1
|
Liapodimitri A, Tetens AR, Craig-Schwartz J, Lunsford K, Skalitzky KO, Koldobskiy MA. Progress Toward Epigenetic Targeted Therapies for Childhood Cancer. Cancers (Basel) 2024; 16:4149. [PMID: 39766049 PMCID: PMC11674401 DOI: 10.3390/cancers16244149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Among the most significant discoveries from cancer genomics efforts has been the critical role of epigenetic dysregulation in cancer development and progression. Studies across diverse cancer types have revealed frequent mutations in genes encoding epigenetic regulators, alterations in DNA methylation and histone modifications, and a dramatic reorganization of chromatin structure. Epigenetic changes are especially relevant to pediatric cancers, which are often characterized by a low rate of genetic mutations. The inherent reversibility of epigenetic lesions has led to an intense interest in the development of epigenetic targeted therapies. Additionally, the recent appreciation of the interplay between the epigenome and immune regulation has sparked interest in combination therapies and synergistic immunotherapy approaches. Further, the recent appreciation of epigenetic variability as a driving force in cancer evolution has suggested new roles for epigenetic therapies in limiting plasticity and resistance. Here, we review recent progress and emerging directions in the development of epigenetic targeted therapeutics and their promise across the landscape of childhood cancers.
Collapse
Affiliation(s)
- Athanasia Liapodimitri
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Ashley R. Tetens
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Jordyn Craig-Schwartz
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kayleigh Lunsford
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kegan O. Skalitzky
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Michael A. Koldobskiy
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Chen Z, Jiang H, Qin Q, Li Q, Hong L. DNA methylation signatures provide novel diagnostic biomarkers and predict responses of immune therapy for breast cancer. Front Genet 2024; 15:1403907. [PMID: 38911294 PMCID: PMC11190699 DOI: 10.3389/fgene.2024.1403907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Breast cancer (BRCA) is one of the most common malignant tumors affecting women worldwide. DNA methylation modifications can influence oncogenic pathways and provide potential diagnostic and therapeutic targets for precision oncology. In this study, we used non-parametric permutation tests to identify differentially methylated positions (DMPs) between paired tumor and normal BRCA tissue samples from the Cancer Genome Atlas (TCGA) database. Then, we applied non-negative matrix factorization (NMF) to the DMPs to derive eight distinct DNA methylation signatures. Among them, signatures Hyper-S3 and Hypo-S4 signatures were associated with later tumor stages, while Hyper-S1 and Hypo-S3 exhibited higher methylation levels in earlier stages. Signature Hyper-S3 displayed an effect on overall survival. We further validated the four stage-associated signatures using an independent BRCA DNA methylation dataset from peripheral blood samples. Results demonstrated that 24 commonly hypomethylated sites in Hypo-S4 showed lower methylation in BRCA patients compared to healthy individuals, suggesting its potential as an early diagnostic biomarker. Furthermore, we found that methylation of 23 probes from four stage-related signatures exhibited predictive power for immune therapy response. Notably, methylation levels of all three probes from the Hypo-S4 and activity of the Hypo-S4 demonstrated highly positive relevance to PD-L1 gene expression, implying their significant predictive values for immunotherapy outcomes. GO and KEGG pathway enrichment analysis revealed that genes with these 23 immunotherapy-related methylation probes are mainly involved in glycan degradation or protein deglycosylation. These methylation signatures and probes may serve as novel epigenetic biomarkers for predicting tumor immunotherapy response. Our findings provide new insights into precision oncology approaches for BRCA.
Collapse
Affiliation(s)
- Zhishan Chen
- Department of Breast and Thyroid Surgery, Nan’an Hospital, Quanzhou, China
| | - Han Jiang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingqing Qin
- School of Medicine, Xiamen University, Xiamen, China
| | - Qiyuan Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Liqing Hong
- Department of Breast and Thyroid Surgery, Nan’an Hospital, Quanzhou, China
| |
Collapse
|
3
|
Gherman LM, Chiroi P, Nuţu A, Bica C, Berindan-Neagoe I. Profiling canine mammary tumors: A potential model for studying human breast cancer. Vet J 2024; 303:106055. [PMID: 38097103 DOI: 10.1016/j.tvjl.2023.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Despite all clinical progress recorded in the last decades, human breast cancer (HBC) remains a major challenge worldwide both in terms of its incidence and its management. Canine mammary tumors (CMTs) share similarities with HBC and represent an alternative model for HBC. The utility of the canine model in studying HBC relies on their common features, include spontaneous development, subtype classification, mutational profile, alterations in gene expression profile, and incidence/prevalence. This review describes the similarities between CMTs and HBC regarding genomic landscape, microRNA expression alteration, methylation, and metabolomic changes occurring during mammary gland carcinogenesis. The primary purpose of this review is to highlight the advantages of using the canine model as a translational animal model for HBC research and to investigate the challenges and limitations of this approach.
Collapse
Affiliation(s)
- Luciana-Madalina Gherman
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; Experimental Center of Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nuţu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Sato H, Watanabe KI, Kobayashi Y, Tomihari M, Uemura A, Tagawa M. LINE-1 Methylation Status in Canine Splenic Hemangiosarcoma Tissue and Cell-Free DNA. Animals (Basel) 2023; 13:2987. [PMID: 37760387 PMCID: PMC10525518 DOI: 10.3390/ani13182987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Splenic hemangiosarcoma is one of the most common malignant tumors in dogs, and early diagnosis is of great importance for achieving a good prognosis. DNA methylation plays an important role in cancer development. Long interspersed nuclear element 1 (LINE-1) is the most abundant repetitive element in the genome. LINE-1 hypomethylation has been shown to be related to carcinogenesis in humans, and it has been used as a novel cancer biomarker. This study aimed to evaluate the methylation status of LINE-1 in tumor tissue and circulating cell-free DNA and assess its clinical significance in canine splenic hemangiosarcoma. Genomic DNA was isolated from splenic masses of 13 dogs with hemangiosarcoma, 11 with other malignant tumors, and 15 with benign lesions. LINE-1 methylation was quantified using methylation-sensitive and -insensitive restriction enzyme digestion followed by real-time polymerase chain reaction. Additionally, blood samples were collected from eight patients to isolate cell-free DNA to determine LINE-1 methylation status changes during the treatment course. LINE-1 methylation in tumor samples was significantly lower in patients with hemangiosarcoma than in those with other malignant tumors and benign lesions. Non-significant but similar results were observed for the cell-free DNA samples. Our results demonstrate that LINE-1 methylation status is a potential biomarker for splenic hemangiosarcoma.
Collapse
Affiliation(s)
- Hiroki Sato
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Ken-Ichi Watanabe
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Yoshiyasu Kobayashi
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Mizuki Tomihari
- Department of Veterinary Science, Osaka Metropolitan University, Izumisano 545-8585, Japan
| | - Akiko Uemura
- Department of Veterinary Clinical Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Michihito Tagawa
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
- Department of Veterinary Associated Science, Okayama University of Science, Imabari 794-8555, Japan
| |
Collapse
|
5
|
Della Via FI, Alvarez MC, Basting RT, Saad STO. The Effects of Green Tea Catechins in Hematological Malignancies. Pharmaceuticals (Basel) 2023; 16:1021. [PMID: 37513933 PMCID: PMC10385775 DOI: 10.3390/ph16071021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Green tea catechins are bioactive polyphenol compounds which have attracted significant attention for their diverse biological activities and potential health benefits. Notably, epigallocatechin-3-gallate (EGCG) has emerged as a potent apoptosis inducer through mechanisms involving caspase activation, modulation of Bcl-2 family proteins, disruption of survival signaling pathways and by regulating the redox balance, inducing oxidative stress. Furthermore, emerging evidence suggests that green tea catechins can modulate epigenetic alterations, including DNA methylation and histone modifications. In addition to their apoptotic actions, ROS signaling effects and reversal of epigenetic alterations, green tea catechins have shown promising results in promoting the differentiation of leukemia cells. This review highlights the comprehensive actions of green tea catechins and provides valuable insights from clinical trials investigating the therapeutic potential of green tea catechins in leukemia treatment. Understanding these multifaceted mechanisms and the outcomes of clinical trials may pave the way for the development of innovative strategies and the integration of green tea catechins into clinical practice for improving leukemia patient outcomes.
Collapse
Affiliation(s)
- Fernanda Isabel Della Via
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Marisa Claudia Alvarez
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Rosanna Tarkany Basting
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| |
Collapse
|
6
|
Lu T, Li T, Wu MK, Zheng CC, He XM, Zhu HL, Li L, Man RJ. Molecular simulations required to target novel and potent inhibitors of cancer invasion. Expert Opin Drug Discov 2023; 18:1367-1377. [PMID: 37676052 DOI: 10.1080/17460441.2023.2254695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Computer-aided drug design (CADD) is a computational approach used to discover, develop, and analyze drugs and active molecules with similar biochemical properties. Molecular simulation technology has significantly accelerated drug research and reduced manufacturing costs. It is an optimized drug discovery method that greatly improves the efficiency of novel drug development processes. AREASCOVERED This review discusses the development of molecular simulations of effective cancer inhibitors and traces the main outcomes of in silico studies by introducing representative categories of six important anticancer targets. The authors provide views on this topic from the perspective of both medicinal chemistry and artificial intelligence, indicating the major challenges and predicting trends. EXPERT OPINION The goal of introducing CADD into cancer treatment is to realize a highly efficient, accurate, and desired approach with a high success rate for identifying potent drug candidates. However, the major challenge is the lack of a sophisticated data-filtering mechanism to verify bottom data from mixed-quality references. Consequently, despite the continuous development of algorithms, computer power, and interface optimization, specific data filtering mechanisms will become an urgent and crucial issue in the future.
Collapse
Affiliation(s)
| | - Tong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Meng-Ke Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Chi-Chong Zheng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Xue-Mei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Hai-Liang Zhu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Ruo-Jun Man
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
7
|
Braun S, Jelača S, Laube M, George S, Hofmann B, Lönnecke P, Steinhilber D, Pietzsch J, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Synthesis and In Vitro Biological Evaluation of p-Carborane-Based Di- tert-butylphenol Analogs. Molecules 2023; 28:molecules28114547. [PMID: 37299023 DOI: 10.3390/molecules28114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Targeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di-tert-butylphenol derivatives R-830, S-2474, KME-4, and E-5110 represent potent dual COX-2/5-LO inhibitors. The incorporation of p-carborane and further substitution of the p-position resulted in four carborane-based di-tert-butylphenol analogs that showed no or weak COX inhibition but high 5-LO inhibitory activities in vitro. Cell viability studies on five human cancer cell lines revealed that the p-carborane analogs R-830-Cb, S-2474-Cb, KME-4-Cb, and E-5110-Cb exhibited lower anticancer activity compared to the related di-tert-butylphenols. Interestingly, R-830-Cb did not affect the viability of primary cells and suppressed HCT116 cell proliferation more potently than its carbon-based R-830 counterpart. Considering all the advantages of boron cluster incorporation for enhancement of drug biostability, selectivity, and availability of drugs, R-830-Cb can be tested in further mechanistic and in vivo studies.
Collapse
Affiliation(s)
- Sebastian Braun
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Peter Lönnecke
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, School of Science, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Nirgude S, Desai S, Choudhary B. Genome-wide differential DNA methylation analysis of MDA-MB-231 breast cancer cells treated with curcumin derivatives, ST08 and ST09. BMC Genomics 2022; 23:807. [PMID: 36474139 PMCID: PMC9727864 DOI: 10.1186/s12864-022-09041-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022] Open
Abstract
ST08 and ST09 are potent curcumin derivatives with antiproliferative, apoptotic, and migrastatic properties. Both ST08 and ST09 exhibit in vitro and in vivo anticancer properties. As reported earlier, these derivatives were highly cytotoxic towards MDA-MB-231 triple-negative breast cancer cells with IC50 values in the nanomolar (40-80nM) range.In this study,we performed whole-genome bisulfite sequencing(WGBS) of untreated (control), ST08 and ST09 (treated) triple-negative breast cancer cell line MDA-MB-231 to unravel epigenetic changes induced by the drug. We identified differentially methylated sites (DMSs) enriched in promoter regions across the genome. Analysis of the CpG island promoter methylation identified 12 genes common to both drugs, and 50% of them are known to be methylated in patient samples that were hypomethylated by drugs belonging to the homeobox family transcription factors.Methylation analysis of the gene body revealed 910 and 952 genes to be hypermethylatedin ST08 and ST09 treated MDA-MB-231 cells respectively. Correlation of the gene body hypermethylation with expression revealed CACNAH1 to be upregulated in ST08 treatment and CDH23 upregulation in ST09.Further, integrated analysis of the WGBS with RNA-seq identified uniquely altered pathways - ST08 altered ECM pathway, and ST09 cell cycle, indicating drug-specific signatures.
Collapse
Affiliation(s)
- Snehal Nirgude
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, 560100 Bangalore, India ,grid.239552.a0000 0001 0680 8770Working at Division of Human Genetics, Children’s Hospital of Philadelphia, 19104 Philadelphia, PA USA
| | - Sagar Desai
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, 560100 Bangalore, India
| | - Bibha Choudhary
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, 560100 Bangalore, India
| |
Collapse
|
9
|
Crouch J, Shvedova M, Thanapaul RJRS, Botchkarev V, Roh D. Epigenetic Regulation of Cellular Senescence. Cells 2022; 11:672. [PMID: 35203320 PMCID: PMC8870565 DOI: 10.3390/cells11040672] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Senescence is a complex cellular stress response that abolishes proliferative capacity and generates a unique secretory pattern that is implicated in organismal aging and age-related disease. How a cell transitions to a senescent state is multifactorial and often requires transcriptional regulation of multiple genes. Epigenetic alterations to DNA and chromatin are powerful regulators of genome architecture and gene expression, and they play a crucial role in mediating the induction and maintenance of senescence. This review will highlight the changes in chromatin, DNA methylation, and histone alterations that establish and maintain cellular senescence, alongside the specific epigenetic regulation of the senescence-associated secretory phenotype (SASP).
Collapse
Affiliation(s)
- Jack Crouch
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Maria Shvedova
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Rex Jeya Rajkumar Samdavid Thanapaul
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Vladimir Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Daniel Roh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| |
Collapse
|
10
|
Pappalardi MB, Keenan K, Cockerill M, Kellner WA, Stowell A, Sherk C, Wong K, Pathuri S, Briand J, Steidel M, Chapman P, Groy A, Wiseman AK, McHugh CF, Campobasso N, Graves AP, Fairweather E, Werner T, Raoof A, Butlin RJ, Rueda L, Horton JR, Fosbenner DT, Zhang C, Handler JL, Muliaditan M, Mebrahtu M, Jaworski JP, McNulty DE, Burt C, Eberl HC, Taylor AN, Ho T, Merrihew S, Foley SW, Rutkowska A, Li M, Romeril SP, Goldberg K, Zhang X, Kershaw CS, Bantscheff M, Jurewicz AJ, Minthorn E, Grandi P, Patel M, Benowitz AB, Mohammad HP, Gilmartin AG, Prinjha RK, Ogilvie D, Carpenter C, Heerding D, Baylin SB, Jones PA, Cheng X, King BW, Luengo JI, Jordan AM, Waddell I, Kruger RG, McCabe MT. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. NATURE CANCER 2021; 2:1002-1017. [PMID: 34790902 DOI: 10.1038/s43018-021-00249-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/27/2021] [Indexed: 05/22/2023]
Abstract
DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.
Collapse
Affiliation(s)
- Melissa B Pappalardi
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kathryn Keenan
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Mark Cockerill
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
- These authors contributed equally: Mark Cockerill, Wendy A. Kellner
| | - Wendy A Kellner
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
- These authors contributed equally: Mark Cockerill, Wendy A. Kellner
| | - Alexandra Stowell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Christian Sherk
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kristen Wong
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Sarath Pathuri
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacques Briand
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Michael Steidel
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Philip Chapman
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Arthur Groy
- Future Pipeline Discovery, GlaxoSmithKline, Collegeville, PA, USA
| | - Ashley K Wiseman
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Charles F McHugh
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Nino Campobasso
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Alan P Graves
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Emma Fairweather
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Thilo Werner
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Ali Raoof
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Roger J Butlin
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Lourdes Rueda
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David T Fosbenner
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Cunyu Zhang
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Jessica L Handler
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Morris Muliaditan
- Drug Metabolism and Pharmacokinetics Modelling, GlaxoSmithKline, Stevenage, UK
| | - Makda Mebrahtu
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Jon-Paul Jaworski
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Dean E McNulty
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Charlotte Burt
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - H Christian Eberl
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Amy N Taylor
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Thau Ho
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Susan Merrihew
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Shawn W Foley
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Anna Rutkowska
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Mei Li
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Stuart P Romeril
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kristin Goldberg
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher S Kershaw
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Marcus Bantscheff
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | | | - Elisabeth Minthorn
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Paola Grandi
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Mehul Patel
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | | | - Helai P Mohammad
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | | | - Rab K Prinjha
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Donald Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | | | - Dirk Heerding
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Peter A Jones
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan W King
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Juan I Luengo
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Allan M Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Ian Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Ryan G Kruger
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Michael T McCabe
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
11
|
Daks A, Mamontova V, Fedorova O, Petukhov A, Shuvalov O, Parfenyev S, Netsvetay S, Venina A, Kizenko A, Imyanitov E, Barlev N. Set7/9 controls proliferation and genotoxic drug resistance of NSCLC cells. Biochem Biophys Res Commun 2021; 572:41-48. [PMID: 34343833 DOI: 10.1016/j.bbrc.2021.07.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
The SET domain containing lysine-specific methyltransferase, Set7/9, covalently attaches methyl moieties to a variety of histone and non-histone substrates. Among the substrates of Set7/9 are: p53, NF-kB, PARP1, E2F1, and other transcription factors that regulate many vital processes in the cell. Through the post-translational regulation of these critical master-regulators Set7/9 is involved in regulation of cell proliferation, cancer progression, and DNA damage response. Noteworthy, the role of Set7/9 in tumorigenesis is contradictory and apparently depends on the cellular context. In this study, we investigated the effect of Set7/9 on tumorigenic characteristics of lung cancer cells. We showed that CRISPR/Cas9-mediated knock-out of Set7/9 in A549 and its shRNA-mediated knock-down in H1299 NSCLC cell lines both augment the proliferation rate of tumor cells compared to the matching wild-type cells. Mechanistically, ablation of Set7/9 increased the expression of cyclin A2 and D1 genes thereby promoting the accumulation of cells in S phase. Furthermore, knockout of Set7/9 decreased the expression of E-cadherin, whose product is critical for cell-cell interactions. Accordingly, this led to the increased migration of lung cancer cells. Finally, both ablation or pharmacological inhibition of Set7/9 enzymatic methyltransferase activity by the selective inhibitor (R)-PFI-2 sensitized NSCLC cells to genotoxic drug, doxorubicin. This effect was also recapitulated on patients-derived NSCLC cell lines. Taken together, our results suggest that Set7/9 plays anti-proliferative and DNA damage-protective roles in NSCLC cells and hence represents an attractive target for anti-cancer chemotherapy.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation.
| | - Victoria Mamontova
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Alexey Petukhov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation; Almazov National Medical Research Centre, Institute of Hematology, 197341, St Petersburg, Russian Federation
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Sofia Netsvetay
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Aigul Venina
- N.N. Petrov Institute of Oncology, 197758, Saint-Petersburg, Russian Federation
| | - Alena Kizenko
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Evgeny Imyanitov
- N.N. Petrov Institute of Oncology, 197758, Saint-Petersburg, Russian Federation
| | - Nickolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation; Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Moscow Region, Russian Federation.
| |
Collapse
|
12
|
Epigenetic Alterations in Pancreatic Cancer Metastasis. Biomolecules 2021; 11:biom11081082. [PMID: 34439749 PMCID: PMC8394313 DOI: 10.3390/biom11081082] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the United States. Pancreatic ductal adenocarcinoma (PDA) is the most common (90%) and aggressive type of pancreatic cancer. Genomic analyses of PDA specimens have identified the recurrent genetic mutations that drive PDA initiation and progression. However, the underlying mechanisms that further drive PDA metastasis remain elusive. Despite many attempts, no recurrent genetic mutation driving PDA metastasis has been found, suggesting that PDA metastasis is driven by epigenetic fluctuations rather than genetic factors. Therefore, establishing epigenetic mechanisms of PDA metastasis would facilitate the development of successful therapeutic interventions. In this review, we provide a comprehensive overview on the role of epigenetic mechanisms in PDA as a critical contributor on PDA progression and metastasis. In particular, we explore the recent advancements elucidating the role of nucleosome remodeling, histone modification, and DNA methylation in the process of cancer metastasis.
Collapse
|
13
|
Duan JL, Nie RC, Xiang ZC, Chen JW, Deng MH, Liang H, Wang FW, Luo RZ, Xie D, Cai MY. Prognostic Model for the Risk Stratification of Early and Late Recurrence in Hepatitis B Virus-Related Small Hepatocellular Carcinoma Patients with Global Histone Modifications. J Hepatocell Carcinoma 2021; 8:493-505. [PMID: 34095004 PMCID: PMC8170593 DOI: 10.2147/jhc.s309451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2021] [Indexed: 01/27/2023] Open
Abstract
Background and Aim To assess the profile of global histone modifications in small hepatocellular carcinoma (small HCC) and identify its prognostic value in predicting recurrence. Methods The expression profiles of global histone modifications, including H2AK5AC, H2BK20AC, H3K4me2, H3K9AC, H3K18AC, H4K12AC, and H4R3me2, were evaluated with immunohistochemistry in 335 HBV related small HCC patients. Two histone signature classifiers were then developed using least absolute shrinkage and selection operator Cox regression. A nomogram was built using the classifier and independent risk factors. The performances of the classifier and nomogram were assessed by receiver operating characteristic curves. Results Histone modifications were more pronounced in tumor tissues than in adjacent liver tissues. In tumor tissues, the risk score built based on the seven-histone signature exhibited satisfactory prediction efficiency, with an AUC = 0.71 (0.63–0.79) for 2-year survival in the training cohort. Patients with a high risk score had shorter recurrence-free survival than those with a low risk score (HR: 1.96, 95% CI: 1.24–3.08, p = 0.004; HR: 1.95, 95% CI: 1.12–3.42, p = 0.019; and HR: 1.97, 95% CI: 1.39–2.80, p < 0.001 for the training, validation and total cohorts, respectively). Furthermore, the statistical nomogram built using the histone classifier for early recurrence had a C-index = 0.68. In non-neoplastic liver tissues, the hepatic signature based on H3K4me2 and H4R3me2 was related to late recurrence (HR: 2.00, 95% CI: 1.15–3.48, p = 0.01). Conclusion Global histone modifications in tumor and adjacent liver tissues are novel predictors of early and late recurrence, respectively, in HBV-related small HCC patients.
Collapse
Affiliation(s)
- Jin-Ling Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Run-Cong Nie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhi-Cheng Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jie-Wei Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Min-Hua Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Feng-Wei Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Rong-Zhen Luo
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
14
|
Beilner D, Kuhn C, Kost BP, Vilsmaier T, Vattai A, Kaltofen T, Mahner S, Schmoeckel E, Dannecker C, Jückstock J, Mayr D, Jeschke U, Heidegger HH. Nuclear receptor corepressor (NCoR) is a positive prognosticator for cervical cancer. Arch Gynecol Obstet 2021; 304:1307-1314. [PMID: 33861372 PMCID: PMC8490237 DOI: 10.1007/s00404-021-06053-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/27/2021] [Indexed: 12/19/2022]
Abstract
Purpose Enzymes with epigenetic functions play an essential part in development of cancer. However, the significance of epigenetic changes in cervical carcinoma as a prognostic factor has not been fully investigated. Nuclear receptor corepressor (NCoR) presents itself as a potentially important element for epigenetic modification and as a potential prognostic aspect in cervical cancer. Methods By immunohistochemical staining of 250 tumor samples, the expression strength of NCoR was measured and evaluated by immunoreactive score (IRS) in the nucleus and cytoplasm. Results A low expression of NCoR in our patients was a disadvantage in overall survival. Expression of NCoR was negatively correlated with viral oncoprotein E6, acetylated histone H3 acetyl K9 and FIGO status, and positively correlated to p53. Conclusions Our study has identified epigenetic modification of tumor cells thus seems to be of relevance in cervical cancer as well for diagnosis, as a marker or as a potential therapeutic target in patients with advanced cervical carcinoma.
Collapse
Affiliation(s)
- Daniel Beilner
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Bernd P Kost
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Till Kaltofen
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Thalkirchner Street 56, 80337, Munich, Germany
| | - Christian Dannecker
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Julia Jückstock
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Doris Mayr
- Department of Pathology, LMU Munich, Thalkirchner Street 56, 80337, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany. .,Department of Obstetrics and Gynaecology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| |
Collapse
|
15
|
Nakagawa T, Kurokawa T, Mima M, Imamoto S, Mizokami H, Kondo S, Okamoto Y, Misawa K, Hanazawa T, Kaneda A. DNA Methylation and HPV-Associated Head and Neck Cancer. Microorganisms 2021; 9:microorganisms9040801. [PMID: 33920277 PMCID: PMC8069883 DOI: 10.3390/microorganisms9040801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), especially oropharyngeal squamous cell carcinoma (OPSCC), has recently been found to be significantly associated with human papillomavirus (HPV) infection. The incidence of OPSCC has been increasing and surpassed the number of cervical cancer cases in the United States. Although HPV-associated OPSCC has a relatively better prognosis than HPV-negative cancer, approximately 20% of HPV-associated HNSCC patients show a poor prognosis or therapeutic response, and the molecular mechanism behind this outcome in the intermediate-risk group is yet to be elucidated. These biological differences between HPV-associated HNSCC and HPV-negative HNSCC are partly explained by the differences in mutation patterns. However, recent reports have revealed that epigenetic dysregulation, such as dysregulated DNA methylation, is a strikingly common pathological feature of human malignancy. Notably, viral infections can induce aberrant DNA methylation, leading to carcinogenesis, and HPV-associated HNSCC cases tend to harbor a higher amount of aberrantly methylated DNA than HPV-negative HNSCC cases. Furthermore, recent comprehensive genome-wide DNA-methylation analyses with large cohorts have revealed that a sub-group of HPV-associated HNSCC correlates with increased DNA methylation. Accordingly, in this review, we provide an overview of the relationship between DNA methylation and HPV-associated HNSCC.
Collapse
Affiliation(s)
- Takuya Nakagawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (T.N.); (T.K.); (S.I.); (Y.O.)
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Tomoya Kurokawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (T.N.); (T.K.); (S.I.); (Y.O.)
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Clinical Research Center, Chiba University Hospital, Chiba 260-8677, Japan
| | - Masato Mima
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Hamamatsu University, Hamamatsu 431-3192, Japan;
| | - Sakiko Imamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (T.N.); (T.K.); (S.I.); (Y.O.)
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
| | - Harue Mizokami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Satoru Kondo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (T.N.); (T.K.); (S.I.); (Y.O.)
- Chiba Rosai Hospital, Ichihara 290-0003, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Hamamatsu University, Hamamatsu 431-3192, Japan;
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (T.N.); (T.K.); (S.I.); (Y.O.)
- Correspondence: (T.H.); (A.K.); Tel./Fax: +81-43-226-2039
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Correspondence: (T.H.); (A.K.); Tel./Fax: +81-43-226-2039
| |
Collapse
|
16
|
Biondi LR, Tedardi MV, Gentile LB, Chamas PPC, Dagli MLZ. Quantification of Global DNA Methylation in Canine Mammary Gland Tumors via Immunostaining of 5-Methylcytosine: Histopathological and Clinical Correlations. Front Vet Sci 2021; 8:628241. [PMID: 33718471 PMCID: PMC7947677 DOI: 10.3389/fvets.2021.628241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 11/26/2022] Open
Abstract
Mammary tumors are the most prevalent neoplasms in non-neutered female dogs, with genetic and epigenetic alterations contributing to canine mammary carcinogenesis. This study quantified global DNA methylation in 5-methylcytosine (5mC)-immunostained canine mammary tumor samples and established histopathological and clinical correlations. A total of 91 formalin-fixed paraffin-embedded mammary tumor samples from female dogs were retrospectively selected and subjected to immunohistochemistry using an anti-5mC mouse monoclonal antibody. We evaluated 5mC+ stained nuclei of neoplastic epithelial cells in canine mammary glands to obtain semiquantitative histoscores based on staining intensity. Survival rates were estimated based on owners' or veterinary records. Histological samples comprised 28 and 63 benign and malignant canine mammary gland tumors, respectively. Results revealed significant differences between global DNA methylation patterns when mammary samples were categorized as benign or malignant (p = 0.024), with hypomethylated patterns more prevalent in malignant tumors and those with higher relapse behavior (p = 0.011). Of note, large diameter (>5 cm) tumors revealed a lower methylation pattern (p = 0.028). Additionally, we found non-statistically significant differences when tumors were grouped by histopathological characteristics, clinical parameters, or survival. These findings propose global DNA methylation assessment as a promising tool for detecting canine mammary tumors with relapse propensity.
Collapse
Affiliation(s)
- Luiz Roberto Biondi
- Department of Small Animal Internal Medicine, School of Veterinary Medicine, Santos Metropolitan University, Universidade Metropolitana de Santos (UNIMES), São Paulo, Brazil
| | - Marcello Vannucci Tedardi
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Luciana Boffoni Gentile
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Patricia Pereira Costa Chamas
- Department of Small Animal Internal Medicine, School of Veterinary Medicine, Santos Metropolitan University, Universidade Metropolitana de Santos (UNIMES), São Paulo, Brazil
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Sinha S, Satpathy AT, Zhou W, Ji H, Stratton JA, Jaffer A, Bahlis N, Morrissy S, Biernaskie JA. Profiling Chromatin Accessibility at Single-cell Resolution. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:172-190. [PMID: 33581341 PMCID: PMC8602754 DOI: 10.1016/j.gpb.2020.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 03/04/2020] [Accepted: 08/15/2020] [Indexed: 01/22/2023]
Abstract
How distinct transcriptional programs are enacted to generate cellular heterogeneity and plasticity, and enable complex fate decisions are important open questions. One key regulator is the cell’s epigenome state that drives distinct transcriptional programs by regulating chromatin accessibility. Genome-wide chromatin accessibility measurements can impart insights into regulatory sequences (in)accessible to DNA-binding proteins at a single-cell resolution. This review outlines molecular methods and bioinformatic tools for capturing cell-to-cell chromatin variation using single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) in a scalable fashion. It also covers joint profiling of chromatin with transcriptome/proteome measurements, computational strategies to integrate multi-omic measurements, and predictive bioinformatic tools to infer chromatin accessibility from single-cell transcriptomic datasets. Methodological refinements that increase power for cell discovery through robust chromatin coverage and integrate measurements from multiple modalities will further expand our understanding of gene regulation during homeostasis and disease.
Collapse
Affiliation(s)
- Sarthak Sinha
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jo A Stratton
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Arzina Jaffer
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nizar Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Sorana Morrissy
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff A Biernaskie
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
18
|
Bivalent Genes Targeting of Glioma Heterogeneity and Plasticity. Int J Mol Sci 2021; 22:ijms22020540. [PMID: 33430434 PMCID: PMC7826605 DOI: 10.3390/ijms22020540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas account for most primary Central Nervous System (CNS) neoplasms, characterized by high aggressiveness and low survival rates. Despite the immense research efforts, there is a small improvement in glioma survival rates, mostly attributed to their heterogeneity and complex pathophysiology. Recent data indicate the delicate interplay of genetic and epigenetic mechanisms in regulating gene expression and cell differentiation, pointing towards the pivotal role of bivalent genes. Bivalency refers to a property of chromatin to acquire more than one histone marks during the cell cycle and rapidly transition gene expression from an active to a suppressed transcriptional state. Although first identified in embryonal stem cells, bivalent genes have now been associated with tumorigenesis and cancer progression. Emerging evidence indicates the implication of bivalent gene regulation in glioma heterogeneity and plasticity, mainly involving Homeobox genes, Wingless-Type MMTV Integration Site Family Members, Hedgehog protein, and Solute Carrier Family members. These genes control a wide variety of cellular functions, including cellular differentiation during early organism development, regulation of cell growth, invasion, migration, angiogenesis, therapy resistance, and apoptosis. In this review, we discuss the implication of bivalent genes in glioma pathogenesis and their potential therapeutic targeting options.
Collapse
|
19
|
Canberk S, Lima AR, Pinto M, Soares P, Máximo V. Epigenomics in Hurthle Cell Neoplasms: Filling in the Gaps Towards Clinical Application. Front Endocrinol (Lausanne) 2021; 12:674666. [PMID: 34108939 PMCID: PMC8181423 DOI: 10.3389/fendo.2021.674666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
It has been widely described that cancer genomes have frequent alterations to the epigenome, including epigenetic silencing of various tumor suppressor genes with functions in almost all cancer-relevant signalling pathways, such as apoptosis, cell proliferation, cell migration and DNA repair. Epigenetic alterations comprise DNA methylation, histone modification, and microRNAs dysregulated expression and they play a significant role in the differentiation and proliferation properties of TC. In this review, our group assessed the published evidence on the tumorigenic role of epigenomics in Hurthle cell neoplasms (HCN), highlighting the yet limited, heteregeneous and non-validated data preventing its current use in clinical practice, despite the well developed assessment techniques available. The identified evidence gaps call for a joint endeavour by the medical community towards a deeper and more systematic study of HCN, aiming at defining epigenetic markers in early diagnose, allowing for accurate stratification of maligancy and disease risk and for effective systemic treatment.
Collapse
Affiliation(s)
- Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana Rita Lima
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | - Mafalda Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- *Correspondence: Valdemar Máximo,
| |
Collapse
|
20
|
Chakma K, Gu Z, Abudurexiti Y, Hata T, Motoi F, Unno M, Horii A, Fukushige S. Epigenetic inactivation of IRX4 is responsible for acceleration of cell growth in human pancreatic cancer. Cancer Sci 2020; 111:4594-4604. [PMID: 32894817 PMCID: PMC7734003 DOI: 10.1111/cas.14644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic gene silencing by aberrant DNA methylation is one of the important mechanisms leading to loss of key cellular pathways in tumorigenesis. Methyl-CpG-targeted transcriptional activation (MeTA) reactivates hypermethylation-mediated silenced genes in a different way from DNA-demethylating agents. Microarray coupled with MeTA (MeTA-array) identified seven commonly hypermethylation-mediated silenced genes in 12 pancreatic ductal adenocarcinoma (PDAC) cell lines. Among these, we focused on IRX4 (Iroquois homeobox 4) because IRX4 is located at chromosome 5p15.33 where PDAC susceptibility loci have been identified through genome-wide association study. IRX4 was greatly downregulated in all of the analyzed 12 PDAC cell lines by promoter hypermethylation. In addition, the IRX4 promoter region was found to be frequently and specifically hypermethylated in primary resected PDACs (18/28: 64%). Reexpression of IRX4 inhibited colony formation and proliferation in two PDAC cell lines, PK-1 and PK-9. In contrast, knockdown of IRX4 accelerated cell proliferation in an IRX4-expressing normal pancreatic ductal epithelial cell line, HPDE-1. Because IRX4 is a sequence-specific transcription factor, downstream molecules of IRX4 were pursued by microarray analyses utilizing tetracycline-mediated IRX4 inducible PK-1 and PK-9 cells; CRYAB, CD69, and IL32 were identified as IRX4 downstream candidate genes. Forced expression of these genes suppressed colony formation abilities for both PK-1 and PK-9. These results suggest that DNA methylation-mediated silencing of IRX4 contributes to pancreatic tumorigenesis through aberrant transcriptional regulation of several cancer-related genes.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- DNA Methylation
- Down-Regulation
- Gene Knockdown Techniques/methods
- Gene Silencing
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Interleukins/genetics
- Interleukins/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Plasmids
- Protein Array Analysis
- Tumor Stem Cell Assay
- Up-Regulation
- alpha-Crystallin B Chain/genetics
- alpha-Crystallin B Chain/metabolism
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Kanchan Chakma
- Division of PathologyTohoku University School of MedicineSendaiJapan
- Present address:
Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Zhaodi Gu
- Division of PathologyTohoku University School of MedicineSendaiJapan
| | | | - Tatsuo Hata
- Department of Gastroenterological SurgeryTohoku University School of MedicineSendaiJapan
| | - Fuyuhiko Motoi
- Department of Gastroenterological SurgeryTohoku University School of MedicineSendaiJapan
- Present address:
Department of Surgery IYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Michiaki Unno
- Department of Gastroenterological SurgeryTohoku University School of MedicineSendaiJapan
| | - Akira Horii
- Division of PathologyTohoku University School of MedicineSendaiJapan
- Present address:
Saka General HospitalShiogamaJapan
| | - Shinichi Fukushige
- Division of PathologyTohoku University School of MedicineSendaiJapan
- Center for Regulatory Epigenome and DiseasesTohoku University School of MedicineSendaiJapan
| |
Collapse
|
21
|
Klutstein M. Cause and effect in epigenetics - where lies the truth, and how can experiments reveal it?: Epigenetic self-reinforcing loops obscure causation in cancer and aging. Bioessays 2020; 43:e2000262. [PMID: 33236359 DOI: 10.1002/bies.202000262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Epigenetic changes are implicated in aging and cancer. Sometimes, it is clear whether the causing agent of the condition is a genetic factor or epigenetic. In other cases, the causative factor is unclear, and could be either genetic or epigenetic. Is there a general role for epigenetic changes in cancer and aging? Here, I present the paradigm of causative roles executed by epigenetic changes. I discuss cases with clear roles of the epigenome in cancer and aging, and other cases showing involvement of other factors. I also present the possibility that sometimes causality is difficult to assign because of the presence of self-reinforcing loops in epigenetic regulation. Such loops hinder the identification of the causative factor. I provide an experimental framework by which the role of the epigenome can be examined in a better setting and where the presence of such loops could be investigated in more detail.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
22
|
Rasha F, Mims BM, Castro-Piedras I, Barnes BJ, Grisham MB, Rahman RL, Pruitt K. The Versatility of Sirtuin-1 in Endocrinology and Immunology. Front Cell Dev Biol 2020; 8:589016. [PMID: 33330467 PMCID: PMC7717970 DOI: 10.3389/fcell.2020.589016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sirtuins belong to the class III family of NAD-dependent histone deacetylases (HDAC) and are involved in diverse physiological processes that range from regulation of metabolism and endocrine function to coordination of immunity and cellular responses to stress. Sirtuin-1 (SIRT1) is the most well-studied family member and has been shown to be critically involved in epigenetics, immunology, and endocrinology. The versatile roles of SIRT1 include regulation of energy sensing metabolic homeostasis, deacetylation of histone and non-histone proteins in numerous tissues, neuro-endocrine regulation via stimulation of hypothalamus-pituitary axes, synthesis and maintenance of reproductive hormones via steroidogenesis, maintenance of innate and adaptive immune system via regulation of T- and B-cell maturation, chronic inflammation and autoimmune diseases. Moreover, SIRT1 is an appealing target in various disease contexts due to the promise of pharmacological and/or natural modulators of SIRT1 activity within the context of endocrine and immune-related disease models. In this review we aim to provide a broad overview on the role of SIRT1 particularly within the context of endocrinology and immunology.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Betsy J. Barnes
- Laboratory of Autoimmune and Cancer Research, Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine and Department of Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
23
|
VRK1 Phosphorylates Tip60/KAT5 and Is Required for H4K16 Acetylation in Response to DNA Damage. Cancers (Basel) 2020; 12:cancers12102986. [PMID: 33076429 PMCID: PMC7650776 DOI: 10.3390/cancers12102986] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Dynamic remodeling of chromatin requires acetylation and methylation of histones, frequently affecting the same lysine residue. These alternative epigenetic modifications require the coordination of enzymes, writers and erasers, mediating them such as acetylases and deacetylases. In cells in G0/G1, DNA damage induced by doxorubicin causes an increase in histone H4K16ac, a marker of chromatin relaxation. In this context, we studied the role that VRK1, a chromatin kinase activated by DNA damage, plays in this early step. VRK1 depletion or MG149, a Tip60/KAT5 inhibitor, cause a loss of H4K16ac. DNA damage induces the phosphorylation of Tip60 mediated by VRK1 in the chromatin fraction. VRK1 directly interacts with and phosphorylates Tip60. Furthermore, the phosphorylation of Tip60 induced by doxorubicin is lost by depletion of VRK1 in both ATM +/+ and ATM-/- cells. Kinase-active VRK1, but not kinase-dead VRK1, rescues Tip60 phosphorylation induced by DNA damage independently of ATM. The Tip60 phosphorylation by VRK1 is necessary for the activating acetylation of ATM, and subsequent ATM autophosphorylation, and both are lost by VRK1 depletion. These results support that the VRK1 chromatin kinase is an upstream regulator of the initial acetylation of histones, and an early step in DNA damage responses (DDR).
Collapse
|
24
|
Yamamoto Y, Matsusaka K, Fukuyo M, Rahmutulla B, Matsue H, Kaneda A. Higher methylation subtype of malignant melanoma and its correlation with thicker progression and worse prognosis. Cancer Med 2020; 9:7194-7204. [PMID: 32406600 PMCID: PMC7541157 DOI: 10.1002/cam4.3127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 01/12/2023] Open
Abstract
Malignant melanoma (MM) is the most life‐threatening disease among all skin malignancies, and recent genome‐wide studies reported BRAF, RAS, and NF1 as the most frequently mutated driver genes. While epigenetic aberrations are known to contribute to the oncogenic activity seen in various cancers, their role in MM has not been fully investigated. To investigate the role of epigenetic aberrations in MM, we performed genome‐wide DNA methylation analysis of 51 clinical MM samples using Infinium 450k beadarray. Hierarchical clustering analysis stratified MM into two DNA methylation epigenotypes: high‐ and low‐methylation subgroups. Tumor thickness was significantly greater in case of high‐methylation tumors than low‐methylation tumors (8.3 ± 5.3 mm vs 4.5 ± 2.9 mm, P = .003). Moreover, prognosis was significantly worse in high‐methylation cases (P = .03). Twenty‐seven genes were found to undergo significant and frequent hypermethylation in high‐methylation subgroup, where TFPI2 was identified as the most frequently hypermethylated gene. MM cases with lower expression levels of TFPI2 showed significantly worse prognosis (P = .001). Knockdown of TFPI2 in two MM cell lines, CHL‐1 and G361, resulted in significant increases of cell proliferation and invasion. These indicate that MM can be stratified into at least two different epigenetic subgroups, that the MM subgroup with higher DNA methylation shows a more progressive phenotype, and that methylation of TFPI2 may contribute to the tumor progression of MM.
Collapse
Affiliation(s)
- Yosuke Yamamoto
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Genome Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Matsue
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
25
|
Citron F, Fabris L. Targeting Epigenetic Dependencies in Solid Tumors: Evolutionary Landscape Beyond Germ Layers Origin. Cancers (Basel) 2020; 12:cancers12030682. [PMID: 32183227 PMCID: PMC7140038 DOI: 10.3390/cancers12030682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Extensive efforts recently witnessed the complexity of cancer biology; however, molecular medicine still lacks the ability to elucidate hidden mechanisms for the maintenance of specific subclasses of rare tumors characterized by the silent onset and a poor prognosis (e.g., ovarian cancer, pancreatic cancer, and glioblastoma). Recent mutational fingerprints of human cancers highlighted genomic alteration occurring on epigenetic modulators. In this scenario, the epigenome dependency of cancer orchestrates a broad range of cellular processes critical for tumorigenesis and tumor progression, possibly mediating escaping mechanisms leading to drug resistance. Indeed, in this review, we discuss the pivotal role of chromatin remodeling in shaping the tumor architecture and modulating tumor fitness in a microenvironment-dependent context. We will also present recent advances in the epigenome targeting, posing a particular emphasis on how this knowledge could be translated into a feasible therapeutic approach to individualize clinical settings and improve patient outcomes.
Collapse
Affiliation(s)
- Francesca Citron
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Linda Fabris
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: ; Tel.: +1-713-563-5635
| |
Collapse
|
26
|
Anti-leukemic effects of histone deacetylase (HDAC) inhibition in acute lymphoblastic leukemia (ALL) cells: Shedding light on mitigating effects of NF-κB and autophagy on panobinostat cytotoxicity. Eur J Pharmacol 2020; 875:173050. [PMID: 32142770 DOI: 10.1016/j.ejphar.2020.173050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Abstract
Identification of the roles of epigenetic alterations in cancers has suggested that different molecules involved in this process are potentially therapeutic targets. Given the role of histone deacetylases (HDACs) enzymes in leukemogenesis, we designed a study to investigate the anti-leukemic property of panobinostat, a HDAC inhibitor, in acute lymphoblastic leukemia (ALL) cells. Our results showed that panobinostat decreased cell viability of pre-B ALL-derived cells. The favorable anti-leukemic effects of the inhibitor was further confirmed by cell cycle analysis, where we found that panobinostat prolonged the transition of the cells from G1 phase probably through c-Myc-mediated up-regulation of cyclin-dependent kinase inhibitors. Unlike the apoptotic effect of panobinostat on Nalm-6 cells, the expression of anti-apoptotic nuclear factor-kappa B (NF-κB) target genes remained unchanged. Accordingly, we found that the inhibition of NF-κB pathway using bortezomib boosted the effect of panobinostat, indicating that panobinostat-induced apoptosis could be attenuated through the activation of the NF-κB pathway. The results of the present study reflected another aspect of autophagy in leukemic cells, as we showed that although Nalm-6 cells could exploit autophagy to override the anti-survival effect of HDAC inhibition, the presence of an autophagy inhibitor could alter the compensatory circumstance to induce cell death. Beyond panobinostat cytotoxicity as a single agent, synergistic experiments outlined that pharmaceutical targeting of HDACs could amplify the cytotoxicity of vincristine in ALL cells, delineating that panobinostat, either as a single agent or in a combined modality, possesses novel promising potentials for the treatment of ALL.
Collapse
|
27
|
Gionfriddo G, Plastina P, Augimeri G, Catalano S, Giordano C, Barone I, Morelli C, Giordano F, Gelsomino L, Sisci D, Witkamp R, Andò S, van Norren K, Bonofiglio D. Modulating Tumor-Associated Macrophage Polarization by Synthetic and Natural PPARγ Ligands as a Potential Target in Breast Cancer. Cells 2020; 9:cells9010174. [PMID: 31936729 PMCID: PMC7017381 DOI: 10.3390/cells9010174] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor gamma (PPARγ) elicits anti-proliferative effects on different tumor cells, including those derived from breast cancer. PPARγ is also expressed in several cells of the breast tumor microenvironment, among which tumor associated macrophages (TAMs) play a pivotal role in tumor progression and metastasis. We explored the ability of synthetic and natural PPARγ ligands to modulate TAM polarization. The ligands included rosiglitazone (BRL-49653), and two docosahexaenoic acid (DHA) conjugates, N-docosahexaenoyl ethanolamine (DHEA) and N-docosahexaenoyl serotonin (DHA-5-HT). Human THP-1 monocytic cells were differentiated into M0, M1 and M2 macrophages that were characterized by qRT-PCR, ELISA and western blotting. A TAM-like phenotypic state was generated by adding two different breast cancer cell conditioned media (BCC-CM) to the cultures. Macrophages exposed to BCC-CM concomitantly exhibited M1 and M2 phenotypes. Interestingly, rosiglitazone, DHEA and DHA-5-HT attenuated cytokine secretion by TAMs, and this effect was reversed by the PPARγ antagonist GW9662. Given the key role played by PPARγ in the crosstalk between cancer cells and TAMs in tumor progression, its activation via endogenous or synthetic ligands may lead to novel strategies that target both epithelial neoplastic cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Giulia Gionfriddo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
| | - Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
| | - Diego Sisci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
| | - Klaske van Norren
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands;
- Correspondence: (K.v.N.); (D.B.); Tel.: +31-0317-485093 (K.v.N.); +39-0984-496208 (D.B.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.G.); (P.P.); (G.A.); (S.C.); (C.G.); (I.B.); (C.M.); (F.G.); (L.G.); (D.S.); (S.A.)
- Correspondence: (K.v.N.); (D.B.); Tel.: +31-0317-485093 (K.v.N.); +39-0984-496208 (D.B.)
| |
Collapse
|
28
|
Zang R, Wang X, Jin R, Lei Y, Huang J, Liu C, Zheng S, Zhou F, Wu Q, Sun N, Gao S, He J. Translational value of IDH1 and DNA methylation biomarkers in diagnosing lung cancers: a novel diagnostic panel of stage and histology-specificity. J Transl Med 2019; 17:430. [PMID: 31888670 PMCID: PMC6936123 DOI: 10.1186/s12967-019-2117-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related death worldwide, and the timely and serial assessment of low-dose computed tomography (LDCT) in high-risk populations remains a challenge. Furthermore, testing a single biomarker for the diagnosis of lung cancers is of relatively low effectiveness. Thus, a stronger diagnostic combination of blood biomarkers is needed to improve the diagnosis of non-small cell lung cancer (NSCLC). Methods The blood levels of individual biomarkers [IDH1, DNA methylation of short stature homeobox 2 gene (SHOX2), and prostaglandin E receptor 4 gene (PTGER4)] were measured and statistically analyzed in samples from healthy controls and patients with lung cancer. In total, 221 candidates were enrolled and randomly assigned into two groups for the training and validation of a diagnostic panel. Additionally, a subgroup analysis was performed in the whole cohort. Results A newly combined 3-marker diagnostic model for lung cancers was established and validated with area under the receiver operating characteristic (ROC) curve (AUC) values ranging from 0.835 to 0.905 in independent groups showing significantly stronger diagnostic value compared with a single tested biomarker. The sensitivity of the diagnostic model was as high as 86.1% and 80.0% in the training and validation sets, respectively. Although no apparent differences were found between the 3-marker and 2-marker models, the high clinical T-stage and histological type specificity of IDH1 and two other methylated DNA biomarkers were demonstrated in the subgroup analysis. Conclusions The combination of single biomarkers with high stage-specificity and histological type specificity (SHOX2 and PTGER4 DNA methylation and IDH1) showed better diagnostic performance in the detection of lung cancers compared with single marker assessment. A greater clinical utility of the panel may be developed by adding demographic/epidemiologic characteristics.
Collapse
Affiliation(s)
- Ruochuan Zang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Runsen Jin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fang Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qian Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
29
|
Babaei K, Khaksar R, Zeinali T, Hemmati H, Bandegi A, Samidoust P, Ashoobi MT, Hashemian H, Delpasand K, Talebinasab F, Naebi H, Mirpour SH, Keymoradzadeh A, Norollahi SE. Epigenetic profiling of MUTYH, KLF6, WNT1 and KLF4 genes in carcinogenesis and tumorigenesis of colorectal cancer. Biomedicine (Taipei) 2019; 9:22. [PMID: 31724937 PMCID: PMC6855188 DOI: 10.1051/bmdcn/2019090422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is distinguished by epigenetic elements like DNA methylation, histone modification, histone acetylation and RNA remodeling which is related with genomic instability and tumor initiation. Correspondingly, as a main epigenetic regulation, DNA methylation has an impressive ability in order to be used in CRC targeted therapy. Meaningly, DNA methylation is identified as one of most important epigenetic regulators in gene expression and is considered as a notable potential driver in tumorigenesis and carcinogenesis through gene-silencing of tumor suppressors genes. Abnormal methylation situation, even in the level of promoter regions, does not essentially change the gene expression levels, particularly if the gene was become silenced, leaving the mechanisms of methylation without any response. According to the methylation situation which has a strong eagerness to be highly altered on CpG islands in carcinogenesis and tumorigenesis, considering its epigenetic fluctuations in finding new biomarkers is of great importance. Modifications in DNA methylation pattern and also enrichment of methylated histone signs in the promoter regions of some certain genes like MUTYH, KLF4/6 and WNT1 in different signaling pathways could be a notable key contributors to the upregulation of tumor initiation in CRC. These epigenetic alterations could be employed as a practical diagnostic biomarkers for colorectal cancer. In this review, we will be discuss these fluctuations of MUTYH, KLF4/6 and WNT1 genes in CRC.
Collapse
Affiliation(s)
- Kosar Babaei
- Department of Biology, Islamic Azad University of Tonekabon Branch, Tonekabon, Iran
| | - Roya Khaksar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Hemmati
- Razi Clinical Research Development Unit, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmadreza Bandegi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Pirouz Samidoust
- Razi Clinical Research Development Unit, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Taghi Ashoobi
- Department of Surgery, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hooman Hashemian
- Pediatric Diseases Research Center,Guilan University of Medical ciences, Rasht, Iran
| | - Kourosh Delpasand
- School of Medicine, Kurdistan University of Mdical Ciences, Sanandaj, Iran
| | - Fereshteh Talebinasab
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hoora Naebi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Hossein Mirpour
- Department of Hematology and Oncology, Razi hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzadeh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
30
|
Sheng J, Shi W, Guo H, Long W, Wang Y, Qi J, Liu J, Xu Y. The Inhibitory Effect of (-)-Epigallocatechin-3-Gallate on Breast Cancer Progression via Reducing SCUBE2 Methylation and DNMT Activity. Molecules 2019; 24:molecules24162899. [PMID: 31404982 PMCID: PMC6719997 DOI: 10.3390/molecules24162899] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications are important mechanisms responsible for cancer progression. Accumulating data suggest that (-)-epigallocatechin-3-gallate (EGCG), the most abundant catechin of green tea, may hamper carcinogenesis by targeting epigenetic alterations. We found that signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF (epidermal growth factor) domain-containing protein 2 (SCUBE2), a tumor suppressor gene, was hypermethylated in breast tumors. However, it is unknown whether EGCG regulates SCUBE2 methylation, and the mechanisms remain undefined. This study was designed to investigate the effect of EGCG on SCUBE2 methylation in breast cancer cells. We reveal that EGCG possesses a significantly inhibitory effect on cell viability in a dose- and time-dependent manner and presents more effects than other catechins. EGCG treatment resulted in enhancement of the SCUBE2 gene, along with elevated E-cadherin and decreased vimentin expression, leading to significant suppression of cell migration and invasion. The inhibitory effect of EGCG on SCUBE2 knock-down cells was remarkably alleviated. Further study demonstrated that EGCG significantly decreased the SCUBE2 methylation status by reducing DNA methyltransferase (DNMT) expression and activity. In summary, this study reported for the first time that SCUBE2 methylation can be reversed by EGCG treatment, finally resulting in the inhibition of breast cancer progression. These results suggest the epigenetic role of EGCG and its potential implication in breast cancer therapy.
Collapse
Affiliation(s)
- Jie Sheng
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Weilin Shi
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hui Guo
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenlin Long
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuxin Wang
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiangfa Qi
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jinbiao Liu
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
31
|
Zhong H, Kim S, Zhi D, Cui X. Predicting gene expression using DNA methylation in three human populations. PeerJ 2019; 7:e6757. [PMID: 31106051 PMCID: PMC6500370 DOI: 10.7717/peerj.6757] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 03/10/2019] [Indexed: 12/30/2022] Open
Abstract
Background DNA methylation, an important epigenetic mark, is well known for its regulatory role in gene expression, especially the negative correlation in the promoter region. However, its correlation with gene expression across genome at human population level has not been well studied. In particular, it is unclear if genome-wide DNA methylation profile of an individual can predict her/his gene expression profile. Previous studies were mostly limited to association analyses between single CpG site methylation and gene expression. It is not known whether DNA methylation of a gene has enough prediction power to serve as a surrogate for gene expression in existing human study cohorts with DNA samples other than RNA samples. Results We examined DNA methylation in the gene region for predicting gene expression across individuals in non-cancer tissues of three human population datasets, adipose tissue of the Multiple Tissue Human Expression Resource Projects (MuTHER), peripheral blood mononuclear cell (PBMC) from Asthma and normal control study participates, and lymphoblastoid cell lines (LCL) from healthy individuals. Three prediction models were investigated, single linear regression, multiple linear regression, and least absolute shrinkage and selection operator (LASSO) penalized regression. Our results showed that LASSO regression has superior performance among these methods. However, the prediction power is generally low and varies across datasets. Only 30 and 42 genes were found to have cross-validation R2 greater than 0.3 in the PBMC and Adipose datasets, respectively. A substantially larger number of genes (258) were identified in the LCL dataset, which was generated from a more homogeneous cell line sample source. We also demonstrated that it gives better prediction power not to exclude any CpG probe due to cross hybridization or SNP effect. Conclusion In our three population analyses DNA methylation of CpG sites at gene region have limited prediction power for gene expression across individuals with linear regression models. The prediction power potentially varies depending on tissue, cell type, and data sources. In our analyses, the combination of LASSO regression and all probes not excluding any probe on the methylation array provides the best prediction for gene expression.
Collapse
Affiliation(s)
- Huan Zhong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Soyeon Kim
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Degui Zhi
- School of Biomendical Informatics, University of Texas Health Center at Houston, Houston, TX, United States of America
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
32
|
Affiliation(s)
- Kimberly D Barnash
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
33
|
Romero P, Benhamo V, Deniziaut G, Fuhrmann L, Berger F, Manié E, Bhalshankar J, Vacher S, Laurent C, Marangoni E, Gruel N, MacGrogan G, Rouzier R, Delattre O, Popova T, Reyal F, Stern MH, Stoppa-Lyonnet D, Marchiò C, Bièche I, Vincent-Salomon A. Medullary Breast Carcinoma, a Triple-Negative Breast Cancer Associated with BCLG Overexpression. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2378-2391. [PMID: 30075151 DOI: 10.1016/j.ajpath.2018.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/15/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
Medullary breast carcinoma (MBC) is a rare subtype of triple-negative breast cancer with specific genomic features within the spectrum of basal-like carcinoma (BLC). In this study of 19 MBCs and 36 non-MBC BLCs, we refined the transcriptomic and genomic knowledge about this entity. Unsupervised and supervised analysis of transcriptomic profiles confirmed that MBC clearly differs from non-MBC BLC, with 92 genes overexpressed and 154 genes underexpressed in MBC compared with non-MBC BLC. Immunity-related pathways are the most differentially represented pathways in MBC compared with non-MBC BLC. The proapoptotic gene BCLG (official name BCL2L14) is by far the most intensely overexpressed gene in MBC. A quantitative RT-PCR validation study conducted in 526 breast tumors corresponding to all molecular subtypes documented the specificity of BCLG overexpression in MBC, which was confirmed at the protein level by immunohistochemistry. We also found that most MBCs belong to the immunomodulatory triple-negative breast cancer subtype. Using pan-genomic analysis, it was found that MBC harbors more losses of heterozygosity than non-MBC BLC. These observations corroborate the notion that MBC remains a distinct entity that could benefit from specific treatment strategies (such as deescalation or targeted therapy) adapted to this rare tumor type.
Collapse
Affiliation(s)
- Pierre Romero
- Department of Pathology, Institut Curie, PSL Research University, Paris, France.
| | - Vanessa Benhamo
- INSERM U934, Institut Curie, PSL Research University, Paris, France; Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Gabrielle Deniziaut
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Laetitia Fuhrmann
- Department of Pathology, Institut Curie, PSL Research University, Paris, France; INSERM U934, Institut Curie, PSL Research University, Paris, France
| | - Frédérique Berger
- Unit of Biometry, INSERM U900, Institut Curie, PSL Research University, Paris, France
| | - Elodie Manié
- INSERM U934, Institut Curie, PSL Research University, Paris, France
| | | | - Sophie Vacher
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Cécile Laurent
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Elisabetta Marangoni
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Nadège Gruel
- INSERM U934, Institut Curie, PSL Research University, Paris, France; Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | | | - Roman Rouzier
- Department of Surgery, Institut Curie, PSL Research University, Paris, France
| | - Olivier Delattre
- INSERM U934, Institut Curie, PSL Research University, Paris, France
| | - Tatiana Popova
- INSERM U934, Institut Curie, PSL Research University, Paris, France
| | - Fabien Reyal
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France; Department of Surgery, Institut Curie, PSL Research University, Paris, France
| | - Marc-Henri Stern
- Department of Pathology, Institut Curie, PSL Research University, Paris, France; INSERM U934, Institut Curie, PSL Research University, Paris, France
| | - Dominique Stoppa-Lyonnet
- Department of Pathology, Institut Curie, PSL Research University, Paris, France; INSERM U934, Institut Curie, PSL Research University, Paris, France; Sorbonne Paris Cité, University Paris Descartes, Paris, France
| | - Caterina Marchiò
- Department of Pathology, Institut Curie, PSL Research University, Paris, France; Institute of Pathology at the Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ivan Bièche
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, PSL Research University, Paris, France; EA 7331, University Paris Descartes, Paris, France
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie, PSL Research University, Paris, France; INSERM U934, Institut Curie, PSL Research University, Paris, France
| |
Collapse
|
34
|
Abstract
Esophageal adenocarcinoma (EAC) develops from Barrett's esophagus (BE), a condition where the normal squamous epithelia is replaced by specialized intestinal metaplasia in response to chronic gastroesophageal acid reflux. In a minority of individuals, BE can progress to low- and high-grade dysplasia and eventually to intra-mucosal and then invasive carcinoma. BE provides researchers with a unique model to characterize the process by which a carcinoma arises from its precursor lesion. Molecular studies of BE have demonstrated that it is not simply a metaplastic tissue, but rather it harbors frequent alterations that are also present in dysplastic BE and in EAC. Both BE and EAC are characterized by loss of heterozygosity, aneuploidy, specific genetic mutations, and clonal diversity. Epigenetic abnormalities, primary alterations in DNA methylation, are also frequently seen in BE and EAC. Candidate gene and array-based approaches have demonstrated that numerous tumor suppressor genes exhibit aberrant promoter methylation, and some of these altered genes are associated with the neoplastic progression of BE. It has also been shown that the BE and EAC epigenomes are characterized by hypomethylation of intragenic and non-coding regions Recent studies have also provided new insight into the evolutionary forces underlying the molecular alterations seen in BE and EAC and into the molecular pathogenesis of EAC.
Collapse
Affiliation(s)
- William M. Grady
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA,University of Washington School of Medicine, Department of Internal Medicine, Seattle, WA
| | - Ming Yu
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA
| |
Collapse
|
35
|
Sabatino ME, Grondona E, Sosa LDV, Mongi Bragato B, Carreño L, Juarez V, da Silva RA, Remor A, de Bortoli L, de Paula Martins R, Pérez PA, Petiti JP, Gutiérrez S, Torres AI, Latini A, De Paul AL. Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth. Free Radic Biol Med 2018; 120:41-55. [PMID: 29548793 DOI: 10.1016/j.freeradbiomed.2018.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Liliana D V Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Bethania Mongi Bragato
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Lucia Carreño
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Virginia Juarez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Rodrigo A da Silva
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline Remor
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucila de Bortoli
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pablo A Pérez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Juan Pablo Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Silvina Gutiérrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alicia I Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ana L De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
36
|
Ward E, Varešlija D, Charmsaz S, Fagan A, Browne AL, Cosgrove N, Cocchiglia S, Purcell SP, Hudson L, Das S, O'Connor D, O'Halloran PJ, Sims AH, Hill AD, Young LS. Epigenome-wide SRC-1-Mediated Gene Silencing Represses Cellular Differentiation in Advanced Breast Cancer. Clin Cancer Res 2018; 24:3692-3703. [PMID: 29567811 DOI: 10.1158/1078-0432.ccr-17-2615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/12/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Despite the clinical utility of endocrine therapies for estrogen receptor-positive (ER) breast cancer, up to 40% of patients eventually develop resistance, leading to disease progression. The molecular determinants that drive this adaptation to treatment remain poorly understood. Methylome aberrations drive cancer growth yet the functional role and mechanism of these epimutations in drug resistance are poorly elucidated.Experimental Design: Genome-wide multi-omics sequencing approach identified a differentially methylated hub of prodifferentiation genes in endocrine resistant breast cancer patients and cell models. Clinical relevance of the functionally validated methyl-targets was assessed in a cohort of endocrine-treated human breast cancers and patient-derived ex vivo metastatic tumors.Results: Enhanced global hypermethylation was observed in endocrine treatment resistant cells and patient metastasis relative to sensitive parent cells and matched primary breast tumor, respectively. Using paired methylation and transcriptional profiles, we found that SRC-1-dependent alterations in endocrine resistance lead to aberrant hypermethylation that resulted in reduced expression of a set of differentiation genes. Analysis of ER-positive endocrine-treated human breast tumors (n = 669) demonstrated that low expression of this prodifferentiation gene set significantly associated with poor clinical outcome (P = 0.00009). We demonstrate that the reactivation of these genes in vitro and ex vivo reverses the aggressive phenotype.Conclusions: Our work demonstrates that SRC-1-dependent epigenetic remodeling is a 'high level' regulator of the poorly differentiated state in ER-positive breast cancer. Collectively these data revealed an epigenetic reprograming pathway, whereby concerted differential DNA methylation is potentiated by SRC-1 in the endocrine resistant setting. Clin Cancer Res; 24(15); 3692-703. ©2018 AACR.
Collapse
Affiliation(s)
- Elspeth Ward
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sara Charmsaz
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ailis Fagan
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alacoque L Browne
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nicola Cosgrove
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinéad Cocchiglia
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siobhan P Purcell
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Lance Hudson
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sudipto Das
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Darran O'Connor
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Andrew H Sims
- Applied Bioinformatics of Cancer Group, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Arnold D Hill
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
37
|
Yang X, Wang H, Jiao B. Mammary gland stem cells and their application in breast cancer. Oncotarget 2018; 8:10675-10691. [PMID: 27793013 PMCID: PMC5354691 DOI: 10.18632/oncotarget.12893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
The mammary gland is an organ comprising two primary lineages, specifically the inner luminal and the outer myoepithelial cell layers. Mammary gland stem cells (MaSCs) are highly dynamic and self-renewing, and can give rise to these mammary gland lineages. The lineages are responsible for gland generation during puberty as well as expansion during pregnancy. In recent years, researchers have focused on understanding how MaSCs are regulated during mammary gland development and transformation of breast cancer. Here, we summarize the identification of MaSCs, and how they are regulated by the signaling transduction pathways, mammary gland microenvironment, and non-coding RNAs (ncRNAs). Moreover, we debate the evidence for their serving as the origin of breast cancer, and discuss the therapeutic perspectives of targeting breast cancer stem cells (BCSCs). In conclusion, a better understanding of the key regulators of MaSCs is crucial for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
38
|
PD-L1 promoter methylation is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients following radical prostatectomy. Oncotarget 2018; 7:79943-79955. [PMID: 27835597 PMCID: PMC5346762 DOI: 10.18632/oncotarget.13161] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Background The rapid development of programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors has generated an urgent need for biomarkers assisting the selection of patients eligible for therapy. The use of PD-L1 immunohistochemistry, which has been suggested as a predictive biomarker, however, is confounded by multiple unresolved issues. The aim of this study therefore was to quantify PD-L1 DNA methylation (mPD-L1) in prostate tissue samples and to evaluate its potential as a biomarker in prostate cancer (PCa). Results In the training cohort, normal tissue showed significantly lower levels of mPD-L1 compared to tumor tissue. High mPD-L1 in PCa was associated with biochemical recurrence (BCR) in univariate Cox proportional hazards (hazard ratio (HR)=2.60 [95%CI: 1.50-4.51], p=0.001) and Kaplan-Meier analyses (p<0.001). These results were corroborated in an independent validation cohort in univariate Cox (HR=1.24 [95%CI: 1.08-1.43], p=0.002) and Kaplan-Meier analyses (p=0.029). Although mPD-L1 and PD-L1 protein expression did not correlate in the validation cohort, both parameters added significant prognostic information in bivariate Cox analysis (HR=1.22 [95%CI: 1.05-1.42], p=0.008 for mPD-L1 and HR=2.58 [95%CI: 1.43-4.63], p=0.002 for PD-L1 protein expression). Methods mPD-L1 was analyzed in a training cohort from The Cancer Genome Atlas (n=498) and was subsequently measured in an independent validation cohort (n=299) by quantitative methylation-specific real-time PCR. All patients had undergone radical prostatectomy. Conclusions mPD-L1 is a promising biomarker for the risk stratification of PCa patients and might offer additional relevant prognostic information to the implemented clinical parameters, particularly in the setting of immune checkpoint inhibition.
Collapse
|
39
|
Mélard P, Idrissi Y, Andrique L, Poglio S, Prochazkova-Carlotti M, Berhouet S, Boucher C, Laharanne E, Chevret E, Pham-Ledard A, De Souza Góes AC, Guyonnet-Duperat V, Bibeyran A, Moreau-Gaudry F, Vergier B, Beylot-Barry M, Merlio JP, Cappellen D. Molecular alterations and tumor suppressive function of the DUSP22 (Dual Specificity Phosphatase 22) gene in peripheral T-cell lymphoma subtypes. Oncotarget 2018; 7:68734-68748. [PMID: 27626696 PMCID: PMC5356586 DOI: 10.18632/oncotarget.11930] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
Monoallelic 6p25.3 rearrangements associated with DUSP22 (Dual Specificity Phosphatase 22) gene silencing have been reported in CD30+ peripheral T-cell lymphomas (PTCL), mostly with anaplastic morphology and of cutaneous origin. However, the mechanism of second allele silencing and the putative tumor suppressor function of DUSP22 have not been investigated so far. Here, we show that the presence, in most individuals, of an inactive paralog hampers genetic and epigenetic evaluation of the DUSP22 gene. Identification of DUSP22-specific single-nucleotide polymorphisms haplotypes and fluorescence in situ hybridization and epigenetic characterization of the paralog status led us to develop a comprehensive strategy enabling reliable identification of DUSP22 alterations. We showed that one cutaneous anaplastic large T-cell lymphomas (cALCL) case with monoallelic 6p25.3 rearrangement and DUSP22 silencing harbored exon 1 somatic mutations associated with second allele inactivation. Another cALCL case carried an intron 1 somatic splice site mutation with predicted deleterious exon skipping effect. Other tested PTCL cases with 6p25.3 rearrangement exhibited neither mutation nor deletion nor methylation accounting for silencing of the non-rearranged DUSP22 allele, thus inactivated by a so far unknown mechanism. We also characterized the expression status of four DUSP22 splice variants and found that they are all silenced in cALCL cases with 6p25.3 breakpoints. We finally showed that restoring expression of the physiologically predominant isoform in DUSP22-deficient malignant T cells inhibits cellular expansion by stimulating apoptosis and impairs soft agar clonogenicity and tumorigenicity. This study therefore shows that DUSP22 behaves as a tumor suppressor gene in PTCL.
Collapse
Affiliation(s)
- Pierre Mélard
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Pathologie, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Yamina Idrissi
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Laetitia Andrique
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Sandrine Poglio
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Martina Prochazkova-Carlotti
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Sabine Berhouet
- Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Cécile Boucher
- Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Elodie Laharanne
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Edith Chevret
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Anne Pham-Ledard
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Dermatologie, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint-André, F-33000 Bordeaux, France
| | - Andréa Carla De Souza Góes
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, CEP 20550-013 Rio de Janeiro, Brazil
| | - Véronique Guyonnet-Duperat
- Plateforme de Vectorologie, Unité Mixte de Services (UMS TBM-Core), Centre National de la Recherche Scientifique (CNRS)- Institut National de la Santé et de la Recherche Médicale (Inserm)-Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Alice Bibeyran
- Plateforme de Vectorologie, Unité Mixte de Services (UMS TBM-Core), Centre National de la Recherche Scientifique (CNRS)- Institut National de la Santé et de la Recherche Médicale (Inserm)-Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - François Moreau-Gaudry
- Plateforme de Vectorologie, Unité Mixte de Services (UMS TBM-Core), Centre National de la Recherche Scientifique (CNRS)- Institut National de la Santé et de la Recherche Médicale (Inserm)-Universitaire de Bordeaux, F-33076 Bordeaux, France.,Biothérapies des Maladies Génétiques et Cancers, Institut National de la Santé et de la Recherche Médicale (Inserm), U1035, Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Béatrice Vergier
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Pathologie, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Marie Beylot-Barry
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Dermatologie, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint-André, F-33000 Bordeaux, France
| | - Jean-Philippe Merlio
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - David Cappellen
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| |
Collapse
|
40
|
Transcription factor LSF-DNMT1 complex dissociation by FQI1 leads to aberrant DNA methylation and gene expression. Oncotarget 2018; 7:83627-83640. [PMID: 27845898 PMCID: PMC5347793 DOI: 10.18632/oncotarget.13271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
The transcription factor LSF is highly expressed in hepatocellular carcinoma (HCC) and promotes oncogenesis. Factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity and exerts anti-proliferative activity. Here, we show that LSF binds directly to the maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1) and its accessory protein UHRF1 both in vivo and in vitro. Binding of LSF to DNMT1 stimulated DNMT1 activity and FQI1 negated the methyltransferase activation. Addition of FQI1 to the cell culture disrupted LSF bound DNMT1 and UHRF1 complexes, resulting in global aberrant CpG methylation. Differentially methylated regions (DMR) containing at least 3 CpGs, were significantly altered by FQI1 compared to control cells. The DMRs were mostly concentrated in CpG islands, proximal to transcription start sites, and in introns and known genes. These DMRs represented both hypo and hypermethylation, correlating with altered gene expression. FQI1 treatment elicits a cascade of effects promoting altered cell cycle progression. These findings demonstrate a novel mechanism of FQI1 mediated alteration of the epigenome by DNMT1-LSF complex disruption, leading to aberrant DNA methylation and gene expression.
Collapse
|
41
|
Zhang P, Liu N, Xu X, Wang Z, Cheng Y, Jin W, Wang X, Yang H, Liu H, Zhang Y, Tu Y. Clinical significance of Iroquois Homeobox Gene - IRX1 in human glioma. Mol Med Rep 2018; 17:4651-4656. [PMID: 29328446 DOI: 10.3892/mmr.2018.8404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/02/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the location, expression and clinical significance of Iroquois homeobox gene (IRX1) in human glioma. The expression of IRX1 gene in glioma cell lines (U87, U373, LN229 and T98G) and normal brain tissue was detected via reverse transcription-polymerase chain reaction. The IRX1 protein in fresh glioma specimens, with the adjacent normal brain tissue, was quantified through western blotting. The archived glioma only specimens from the present hospital and glioma specimens with adjacent normal brain tissue, from Alenabio biotechnology, were subjected to immunohistochemistry and tissue microarray analysis, respectively. The Kaplan-Meier method was employed to assess the correlation between the IRX1 level and the overall survival time of the patients. IRX1 gene was demonstrated to be expressed at varying levels in U373, LN229 and T98G cells, however not in U87 cells and normal brain tissue. Western blotting revealed increased IRX1 expression in glioma tissue compared with adjacent normal brain tissue. Furthermore, a direct correlation was observed between the IRX1 expression and the clinical glioma grade, with a significant difference in the gene expression between high grade and low grade glioma (P<0.05). Notably, IRX1 was identified to be localized to the cytoplasm in the adjacent normal brain and World Health Organization grade I glioma, whereas was identified to be present in the nucleus in higher grade glioma. In addition to being established as a significant prognostic variable, IRX1 expression was positively correlated with the overall survival of glioma patients. IRX1 gene may therefore exhibit an oncogenic role in glioma condition, and thus may be of clinical importance as a future therapeutic target.
Collapse
Affiliation(s)
- Pengxing Zhang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Nan Liu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaoshan Xu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhen Wang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yingduan Cheng
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongwei Yang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hui Liu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yongsheng Zhang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yanyang Tu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
42
|
Ma J, Mi C, Wang KS, Lee JJ, Jin X. Zinc finger protein 91 (ZFP91) activates HIF-1α via NF-κB/p65 to promote proliferation and tumorigenesis of colon cancer. Oncotarget 2017; 7:36551-36562. [PMID: 27144516 PMCID: PMC5095020 DOI: 10.18632/oncotarget.9070] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Zinc finger protein 91 (ZFP91) has been reported to be involved in various biological processes. However, the clinical significance and biological role of ZFP91 in colon cancer remains unknown. Here, we show that ZFP91 expression is upregulated in patients with colon cancer. We found that ZFP91 upregulated HIF-1α at the levels of promoter and protein in colon cancer cells. Using chromatin immunoprecipitation, electrophoretic mobility shift assay and luciferase reporter gene assay, we found that NF-κB/p65 is required for the binding of ZFP91 to the HIF-1α promoter at -197/-188 base pairs and for the transcriptional activation of HIF-1α gene mediated by ZFP91. Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU) incorporation and tumor xenograft assay demonstrated that ZFP91 enhanced cell proliferation of colon cancer through upregulating HIF-1α in vitro and in vivo. Furthermore, ZFP91 is positively associated with HIF-1α in human colon cancer. Thus, we concluded that ZFP91 activates transcriptional coregulatory protein HIF-1α through transcription factor NF-κB/p65 in the promotion of proliferation and tumorigenesis in colon cancer cell. ZFP91 may serve as a driver gene to activate HIF-1α transcription in the development of cancer.
Collapse
Affiliation(s)
- Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chunliu Mi
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ke Si Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jung Joon Lee
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| |
Collapse
|
43
|
Begam N, Jamil K, Raju SG. Promoter Hypermethylation of the ATM Gene as a Novel Biomarker for Breast Cancer. Asian Pac J Cancer Prev 2017; 18:3003-3009. [PMID: 29172272 PMCID: PMC5773784 DOI: 10.22034/apjcp.2017.18.11.3003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Breast cancer may be induced by activation of protooncogenes to oncogenes and in many cases inactivation of tumor suppressor genes. Ataxia telangiectasia mutated (ATM) is an important tumor suppressor gene which plays central roles in the maintenance of genomic integrity by activating cell cycle checkpoints and promoting repair of double-strand breaks of DNA. In breast cancer, decrease ATM expression correlates with a poor outcome; however, the molecular mechanisms underlying downregulation are still unclear. Promoter hypermethylation may contribute in downregulation. Hence the present investigation was designed to evaluate promoter methylation and expression of the ATM gene in breast cancer cases, and to determine links with clinical and demographic manifestations, in a South Indian population. Methods: Tumor biopsy samples were collected from 50 pathologically confirmed sporadic breast cancer cases. DNA was isolated from tumor and adjacent non-tumorous regions, and sodium bisulfite conversion and methylation-specific PCR were performed using MS-PCR primers for the ATM promoter region. In addition, ATM mRNA expression was also analyzed for all samples using real-time PCR. Results: Fifty eight percent (58%) of cancer tissue samples showed promoter hypermethylation for the ATM gene, in contrast to only 4.44% of normal tissues (p= 0.0001). Furthermore, ATM promoter methylation was positively associated with age (p = 0.01), tumor size (p=0.045) and advanced stage of disease i.e. stages III and IV (p =0.019). An association between promoter hypermethylation and lower expression of ATM mRNA was also found (p=0.035). Conclusion: We report for the first time that promoter hypermethylation of ATM gene may be useful as a potential new biomarker for breast cancer, especially in the relatively young patients.
Collapse
Affiliation(s)
- Nasrin Begam
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS), School of Life Sciences, Centre for Biotechnology and Bioinformatics,Secunderabad- 500003,Telangana, India.
| | | | | |
Collapse
|
44
|
Mitochondrial UQCRB as a new molecular prognostic biomarker of human colorectal cancer. Exp Mol Med 2017; 49:e391. [PMID: 29147009 PMCID: PMC5704184 DOI: 10.1038/emm.2017.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
Ubiquinol cytochrome c reductase binding protein (UQCRB) is important for mitochondrial complex III stability, electron transport, cellular oxygen sensing and angiogenesis. However, its potential as a prognostic marker in colorectal cancer (CRC) remains unclear. The aim of this study was to determine whether UQCRB can be used as a diagnostic molecular marker for CRC. The correlation between the expression of three genes (UQCRB, UQCRFS1 and MT-CYB) in the mitochondrial respiratory chain complex III and clinico-pathological features was determined. Compared to non-tumor tissues, UQCRB gene expression was upregulated in CRC tissues. Gene and protein expression of the genes were positively correlated. Copy number variation (CNV) differences in UQCRB were observed in CRC tissues (1.32-fold) compared to non-tumor tissues. The CNV of UQCRB in CRC tissues increased proportionally with gene expression and clinical stage. Single-nucleotide polymorphisms in the 3′-untranslated region of UQCRB (rs7836698 and rs10504961) were investigated, and the rs7836698 polymorphism was associated with CRC clinical stage. DNA methylation of the UQCRB promoter revealed that most CRC patients had high methylation levels (12/15 patients) in CRC tissues compared to non-tumor tissues. UQCRB overexpression and CNV gain were correlated with specific CRC clinico-pathological features, indicating clinical significance as a prognostic predictor in CRC. Gene structural factors may be more important than gene transcription repression factors with respect to DNA methylation in UQCRB overexpression. Our results provide novel insights into the critical role of UQCRB in regulating CRC, supporting UQCRB as a new candidate for the development of diagnostics for CRC patients.
Collapse
|
45
|
Song X, Huang F, Liu J, Li C, Gao S, Wu W, Zhai M, Yu X, Xiong W, Xie J, Li B. Genome-wide DNA methylomes from discrete developmental stages reveal the predominance of non-CpG methylation in Tribolium castaneum. DNA Res 2017; 24:445-457. [PMID: 28449092 PMCID: PMC5737696 DOI: 10.1093/dnares/dsx016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/29/2017] [Indexed: 12/18/2022] Open
Abstract
Cytosine DNA methylation is a vital epigenetic regulator of eukaryotic development. Whether this epigenetic modification occurs in Tribolium castaneum has been controversial, its distribution pattern and functions have not been established. Here, using bisulphite sequencing (BS-Seq), we confirmed the existence of DNA methylation and described the methylation profiles of the four life stages of T. castaneum. In the T. castaneum genome, both symmetrical CpG and non-CpG methylcytosines were observed. Symmetrical CpG methylation, which was catalysed by DNMT1 and occupied a small part in T. castaneum methylome, was primarily enriched in gene bodies and was positively correlated with gene expression levels. Asymmetrical non-CpG methylation, which was predominant in the methylome, was strongly concentrated in intergenic regions and introns but absent from exons. Gene body methylation was negatively correlated with gene expression levels. The distribution pattern and functions of this type of methylation were similar only to the methylome of Drosophila melanogaster, which further supports the existence of a novel methyltransferase in the two species responsible for this type of methylation. This first life-cycle methylome of T. castaneum reveals a novel and unique methylation pattern, which will contribute to the further understanding of the variety and functions of DNA methylation in eukaryotes.
Collapse
Affiliation(s)
- Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fei Huang
- Total Genomics Solution (TGS) Institute, Bioinformatics Department, Shenzhen 518083, China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chengjun Li
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Mengfan Zhai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaojuan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
46
|
Promoter DNA methylation analysis reveals a novel diagnostic CpG-based biomarker and RAB25 hypermethylation in clear cell renel cell carcinoma. Sci Rep 2017; 7:14200. [PMID: 29079774 PMCID: PMC5660223 DOI: 10.1038/s41598-017-14314-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/05/2017] [Indexed: 01/20/2023] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is a common aggressive urinary malignant tumor that cannot be easily diagnosed at an early stage. The DNA methylation occurs within promoter before precancerous lesion plays a pivotal role that could help us in diagnosing and understanding ccRCC. In this study, based on a whole-genome promoter DNA methylation profiling, we used shrunken centroids classifier method to identify a CpG-based biomarker that is capable of differentiating between ccRCC tumor and adjacent tissues. The biomarker was validated in 19 ccRCCs and three public datasets. We found that both CYP4B1 and RAB25 are downregulated with promoter hypermethylation and CA9 is upregulated with promoter hypomethylation, and we validated their mRNA differential expressions in 19 ccRCCs and 10 GEO datasets. We further confirmed that hypermethylated RAB25 is inversely correlated with its mRNA level. Log-rank test showed that ccRCC patients with low levels of CA9 promoter methylation had a higher survival rate. This reveals clinically a potential biomarker for use in early detection for ccRCC, and provides a better understanding of carcinogenesis.
Collapse
|
47
|
Huang H, Ji Y, Zhang J, Su Z, Liu M, Tong J, Ge C, Chen T, Li J. Aberrant DNA methylation in radon and/or cigarette smoke-induced malignant transformation in BEAS-2B human lung cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1321-1330. [PMID: 29048996 DOI: 10.1080/15287394.2017.1384156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is well known that cigarette smoking (CS) and/or radon (Rn) induce malignant transformation in lung cells. To investigate the mechanisms underlying lung carcinogenesis induced by CS, Rn; or Rn followed by CS using BEAS-2B cell line derived from human bronchial epithelial cells. BEAS-2B cells were exposed to either Rn (20,000 Bq/m3) for 30 min or CS (20%) for 10 min or Rn followed by CS for 40 min. Global and gene-specific DNA methylation modifications were measured by microarray and methylation-specific polymerase chain reaction. Cell cycle and apoptosis were determined by flow cytometry, while soft agar colony formation was conducted to assess the characteristics of malignant transformation. Data demonstrated global hypomethylation as well as gene-specific DNA methylation alterations in all treatment groups compared to unexposed control cells. In addition, Rn and CS produced DNA hypermethylation of protein tyrosine phosphatase receptor type M and ectodysplasin A2 receptor, two genes related to malignant transformation. In all treatment conditions, cell proliferation and survival of malignant cells was increased, while apoptosis was initially first passage elevated but decreased at passages 5-15. Our results indicate that aberrant DNA methylation plays an important role in Rn- and/or CS-induced malignant transformation. In addition, BEAS-2B cell line may be used as an in vitro model to investigate mechanisms underlying malignant transformation induced by ambient environmental contaminants.
Collapse
Affiliation(s)
- Huanhuan Huang
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , China
| | - Yahui Ji
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , China
| | - Jiayu Zhang
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , China
| | - Zhigang Su
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , China
| | - Mingxing Liu
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , China
| | | | - Cuicui Ge
- b School of Radiation Medicine and Protection , Medical College of Soochow University , Suzhou , China
| | - Tao Chen
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , China
| | - Jianxiang Li
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , China
| |
Collapse
|
48
|
Shahabipour F, Caraglia M, Majeed M, Derosa G, Maffioli P, Sahebkar A. Naturally occurring anti-cancer agents targeting EZH2. Cancer Lett 2017; 400:325-335. [DOI: 10.1016/j.canlet.2017.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/31/2022]
|
49
|
Byun HM, Eshaghian S, Douer D, Trent J, Garcia-Manero G, Bhatia R, Siegmund K, Yang AS. Impact of Chromosomal Rearrangement upon DNA Methylation Patterns in Leukemia. Open Med (Wars) 2017; 12:76-85. [PMID: 28730166 PMCID: PMC5444343 DOI: 10.1515/med-2017-0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022] Open
Abstract
Genomic instability, including genetic mutations and chromosomal rearrangements, can lead to cancer development. Aberrant DNA methylation occurs commonly in cancer cells. The aim of this study is to determine the effects of a specific chromosomal lesion the BCR-ABL translocation t(9:22), in establishing DNA methylation profiles in cancer. Materials and methods We compared DNA methylation of 1,505 selected promoter CpGs in chronic myelogenous leukemia (CML), acute lymphoblastic leukemia (ALL) with and without the Philadelphia chromosome t(9:22), CD34+ hematopoietic stem cells transfected with BCR-ABL, and other tumors without BCR-ABL (acute promyelocytic leukemia (APL) and gastrointestinal stromal tumors (GIST). In this study, the DNA methylation profile of CML was more closely related to APL, another myeloid leukemia, than Ph+ ALL. Although DNA methylation profiles were consistent within a specific tumor type, overall DNA methylation profiles were no influenced by BCR-ABL gene translocation in the cancers and tissues studied. We conclude that DNA methylation profiles may reflect the cell of origin in cancers rather than the chromosomal lesions involved in leukemogenesis.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE4 5PLUnited Kingdom
| | - Shahrooz Eshaghian
- Jane Anne Nohl Division of Hematology; University of Southern California, Los Angeles, CA, USA
| | - Dan Douer
- Jane Anne Nohl Division of Hematology; University of Southern California, Los Angeles, CA, USA
| | - Jonathen Trent
- Department of Sarcoma, University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ravi Bhatia
- Department of Hematology, City of Hope Cancer Center, Duarte, CA, USA
| | - Kim Siegmund
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Allen S Yang
- Jane Anne Nohl Division of Hematology; University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
50
|
Bandera Merchan B, Morcillo S, Martin-Nuñez G, Tinahones FJ, Macías-González M. The role of vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J Steroid Biochem Mol Biol 2017; 167:203-218. [PMID: 27913313 DOI: 10.1016/j.jsbmb.2016.11.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/31/2022]
Abstract
In the last two decades vitamin D (VD) research has demonstrated new extraskeletal actions of this pre-hormone, suggesting a protective role of this secosteroid in the onset, progression and prognosis of several chronic noncommunicable diseases, such as cardiovascular disease, diabetes mellitus or cancer. Regarding carcinogenesis, both preclinical and epidemiological evidence available show oncoprotective actions of VD and its receptor, the VDR. However, in late neoplastic stages the VD system (VDS) seems to be less functional, which appears to be due to an epigenetic silencing of the system. In preclinical experimental studies, VD presents oncoprotective actions through modulation of inflammation, cell proliferation, cell differentiation, angiogenesis, invasive and metastatic potential, apoptosis, miRNA expression regulation and modulation of the Hedgehog signalling pathway. Moreover, epidemiological evidence points towards an oncoprotective role of vitamin D and VDR in colorectal cancer. This association is more controversial with breast, ovarian and prostate cancers, although with a few adverse effects. Nonetheless, we should consider other factors to determine the benefit of increased serum concentration of VD. Much of the epidemiological evidence is still inconclusive, and we will have to wait for new, better-designed ongoing RCTs and their results to discern the real effect of vitamin D in cancer risk reduction and therapy. The objective of this literature review is to offer an up-to-date analysis of the role of the VD and VDR, in the onset, progression and prognosis of all types of cancer. We further discuss the available literature and suggest new hypotheses and future challenges in the field of VD research.
Collapse
Affiliation(s)
- Borja Bandera Merchan
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain
| | - Sonsoles Morcillo
- CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Gracia Martin-Nuñez
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain
| | - Francisco José Tinahones
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain; CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Macías-González
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain; CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|