mouse cells genetically deficient for Bcat1 showed defects in developing leukemia. In murine T-ALL cells, Bcat1 depletion or inhibition redirected leucine metabolism towards production of 3-hydroxy butyrate (3-HB), an endogenous histone deacetylase inhibitor. Consistently, BCAT1-depleted cells showed altered protein acetylation levels which correlated with a pronounced sensitivity to DNA damaging agents. In human NOTCH1-dependent leukemias, high expression levels of BCAT1 may predispose to worse prognosis. Therapeutically, BCAT1 inhibition specifically synergized with etoposide to eliminate tumors in patient-derived xenograft models suggesting that BCAT1 inhibitors may have a part to play in salvage protocols for refractory T-ALL.
Collapse
Affiliation(s)
- Valeria Tosello
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua
| | | | | | - Silvia Dalla Santa
- Department of Surgery, Oncology and Gastroenterology, University of Padua
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padua
| | - Lara Mussolin
- Unit of Onco-hematology, stem cell transplant and gene therapy, Department of Women's and Children's Health, University of Padua
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Erich Piovan
- Department of Surgery, Oncology and Gastroenterology, University of Padua; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua.
| |
Collapse
|
4
|
Werlen G, Hernandez T, Jacinto E. Food for thought: Nutrient metabolism controlling early T cell development. Bioessays 2025; 47:e2400179. [PMID: 39504233 DOI: 10.1002/bies.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
T cells develop in the thymus by expressing a diverse repertoire of either αβ- or γδ-T cell receptors (TCR). While many studies have elucidated how TCR signaling and gene expression control T cell ontogeny, the role of nutrient metabolism is just emerging. Here, we discuss how metabolic reprogramming and nutrient availability impact the fate of developing thymic T cells. We focus on how the PI3K/mTOR signaling mediates various extracellular inputs and how this signaling pathway controls metabolic rewiring during highly proliferative and anabolic developmental stages. We highlight the role of the hexosamine biosynthetic pathway that generates metabolites that are utilized for N- and O-linked glycosylation of proteins and how it impacts TCR expression during T cell ontogeny. We consider the dichotomy in metabolic needs during αβ- versus γδ-T cell lineage commitment as well as how metabolism is also coupled to molecular signaling that controls cell fate.
Collapse
Affiliation(s)
- Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tatiana Hernandez
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
5
|
Milshteyn L, Villamejor A, Merchant A, Lownik J. A novel murine syngeneic CD8 peripheral T-cell lymphoma model with preclinical applications. Leuk Lymphoma 2025; 66:102-108. [PMID: 39291652 DOI: 10.1080/10428194.2024.2404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Peripheral T-cell Lymphoma (PTCL) represents a heterogenous group of aggressive non-Hodgkin Lymphomas with poor prognostic outcomes and limited treatment options. The development and refinement of therapeutic strategies for PTCL are impeded by a paucity of reliable preclinical models that accurately mimic the disease's pathophysiology. There is a dire need for more physiologically relevant models for PTCL. Here we describe a spontaneousCD8+ peripheral T-cell lymphoma cell line (LM-23) derived from a 12-week-old female Balb/cJ mouse. Both intravenous and subcutaneous administration of this cell line to syngeneic Balb/cJ mice resulted in rapid establishment of tumor growth. CHOP and anti-PD1 treatment both displayed no benefit to mice in regulating tumor growth. Such results along with its phenotypic characteristics, rapid growth, and metastatic behavior in syngeneic mice highlight its value in studying the elusive disease and discovery of novel therapeutics.
Collapse
Affiliation(s)
| | | | | | - Joseph Lownik
- Department of Pathology & Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
6
|
Karami N, Taei A, Eftekhari-Yazdi P, Hassani F. Signaling pathway regulators in preimplantation embryos. J Mol Histol 2024; 56:57. [PMID: 39729177 DOI: 10.1007/s10735-024-10338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest. This issue is particularly evident in assisted reproductive technologies, such as in vitro fertilization, where embryonic arrest is frequently observed. A detailed understanding of these pathways enhances insight into the fundamental mechanisms underlying cellular processes and their contributions to embryonic development. The significance of elucidating signaling pathways and their regulatory factors in preimplantation development cannot be overstated. The application of this knowledge in laboratory settings has the potential to support strategies for modeling developmental stages and diseases, drug screening, therapeutic discovery, and reducing embryonic arrest. Furthermore, using various factors, small molecules, and pharmacological agents can enable the development or optimization of culture media for enhanced embryonic viability. While numerous pathways influence preimplantation development, this study examines several critical signaling pathways in this contex.
Collapse
Affiliation(s)
- Narges Karami
- MSc., Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.
| |
Collapse
|
7
|
Tosello V, Rompietti C, Papathanassiu AE, Arrigoni G, Piovan E. BCAT1 Associates with DNA Repair Proteins KU70 and KU80 and Contributes to Regulate DNA Repair in T-Cell Acute Lymphoblastic Leukemia (T-ALL). Int J Mol Sci 2024; 25:13571. [PMID: 39769333 PMCID: PMC11676169 DOI: 10.3390/ijms252413571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Increased expression of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) often correlates with tumor aggressiveness and drug resistance in cancer. We have recently reported that BCAT1 was overexpressed in a subgroup of T-cell acute lymphoblastic (T-ALL) samples, especially those with NOTCH1 activating mutations. Interestingly, BCAT1-depleted cells showed pronounced sensitivity to DNA-damaging agents such as etoposide; however, how BCAT1 regulates this sensitivity remains uncertain. Here, we provide further clues on its chemo-sensitizing effect. Indeed, BCAT1 protein regulates the non-homologous end joining (c-NHEJ) DNA repair pathway by physically associating with the KU70/KU80 heterodimer. BCAT1 inhibition during active repair of DNA double-strand breaks (DSBs) led to increased KU70/KU80 acetylation and impaired c-NHEJ repair, a dramatic increase in DSBs, and ultimately cell death. Our results suggest that, in T-ALL, BCAT1 possesses non-metabolic functions that confer a drug resistance mechanism and that targeting BCAT1 activity presents a novel strategy to improve chemotherapy response in T-ALL patients.
Collapse
Affiliation(s)
- Valeria Tosello
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV—IRCCS, 35127 Padua, Italy;
| | - Chiara Rompietti
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy;
| | | | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy;
- Proteomics Center, University of Padua and Azienda Ospedaliera of Padua, 35131 Padua, Italy
| | - Erich Piovan
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy;
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy
| |
Collapse
|
8
|
Santarpia M, Aliprandi M, Claudia Spagnolo C, Avan A, Rosell R, Andrea Zucali P, Giovannetti E. NOTCH and PTP4A3 alterations emerge as novel predictive biomarkers and potential therapeutic targets in pleural mesothelioma. Lung Cancer 2024; 198:108024. [PMID: 39547104 DOI: 10.1016/j.lungcan.2024.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Previous studies showed opposite effects of NOTCH1 and NOTCH2 on mesothelioma cell survival under hypoxia. Mechanisms underlying these effects are not still clear and this pathway plays a key role in angiogenesis and cancer stem cells (CSCs) self-renewal processes. PURPOSE In this study we evaluated whether NOTCH1, NOTCH2 copy number alterations (CNAs) might predict prognosis of patients with pleural mesothelioma (PM) and if the modulation of this pathway might target CSCs, potentiating pemetrexed activity, also in hypoxic conditions. METHODS Recurrent CNAs were determined by high-resolution whole-genome sequencing from paraffin-embedded samples of a "discovery cohort" (26 patients treated with pemetrexed-based chemotherapy). Prognostic CNAs were validated by PCR gene copy-number and expression analyses in the "discovery" and in two independent "validation" cohorts of pemetrexed-treated and untreated patients (N = 45 and N = 40). Functional analyses of emerging genes were performed through siRNA in different subpopulation of PM cells, growing under hypoxia. RESULTS A copy number gain of NOTCH2 was observed in 50% of patients with progressive disease and its overexpression correlated with a worse prognosis in both pemetrexed-treated and untreated-patients' cohorts. Conversely, losses of PTP4A3 correlated with clinical benefit, while patients with overexpression of both NOTCH2 and PTP4A3 had the worse prognosis. Moreover, NOTCH2 silencing through siRNA in vitro reduced migration, enhancing apoptosis of PM cells, while the PTP4A3 inhibitor BR-1 overcame pemetrexed resistance in PM cells characterized by high NOTCH2/PTP4A3 expression. CONCLUSIONS NOTCH2 and PTP4A3 alterations are associated with clinical outcomes in pemetrexed-treated PM patients. The inhibition of NOTCH pathway may be exploited to eradicate CSCs and improve patients' survival.
Collapse
MESH Headings
- Humans
- Mesothelioma/genetics
- Mesothelioma/drug therapy
- Mesothelioma/pathology
- Mesothelioma/mortality
- Mesothelioma/metabolism
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Pleural Neoplasms/genetics
- Pleural Neoplasms/drug therapy
- Pleural Neoplasms/pathology
- Pleural Neoplasms/mortality
- Pleural Neoplasms/metabolism
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Prognosis
- Pemetrexed/therapeutic use
- Pemetrexed/pharmacology
- DNA Copy Number Variations
- Female
- Male
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Cell Line, Tumor
- Aged
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Middle Aged
- Gene Expression Regulation, Neoplastic
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Mesothelioma, Malignant/drug therapy
- Mesothelioma, Malignant/genetics
- Mesothelioma, Malignant/metabolism
- Mesothelioma, Malignant/pathology
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology of Adulthood and Childhood DETEV "G. Barresi", University of Messina, Messina, Italy.
| | - Marta Aliprandi
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology of Adulthood and Childhood DETEV "G. Barresi", University of Messina, Messina, Italy
| | - Amir Avan
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain
| | - Paolo Andrea Zucali
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Wang X, Guo Y, Lin P, Yu M, Song S, Xu W, Kong D, Wang Y, Zhang Y, Lu F, Xie Q, Ma X. Nuclear receptor E75/NR1D2 promotes tumor malignant transformation by integrating Hippo and Notch pathways. EMBO J 2024; 43:6336-6363. [PMID: 39516282 PMCID: PMC11649922 DOI: 10.1038/s44318-024-00290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Hormone therapy resistance and the ensuing aggressive tumor progression present a significant clinical challenge. However, the mechanisms underlying the induction of tumor malignancy upon inhibition of steroid hormone signaling remain poorly understood. Here, we demonstrate that Drosophila malignant epithelial tumors show a similar reduction in ecdysone signaling, the main steroid hormone pathway. Our analysis of ecdysone-induced downstream targets reveals that overexpression of the nuclear receptor E75, particularly facilitates the malignant transformation of benign tumors. Genome-wide DNA binding profiles and biochemistry data reveal that E75 not only binds to the transcription factors of both Hippo and Notch pathways, but also exhibits widespread co-binding to their target genes, thus contributing to tumor malignancy. We further validated these findings by demonstrating that depletion of NR1D2, the mammalian homolog of E75, inhibits the activation of Hippo and Notch target genes, impeding glioblastoma progression. Together, our study unveils a novel mechanism by which hormone inhibition promotes tumor malignancy, and describes an evolutionarily conserved role of the oncogene E75/NR1D2 in integration of Hippo and Notch pathway activity during tumor progression.
Collapse
Affiliation(s)
- Xianping Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| | - Yifan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Peng Lin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sha Song
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Wenyan Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Du Kong
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Yin Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yanxiao Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
10
|
Rogers JM, Mimoso CA, Martin BJE, Martin AP, Aster JC, Adelman K, Blacklow SC. Notch induces transcription by stimulating release of paused RNA polymerase II. Genes Dev 2024; 38:965-978. [PMID: 39414356 DOI: 10.1101/gad.352108.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Notch proteins undergo ligand-induced proteolysis to release a nuclear effector that influences a wide range of cellular processes by regulating transcription. Despite years of study, however, how Notch induces the transcription of its target genes remains unclear. Here, we comprehensively examine the response to human Notch1 across a time course of activation using high-resolution genomic assays of chromatin accessibility and nascent RNA production. Our data reveal that Notch induces target gene transcription primarily by releasing paused RNA polymerase II (RNAPII). Moreover, in contrast to prevailing models suggesting that Notch acts by promoting chromatin accessibility, we found that open chromatin was established at Notch-responsive regulatory elements prior to Notch signal induction through SWI/SNF-mediated remodeling. Together, these studies show that the nuclear response to Notch signaling is dictated by the pre-existing chromatin state and RNAPII distribution at the time of signal activation.
Collapse
Affiliation(s)
- Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin J E Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alexandre P Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
- Ludwig Center at Harvard, Boston, Massachusetts 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- Ludwig Center at Harvard, Boston, Massachusetts 02115, USA
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts 02142, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
11
|
Lyu A, Nam SH, Humphrey RS, Horton TM, Ehrlich LIR. Cells and signals of the leukemic microenvironment that support progression of T-cell acute lymphoblastic leukemia (T-ALL). Exp Mol Med 2024; 56:2337-2347. [PMID: 39482533 PMCID: PMC11612169 DOI: 10.1038/s12276-024-01335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Current intensified chemotherapy regimens have significantly increased survival rates for pediatric patients with T-cell acute lymphoblastic leukemia (T-ALL), but these treatments can result in serious adverse effects; furthermore, patients who are resistant to chemotherapy or who relapse have inferior outcomes, together highlighting the need for improved therapeutic strategies. Despite recent advances in stratifying T-ALL into molecular subtypes with distinct driver mutations, efforts to target the tumor-intrinsic genomic alterations critical for T-ALL progression have yet to translate into more effective and less toxic therapies. Ample evidence now indicates that extrinsic factors in the leukemic microenvironment are critical for T-ALL growth, infiltration, and therapeutic resistance. Considering the diversity of organs infiltrated by T-ALL cells and the unique cellular components of the microenvironment encountered at each site, it is likely that there are both shared features of tumor-supportive niches across multiple organs and site-specific features that are key to leukemia cell survival. Therefore, elucidating the distinct microenvironmental cues supporting T-ALL in different anatomic locations could reveal novel therapeutic targets to improve therapies. This review summarizes the current understanding of the intricate interplay between leukemia cells and the diverse cells they encounter within their tumor microenvironments (TMEs), as well as opportunities to therapeutically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Aram Lyu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
12
|
Foran G, Hallam RD, Megaly M, Turgambayeva A, Antfolk D, Li Y, Luca VC, Necakov A. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping. Sci Rep 2024; 14:21912. [PMID: 39300145 PMCID: PMC11413390 DOI: 10.1038/s41598-024-71634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Collapse
Affiliation(s)
- Gregory Foran
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Ryan Douglas Hallam
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Marvel Megaly
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Anel Turgambayeva
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Vincent C Luca
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
13
|
Zhao Y, Wang G, Wei Z, Li D, Morshedi M. RETRACTED ARTICLE: Wnt, notch signaling and exercise: what are their functions? Hum Cell 2024; 37:1612. [PMID: 38386243 DOI: 10.1007/s13577-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Yijie Zhao
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Guangjun Wang
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Zhifeng Wei
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Duo Li
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | | |
Collapse
|
14
|
Foran G, Hallam RD, Megaly M, Turgambayeva A, Antfolk D, Li Y, Luca VC, Necakov A. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.17.533124. [PMID: 39131356 PMCID: PMC11312450 DOI: 10.1101/2023.03.17.533124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Collapse
Affiliation(s)
- Gregory Foran
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Ryan Douglas Hallam
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Marvel Megaly
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Anel Turgambayeva
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Vincent C. Luca
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| |
Collapse
|
15
|
Khaket TP, Rimal S, Wang X, Bhurtel S, Wu YC, Lu B. Ribosome stalling during c-myc translation presents actionable cancer cell vulnerability. PNAS NEXUS 2024; 3:pgae321. [PMID: 39161732 PMCID: PMC11330866 DOI: 10.1093/pnasnexus/pgae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/14/2024] [Indexed: 08/21/2024]
Abstract
Myc is a major driver of tumor initiation, progression, and maintenance. Up-regulation of Myc protein level rather than acquisition of neomorphic properties appears to underlie most Myc-driven cancers. Cellular mechanisms governing Myc expression remain incompletely defined. In this study, we show that ribosome-associated quality control (RQC) plays a critical role in maintaining Myc protein level. Ribosomes stall during the synthesis of the N-terminal portion of cMyc, generating aberrant cMyc species and necessitating deployment of the early RQC factor ZNF598 to handle translational stress and restore cMyc translation. ZNF598 expression is up-regulated in human glioblastoma (GBM), and its expression positively correlates with that of cMyc. ZNF598 knockdown inhibits human GBM neurosphere formation in cell culture and Myc-dependent tumor growth in vivo in Drosophila. Intriguingly, the SARS-COV-2-encoded translational regulator Nsp1 impinges on ZNF598 to restrain cMyc translation and consequently cMyc-dependent cancer growth. Remarkably, Nsp1 exhibits synthetic toxicity with the translation and RQC-related factor ATP-binding cassette subfamily E member 1, which, despite its normally positive correlation with cMyc in cancer cells, is co-opted by Nsp1 to down-regulate cMyc and inhibit tumor growth. Ribosome stalling during c-myc translation thus offers actionable cancer cell vulnerability.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suman Rimal
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xingjun Wang
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sunil Bhurtel
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yen-Chi Wu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bingwei Lu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Lahera A, Vela-Martín L, Fernández-Navarro P, Llamas P, López-Lorenzo JL, Cornago J, Santos J, Fernández-Piqueras J, Villa-Morales M. PIM1 is a potential therapeutic target for the leukemogenic effects mediated by JAK/STAT pathway mutations in T-ALL/LBL. NPJ Precis Oncol 2024; 8:152. [PMID: 39033228 PMCID: PMC11271448 DOI: 10.1038/s41698-024-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Precursor T-cell neoplasms (T-ALL/LBL) are aggressive hematological malignancies that arise from the malignant transformation of immature thymocytes. Despite the JAK/STAT pathway is recurrently altered in these neoplasms, there are not pharmacological inhibitors officially approved for the treatment of T-ALL/LBL patients that present oncogenic JAK/STAT pathway mutations. In the effort to identify potential therapeutic targets for those patients, we followed an alternative approach and focused on their transcriptional profile. We combined the analysis of molecular data from T-ALL/LBL patients with the generation of hematopoietic cellular models to reveal that JAK/STAT pathway mutations are associated with an aberrant transcriptional profile. Specifically, we demonstrate that JAK/STAT pathway mutations induce the overexpression of the PIM1 gene. Moreover, we show that the pan-PIM inhibitor, PIM447, significantly reduces the leukemogenesis, as well as the aberrant activation of c-MYC and mTOR pathways in cells expressing different JAK/STAT pathway mutations, becoming a potential therapeutic opportunity for a relevant subset of T-ALL/LBL patients.
Collapse
Affiliation(s)
- Antonio Lahera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
| | - Laura Vela-Martín
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Pablo Fernández-Navarro
- Unit of Cancer and Environmental Epidemiology, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
| | - Pilar Llamas
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - José L López-Lorenzo
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Javier Cornago
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Javier Santos
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain
| | - José Fernández-Piqueras
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain.
| | - María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain.
| |
Collapse
|
17
|
Dehghanian F, Ghahnavieh LE, Nilchi AN, Khalilian S, Joonbakhsh R. Breast cancer drug resistance: Decoding the roles of Hippo pathway crosstalk. Gene 2024; 916:148424. [PMID: 38588933 DOI: 10.1016/j.gene.2024.148424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
The most significant factors that lead to cancer-related death in breast cancer (BC) patients include drug resistance, migration, invasion, and metastasis. Several signaling pathways are involved in the development of BC. The different types of BC are initially sensitive to chemotherapy, and drug resistance can occur through multiple molecular mechanisms. Regardless of developing targeted Therapy, due to the heterogenic nature and complexity of drug resistance, it is a major clinical challenge with the low survival rate in BC patients. The deregulation of several signaling pathways, particularly the Hippo pathway (HP), is one of the most recent findings about the molecular mechanisms of drug resistance in BC, which are summarized in this review. Given that HP is one of the recent cancer research hotspots, this review focuses on its implication in BC drug resistance. Unraveling the different molecular basis of HP through its crosstalk with other signaling pathways, and determining the effectiveness of HP inhibitors can provide new insights into possible therapeutic strategies for overcoming chemoresistance in BC.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran.
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Amirhossein Naghsh Nilchi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Sheyda Khalilian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Rezvan Joonbakhsh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| |
Collapse
|
18
|
Rogers JM, Mimoso CA, Martin BJE, Martin AP, Aster JC, Adelman K, Blacklow SC. Notch induces transcription by stimulating release of paused RNA Polymerase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598853. [PMID: 38915655 PMCID: PMC11195215 DOI: 10.1101/2024.06.13.598853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Notch proteins undergo ligand-induced proteolysis to release a nuclear effector that influences a wide range of cellular processes by regulating transcription. Despite years of study, however, how Notch induces the transcription of its target genes remains unclear. Here, we comprehensively examined the response to human Notch1 across a time course of activation using high-resolution genomic assays of chromatin accessibility and nascent RNA production. Our data reveal that Notch induces target gene transcription primarily by releasing paused RNA polymerase II (RNAPII). Moreover, in contrast to prevailing models suggesting that Notch acts by promoting chromatin accessibility, we found that open chromatin was established at Notch-responsive regulatory elements prior to Notch signal induction, through SWI/SNF-mediated remodeling. Together, these studies show that the nuclear response to Notch signaling is dictated by the pre-existing chromatin state and RNAPII distribution at the time of signal activation.
Collapse
Affiliation(s)
- Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin JE Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandre P Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Lead contact
| |
Collapse
|
19
|
Liao K, Chen P, Zhang M, Wang J, Hatzihristidis T, Lin X, Yang L, Yao N, Liu C, Hong Y, Li X, Liu H, Zúñiga-Pflücker JC, Love PE, Chen X, Liu WH, Zhao B, Xiao C. Critical roles of the miR-17∼92 family in thymocyte development, leukemogenesis, and autoimmunity. Cell Rep 2024; 43:114261. [PMID: 38776224 DOI: 10.1016/j.celrep.2024.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/24/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Thymocyte development requires precise control of PI3K-Akt signaling to promote proliferation and prevent leukemia and autoimmune disorders. Here, we show that ablating individual clusters of the miR-17∼92 family has a negligible effect on thymocyte development, while deleting the entire family severely impairs thymocyte proliferation and reduces thymic cellularity, phenocopying genetic deletion of Dicer. Mechanistically, miR-17∼92 expression is induced by Myc-mediated pre-T cell receptor (TCR) signaling, and miR-17∼92 promotes thymocyte proliferation by suppressing the translation of Pten. Retroviral expression of miR-17∼92 restores the proliferation and differentiation of Myc-deficient thymocytes. Conversely, partial deletion of the miR-17∼92 family significantly delays Myc-driven leukemogenesis. Intriguingly, thymocyte-specific transgenic miR-17∼92 expression does not cause leukemia or lymphoma but instead aggravates skin inflammation, while ablation of the miR-17∼92 family ameliorates skin inflammation. This study reveals intricate roles of the miR-17∼92 family in balancing thymocyte development, leukemogenesis, and autoimmunity and identifies those microRNAs (miRNAs) as potential therapeutic targets for leukemia and autoimmune diseases.
Collapse
Affiliation(s)
- Kunyu Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Pengda Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, China
| | - Jiazhen Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Teri Hatzihristidis
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoxi Lin
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liang Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Nan Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Chenfeng Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Liu
- Furong Laboratory, Changsha, China; Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xiang Chen
- Furong Laboratory, Changsha, China; Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, China.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
20
|
Tosello V, Di Martino L, Piovan E. Targeted Metabolomics of Tissue and Plasma Identifies Biomarkers in Mice with NOTCH1-Dependent T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:6543. [PMID: 38928249 PMCID: PMC11204162 DOI: 10.3390/ijms25126543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
While the genomics era has allowed remarkable advances in understanding the mechanisms driving the biology and pathogenesis of numerous blood cancers, including acute lymphoblastic leukemia (ALL), metabolic studies are still lagging, especially regarding how the metabolism differs between healthy and diseased individuals. T-cell ALL (T-ALL) is an aggressive hematological neoplasm deriving from the malignant transformation of T-cell progenitors characterized by frequent NOTCH1 pathway activation. The aim of our study was to characterize tumor and plasma metabolomes during T-ALL development using a NOTCH1-induced murine T-ALL model (ΔE-NOTCH1). In tissue, we found a significant metabolic shift with leukemia development, as metabolites linked to glycolysis (lactic acid) and Tricarboxylic acid cycle replenishment (succinic and malic acids) were elevated in NOTCH1 tumors, while metabolites associated with lipid oxidation (e.g., carnitine) as well as purine and pyrimidine metabolism were elevated in normal thymic tissue. Glycine, serine, and threonine metabolism, glutathione metabolism, as well as valine, leucine, and isoleucine biosynthesis were enriched pathways in tumor tissue. Phenylalanine and tyrosine metabolism was highly enriched in plasma from leukemia-bearing mice compared to healthy mice. Further, we identified a metabolic signature consisting of glycine, alanine, proline, 3-hydroxybutyrate, and glutamic acid as potential biomarkers for leukemia progression in plasma. Hopefully, the metabolic differences detected in our leukemia model will apply to humans and contribute to the development of metabolism-oriented therapeutic approaches.
Collapse
Affiliation(s)
- Valeria Tosello
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy;
| | - Ludovica Di Martino
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, 35128 Padova, Italy;
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, 35128 Padova, Italy;
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy
| |
Collapse
|
21
|
Rajab SAS, Andersen LK, Kenter LW, Berlinsky DL, Borski RJ, McGinty AS, Ashwell CM, Ferket PR, Daniels HV, Reading BJ. Combinatorial metabolomic and transcriptomic analysis of muscle growth in hybrid striped bass (female white bass Morone chrysops x male striped bass M. saxatilis). BMC Genomics 2024; 25:580. [PMID: 38858615 PMCID: PMC11165755 DOI: 10.1186/s12864-024-10325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/19/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Understanding growth regulatory pathways is important in aquaculture, fisheries, and vertebrate physiology generally. Machine learning pattern recognition and sensitivity analysis were employed to examine metabolomic small molecule profiles and transcriptomic gene expression data generated from liver and white skeletal muscle of hybrid striped bass (white bass Morone chrysops x striped bass M. saxatilis) representative of the top and bottom 10 % by body size of a production cohort. RESULTS Larger fish (good-growth) had significantly greater weight, total length, hepatosomatic index, and specific growth rate compared to smaller fish (poor-growth) and also had significantly more muscle fibers of smaller diameter (≤ 20 µm diameter), indicating active hyperplasia. Differences in metabolomic pathways included enhanced energetics (glycolysis, citric acid cycle) and amino acid metabolism in good-growth fish, and enhanced stress, muscle inflammation (cortisol, eicosanoids) and dysfunctional liver cholesterol metabolism in poor-growth fish. The majority of gene transcripts identified as differentially expressed between groups were down-regulated in good-growth fish. Several molecules associated with important growth-regulatory pathways were up-regulated in muscle of fish that grew poorly: growth factors including agt and agtr2 (angiotensins), nicotinic acid (which stimulates growth hormone production), gadd45b, rgl1, zfp36, cebpb, and hmgb1; insulin-like growth factor signaling (igfbp1 and igf1); cytokine signaling (socs3, cxcr4); cell signaling (rgs13, rundc3a), and differentiation (rhou, mmp17, cd22, msi1); mitochondrial uncoupling proteins (ucp3, ucp2); and regulators of lipid metabolism (apoa1, ldlr). Growth factors pttg1, egfr, myc, notch1, and sirt1 were notably up-regulated in muscle of good-growing fish. CONCLUSION A combinatorial pathway analysis using metabolomic and transcriptomic data collectively suggested promotion of cell signaling, proliferation, and differentiation in muscle of good-growth fish, whereas muscle inflammation and apoptosis was observed in poor-growth fish, along with elevated cortisol (an anti-inflammatory hormone), perhaps related to muscle wasting, hypertrophy, and inferior growth. These findings provide important biomarkers and mechanisms by which growth is regulated in fishes and other vertebrates as well.
Collapse
Affiliation(s)
- Sarah A S Rajab
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA
| | - Linnea K Andersen
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA
| | - Linas W Kenter
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - David L Berlinsky
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Russell J Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Andrew S McGinty
- North Carolina State University, Pamlico Aquaculture Field Laboratory, Aurora, NC, USA
| | - Christopher M Ashwell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Peter R Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Harry V Daniels
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA.
- North Carolina State University, Pamlico Aquaculture Field Laboratory, Aurora, NC, USA.
| |
Collapse
|
22
|
Xu J, Peng J, Sun S, Wang D, Yuan W, Yang X, Shi T, Wang R, Liu H, Zhang P, Zhu HH. Preclinical testing of CT1113, a novel USP28 inhibitor, for the treatment of T-cell acute lymphoblastic leukaemia. Br J Haematol 2024; 204:2301-2318. [PMID: 38685813 DOI: 10.1111/bjh.19492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a highly aggressive and heterogeneous lymphoid malignancy with poor prognosis in adult patients. Aberrant activation of the NOTCH1 signalling pathway is involved in the pathogenesis of over 60% of T-ALL cases. Ubiquitin-specific protease 28 (USP28) is a deubiquitinase known to regulate the stability of NOTCH1. Here, we report that genetic depletion of USP28 or using CT1113, a potent small molecule targeting USP28, can strongly destabilize NOTCH1 and inhibit the growth of T-ALL cells. Moreover, we show that USP28 also regulates the stability of sterol regulatory element binding protein 1 (SREBP1), which has been reported to mediate increased lipogenesis in tumour cells. As the most critical transcription factor involved in regulating lipogenesis, SREBP1 plays an important role in the metabolism of T-ALL. Therefore, USP28 may be a potential therapeutic target, and CT1113 may be a promising novel drug for T-ALL with or without mutant NOTCH1.
Collapse
Affiliation(s)
- Jieyu Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Jin Peng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shu Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghai Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Wei Yuan
- Department of Hematology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Xueying Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Shi
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Rong Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Hudan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University Medical School, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Hu Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Nishio Y, Kato K, Oishi H, Takahashi Y, Saitoh S. MYCN in human development and diseases. Front Oncol 2024; 14:1417607. [PMID: 38884091 PMCID: PMC11176553 DOI: 10.3389/fonc.2024.1417607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Somatic mutations in MYCN have been identified across various tumors, playing pivotal roles in tumorigenesis, tumor progression, and unfavorable prognoses. Despite its established notoriety as an oncogenic driver, there is a growing interest in exploring the involvement of MYCN in human development. While MYCN variants have traditionally been associated with Feingold syndrome type 1, recent discoveries highlight gain-of-function variants, specifically p.(Thr58Met) and p.(Pro60Leu), as the cause for megalencephaly-polydactyly syndrome. The elucidation of cellular and murine analytical data from both loss-of-function (Feingold syndrome model) and gain-of-function models (megalencephaly-polydactyly syndrome model) is significantly contributing to a comprehensive understanding of the physiological role of MYCN in human development and pathogenesis. This review discusses the MYCN's functional implications for human development by reviewing the clinical characteristics of these distinct syndromes, Feingold syndrome, and megalencephaly-polydactyly syndrome, providing valuable insights into the understanding of pathophysiological backgrounds of other syndromes associated with the MYCN pathway and the overall comprehension of MYCN's role in human development.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
24
|
Du W, Xia X, Gou Q, Xie Y, Gao L. Comprehensive review regarding the association of E2Fs with the prognosis and immune infiltrates in human head and neck squamous cell carcinoma. Asian J Surg 2024; 47:2106-2121. [PMID: 38320907 DOI: 10.1016/j.asjsur.2024.01.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
E2F transcription factors (E2Fs) are a group of genes that encode a family of transcription factors. They have been identified as being involved in the tumor progression of various cancer types. However, little is known about the expression level, genetic variation, molecular mechanism, and prognostic value and immune infiltration of different E2Fs in HNSCC.In this study, we utilized multiple databases to investigate the mRNA expression level, genetic alteration, and biological function of E2Fs in HNSCC patients. Then, the relationship between E2Fs expression and its association with the occurrence, progress, prognosis, and immune cell infiltration in patients with HNSCC was evaluated. We found that all eight E2Fs were higher expressed in HNSCC tissues than in normal tissues, and the expression levels of E2F1/2/3/4/5/6/8 were also associated with the stage and grade of HNSCC. The abnormal expression of E2F1/2/4/8 in HNSCC patients is related to the clinical outcome. The expression of E2Fs was statistically correlated with the immune cell infiltration in HNSCC and the infiltration of B cells and CD8+ T cells were positively associated with better OS in HNSCC patients. Furthermore, we verified the E2F2 at the tissue level in the validation experiment. Our study may provide novel insights into the choice of immunotherapy targets and potential prognostic biomarkers in HNSCC patients.
Collapse
Affiliation(s)
- Wei Du
- Department of Targetting Therapy & Immunology, Cancer Cencer, West China Hospital, Sichuan University, Chengdu, China
| | - Xueming Xia
- Division of Head & Neck Tumor Multimodaligy Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Division of Head & Neck Tumor Multimodaligy Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Xie
- Division of Head & Neck Tumor Multimodaligy Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lanyang Gao
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Sichuan, China.
| |
Collapse
|
25
|
Parriott G, Hegermiller E, Morman RE, Frank C, Saygin C, Stock W, Bartom ET, Kee BL. Loss of thymocyte competition underlies the tumor suppressive functions of the E2a transcription factor in T-ALL. Leukemia 2024; 38:491-501. [PMID: 38155245 DOI: 10.1038/s41375-023-02123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of TAL1 or LYL1 in T cell progenitors, or inactivation of E2A, is sufficient to predispose mice to develop T-ALL. How E2A suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a, prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2A suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymocyte competition suppresses leukemogenesis.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Hegermiller
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Rosemary E Morman
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Cameron Frank
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Caner Saygin
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA.
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
26
|
Li Q, Guo H, Xu J, Li X, Wang D, Guo Y, Qing G, Van Vlierberghe P, Liu H. A helicase-independent role of DHX15 promotes MYC stability and acute leukemia cell survival. iScience 2024; 27:108571. [PMID: 38161423 PMCID: PMC10755364 DOI: 10.1016/j.isci.2023.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
DHX15 has been implicated in RNA splicing and ribosome biogenesis, primarily functioning as an RNA helicase. To systematically assess the cellular role of DHX15, we conducted proteomic analysis to investigate the landscape of DHX15 interactome, and identified MYC as a binding partner. DHX15 co-localizes with MYC in cells and directly interacts with MYC in vitro. Importantly, DHX15 contributes to MYC protein stability at the post-translational level and independent of its RNA binding capacity. Mechanistic investigation reveals that DHX15 interferes the interaction between MYC and FBXW7, thereby preventing MYC polyubiquitylation and proteasomal degradation. Consequently, the abrogation of DHX15 drastically inhibits MYC-mediated transcriptional output. While DHX15 depletion blocks T cell development and leukemia cell survival as we recently reported, overexpression of MYC significantly rescues the phenotypic defects. These findings shed light on the essential role of DHX15 in mammalian cells and suggest that maintaining sufficient MYC expression is a significant contributor to DHX15-mediated cellular functions.
Collapse
Affiliation(s)
- Qilong Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Hao Guo
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Jin Xu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Xinlu Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Donghai Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Ying Guo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Guoliang Qing
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | | | - Hudan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
27
|
Braune EB, Geist F, Tang X, Kalari K, Boughey J, Wang L, Leon-Ferre RA, D'Assoro AB, Ingle JN, Goetz MP, Kreis J, Wang K, Foukakis T, Seshire A, Wienke D, Lendahl U. Identification of a Notch transcriptomic signature for breast cancer. Breast Cancer Res 2024; 26:4. [PMID: 38172915 PMCID: PMC10765899 DOI: 10.1186/s13058-023-01757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Dysregulated Notch signalling contributes to breast cancer development and progression, but validated tools to measure the level of Notch signalling in breast cancer subtypes and in response to systemic therapy are largely lacking. A transcriptomic signature of Notch signalling would be warranted, for example to monitor the effects of future Notch-targeting therapies and to learn whether altered Notch signalling is an off-target effect of current breast cancer therapies. In this report, we have established such a classifier. METHODS To generate the signature, we first identified Notch-regulated genes from six basal-like breast cancer cell lines subjected to elevated or reduced Notch signalling by culturing on immobilized Notch ligand Jagged1 or blockade of Notch by γ-secretase inhibitors, respectively. From this cadre of Notch-regulated genes, we developed candidate transcriptomic signatures that were trained on a breast cancer patient dataset (the TCGA-BRCA cohort) and a broader breast cancer cell line cohort and sought to validate in independent datasets. RESULTS An optimal 20-gene transcriptomic signature was selected. We validated the signature on two independent patient datasets (METABRIC and Oslo2), and it showed an improved coherence score and tumour specificity compared with previously published signatures. Furthermore, the signature score was particularly high for basal-like breast cancer, indicating an enhanced level of Notch signalling in this subtype. The signature score was increased after neoadjuvant treatment in the PROMIX and BEAUTY patient cohorts, and a lower signature score generally correlated with better clinical outcome. CONCLUSIONS The 20-gene transcriptional signature will be a valuable tool to evaluate the response of future Notch-targeting therapies for breast cancer, to learn about potential effects on Notch signalling from conventional breast cancer therapies and to better stratify patients for therapy considerations.
Collapse
Affiliation(s)
- Eike-Benjamin Braune
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Xiaojia Tang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Krishna Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Judy Boughey
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | | | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Kang Wang
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Bibas M. Plasmablastic Lymphoma. A State-of-the-Art Review: Part 1-Epidemiology, Pathogenesis, Clinicopathologic Characteristics, Differential Diagnosis, Prognostic Factors, and Special Populations. Mediterr J Hematol Infect Dis 2024; 16:e2024007. [PMID: 38223486 PMCID: PMC10786126 DOI: 10.4084/mjhid.2024.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
This two-part review aims to present a current and comprehensive understanding of the diagnosis and management of plasmablastic lymphoma. The first section, as presented in this paper, reviews epidemiology, etiology, clinicopathological characteristics, differential diagnosis, prognostic variables, and the impact of plasmablastic lymphoma on specific populations. Plasmablastic lymphoma (PBL) is a rare and aggressive form of lymphoma. Previous and modern studies have demonstrated a significant association between the human immunodeficiency virus (HIV) and the development of the disease. The limited occurrence of PBL contributes to a need for a more comprehensive understanding of the molecular mechanisms involved in its etiology. Consequently, the diagnostic procedure for PBL poses a significant difficulty. Among the group of CD20-negative large B-cell lymphomas, PBL can be correctly diagnosed by identifying its exact clinical characteristics, anatomical location, and morphological characteristics. PBL cells do not express CD20 or PAX5 but possess plasmacytic differentiation markers such as CD38, CD138, MUM1/IRF4, Blimp1, and XBP1. PBL must be distinguished from other B-cell malignancies that lack the CD20 marker, including primary effusion lymphoma, anaplastic lymphoma kinase-positive large B-cell lymphoma, and large B-cell lymphoma (LBCL). This condition is frequently associated with infections caused by the Epstein-Barr virus and genetic alterations involving the MYC gene. Despite advances in our comprehension of this disease, the prognosis remains dismal, resulting in a low overall survival rate, although recent reports suggest an apparent tendency towards substantial improvement.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.S.S. Rome, Italy
| |
Collapse
|
29
|
Johansson KB, Zimmerman MS, Dmytrenko IV, Gao F, Link DC. Idasanutlin and navitoclax induce synergistic apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia 2023; 37:2356-2366. [PMID: 37838759 PMCID: PMC10681904 DOI: 10.1038/s41375-023-02057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy in which activating mutations in the Notch pathway are thought to contribute to transformation, in part, by activating c-Myc. Increased c-Myc expression induces oncogenic stress that can trigger apoptosis through the MDM2-p53 tumor suppressor pathway. Since the great majority of T-ALL cases carry inactivating mutations upstream in this pathway but maintain wildtype MDM2 and TP53, we hypothesized that T-ALL would be selectively sensitive to MDM2 inhibition. Treatment with idasanutlin, an MDM2 inhibitor, induced only modest apoptosis in T-ALL cells but upregulated the pro-apoptotic BH3 domain genes BAX and BBC3, prompting us to evaluate the combination of idasanutlin with BH3 mimetics. Combination treatment with idasanutlin and navitoclax, a potent Bcl-2/Bcl-xL inhibitor, induces more consistent and potent synergistic killing of T-ALL PDX lines in vitro than venetoclax, a Bcl-2 specific inhibitor. Moreover, a marked synergic response to combination treatment with idasanutlin and navitoclax was seen in vivo in all four T-ALL xenografts tested, with a significant increase in overall survival in the combination treatment group. Collectively, these preclinical data show that the combination of idasanutlin and navitoclax is highly active in T-ALL and may merit consideration in the clinical setting.
Collapse
Affiliation(s)
- Kimberly B Johansson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan S Zimmerman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Iryna V Dmytrenko
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
30
|
Padovano C, Bianco SD, Sansico F, De Santis E, Tamiro F, Colucci M, Totti B, Di Iasio S, Bruno G, Panelli P, Miscio G, Mazza T, Giambra V. The Notch1 signaling pathway directly modulates the human RANKL-induced osteoclastogenesis. Sci Rep 2023; 13:21199. [PMID: 38040752 PMCID: PMC10692129 DOI: 10.1038/s41598-023-48615-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
Notch signaling is an evolutionary conserved pathway with a key role in tissue homeostasis, differentiation and proliferation. It was reported that Notch1 receptor negatively regulates mouse osteoclast development and formation by inhibiting the expression of macrophage colony-stimulating factor in mesenchymal cells. Nonetheless, the involvement of Notch1 pathway in the generation of human osteoclasts is still controversial. Here, we report that the constitutive activation of Notch1 signaling induced a differentiation block in human mononuclear CD14+ cells directly isolated from peripheral blood mononuclear cells (PBMCs) upon in vitro stimulation to osteoclasts. Additionally, using a combined approach of single-cell RNA sequencing (scRNA-Seq) simultaneously with a panel of 31 oligo-conjugated antibodies against cell surface markers (AbSeq assay) as well as unsupervised learning methods, we detected four different cell stages of human RANKL-induced osteoclastogenesis after 5 days in which Notch1 signaling enforces the cell expansion of specific subsets. These cell populations were characterized by distinct gene expression and immunophenotypic profiles and active Notch1, JAK/STAT and WNT signaling pathways. Furthermore, cell-cell communication analyses revealed extrinsic modulators of osteoclast progenitors including the IL7/IL7R and WNT5a/RYK axes. Interestingly, we also report that Interleukin-7 receptor (IL7R) was a downstream effector of Notch1 pathway and that Notch1 and IL7R interplay promoted cell expansion of human RANKL-induced osteoclast progenitors. Taken together, these findings underline a novel cell pattern of human osteoclastogenesis, outlining the key role of Notch1 and IL-7R signaling pathways.
Collapse
Affiliation(s)
- Costanzo Padovano
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Salvatore Daniele Bianco
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Francesca Sansico
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Elisabetta De Santis
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Francesco Tamiro
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Mattia Colucci
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Beatrice Totti
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Serena Di Iasio
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Gaja Bruno
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Patrizio Panelli
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Giuseppe Miscio
- Clinical Laboratory Analysis and Transfusional Medicine, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Vincenzo Giambra
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy.
| |
Collapse
|
31
|
DuVall AS, Wesevich A, Larson RA. Developing Targeted Therapies for T Cell Acute Lymphoblastic Leukemia/Lymphoma. Curr Hematol Malig Rep 2023; 18:217-225. [PMID: 37490229 PMCID: PMC11748120 DOI: 10.1007/s11899-023-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE OF REVIEW Largely, treatment advances in relapsed and/or refractory acute lymphoblastic leukemia (ALL) have been made in B cell disease leaving T cell ALL reliant upon high-intensity chemotherapy. Recent advances in the understanding of the biology of T-ALL and the improvement in immunotherapies have led to new therapeutic pathways to target and exploit. Here, we review the more promising pathways that are able to be targeted and other therapeutic possibilities for T-ALL. RECENT FINDINGS Preclinical models and early-phase clinical trials have shown promising results in some case in the treatment of T-ALL. Targeting many different pathways could lead to the next advancement in the treatment of relapsed and/or refractory disease. Recent advances in cellular therapies have also shown promise in this space. When reviewing the literature as a whole, targeting important pathways and antigens likely will lead to the next advancement in T-ALL survival since intensifying chemotherapy.
Collapse
Affiliation(s)
- Adam S DuVall
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA.
| | - Austin Wesevich
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| | - Richard A Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| |
Collapse
|
32
|
Dietrich B, Kunihs V, Lackner AI, Meinhardt G, Koo BK, Pollheimer J, Haider S, Knöfler M. NOTCH3 signalling controls human trophoblast stem cell expansion and differentiation. Development 2023; 150:dev202152. [PMID: 37905445 DOI: 10.1242/dev.202152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Failures in growth and differentiation of the early human placenta are associated with severe pregnancy disorders such as pre-eclampsia and fetal growth restriction. However, regulatory mechanisms controlling development of placental epithelial cells, the trophoblasts, remain poorly elucidated. Using trophoblast stem cells (TSCs), trophoblast organoids (TB-ORGs) and primary cytotrophoblasts (CTBs) of early pregnancy, we herein show that autocrine NOTCH3 signalling controls human placental expansion and differentiation. The NOTCH3 receptor was specifically expressed in proliferative CTB progenitors and its active form, the nuclear NOTCH3 intracellular domain (NOTCH3-ICD), interacted with the transcriptional co-activator mastermind-like 1 (MAML1). Doxycycline-inducible expression of dominant-negative MAML1 in TSC lines provoked cell fusion and upregulation of genes specific for multinucleated syncytiotrophoblasts, which are the differentiated hormone-producing cells of the placenta. However, progenitor expansion and markers of trophoblast stemness and proliferation were suppressed. Accordingly, inhibition of NOTCH3 signalling diminished growth of TB-ORGs, whereas overexpression of NOTCH3-ICD in primary CTBs and TSCs showed opposite effects. In conclusion, the data suggest that canonical NOTCH3 signalling plays a key role in human placental development by promoting self-renewal of CTB progenitors.
Collapse
Affiliation(s)
- Bianca Dietrich
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Victoria Kunihs
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Andreas I Lackner
- Maternal-Fetal Immunology Group, Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gudrun Meinhardt
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, Yuseong-Gu, Daejeon 34126, Republic of Korea
| | - Jürgen Pollheimer
- Maternal-Fetal Immunology Group, Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sandra Haider
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martin Knöfler
- Placental Development Group, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
33
|
Hermosilla Aguayo V, Martin P, Tian N, Zheng J, Aho R, Losa M, Selleri L. ESCRT-dependent control of craniofacial morphogenesis with concomitant perturbation of NOTCH signaling. Dev Biol 2023; 503:25-42. [PMID: 37573008 DOI: 10.1016/j.ydbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Craniofacial development is orchestrated by transcription factor-driven regulatory networks, epigenetic modifications, and signaling pathways. Signaling molecules and their receptors rely on endo-lysosomal trafficking to prevent accumulation on the plasma membrane. ESCRT (Endosomal Sorting Complexes Required for Transport) machinery is recruited to endosomal membranes enabling degradation of such endosomal cargoes. Studies in vitro and in invertebrate models established the requirements of the ESCRT machinery in membrane remodeling, endosomal trafficking, and lysosomal degradation of activated membrane receptors. However, investigations during vertebrate development have been scarce. By ENU-induced mutagenesis, we isolated a mouse line, Vps25ENU/ENU, carrying a hypomorphic allele of the ESCRT-II component Vps25, with craniofacial anomalies resembling features of human congenital syndromes. Here, we assessed the spatiotemporal dynamics of Vps25 and additional ESCRT-encoding genes during murine development. We show that these genes are ubiquitously expressed although enriched in discrete domains of the craniofacial complex, heart, and limbs. ESCRT-encoding genes, including Vps25, are expressed in both cranial neural crest-derived mesenchyme and epithelium. Unlike constitutive ESCRT mutants, Vps25ENU/ENU embryos display late lethality. They exhibit hypoplastic lower jaw, stunted snout, dysmorphic ear pinnae, and secondary palate clefting. Thus, we provide the first evidence for critical roles of ESCRT-II in craniofacial morphogenesis and report perturbation of NOTCH signaling in craniofacial domains of Vps25ENU/ENU embryos. Given the known roles of NOTCH signaling in the developing cranium, and notably the lower jaw, we propose that the NOTCH pathway partly mediates the craniofacial defects of Vps25ENU/ENU mouse embryos.
Collapse
Affiliation(s)
- Viviana Hermosilla Aguayo
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Martin
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nuo Tian
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James Zheng
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert Aho
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marta Losa
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Molina E, García-Gutiérrez L, Junco V, Perez-Olivares M, de Yébenes VG, Blanco R, Quevedo L, Acosta JC, Marín AV, Ulgiati D, Merino R, Delgado MD, Varela I, Regueiro JR, Moreno de Alborán I, Ramiro AR, León J. MYC directly transactivates CR2/CD21, the receptor of the Epstein-Barr virus, enhancing the viral infection of Burkitt lymphoma cells. Oncogene 2023; 42:3358-3370. [PMID: 37773203 DOI: 10.1038/s41388-023-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
MYC is an oncogenic transcription factor dysregulated in about half of total human tumors. While transcriptomic studies reveal more than 1000 genes regulated by MYC, a much smaller fraction of genes is directly transactivated by MYC. Virtually all Burkitt lymphoma (BL) carry chromosomal translocations involving MYC oncogene. Most endemic BL and a fraction of sporadic BL are associated with Epstein-Barr virus (EBV) infection. The currently accepted mechanism is that EBV is the BL-causing agent inducing MYC translocation. Herein we show that the EBV receptor, CR2 (also called CD21), is a direct MYC target gene. This is based on several pieces of evidence: MYC induces CR2 expression in both proliferating and arrested cells and in the absence of protein synthesis, binds the CR2 promoter and transactivates CR2 in an E-box-dependent manner. Moreover, using mice with conditional MYC ablation we show that MYC induces CR2 in primary B cells. Importantly, modulation of MYC levels directly correlates with EBV's ability of infection in BL cells. Altogether, in contrast to the widely accepted hypothesis for the correlation between EBV and BL, we propose an alternative hypothesis in which MYC dysregulation could be the first event leading to the subsequent EBV infection.
Collapse
Affiliation(s)
- Ester Molina
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Vanessa Junco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Mercedes Perez-Olivares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Virginia G de Yébenes
- Centro Nacional de Investigaciones Cardiovasculares-CNIC Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Laura Quevedo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Juan C Acosta
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ana V Marín
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Ramon Merino
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - José R Regueiro
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Almudena R Ramiro
- Centro Nacional de Investigaciones Cardiovasculares-CNIC Carlos III, Madrid, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain.
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
35
|
Gu X, Chen S, Wang Z, Bu Q, An S. LZTS3/TAGLN Suppresses Cancer Progression in Human Colorectal Adenocarcinoma Through Regulating Cell Proliferation, Migration, and Actin Cytoskeleton. Arch Med Res 2023; 54:102894. [PMID: 37806182 DOI: 10.1016/j.arcmed.2023.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Numerous studies have confirmed that the leucine zipper tumor suppressor (LZTS) gene family plays a vital role in modulating transcription and cell cycle control, especially in colorectal cancer. This study aimed to evaluate the potential of leucine zipper tumor suppressor family member 3 (LZTS3) as a marker for COAD. METHODS Bioinformatics, immunohistochemistry, and Western blotting were applied to assess the expression of LZTS3 in tissues. Gene overexpression or silencing was used to examine the biological roles of LZTS3 and validated using an in vivo nude mouse-human tumor model. RESULTS The results obtained in this study indicate that LZTS3 is highly expressed in COAD. RTCA, Transwell, actin stain, and in vitro transfection experiments confirmed that LZTS3 expression inhibits tumor cell proliferation and cell migration. The results obtained in the nude mouse-human tumor model are consistent with those obtained in vitro. In particular, LZTS3 may exert biological effects by targeting the NOTCH signaling pathway. Furthermore, TAGLN was demonstrated to be a downstream target of LZTS3. CONCLUSION This is the first study to demonstrate the important role of LZTS3 in the proliferation and migration of COAD and to shed light on the molecular mechanism underlying the tumor-suppressing role of LZTS3.
Collapse
Affiliation(s)
- Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China; School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Shuhui Chen
- Department of Gastrointestinal surgery, The Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, Shandong, China
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Qianwen Bu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China.
| |
Collapse
|
36
|
Pranoto IKA, Lee J, Kwon YV. The roles of the native cell differentiation program aberrantly recapitulated in Drosophila intestinal tumors. Cell Rep 2023; 42:113245. [PMID: 37837622 PMCID: PMC10872463 DOI: 10.1016/j.celrep.2023.113245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/11/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
Many tumors recapitulate the developmental and differentiation program of their tissue of origin, a basis for tumor cell heterogeneity. Although stem-cell-like tumor cells are well studied, the roles of tumor cells undergoing differentiation remain to be elucidated. We employ Drosophila genetics to demonstrate that the differentiation program of intestinal stem cells is crucial for enabling intestinal tumors to invade and induce non-tumor-autonomous phenotypes. The differentiation program that generates absorptive cells is aberrantly recapitulated in the intestinal tumors generated by activation of the Yap1 ortholog Yorkie. Inhibiting it allows stem-cell-like tumor cells to grow but suppresses invasiveness and reshapes various phenotypes associated with cachexia-like wasting by altering the expression of tumor-derived factors. Our study provides insight into how a native differentiation program determines a tumor's capacity to induce advanced cancer phenotypes and suggests that manipulating the differentiation programs co-opted in tumors might alleviate complications of cancer, including cachexia.
Collapse
Affiliation(s)
| | - Jiae Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Young V Kwon
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
37
|
Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, Chiva C, Cañas-Armenteros D, Mallabiabarrena A, Kamm K, Sabidó E, Gruber-Vodicka H, Schierwater B, Serrano L, Sebé-Pedrós A. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023; 186:4676-4693.e29. [PMID: 37729907 PMCID: PMC10580291 DOI: 10.1016/j.cell.2023.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Chiva
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Arrate Mallabiabarrena
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany; American Museum of Natural History, Richard Gilder Graduate School, NY, USA
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
38
|
Zhang X, Geng L, Yang L, Wang Y, Zou Z, Zhang Y, Xu H, Lei H, Cao Y, Wu Y, Gu W, Zhou L. Anlotinib exerts an anti-T-cell acute lymphoblastic leukemia effect in vitro and in vivo. Cell Signal 2023; 110:110837. [PMID: 37544636 DOI: 10.1016/j.cellsig.2023.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Despite some progress having been made regarding the treatment of T-cell acute lymphoblastic leukemia (T-ALL), the prognosis of T-ALL, particularly adult T-ALL, is still poor. Identifying novel, effective anti-T-ALL drugs is of great significance. Anlotinib, an oral tyrosine kinase inhibitor currently utilized in the treatment of lung cancer, exhibited a promising anti-T-ALL effect. A comprehensive study should therefore be conducted to explore both the in vitro as well as in vivo mechanisms of the anti-T-ALL effects of anlotinib. METHODS CCK8 assays and flow cytometry were employed to investigate the viability, cell cycle distribution, and apoptosis of T-ALL cell lines when treated with anlotinib. T-ALL xenograft mouse models were established to examine the in vivo antileukemic effects of anlotinib. Cellular and molecular analysis of T-ALL were conducted to define the underlying mechanisms. RESULTS In vitro, anlotinib significantly inhibited the viability, induced G2/M phase arrest and apoptosis in T-ALL cell lines in a concentration-dependent pattern. In vivo, anlotinib also demonstrated a strong anti-tumor effect at doses that are well-tolerated. Interestingly, anlotinib could decrease the protein levels of the intracellular domains of NOTCH1 (ICN1) and c-Myc, two important targets for T-ALL. Mechanistically, anlotinib-induced c-Myc reduction was associated with proteasome-mediated degradation, while the ICN1 reduction was not due to protein degradation or transcriptional repression. CONCLUSIONS The present study showed that anlotinib may be a promising anti-T-ALL candidate drug, and simultaneous reduction of the protein levels of both ICN1 and c-Myc may contribute to the anti-T-ALL efficacy of anlotinib.
Collapse
Affiliation(s)
- Xingming Zhang
- Department of Clinical Laboratory, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai 200011, China
| | - Lou Geng
- Department of Clinical Laboratory, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai 200011, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingying Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhihui Zou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Cao
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province P.R. 213003, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenli Gu
- Department of Clinical Laboratory, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai 200011, China.
| | - Li Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai 200025, China.
| |
Collapse
|
39
|
Tan SH, Tan TK, Yokomori R, Liao M, Huang XZ, Yeoh AEJ, Sanda T. TAL1 hijacks MYCN enhancer that induces MYCN expression and dependence on mevalonate pathway in T-cell acute lymphoblastic leukemia. Leukemia 2023; 37:1969-1981. [PMID: 37591943 DOI: 10.1038/s41375-023-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
A hallmark of T-cell acute lymphoblastic leukemia (T-ALL) is the dysregulated expression of oncogenic transcription factors (TFs), including TAL1, NOTCH1 and MYC. Rewiring of the transcriptional program disrupts the tightly controlled spatiotemporal expression of downstream target genes, thereby contributing to leukemogenesis. In this study, we first identify an evolutionarily conserved enhancer element controlling the MYCN oncogene (named enhMYCN) that is aberrantly activated by the TAL1 complex in T-ALL cells. TAL1-positive T-ALL cells are highly dependent on MYCN expression for their maintenance in vitro and in xenograft models. Interestingly, MYCN drives the expression of multiple genes involved in the mevalonate pathway, and T-ALL cells are sensitive to inhibition of HMG-CoA reductase (HMGCR), a rate-limiting enzyme of this pathway. Importantly, MYC and MYCN regulate the same targets and compensate for each other. Thus, MYCN-positive T-ALL cells display a dual dependence on the TAL1-MYCN and NOTCH1-MYC pathways. Together, our results demonstrate that enhMYCN-mediated MYCN expression is required for human T-ALL cells and implicate the TAL1-MYCN-HMGCR axis as a potential therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Rui Yokomori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Minghui Liao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Allen Eng Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Paediatrics, National University of Singapore, Singapore, 119228, Singapore.
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
40
|
Verstraete P, De Keersmaecker K, Kampen KR. Drivers of de novo Serine/Glycine synthesis in acute leukemia. FEBS Lett 2023; 597:2145-2146. [PMID: 37526379 DOI: 10.1002/1873-3468.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023]
Abstract
Cancer cells hijack metabolic pathways in order to provide themselves with building blocks to support their proliferation and survival. Upregulation and addiction to de novo serine/glycine synthesis is an example of metabolic rewiring in cancer cells whereby serine and glycine are synthesised via a side branch of glycolysis. In this review, we focus on upregulation of endogenous serine/glycine production in acute leukemia, namely T-cell acute leukemia (T-ALL) and acute myeloid leukemia (AML). Several genetic lesions directly driving the serine/glycine addiction in acute leukemia have been established. Additionally, indirect regulation of de novo serine/glycine synthesis is observed in acute leukemia.
Collapse
Affiliation(s)
- Paulien Verstraete
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim Rosalie Kampen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| |
Collapse
|
41
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
42
|
Islam R, Jenkins CE, Cao Q, Wong J, Bilenky M, Carles A, Moksa M, Weng AP, Hirst M. RUNX1 colludes with NOTCH1 to reprogram chromatin in T cell acute lymphoblastic leukemia. iScience 2023; 26:106795. [PMID: 37213235 PMCID: PMC10199266 DOI: 10.1016/j.isci.2023.106795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 02/10/2023] [Accepted: 04/27/2023] [Indexed: 05/23/2023] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is oncogenic in diverse types of leukemia and epithelial cancers where its expression is associated with poor prognosis. Current models suggest that RUNX1 cooperates with other oncogenic factors (e.g., NOTCH1, TAL1) to drive the expression of proto-oncogenes in T cell acute lymphoblastic leukemia (T-ALL) but the molecular mechanisms controlled by RUNX1 and its cooperation with other factors remain unclear. Integrative chromatin and transcriptional analysis following inhibition of RUNX1 and NOTCH1 revealed a surprisingly widespread role of RUNX1 in the establishment of global H3K27ac levels and that RUNX1 is required by NOTCH1 for cooperative transcription activation of key NOTCH1 target genes including MYC, DTX1, HES4, IL7R, and NOTCH3. Super-enhancers were preferentially sensitive to RUNX1 knockdown and RUNX1-dependent super-enhancers were disrupted following the treatment of a pan-BET inhibitor, I-BET151.
Collapse
Affiliation(s)
- Rashedul Islam
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | | | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jasper Wong
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Misha Bilenky
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Martin Hirst
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Corresponding author
| |
Collapse
|
43
|
To HTN, Park JH, Kim JW, Kang D. Delta/Notch-like Epidermal Growth Factor-Related Receptor (DNER), a Potential Prognostic Marker of Gastric Cancer Regulates Cell Survival and Cell Cycle Progression. Int J Mol Sci 2023; 24:10077. [PMID: 37373228 DOI: 10.3390/ijms241210077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Upregulation of the expression of Delta/notch-like epidermal growth factor-related receptor (DNER) and its oncogenic role have been reported in several cancers, including gastric, breast, and prostate cancers. This study aimed to investigate the oncogenic role of DNER and the mechanisms behind its oncogenic role in gastric cancer. Analysis of the RNASeq data of gastric cancer tissues obtained from the TCGA database revealed that the expression of DNER was associated with the pathology of advanced gastric cancer and the prognosis of patients. DNER expression was increased upon stem cell-enriching cancer spheroid culture. Knockdown of DNER expression inhibited cell proliferation and invasion, induced apoptosis, enhanced chemosensitivity, and decreased spheroid formation of SNU-638 gastric cancer cells. DNER silencing elevated the expression of p53, p21cip/waf, and p27, and increased G1 phase cells at the expense of S phase cells. Knockdown of p21cip/waf expression in the DNER-silenced cells partially restored cell viability and S phase progression. DNER silencing also induced the apoptosis of SNU-638 cells. While both cleaved caspases-8 and 9 were detected in adherent cells, only cleaved caspase-8 was found to have increased in spheroid-cultured cells, suggesting a distinct activation pattern of caspase activation depending on the growth condition. Knockdown of p53 expression rescued the DNER-silenced cells from apoptosis and partially restored cell viability. In contrast, overexpression of the Notch intracellular domain (NICD) decreased the expression of p53, p21cip/waf, and cleaved caspase-3 in DNER-silenced cells. Moreover, NICD expression fully reverted the cell viability reduction, arrest in the G1 phase, and elevated apoptosis caused by DNER silencing, thereby suggesting activation of Notch signaling by DNER. Expression of a membrane-unbound mutant of mDNER also decreased cell viability and induced apoptosis. On the other hand, TGF-β signals were found to be involved in DNER expression in both adherent and spheroid-cultured cells. DNER could therefore be a link connecting TGF-β signaling to Notch signaling. Taken together, DNER regulates cell proliferation, survival, and invasive capacity of the gastric cancer cells through the activation of Notch signaling, which may facilitate tumor progression into an advanced stage. This study provides evidences suggesting that DNER could be a potential prognostic marker, a therapeutic target, and a drug candidate in the form of a cell-free mutant.
Collapse
Affiliation(s)
- Han Thi Ngoc To
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| | - Ji-Hong Park
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| | - Jeong Won Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
| | - Dongchul Kang
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| |
Collapse
|
44
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
45
|
Sargis T, Youn SW, Thakkar K, Naiche LA, Paik NY, Pajcini KV, Kitajewski JK. Notch1 and Notch4 core binding domain peptibodies exhibit distinct ligand-binding and anti-angiogenic properties. Angiogenesis 2023; 26:249-263. [PMID: 36376768 PMCID: PMC10119233 DOI: 10.1007/s10456-022-09861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
The Notch signaling pathway is an important therapeutic target for the treatment of inflammatory diseases and cancer. We previously created ligand-specific inhibitors of Notch signaling comprised of Fc fusions to specific EGF-like repeats of the Notch1 extracellular domain, called Notch decoys, which bound ligands, blocked Notch signaling, and showed anti-tumor activity with low toxicity. However, the study of their function depended on virally mediated expression, which precluded dosage control and limited clinical applicability. We have refined the decoy design to create peptibody-based Notch inhibitors comprising the core binding domains, EGF-like repeats 10-14, of either Notch1 or Notch4. These Notch peptibodies showed high secretion properties and production yields that were improved by nearly 100-fold compared to previous Notch decoys. Using surface plasmon resonance spectroscopy coupled with co-immunoprecipitation assays, we observed that Notch1 and Notch4 peptibodies demonstrate strong but distinct binding properties to Notch ligands DLL4 and JAG1. Both Notch1 and Notch4 peptibodies interfere with Notch signaling in endothelial cells and reduce expression of canonical Notch targets after treatment. While prior DLL4 inhibitors cause hyper-sprouting, the Notch1 peptibody reduced angiogenesis in a 3-dimensional in vitro sprouting assay. Administration of Notch1 peptibodies to neonate mice resulted in reduced radial outgrowth of retinal vasculature, confirming anti-angiogenic properties. We conclude that purified Notch peptibodies comprising EGF-like repeats 10-14 bind to both DLL4 and JAG1 ligands and exhibit anti-angiogenic properties. Based on their secretion profile, unique Notch inhibitory activities, and anti-angiogenic properties, Notch peptibodies present new opportunities for therapeutic Notch inhibition.
Collapse
Affiliation(s)
- Timothy Sargis
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Seock-Won Youn
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Krishna Thakkar
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Na Yoon Paik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
46
|
Parriott G, Hegermiller E, Morman RE, Frank C, Saygin C, Stock W, Bartom ET, Kee BL. Loss of thymocyte competition underlies the tumor suppressive functions of the E2a transcription factor in T lymphocyte acute lymphoblastic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537993. [PMID: 37163059 PMCID: PMC10168235 DOI: 10.1101/2023.04.23.537993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of Tal1 or Lyl1 in T cell progenitors or inactivation of E2a, is sufficient to predispose mice to develop T-ALL. How E2a suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a , prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2a suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymus cellularity is a determinant of leukemogenesis.
Collapse
|
47
|
Transcription factor NKX2-1 drives serine and glycine synthesis addiction in cancer. Br J Cancer 2023; 128:1862-1878. [PMID: 36932191 PMCID: PMC10147615 DOI: 10.1038/s41416-023-02216-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND One-third of cancers activate endogenous synthesis of serine/glycine, and can become addicted to this pathway to sustain proliferation and survival. Mechanisms driving this metabolic rewiring remain largely unknown. METHODS NKX2-1 overexpressing and NKX2-1 knockdown/knockout T-cell leukaemia and lung cancer cell line models were established to study metabolic rewiring using ChIP-qPCR, immunoblotting, mass spectrometry, and proliferation and invasion assays. Findings and therapeutic relevance were validated in mouse models and confirmed in patient datasets. RESULTS Exploring T-cell leukaemia, lung cancer and neuroendocrine prostate cancer patient datasets highlighted the transcription factor NKX2-1 as putative driver of serine/glycine metabolism. We demonstrate that transcription factor NKX2-1 binds and transcriptionally upregulates serine/glycine synthesis enzyme genes, enabling NKX2-1 expressing cells to proliferate and invade in serine/glycine-depleted conditions. NKX2-1 driven serine/glycine synthesis generates nucleotides and redox molecules, and is associated with an altered cellular lipidome and methylome. Accordingly, NKX2-1 tumour-bearing mice display enhanced tumour aggressiveness associated with systemic metabolic rewiring. Therapeutically, NKX2-1-expressing cancer cells are more sensitive to serine/glycine conversion inhibition by repurposed anti-depressant sertraline, and to etoposide chemotherapy. CONCLUSION Collectively, we identify NKX2-1 as a novel transcriptional regulator of serine/glycine synthesis addiction across cancers, revealing a therapeutic vulnerability of NKX2-1-driven cancers. Transcription factor NKX2-1 fuels cancer cell proliferation and survival by hyperactivating serine/glycine synthesis, highlighting this pathway as a novel therapeutic target in NKX2-1-positive cancers.
Collapse
|
48
|
In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023; 12:cells12060896. [PMID: 36980237 PMCID: PMC10046976 DOI: 10.3390/cells12060896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The haematopoietic system plays an essential role in our health and survival. It is comprised of a range of mature blood and immune cell types, including oxygen-carrying erythrocytes, platelet-producing megakaryocytes and infection-fighting myeloid and lymphoid cells. Self-renewing multipotent haematopoietic stem cells (HSCs) and a range of intermediate haematopoietic progenitor cell types differentiate into these mature cell types to continuously support haematopoietic system homeostasis throughout life. This process of haematopoiesis is tightly regulated in vivo and primarily takes place in the bone marrow. Over the years, a range of in vitro culture systems have been developed, either to expand haematopoietic stem and progenitor cells or to differentiate them into the various haematopoietic lineages, based on the use of recombinant cytokines, co-culture systems and/or small molecules. These approaches provide important tractable models to study human haematopoiesis in vitro. Additionally, haematopoietic cell culture systems are being developed and clinical tested as a source of cell products for transplantation and transfusion medicine. This review discusses the in vitro culture protocols for human HSC expansion and differentiation, and summarises the key factors involved in these biological processes.
Collapse
|
49
|
Smith BAH, Deutzmann A, Correa KM, Delaveris CS, Dhanasekaran R, Dove CG, Sullivan DK, Wisnovsky S, Stark JC, Pluvinage JV, Swaminathan S, Riley NM, Rajan A, Majeti R, Felsher DW, Bertozzi CR. MYC-driven synthesis of Siglec ligands is a glycoimmune checkpoint. Proc Natl Acad Sci U S A 2023; 120:e2215376120. [PMID: 36897988 PMCID: PMC10089186 DOI: 10.1073/pnas.2215376120] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/06/2022] [Indexed: 03/12/2023] Open
Abstract
The Siglecs (sialic acid-binding immunoglobulin-like lectins) are glycoimmune checkpoint receptors that suppress immune cell activation upon engagement of cognate sialoglycan ligands. The cellular drivers underlying Siglec ligand production on cancer cells are poorly understood. We find the MYC oncogene causally regulates Siglec ligand production to enable tumor immune evasion. A combination of glycomics and RNA-sequencing of mouse tumors revealed the MYC oncogene controls expression of the sialyltransferase St6galnac4 and induces a glycan known as disialyl-T. Using in vivo models and primary human leukemias, we find that disialyl-T functions as a "don't eat me" signal by engaging macrophage Siglec-E in mice or the human ortholog Siglec-7, thereby preventing cancer cell clearance. Combined high expression of MYC and ST6GALNAC4 identifies patients with high-risk cancers and reduced tumor myeloid infiltration. MYC therefore regulates glycosylation to enable tumor immune evasion. We conclude that disialyl-T is a glycoimmune checkpoint ligand. Thus, disialyl-T is a candidate for antibody-based checkpoint blockade, and the disialyl-T synthase ST6GALNAC4 is a potential enzyme target for small molecule-mediated immune therapy.
Collapse
Affiliation(s)
- Benjamin A. H. Smith
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA94305
| | - Anja Deutzmann
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | | | - Corleone S. Delaveris
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Christopher G. Dove
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Delaney K. Sullivan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, British Columbia, BC V6T 1Z3, Canada
| | - Jessica C. Stark
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - John V. Pluvinage
- Department of Neurology, University of California, San Francisco, CA94143
| | - Srividya Swaminathan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA91016
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA91010
| | | | - Anand Rajan
- Department of Pathology, University of Iowa, Iowa City, IA52242
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
| | - Dean W. Felsher
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Carolyn R. Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA94305
| |
Collapse
|
50
|
Abolhasani S, Hejazian SS, Karpisheh V, Khodakarami A, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of SF3B1 and NOTCH1 in the pathogenesis of leukemia. IUBMB Life 2023; 75:257-278. [PMID: 35848163 DOI: 10.1002/iub.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/18/2022] [Indexed: 11/09/2022]
Abstract
The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.
Collapse
Affiliation(s)
- Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|