1
|
Chu X, Wang L, Zhu Y, Feng Z, Guan Q, Song L, Luo Z. A unique cell division protein critical for the assembly of the bacterial divisome. eLife 2024; 12:RP87922. [PMID: 39361022 PMCID: PMC11449484 DOI: 10.7554/elife.87922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Identification of unique essential bacterial genes is important for not only the understanding of their cell biology but also the development of new antimicrobials. Here, we report a previously unrecognized core component of the Acinetobacter baumannii divisome. Our results reveal that the protein, termed Aeg1 interacts with multiple cell division proteins, including FtsN, which is required for components of the divisome to localize to the midcell. We demonstrate that the FtsAE202K and FtsBE65A mutants effectively bypassed the need of Aeg1 by A. baumannii, as did the activation variants FtsWM254I and FtsWS274G. Our results suggest that Aeg1 is a cell division protein that arrives at the division site to initiate cell division by recruiting FtsN, which activates FtsQLB and FtsA to induce the septal peptidoglycan synthase FtsWI. The discovery of the new essential cell division protein has provided a new target for the development of antibacterial agents.
Collapse
Affiliation(s)
- Xiao Chu
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lidong Wang
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yiheng Zhu
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhengshan Feng
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Qingtian Guan
- Bioinformatics Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhaoqing Luo
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Leonidou N, Xia Y, Friedrich L, Schütz MS, Dräger A. Exploring the metabolic profile of A. baumannii for antimicrobial development using genome-scale modeling. PLoS Pathog 2024; 20:e1012528. [PMID: 39312576 PMCID: PMC11463759 DOI: 10.1371/journal.ppat.1012528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/09/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
With the emergence of multidrug-resistant bacteria, the World Health Organization published a catalog of microorganisms urgently needing new antibiotics, with the carbapenem-resistant Acinetobacter baumannii designated as "critical". Such isolates, frequently detected in healthcare settings, pose a global pandemic threat. One way to facilitate a systemic view of bacterial metabolism and allow the development of new therapeutics is to apply constraint-based modeling. Here, we developed a versatile workflow to build high-quality and simulation-ready genome-scale metabolic models. We applied our workflow to create a metabolic model for A. baumannii and validated its predictive capabilities using experimental nutrient utilization and gene essentiality data. Our analysis showed that our model iACB23LX could recapitulate cellular metabolic phenotypes observed during in vitro experiments, while positive biomass production rates were observed and experimentally validated in various growth media. We further defined a minimal set of compounds that increase A. baumannii's cellular biomass and identified putative essential genes with no human counterparts, offering new candidates for future antimicrobial development. Finally, we assembled and curated the first collection of metabolic reconstructions for distinct A. baumannii strains and analyzed their growth characteristics. The presented models are in a standardized and well-curated format, enhancing their usability for multi-strain network reconstruction.
Collapse
Affiliation(s)
- Nantia Leonidou
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Yufan Xia
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Lea Friedrich
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Monika S. Schütz
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen, Germany
- Data Analytics and Bioinformatics, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Yao H, Alli S, Liu L, Soldano A, Cooper A, Fontenot L, Verdin D, Battaile KP, Lovell S, Rivera M. The crystal structure of Acinetobacter baumannii bacterioferritin reveals a heteropolymer of bacterioferritin and ferritin subunits. Sci Rep 2024; 14:18242. [PMID: 39107474 PMCID: PMC11303784 DOI: 10.1038/s41598-024-69156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Iron storage proteins, e.g., vertebrate ferritin, and the ferritin-like bacterioferritin (Bfr) and bacterial ferritin (Ftn), are spherical, hollow proteins that catalyze the oxidation of Fe2+ at binuclear iron ferroxidase centers (FOC) and store the Fe3+ in their interior, thus protecting cells from unwanted Fe3+/Fe2+ redox cycling and storing iron at concentrations far above the solubility of Fe3+. Vertebrate ferritins are heteropolymers of H and L subunits with only the H subunits having FOC. Bfr and Ftn were thought to coexist in bacteria as homopolymers, but recent evidence indicates these molecules are heteropolymers assembled from Bfr and Ftn subunits. Despite the heteropolymeric nature of vertebrate and bacterial ferritins, structures have been determined only for recombinant proteins constituted by a single subunit type. Herein we report the structure of Acinetobacter baumannii bacterioferritin, the first structural example of a heteropolymeric ferritin or ferritin-like molecule, assembled from completely overlapping Ftn homodimers harboring FOC and Bfr homodimers devoid of FOC but binding heme. The Ftn homodimers function by catalyzing the oxidation of Fe2+ to Fe3+, while the Bfr homodimers bind a cognate ferredoxin (Bfd) which reduces the stored Fe3+ by transferring electrons via the heme, enabling Fe2+ mobilization to the cytosol for incorporation in metabolism.
Collapse
Affiliation(s)
- Huili Yao
- Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA
| | - Suliat Alli
- Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA
| | - Lijun Liu
- Protein Structure and X-Ray Crystallography Laboratory, University of Kansas, Lawrence, 66047, USA
| | - Anabel Soldano
- Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA
| | - Anne Cooper
- Protein Structure and X-Ray Crystallography Laboratory, University of Kansas, Lawrence, 66047, USA
| | - Leo Fontenot
- Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA
| | - Dristen Verdin
- Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA
| | | | - Scott Lovell
- Protein Structure and X-Ray Crystallography Laboratory, University of Kansas, Lawrence, 66047, USA.
| | - Mario Rivera
- Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA.
| |
Collapse
|
4
|
Thadtapong N, Chaturongakul S, Napaswad C, Dubbs P, Soodvilai S. Enhancing effect of natural adjuvant, panduratin A, on antibacterial activity of colistin against multidrug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:9863. [PMID: 38684853 PMCID: PMC11059350 DOI: 10.1038/s41598-024-60627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Colistin- and carbapenem-resistant Acinetobacter baumannii is a serious multidrug resistant (MDR) bacterium in clinical settings. Discovery of new antibacterial drugs against MDR is facing multiple challenges in drug development. Combination of known antibiotics with a robust adjuvant might be an alternative effective strategy for MDR treatment. In the study herein, we report an antibiotic adjuvant activity of a natural compound panduratin A from fingerroot (Boesenbergia rotunda) as a potent adjuvant to colistin. The present study investigated the antibiotic adjuvant effect of panduratin A against 10 colistin- and carbapenem-resistant A. baumannii. Antibacterial activities were tested by broth microdilution method. Biofilm assay was used to determine the efficacy of panduratin A in biofilm formation inhibition on two representative strains Aci46 and Aci44. Genomic and transcriptomic analyses of colistin- and carbapenem-resistant A. baumannii strains were used to identify potential resistance and tolerance mechanism in the bacteria. Panduratin A-colistin combination showed an increased effect on antibacterial in the A. baumannii. However, panduratin A did not improve the antibacterial activity of imipenem. In addition, panduratin A improves anti-biofilm activity of colistin against Aci44 and Aci46, the colistin- and carbapenem-resistant A. baumannii. Panduratin A markedly enhances bactericidal and anti-biofilm activity of colistin against colistin- resistant A. baumannii. Based on genome comparisons, single nucleotide polymorphism (SNP) patterns in six genes encoding biofilm and lipid A biosynthesis were shared in Aci44 and Aci46. In Aci44, we identified a partial sequence of pmrB encoding a polymyxin resistant component PmrB, whereas a full length of pmrB was observed in Aci46. RNA-seq analyses of Aci44 revealed that panduratin A-colistin combination induced expression of ribosomal proteins and oxidative stress response proteins, whereas iron transporter and MFS-type transporter systems were suppressed. Panduratin A-colistin combination could promote intracellular reactive oxygen species (ROS) accumulation could lead to the cidal effect on colistin-resistant A. baumannii. Combination of panduratin A and colistin showed a significant increase in colistin efficacy against colistin- resistant A. baumannii in comparison of colistin alone. Genomic comparison between Aci44 and Aci46 showed mutations and SNPs that might affect different phenotypes. Additionally, based on RNA-Seq, panduratin A-colistin combination could lead to ROS production and accumulation. These findings confirmed the potency of panduratin as colistin adjuvant against multidrug resistant A. baumannii.
Collapse
Affiliation(s)
- Nalumon Thadtapong
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Soraya Chaturongakul
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Chanita Napaswad
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Padungsri Dubbs
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sunhapas Soodvilai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
- Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Ahuatzin-Flores OE, Torres E, Chávez-Bravo E. Acinetobacter baumannii, a Multidrug-Resistant Opportunistic Pathogen in New Habitats: A Systematic Review. Microorganisms 2024; 12:644. [PMID: 38674589 PMCID: PMC11051781 DOI: 10.3390/microorganisms12040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, humanity has begun to face a growing challenge posed by a rise in the prevalence of antibiotic-resistant bacteria. This has resulted in an alarming surge in fatalities and the emergence of increasingly hard-to-manage diseases. Acinetobacter baumannii can be seen as one of these resilient pathogens due to its increasing prevalence in hospitals, its resistance to treatment, and its association with elevated mortality rates. Despite its clinical significance, the scientific understanding of this pathogen in non-hospital settings remains limited. Knowledge of its virulence factors is also lacking. Therefore, in this review, we seek to shed light on the latest research regarding the ecological niches, microbiological traits, and antibiotic resistance profiles of Acinetobacter baumannii. Recent studies have revealed the presence of this bacterium in a growing range of environmental niches, including rivers, treatment plants, and soils. It has also been discovered in diverse food sources such as meat and vegetables, as well as in farm animals and household pets such as dogs and cats. This broader presence of Acinetobacter baumannii, i.e., outside of hospital environments, indicates a significant risk of environmental contamination. As a result, greater levels of awareness and new preventive measures should be promoted to address this potential threat to public health.
Collapse
Affiliation(s)
- Omar E. Ahuatzin-Flores
- Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edificio IC 6. Ciudad Universitaria, Puebla 72570, Mexico;
| | - Eduardo Torres
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Edith Chávez-Bravo
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| |
Collapse
|
6
|
Jha NK, Gopu V, Sivasankar C, Singh SR, Devi PB, Murali A, Shetty PH. In vitro and in silico assessment of anti-biofilm and anti-quorum sensing properties of 2,4-Di-tert butylphenol against Acinetobacter baumannii. J Med Microbiol 2024; 73. [PMID: 38506718 DOI: 10.1099/jmm.0.001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Introduction. Acinetobacter baumannii is a nosocomial pathogen with a high potential to cause food-borne infections. It is designated as a critical pathogen by the World Health Organization due to its multi-drug resistance and mortalities reported. Biofilm governs major virulence factors, which promotes drug resistance in A. baumannii. Thus, a compound with minimum selection pressure on the pathogen can be helpful to breach biofilm-related virulence.Hypothesis/Gap Statement. To identify anti-biofilm and anti-virulent metabolites from extracts of wild Mangifera indica (mango) brine pickle bacteria that diminishes pathogenesis and resistance of A. baumannii.Aim. This study reports anti-biofilm and anti-quorum sensing (QS) efficacy of secondary metabolites from bacterial isolates of fermented food origin.Method. Cell-free supernatants (CFS) of 13 bacterial isolates from fermented mango brine pickles were screened for their efficiency in inhibiting biofilm formation and GC-MS was used to identify its metabolites. Anti-biofilm metabolite was tested on early and mature biofilms, pellicle formation, extra polymeric substances (EPS), cellular adherence, motility and resistance of A. baumannii. Gene expression and in silico studies were also carried out to validate the compounds efficacy.Results. CFS of TMP6b identified as Bacillus vallismortis, inhibited biofilm production (83.02 %). Of these, major compound was identified as 2,4-Di-tert-butyl phenol (2,4-DBP). At sub-lethal concentrations, 2,4-DBP disrupted both early and mature biofilm formation. Treatment with 2,4-DBP destructed in situ biofilm formed on glass and plastic. In addition, key virulence traits like pellicle (77.5 %), surfactant (95.3 %), EPS production (3-fold) and cell adherence (65.55 %) reduced significantly. A. baumannii cells treated with 2,4-DBP showed enhanced sensitivity towards antibiotics, oxide radicals and blood cells. Expression of biofilm-concomitant virulence genes like csuA/B, pgaC, pgaA, bap, bfmR, katE and ompA along with QS genes abaI, abaR significantly decreased. The in silico studies further validated the higher binding affinity of 2,4-DBP to the AbaR protein than the cognate ligand molecule.Conclusion. To our knowledge, this is the first report to demonstrate 2,4- DBP has anti-pathogenic potential alone and with antibiotics by in vitro, and in silico studies against A. baumannii. It also indicates its potential use in therapeutics and bio-preservatives.
Collapse
Affiliation(s)
- Nisha Kumari Jha
- Department of Food Science and Technology, Pondicherry University, Pondicherry-605014, India
| | - Venkadesaperumal Gopu
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chandran Sivasankar
- Department of Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan-54596, Republic of Korea
| | - Satya Ranjan Singh
- Department of Bioinformatics, Pondicherry University, Pondicherry-605014, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry-605014, India
| | - Ayaluru Murali
- Department of Bioinformatics, Pondicherry University, Pondicherry-605014, India
| | | |
Collapse
|
7
|
Ching C, Brychcy M, Nguyen B, Muller P, Pearson AR, Downs M, Regan S, Isley B, Fowle W, Chai Y, Godoy VG. RecA levels modulate biofilm development in Acinetobacter baumannii. Mol Microbiol 2024; 121:196-212. [PMID: 37918886 DOI: 10.1111/mmi.15188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Infections caused by Acinetobacter baumannii, a Gram-negative opportunistic pathogen, are difficult to eradicate due to the bacterium's propensity to quickly gain antibiotic resistances and form biofilms, a protective bacterial multicellular community. The A. baumannii DNA damage response (DDR) mediates the antibiotic resistance acquisition and regulates RecA in an atypical fashion; both RecALow and RecAHigh cell types are formed in response to DNA damage. The findings of this study demonstrate that the levels of RecA can influence formation and dispersal of biofilms. RecA loss results in surface attachment and prominent biofilms, while elevated RecA leads to diminished attachment and dispersal. These findings suggest that the challenge to treat A. baumannii infections may be explained by the induction of the DDR, common during infection, as well as the delicate balance between maintaining biofilms in low RecA cells and promoting mutagenesis and dispersal in high RecA cells. This study underscores the importance of understanding the fundamental biology of bacteria to develop more effective treatments for infections.
Collapse
Affiliation(s)
- Carly Ching
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Merlin Brychcy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Brian Nguyen
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Paul Muller
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | - Margaret Downs
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Samuel Regan
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Breanna Isley
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - William Fowle
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
9
|
Cook D, Flannigan MD, Chariker JH, Hare JM. DNA damage response coregulator ddrR affects many cellular pathways and processes in Acinetobacter baumannii 17978. Front Cell Infect Microbiol 2024; 13:1324091. [PMID: 38274737 PMCID: PMC10808703 DOI: 10.3389/fcimb.2023.1324091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Acinetobacter baumannii strain 17978 is an opportunistic pathogen possessing a DNA damage response (DDR) in which multiple error-prone polymerase genes are co-repressed by a UmuD homolog, UmuDAb, and the small Acinetobacter-specific protein DdrR. Additionally, these regulators coactivate nine other genes. We identified the DNA damage-inducible transcriptome for wildtype, umuDAb, and recA strains, and later established the ddrR DDR transcriptome. However, the ATCC 17978 reference genome had several assembly errors and lacked the 44 kb virulence locus, AbaAL44, that is present in the strain 17978 UN. Methods For this project, we combined our earlier single-end read RNAseq data with the ddrR paired-end reads and aligned these data to the improved 17978 UN genome assembly that resembled our laboratory strain, 17978 JH. Results New DESeq2 analyses verified previous differentially expressed genes (DEGs) but also found 339 genes in 17978 JH that were not annotated or physically present in the older genome assembly. Sixty-three were differentially expressed after DNA damage, and 182 had differential basal expression when comparing umuDAb, ddrR, or recA strains to wildtype, with 94 genes' expression unchanged. This work identified and characterized the 55 gene DNA damage-repressible transcriptome, 98% of which required either umuDAb or ddrR for repression. Two-thirds of these DEGs required both regulators. We also identified 110 genes repressed only in the ddrR strain, ~50% of which were due to increased basal expression levels. Basal gene expression in the ddrR mutant was further dysregulated independent of the DDR. Over 800 genes were upregulated, and over 1200 genes were downregulated compared to wildtype expression. Half of A. baumannii's essential genes were upregulated in the ddrR strain, including cell division genes, and two-thirds of these were downregulated in the umuDAb strain. Discussion The ddrR mutant upregulated genes enriched in translation, RNA metabolism, protein metabolism, AA/FA/cell-structure synthesis, and transport, while downregulating genes enriched in quorum sensing, biofilm production, secretion systems, pilus production, cell adhesion, and aromatics and chlorine degradation. Our data underscore the need for accurate and appropriately matched genome assemblies and indicate that ddrR affects approximately 60% of the genome, rendering it a potential target for Acinetobacter baumannii infection treatment.
Collapse
Affiliation(s)
- Deborah Cook
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States
| | - Mollee D. Flannigan
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States
| | - Julia H. Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, United States
| | - Janelle M. Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States
| |
Collapse
|
10
|
Abby SS, Denise R, Rocha EPC. Identification of Protein Secretion Systems in Bacterial Genomes Using MacSyFinder Version 2. Methods Mol Biol 2024; 2715:1-25. [PMID: 37930518 DOI: 10.1007/978-1-0716-3445-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Protein secretion systems are complex molecular machineries that translocate proteins through the outer membrane and sometimes through multiple other barriers. They have evolved by co-option of components from other envelope-associated cellular machineries, making them sometimes difficult to identify and discriminate. Here, we describe how to identify protein secretion systems in bacterial genomes using the MacSyFinder program. This flexible computational tool uses the knowledge gathered from experimental studies to identify homologous systems in genome data. It can be used with a set of predefined MacSyFinder models, "TXSScan," to identify all major secretion systems of diderm bacteria (i.e., with inner and LPS-containing outer membranes) as well as evolutionarily related cell appendages (pili and flagella). For this, it identifies and clusters co-localized genes encoding proteins of secretion systems using sequence similarity search with Hidden Markov Model (HMM) protein profiles. Finally, it checks if the clusters' genetic content and genomic organization satisfy the constraints of the model. TXSScan models can be altered in the command line or customized to search for variants of known secretion systems. Models can also be built from scratch to identify novel systems. In this chapter, we describe a complete pipeline of analysis, starting from (i) the integration of information from a reference set of experimentally studied systems, (ii) the identification of conserved proteins and the construction of their HMM protein profiles, (iii) the definition and optimization of "macsy-models," and (iv) their use and online distribution as tools to search genomic data for secretion systems of interest. MacSyFinder is available here: https://github.com/gem-pasteur/macsyfinder, and MacSyFinder models here: https://github.com/macsy-models .
Collapse
Affiliation(s)
- Sophie S Abby
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France.
| | - Rémi Denise
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
11
|
Feng Z, Wang L, Guan Q, Chu X, Luo ZQ. Acinetobacter baumannii coordinates central metabolism, plasmid dissemination, and virulence by sensing nutrient availability. mBio 2023; 14:e0227623. [PMID: 37855599 PMCID: PMC10746170 DOI: 10.1128/mbio.02276-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Plasmid conjugation is known to be an energy-expensive process, but our understanding of the molecular linkage between conjugation and metabolism is limited. Our finding reveals that Acinetobacter baumannii utilizes a two-component system to co-regulate metabolism, plasmid transfer, and virulence by sensing reaction intermediates of key metabolic pathways, which suggests that nutrient availability dictates not only bacterial proliferation but also horizontal gene transfer. The identification of Dot/Icm-like proteins as components of a conjugation system involved in the dissemination of antibiotic-resistance genes by A. baumannii has provided important targets for the development of agents capable of inhibiting virulence and the spread of anti-microbial-resistance genes in bacterial communities.
Collapse
Affiliation(s)
- Zhengshan Feng
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Lidong Wang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Qingtian Guan
- Bioinformatics Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
Kubori T. A two-component system serves as a central hub for connecting energy metabolism and plasmid dissemination in bacteria. mBio 2023; 14:e0247423. [PMID: 38032214 PMCID: PMC10746237 DOI: 10.1128/mbio.02474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Mobile genetic elements such as conjugative plasmids play a key role in the acquisition of antibiotic resistance by pathogenic bacteria. Resistance genes on plasmids can be transferred between bacteria using specialized conjugation machinery. Acinetobacter baumannii, the most common bacterium associated with nosocomial infections, harbors a large conjugative plasmid that encodes a type IV secretion system (T4SS). Feng et al. recently found that the A. baumannii T4SS is specialized for plasmid transfer, suggesting that it may be involved in multidrug resistance (Z. Feng, L. Wang, Q. Guan, X. Chu, and Z.-Q. Luo, mBio e02276-23, 2023, https://doi.org/10.1128/mbio.02276-23), T4SS-encoding genes are shown to be controlled by a versatile GacA/S two-component regulatory system. GacA/S is also found to regulate genes involved in central metabolism. The coordinated regulation of metabolism and plasmid conjugation may be a bacterial strategy for adapting to selective pressure from antibiotics.
Collapse
Affiliation(s)
- Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
13
|
Artuso I, Poddar H, Evans BA, Visca P. Genomics of Acinetobacter baumannii iron uptake. Microb Genom 2023; 9:mgen001080. [PMID: 37549061 PMCID: PMC10483418 DOI: 10.1099/mgen.0.001080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Iron is essential for growth in most bacteria due to its redox activity and its role in essential metabolic reactions; it is a cofactor for many bacterial enzymes. The bacterium Acinetobacter baumannii is a multidrug-resistant nosocomial pathogen. A. baumannii responds to low iron availability imposed by the host through the exploitation of multiple iron-acquisition strategies, which are likely to deliver iron to the cell under a variety of environmental conditions, including human and animal infection. To date, six different gene clusters for active iron uptake have been described in A. baumannii , encoding protein systems involved in (i) ferrous iron uptake (feo ); (ii) haem uptake (hemT and hemO ); and (iii) synthesis and transport of the baumannoferrin(s) (bfn ), acinetobactin (bas /bau ) and fimsbactin(s) (fbs ) siderophores. Here we describe the structure, distribution and phylogeny of iron-uptake gene clusters among >1000 genotypically diverse A. baumannii isolates, showing that feo , hemT , bfn and bas /bau clusters are very prevalent across the dataset, whereas the additional haem-uptake system hemO is only present in a portion of the dataset and the fbs gene cluster is very rare. Since the expression of multiple iron-uptake clusters can be linked to virulence, the presence of the additional haem-uptake system hemO may have contributed to the success of some A. baumannii clones.
Collapse
Affiliation(s)
- Irene Artuso
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Harsh Poddar
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Benjamin A. Evans
- Norwich Medical School, University of East Anglia, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- Fondazione Santa Lucia IRCCS, Via Ardeatina, 306/354, 00179 Rome, Italy
- National Biodiversity Future Centre, Palermo 90133, Italy
| |
Collapse
|
14
|
Elbehiry A, Marzouk E, Moussa I, Mushayt Y, Algarni AA, Alrashed OA, Alghamdi KS, Almutairi NA, Anagreyyah SA, Alzahrani A, Almuzaini AM, Alzaben F, Alotaibi MA, Anjiria SA, Abu-Okail A, Abalkhail A. The Prevalence of Multidrug-Resistant Acinetobacter baumannii and Its Vaccination Status among Healthcare Providers. Vaccines (Basel) 2023; 11:1171. [PMID: 37514987 PMCID: PMC10384490 DOI: 10.3390/vaccines11071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
There is growing concern among healthcare providers worldwide regarding the prevalence of multidrug-resistant Acinetobacter baumannii (A. baumannii). Some of the worst hospital-acquired infections, often in intensive care units (ICUs), are caused by this bacterial pathogen. In recent years, the rise in multidrug-resistant A. baumannii has been linked to the overuse of antimicrobial drugs and the lack of adequate infection control measures. Infections caused by this bacterial pathogen are the result of prolonged hospitalization and ICU stays, and they are associated with increased morbidity and mortality. This review outlines the epidemiology, risk factors, and antimicrobial resistance associated with A. baumannii in various countries, with a special focus on the Kingdom of Saudi Arabia. In response to the growing concern regarding this drug-resistant bacteria, fundamental information about its pathology has been incorporated into the development of vaccines. Although these vaccines have been successful in animal models, their effectiveness in humans remains unproven. The review will discuss the development of A. baumannii vaccines, potential related obstacles, and efforts to find an effective strategy against this pathogen.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Ihab Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yazeed Mushayt
- Department of Support Service, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | | | - Osama Ali Alrashed
- Family Medicine Department, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Khalid Saad Alghamdi
- Family Medicine Department, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Naif Ahmed Almutairi
- Family Medicine Department, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | | | - Anwar Alzahrani
- Cardiac Center, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Abdulaziz M Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | | | | | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| |
Collapse
|
15
|
Bisaro F, Shuman HA, Feldman MF, Gebhardt MJ, Pukatzki S. Acinetobacter baumannii ATCC 17978 encodes a microcin system with antimicrobial properties for contact-independent competition. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001346. [PMID: 37289493 PMCID: PMC10333792 DOI: 10.1099/mic.0.001346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that persists in the hospital environment and causes various clinical infections, primarily affecting immunocompromised patients. A. baumannii has evolved a wide range of mechanisms to compete with neighbouring bacteria. One such competition strategy depends on small secreted peptides called microcins, which exert antimicrobial effects in a contact-independent manner. Here, we report that A. baumannii ATCC 17978 (AB17978) encodes the class II microcin 17 978 (Mcc17978) with antimicrobial activity against closely related Acinetobacter, and surprisingly, also Escherichia coli strains. We identified the genetic locus encoding the Mcc17978 system in AB17978. Using classical bacterial genetic approaches, we determined that the molecular receptor of Mcc17978 in E. coli is the iron-catecholate transporter Fiu, and in Acinetobacter is Fiu's homolog, PiuA. In bacteria, the Ferric uptake regulator (Fur) positively regulates siderophore systems and microcin systems under iron-deprived environments. We found that the Mcc17978 system is upregulated under low-iron conditions commonly found in the host environment and identified a putative Fur binding site upstream of the mcc17978 gene. When we tested the antimicrobial activity of Mcc17978 under different levels of iron availability, we observed that low iron levels not only triggered transcriptional induction of the microcin, but also led to enhanced microcin activity. Taken together, our findings suggest that A. baumannii may utilize microcins to compete with other microbes for resources during infection.
Collapse
Affiliation(s)
- Fabiana Bisaro
- Department of Biology, The City College, City University of New York, New York, NY 10031, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis MO 63110, USA
| | - Howard A. Shuman
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
- Present address: P.O. Box 1088, Sheffield, MA 01257, USA
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis MO 63110, USA
| | - Michael J. Gebhardt
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Pukatzki
- Department of Biology, The City College, City University of New York, New York, NY 10031, USA
| |
Collapse
|
16
|
Bala A, Uhlin BE, Karah N. Insights into the genetic contexts of sulfonamide resistance among early clinical isolates of Acinetobacter baumannii. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105444. [PMID: 37210019 DOI: 10.1016/j.meegid.2023.105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Since the late 1930s, resistance to sulfonamides has been accumulating across bacterial species including Acinetobacter baumannii, an opportunistic pathogen increasingly implicated the spread of antimicrobial resistance worldwide. Our study aimed to explore events involved in the acquisition of sulfonamide resistance genes, particularly sul2, among the earliest available isolates of A. baumannii. The study utilized the genomic data of 19 strains of A. baumannii isolated before 1985. The whole genomes of 5 clinical isolates obtained from the Culture Collection University of Göteborg (CCUG), Sweden, were sequenced using the Illumina MiSeq system. Acquired resistance genes, insertion sequence elements and plasmids were detected using ResFinder, ISfinder and Plasmidseeker, respectively, while sequence types (STs) were assigned using the PubMLST Pasteur scheme. BLASTn was used to verify the occurrence of sul genes and to map their genetic surroundings. The sul1 and sul2 genes were detected in 4 and 9 isolates, respectively. Interestingly, sul2 appeared thirty years earlier than sul1. The sul2 gene was first located in the genomic island GIsul2 located on a plasmid, hereafter called NCTC7364p. With the emergence of international clone 1, the genetic context of sul2 evolved toward transposon Tn6172, which was also plasmid-mediated. Sulfonamide resistance in A. baumannii was efficiently acquired and transferred vertically, e.g., among the ST52 and ST1 isolates, as well as horizontally among non-related strains by means of a few efficient transposons and plasmids. Timely acquisition of the sul genes has probably contributed to the survival skill of A. baumannii under the high antimicrobial stress of hospital settings.
Collapse
Affiliation(s)
- Anju Bala
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden.
| | - Bernt Eric Uhlin
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Nabil Karah
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden.
| |
Collapse
|
17
|
Ren X, Palmer LD. Acinetobacter Metabolism in Infection and Antimicrobial Resistance. Infect Immun 2023:e0043322. [PMID: 37191522 DOI: 10.1128/iai.00433-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Acinetobacter infections have high rates of mortality due to an increasing incidence of infections by multidrug-resistant (MDR) and extensively-drug-resistant (XDR) strains. Therefore, new therapeutic strategies for the treatment of Acinetobacter infections are urgently needed. Acinetobacter spp. are Gram-negative coccobacilli that are obligate aerobes and can utilize a wide variety of carbon sources. Acinetobacter baumannii is the main cause of Acinetobacter infections, and recent work has identified multiple strategies A. baumannii uses to acquire nutrients and replicate in the face of host nutrient restriction. Some host nutrient sources also serve antimicrobial and immunomodulatory functions. Hence, understanding Acinetobacter metabolism during infection may provide new insights into novel infection control measures. In this review, we focus on the role of metabolism during infection and in resistance to antibiotics and other antimicrobial agents and discuss the possibility that metabolism may be exploited to identify novel targets to treat Acinetobacter infections.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Lauren D Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Gao FZ, He LY, Chen X, Chen JL, Yi X, He LX, Huang XY, Chen ZY, Bai H, Zhang M, Liu YS, Ying GG. Swine farm groundwater is a hidden hotspot for antibiotic-resistant pathogenic Acinetobacter. ISME COMMUNICATIONS 2023; 3:34. [PMID: 37081217 PMCID: PMC10119254 DOI: 10.1038/s43705-023-00240-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Acinetobacter is present in the livestock environment, but little is known about their antibiotic resistance and pathogenic species in the farm groundwater. Here we investigated antibiotic resistance of Acinetobacter in the swine farm groundwater (JZPG) and residential groundwater (JZG) of a swine farming village, in comparison to a nearby (3.5 km) non-farming village (WTG) using metagenomic and culture-based approaches. Results showed that the abundance of antibiotic resistome in some JZG and all JZPG (~3.4 copies/16S rRNA gene) was higher than that in WTG (~0.7 copies/16S rRNA gene), indicating the influence of farming activities on both groundwater types. Acinetobacter accounted for ~95.7% of the bacteria in JZG and JZPG, but only ~8.0% in WTG. They were potential hosts of ~95.6% of the resistome in farm affected groundwater, which includes 99 ARG subtypes against 23 antibiotic classes. These ARGs were associated with diverse intrinsic and acquired resistance mechanisms, and the predominant ARGs were tetracyclines and fluoroquinolones resistance genes. Metagenomic binning analysis elucidated that non-baumannii Acinetobacter including A. oleivorans, A. beijerinckii, A. seifertii, A. bereziniae and A. modestus might pose environmental risks because of multidrug resistance, pathogenicity and massive existence in the groundwater. Antibiotic susceptibility tests showed that the isolated strains were resistant to multiple antibiotics including sulfamethoxazole (resistance ratio: 96.2%), levofloxacin (42.5%), gatifloxacin (39.0%), ciprofloxacin (32.6%), tetracycline (32.0%), doxycycline (29.0%) and ampicillin (12.0%) as well as last-resort polymyxin B (31.7%), colistin (24.1%) and tigecycline (4.1%). The findings highlight potential prevalence of groundwater-borne antibiotic-resistant pathogenic Acinetobacter in the livestock environment.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China.
| | - Xin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Jing-Liang Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Xin-Yi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Zi-Yin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China.
| |
Collapse
|
19
|
Peykov S, Strateva T. Whole-Genome Sequencing-Based Resistome Analysis of Nosocomial Multidrug-Resistant Non-Fermenting Gram-Negative Pathogens from the Balkans. Microorganisms 2023; 11:microorganisms11030651. [PMID: 36985224 PMCID: PMC10051916 DOI: 10.3390/microorganisms11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Non-fermenting Gram-negative bacilli (NFGNB), such as Pseudomonas aeruginosa and Acinetobacter baumannii, are among the major opportunistic pathogens involved in the global antibiotic resistance epidemic. They are designated as urgent/serious threats by the Centers for Disease Control and Prevention and are part of the World Health Organization’s list of critical priority pathogens. Also, Stenotrophomonas maltophilia is increasingly recognized as an emerging cause for healthcare-associated infections in intensive care units, life-threatening diseases in immunocompromised patients, and severe pulmonary infections in cystic fibrosis and COVID-19 individuals. The last annual report of the ECDC showed drastic differences in the proportions of NFGNB with resistance towards key antibiotics in different European Union/European Economic Area countries. The data for the Balkans are of particular concern, indicating more than 80% and 30% of invasive Acinetobacter spp. and P. aeruginosa isolates, respectively, to be carbapenem-resistant. Moreover, multidrug-resistant and extensively drug-resistant S. maltophilia from the region have been recently reported. The current situation in the Balkans includes a migrant crisis and reshaping of the Schengen Area border. This results in collision of diverse human populations subjected to different protocols for antimicrobial stewardship and infection control. The present review article summarizes the findings of whole-genome sequencing-based resistome analyses of nosocomial multidrug-resistant NFGNBs in the Balkan countries.
Collapse
Affiliation(s)
- Slavil Peykov
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111, Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| |
Collapse
|
20
|
Zeng X, Wang N, Xiang C, Liu Q, Li D, Zhou Y, Zhang X, Xie Y, Zhang W, Yang H, Jiang M, Zong X, Zou Q, Shi Y. Peptidoglycan-associated lipoprotein contributes to the virulence of Acinetobacter baumannii and serves as a vaccine candidate. Genomics 2023; 115:110590. [PMID: 36868326 DOI: 10.1016/j.ygeno.2023.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The role of peptidoglycan-associated lipoprotein (Pal) in A. baumannii pathogenesis remains unclear. Here, we illustrated its role by constructing a pal deficient A. baumannii mutant and its complementary strain.Transcriptome analysis of the WT and pal mutant revealed a total of 596 differentially expressed genes. Gene Ontology analysis revealed that pal deficiency caused the downregulation of genes related to material transport and metabolic processes. The pal mutant showed a slower growth and was sensitive to detergent and serum killing compared to WT strain, whereas, the complemented pal mutant showed rescued phenotype. The pal mutant caused decreased mortality in mice pneumonia infection compared to WT strain, while the complemented pal mutant showed increased mortality. Mice immunized with recombinant Pal showed 40% protection against A. baumannii-mediated pneumonia. Collectively, these data indicate Pal is a virulence factor of A. baumannii and may serve as a potential target for preventive or therapeutic interventions.
Collapse
Affiliation(s)
- Xi Zeng
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China; Department of Phamacy, the 78th Group Army Hospital of Chinese PLA, Mudanjiang, Heilongjiang, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanying Xiang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Daiyu Li
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangyang Zhou
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Xie
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hong Yang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang, China
| | - Xianchun Zong
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Traglia GM, Pasteran F, Escalante J, Nishimura B, Tuttobene MR, Subils T, Nuñez MR, Rivollier MG, Corso A, Tolmasky ME, Ramirez MS. Genomic Comparative Analysis of Two Multi-Drug Resistance (MDR) Acinetobacter baumannii Clinical Strains Assigned to International Clonal Lineage II Recovered Pre- and Post-COVID-19 Pandemic. BIOLOGY 2023; 12:358. [PMID: 36979049 PMCID: PMC10045941 DOI: 10.3390/biology12030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND After the emergence of COVID-19, numerous cases of A. baumannii/SARS-CoV-2 co-infection were reported. Whether the co-infecting A. baumannii strains have distinctive characteristics remains unknown. METHODS AND RESULTS A. baumannii AMA_NO was isolated in 2021 from a patient with COVID-19. AMA166 was isolated from a mini-BAL used on a patient with pneumonia in 2016. Both genomes were similar, but they possessed 337 (AMA_NO) and 93 (AMA166) unique genes that were associated with biofilm formation, flagellar assembly, antibiotic resistance, secretion systems, and other functions. The antibiotic resistance genes were found within mobile genetic elements. While both strains harbored the carbapenemase-coding gene blaOXA-23, only the strain AMA_NO carried blaNDM-1. Representative functions coded for by virulence genes are the synthesis of the outer core of lipooligosaccharide (OCL5), biosynthesis and export of the capsular polysaccharide (KL2 cluster), high-efficiency iron uptake systems (acinetobactin and baumannoferrin), adherence, and quorum sensing. A comparative phylogenetic analysis including 239 additional sequence type (ST) 2 representative genomes showed high similarity to A. baumannii ABBL141. Since the degree of similarity that was observed between A. baumannii AMA_NO and AMA166 is higher than that found among other ST2 strains, we propose that they derive from a unique background based on core-genome phylogeny and comparative genome analysis. CONCLUSIONS Acquisition or shedding of specific genes could increase the ability of A. baumannii to infect patients with COVID-19.
Collapse
Affiliation(s)
- German Matias Traglia
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Montevideo 11200, Uruguay
| | - Fernando Pasteran
- National Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires 1282, Argentina
| | - Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| | - Marisel R. Tuttobene
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario 2000, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario 2000, Argentina
| | - Maria Rosa Nuñez
- Laboratorio de Microbiología, Hospital Provincial Neuquén Dr. Castro Rendón, Neuquén 8300, Argentina
| | | | - Alejandra Corso
- National Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires 1282, Argentina
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| |
Collapse
|
22
|
Shadan A, Pathak A, Ma Y, Pathania R, Singh RP. Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection. Front Cell Infect Microbiol 2023; 13:1053968. [PMID: 36968113 PMCID: PMC10038080 DOI: 10.3389/fcimb.2023.1053968] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infectionAcinetobacter baumannii is a gram-negative multidrug-resistant nosocomial pathogen and a major cause of hospital acquired infetions. Carbapenem resistant A. baumannii has been categorised as a Priority1 critial pathogen by the World Health Organisation. A. baumannii is responsible for infections in hospital settings, clinical sectors, ventilator-associated pneumonia, and bloodstream infections with a mortality rates up to 35%. With the development of advanced genome sequencing, molecular mechanisms of manipulating bacterial genomes, and animal infection studies, it has become more convenient to identify the factors that play a major role in A. baumannii infection and its persistence. In the present review, we have explored the mechanism of infection, virulence factors, and various other factors associated with the pathogenesis of this organism. Additionally, the role of the innate and adaptive immune response, and the current progress in the development of innovative strategies to combat this multidrug-resistant pathogen is also discussed.
Collapse
Affiliation(s)
- Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| |
Collapse
|
23
|
Li P, Zhang S, Wang J, Al-Shamiri MM, Han B, Chen Y, Han S, Han L. Uncovering the Secretion Systems of Acinetobacter baumannii: Structures and Functions in Pathogenicity and Antibiotic Resistance. Antibiotics (Basel) 2023; 12:antibiotics12020195. [PMID: 36830106 PMCID: PMC9952577 DOI: 10.3390/antibiotics12020195] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Infections led by Acinetobacter baumannii strains are of great concern in healthcare environments due to the strong ability of the bacteria to spread through different apparatuses and develop drug resistance. Severe diseases can be caused by A. baumannii in critically ill patients, but its biological process and mechanism are not well understood. Secretion systems have recently been demonstrated to be involved in the pathogenic process, and five types of secretion systems out of the currently known six from Gram-negative bacteria have been found in A. baumannii. They can promote the fitness and pathogenesis of the bacteria by releasing a variety of effectors. Additionally, antibiotic resistance is found to be related to some types of secretion systems. In this review, we describe the genetic and structural compositions of the five secretion systems that exist in Acinetobacter. In addition, the function and molecular mechanism of each secretion system are summarized to explain how they enable these critical pathogens to overcome eukaryotic hosts and prokaryotic competitors to cause diseases.
Collapse
Affiliation(s)
- Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yanjiong Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence:
| |
Collapse
|
24
|
Biofilms preserve the transmissibility of a multi-drug resistance plasmid. NPJ Biofilms Microbiomes 2022; 8:95. [PMID: 36481746 PMCID: PMC9732292 DOI: 10.1038/s41522-022-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Self-transmissible multidrug resistance (MDR) plasmids are a major health concern because they can spread antibiotic resistance to pathogens. Even though most pathogens form biofilms, little is known about how MDR plasmids persist and evolve in biofilms. We hypothesize that (i) biofilms act as refugia of MDR plasmids by retaining them in the absence of antibiotics longer than well-mixed planktonic populations and that (ii) the evolutionary trajectories that account for the improvement of plasmid persistence over time differ between biofilms and planktonic populations. In this study, we evolved Acinetobacter baumannii with an MDR plasmid in biofilm and planktonic populations with and without antibiotic selection. In the absence of selection, biofilm populations were better able to maintain the MDR plasmid than planktonic populations. In planktonic populations, plasmid persistence improved rapidly but was accompanied by a loss of genes required for the horizontal transfer of plasmids. In contrast, in biofilms, most plasmids retained their transfer genes, but on average, plasmid, persistence improved less over time. Our results showed that biofilms can act as refugia of MDR plasmids and favor the horizontal mode of plasmid transfer, which has important implications for the spread of MDR.
Collapse
|
25
|
Takashima Y, Murata A, Iida K, Sugai A, Hagiwara M, Nakatani K. Method for Identifying Sequence Motifs in Pre-miRNAs for Small-Molecule Binding. ACS Chem Biol 2022; 17:2817-2827. [PMID: 36150699 PMCID: PMC9594041 DOI: 10.1021/acschembio.2c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Non-coding RNAs are emerging targets for drug development because they are involved in various cellular processes. However, there are a few reliable design strategies for small molecules that can target RNAs. This paper reports a simple and efficient method to comprehensively analyze RNA motifs that can be bound by a specific small molecule. The method involves Dicer-mediated pre-miRNA cleavage and subsequent analysis of the reaction products by high-throughput sequencing. A pre-miRNA mutant library containing a randomized region at the Dicer cleavage site was used as the substrate for the reaction. Sequencing analysis of the products of the reaction carried out in the presence or absence of a synthetic small molecule identified the pre-miRNA mutants whose Dicer-mediated cleavage was significantly altered by the addition of the small molecule. The binding of the small molecule to the identified pre-miRNA mutants was confirmed by surface plasmon resonance, demonstrating the feasibility of our method.
Collapse
Affiliation(s)
- Yusuke Takashima
- Department
of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Asako Murata
- Department
of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan,
| | - Kei Iida
- Medical
Research Support Center, Kyoto University
Graduate School of Medicine, Konoecho Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayako Sugai
- Department
of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Masatoshi Hagiwara
- Department
of Anatomy and Developmental Biology, Kyoto
University Graduate School of Medicine, Konoecho Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiko Nakatani
- Department
of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan,
| |
Collapse
|
26
|
Zhang W, Yao Y, Zhou H, He J, Wang J, Li L, Gao M, Liu X, Shi Y, Lin J, Liu J, Chen H, Feng Y, Zhou Z, Yu Y, Hua X. Interactions between host epithelial cells and Acinetobacter baumannii promote the emergence of highly antibiotic resistant and highly mucoid strains. Emerg Microbes Infect 2022; 11:2556-2569. [PMID: 36227610 PMCID: PMC9621264 DOI: 10.1080/22221751.2022.2136534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acinetobacter baumannii is an important nosocomial pathogen. Upon colonizing a host, A. baumannii are subjected to selective pressure by immune defenses as they adapt to the host environment. However, the mechanism of this pathoadaptation is unknown. Here, we established an in vitro system to evolve A. baumannii driven by the continuous selective pressure exerted by epithelial cells, and we used a combination of experimental evolution, phenotypic characterization and multi-omics analysis to address the underlying mechanism. When continuously exposed to selective pressure by pulmonary epithelial cells, A. baumannii showed ptk mutation-mediated mucoid conversion (reduced adhesion and increased anti-phagocytic ability) by enhancement of capsular exopolysaccharide chain length; rsmG mutation-mediated deficiency of 7-methylguanosine modification in the 524th nucleotide of 16S rRNA, which increased ribosome translation efficiency; and rnaseI mutation-mediated changes in outer membrane permeability and efflux pump expression. Together, these mutations altered susceptibility to a variety of antimicrobial agents, including the novel antibiotic cefiderocol, by regulating siderophore and siderophore-receptor biosynthesis. In conclusion, pulmonary epithelial cells modulate A. baumannii pathoadaptation, implicating the host–microbe interaction in the survival and persistence of A. baumannii.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yue Yao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Jingfen Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Li Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochen Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Ya Shi
- Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, Zhejiang, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.,Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan Chen
- Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, Zhejiang, China
| | - Yu Feng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
27
|
Cahill SM, Hall RM, Kenyon JJ. An update to the database for Acinetobacter baumannii capsular polysaccharide locus typing extends the extensive and diverse repertoire of genes found at and outside the K locus. Microb Genom 2022; 8. [PMID: 36214673 DOI: 10.1099/mgen.0.000878] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several novel non-antibiotic therapeutics for the critical priority bacterial pathogen, Acinetobacter baumannii, rely on specificity to the cell-surface capsular polysaccharide (CPS). Hence, prediction of CPS type deduced from genes in whole genome sequence data underpins the development and application of these therapies. In this study, we provide a comprehensive update to the A. baumannii K locus reference sequence database for CPS typing (available in Kaptive v. 2.0.1) to include 145 new KL, providing a total of 237 KL reference sequences. The database was also reconfigured for compatibility with the updated Kaptive v. 2.0.0 code that enables prediction of 'K type' from special logic parameters defined by detected combinations of KL and additional genes outside the K locus. Validation of the database against 8994 publicly available A. baumannii genome assemblies from NCBI databases identified the specific KL in 73.45 % of genomes with perfect, very high or high confidence. Poor sequence quality or the presence of insertion sequences were the main reasons for lower confidence levels. Overall, 17 KL were overrepresented in available genomes, with KL2 the most common followed by the related KL3 and KL22. Substantial variation in gene content of the central portion of the K locus, that usually includes genes specific to the CPS type, included 34 distinct groups of genes for synthesis of various complex sugars and >400 genes for forming linkages between sugars or adding non-sugar substituents. A repertoire of 681 gene types were found across the 237 KL, with 88.4 % found in <5 % of KL.
Collapse
Affiliation(s)
- Sarah M Cahill
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Johanna J Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
28
|
Sheldon JR, Himmel LE, Kunkle DE, Monteith AJ, Maloney KN, Skaar EP. Lipocalin-2 is an essential component of the innate immune response to Acinetobacter baumannii infection. PLoS Pathog 2022; 18:e1010809. [PMID: 36054235 PMCID: PMC9477428 DOI: 10.1371/journal.ppat.1010809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen and an emerging global health threat. Within healthcare settings, major presentations of A. baumannii include bloodstream infections and ventilator-associated pneumonia. The increased prevalence of ventilated patients during the COVID-19 pandemic has led to a rise in secondary bacterial pneumonia caused by multidrug resistant (MDR) A. baumannii. Additionally, due to its MDR status and the lack of antimicrobial drugs in the development pipeline, the World Health Organization has designated carbapenem-resistant A. baumannii to be its priority critical pathogen for the development of novel therapeutics. To better inform the design of new treatment options, a comprehensive understanding of how the host contains A. baumannii infection is required. Here, we investigate the innate immune response to A. baumannii by assessing the impact of infection on host gene expression using NanoString technology. The transcriptional profile observed in the A. baumannii infected host is characteristic of Gram-negative bacteremia and reveals expression patterns consistent with the induction of nutritional immunity, a process by which the host exploits the availability of essential nutrient metals to curtail bacterial proliferation. The gene encoding for lipocalin-2 (Lcn2), a siderophore sequestering protein, was the most highly upregulated during A. baumannii bacteremia, of the targets assessed, and corresponds to robust LCN2 expression in tissues. Lcn2-/- mice exhibited distinct organ-specific gene expression changes including increased transcription of genes involved in metal sequestration, such as S100A8 and S100A9, suggesting a potential compensatory mechanism to perturbed metal homeostasis. In vitro, LCN2 inhibits the iron-dependent growth of A. baumannii and induces iron-regulated gene expression. To elucidate the role of LCN2 in infection, WT and Lcn2-/- mice were infected with A. baumannii using both bacteremia and pneumonia models. LCN2 was not required to control bacterial growth during bacteremia but was protective against mortality. In contrast, during pneumonia Lcn2-/- mice had increased bacterial burdens in all organs evaluated, suggesting that LCN2 plays an important role in inhibiting the survival and dissemination of A. baumannii. The control of A. baumannii infection by LCN2 is likely multifactorial, and our results suggest that impairment of iron acquisition by the pathogen is a contributing factor. Modulation of LCN2 expression or modifying the structure of LCN2 to expand upon its ability to sequester siderophores may thus represent feasible avenues for therapeutic development against this pathogen. A lack of therapeutic options has prompted the World Health Organization to designate multidrug-resistant Acinetobacter baumannii as its priority critical pathogen for research into new treatment strategies. The mechanisms employed by A. baumannii to cause disease and the host tactics exercised to constrain infection are not fully understood. Here, we further characterize the innate immune response to A. baumannii infection. We identify nutritional immunity, a process where the availability of nutrient metals is exploited to restrain bacterial growth, as being induced during infection. The gene encoding for lipocalin-2 (Lcn2), a protein that can impede iron uptake by bacteria, is highly upregulated in infected mice, and corresponds to robust LCN2 detection in the tissues. We find that LCN2 is crucial to reducing mortality from A. baumannii bacteremia and inhibits dissemination of the pathogen during pneumonia. In wild-type and Lcn2-deficient mice, broader transcriptional profiling reveals expression patterns consistent with the known response to Gram-negative bacteremia. Although the role of LCN2 in infection is likely multifactorial, we find its antimicrobial effects are at least partly exerted by impairing iron acquisition by A. baumannii. Facets of nutritional immunity, such as LCN2, may be exploited as novel therapeutics in combating A. baumannii infection.
Collapse
Affiliation(s)
- Jessica R. Sheldon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lauren E. Himmel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew J. Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - K. Nichole Maloney
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
29
|
The Impact of Natural Transformation on the Acquisition of Antibiotic Resistance Determinants. mBio 2022; 13:e0033622. [PMID: 35548953 PMCID: PMC9239042 DOI: 10.1128/mbio.00336-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbapenem and multidrug-resistant (MDR) Acinetobacter baumannii leads the World Health Organization's list of priority pathogens and represents an unmet medical need. Understanding the mechanisms underpinning the acquisition of antibiotic resistance in this pathogen is fundamental to the development of novel therapeutics as well as to infection prevention and antibiotic stewardship strategies designed to limit its spread. In their investigation, "Interbacterial Transfer of Carbapenem Resistance and Large Antibiotic Resistance Islands by Natural Transformation in Pathogenic Acinetobacter," Anne-Sophie Godeux and colleagues (mBio 13:e0263121, 2022, https://doi.org/10.1128/mBio.02631-21) delineate the unsuspected extent and circumstances under which natural transformation as a mechanism of intraspecies and interspecies exchange of genetic material occurs in Acinetobacter spp. This study offers key insights into how this notorious pathogen may have accelerated the development of its MDR phenotype via an unexpectedly robust and unnervingly casual approach to the acquisition of antibiotic resistance determinants through natural transformation.
Collapse
|
30
|
Bacterial hydrophilins promote pathogen desiccation tolerance. Cell Host Microbe 2022; 30:975-987.e7. [PMID: 35413266 DOI: 10.1016/j.chom.2022.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
Acinetobacter baumannii is a leading cause of hospital-acquired infections, where outbreaks are driven by its ability to persist on surfaces in a desiccated state. Here, we show that A. baumannii causes more virulent pneumonia following desiccation and profile the genetic requirements for desiccation. We find that desiccation tolerance is enhanced upon the disruption of Lon protease, which targets unfolded and aggregated proteins for degradation. Notably, two bacterial hydrophilins, DtpA and DtpB, are transcriptionally upregulated in Δlon via the two-component regulator, BfmR. These proteins, both hydrophilic and intrinsically disordered, promote desiccation tolerance in A. baumannii. Additionally, recombinant DtpA protects purified enzymes from inactivation and improves the desiccation tolerance of a probiotic bacterium when heterologously expressed. These results demonstrate a connection between environmental persistence and pathogenicity in A. baumannii, provide insight into the mechanisms of extreme desiccation tolerance, and reveal potential applications for bacterial hydrophilins in the preservation of protein- and live bacteria-based pharmaceuticals.
Collapse
|
31
|
Dong JF, Feng CJ, Wang P, Li RQ, Zou QH. Comparative genomics analysis of Acinetobacter baumannii multi-drug resistant and drug sensitive strains in China. Microb Pathog 2022; 165:105492. [DOI: 10.1016/j.micpath.2022.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
32
|
Genetic Diversity of Antimicrobial Resistance and Key Virulence Features in Two Extensively Drug-Resistant Acinetobacter baumannii Isolates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052870. [PMID: 35270562 PMCID: PMC8910769 DOI: 10.3390/ijerph19052870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023]
Abstract
In recent decades, Acinetobacter baumannii emerged as a major infective menace in healthcare settings due to scarce therapeutic options to treat infections. Therefore, undertaking genome comparison analyses of multi-resistant A. baumannii strains could aid the identification of key bacterial determinants to develop innovative anti-virulence approaches. Following genome sequencing, we performed a molecular characterization of key genes and genomic comparison of two A. baumannii strains, #36 and #150, with selected reference genomes. Despite a different antibiotic resistance gene content, the analyzed strains showed a very similar antibiogram profile. Interestingly, the lack of some important virulence determinants (i.e., bap, ata and omp33–36) did not abrogate their adhesive abilities to abiotic and biotic surfaces, as reported before; indeed, strains retained these capacities, although to a different extent, suggesting the presence of distinct vicarious genes. Conversely, secretion systems, lipopolysaccharide (LPS), capsule and iron acquisition systems were highly similar to A. baumannii reference strains. Overall, our analyses increased our knowledge on A. baumannii genomic content and organization as well as the genomic events occurring in nosocomial isolates to better fit into changing healthcare environments.
Collapse
|
33
|
Rubio A, Jimenez J, Pérez-Pulido AJ. Assessment of selection pressure exerted on genes from complete pangenomes helps to improve the accuracy in the prediction of new genes. Brief Bioinform 2022; 23:6519794. [PMID: 35108356 DOI: 10.1093/bib/bbac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Bacterial genomes are massively sequenced, and they provide valuable data to better know the complete set of genes of a species. The analysis of thousands of bacterial strains can identify both shared genes and those appearing only in the pathogenic ones. Current computational gene finders facilitate this task but often miss some existing genes. However, the present availability of different genomes from the same species is useful to estimate the selective pressure applied on genes of complete pangenomes. It may assist in evaluating gene predictions either by checking the certainty of a new gene or annotating it as a gene under positive selection. Here, we estimated the selective pressure of 19 271 genes that are part of the pangenome of the human opportunistic pathogen Acinetobacter baumannii and found that most genes in this bacterium are subject to negative selection. However, 23% of them showed values compatible with positive selection. These latter were mainly uncharacterized proteins or genes required to evade the host defence system including genes related to resistance and virulence whose changes may be favoured to acquire new functions. Finally, we evaluated the utility of measuring selection pressure in the detection of sequencing errors and the validation of gene prediction.
Collapse
Affiliation(s)
- Alejandro Rubio
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Juan Jimenez
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Antonio J Pérez-Pulido
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, Sevilla 41013, Spain
| |
Collapse
|
34
|
Wan K, Zheng S, Ye C, Hu D, Zhang Y, Dao H, Chen S, Yu X. Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. WATER RESEARCH 2022; 209:117902. [PMID: 34910990 DOI: 10.1016/j.watres.2021.117902] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) in municipal drinking water may not be effectively removed during centralized treatment. To reduce potential health risks, water disinfection at the point-of-use scale is warranted. This study investigated the performance of boiling, a prevalent household water disinfection means, in response to ARGs contamination. We found that boiling was more efficient in inactivating both Escherichia coli and environmental bacteria compared to chlorination and pasteurization. Boiling of environmental bacteria suspension removed a much broader spectrum of ARGs and mobile genetic elements (up to 141 genes) than chlorination (up to 13 genes), such better performance was largely attributed to a stronger inactivation of chlorine-tolerant bacteria including Acinetobacter and Bacillus. Accumulation of extracellular ARGs was found during low-temperature heating (≤ 80°C) and in the initial stage of chlorination (first 3 min when initial chlorine was 5 mg/L and first 12 min when initial chlorine was 1 mg/L). These extracellular ARGs as well as the intracellular ARGs got removed as the heating temperature increased or the chlorination time prolonged. Under the same treatment time (30 min), high-temperature heating (≥ 90.1°C) damaged the DNA structure more thoroughly than chlorination (5 mg/L). Taking into account the low transferability of ARGs after DNA melting, boiling may provide an effective point-of-use approach to attenuating bacterial ARGs in drinking water and is still worth promoting in the future.
Collapse
Affiliation(s)
- Kun Wan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shikan Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Dong Hu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yiting Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haosha Dao
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shaohua Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
35
|
Artuso I, Lucidi M, Visaggio D, Capecchi G, Lugli GA, Ventura M, Visca P. Genome diversity of domesticated Acinetobacter baumannii ATCC 19606 T strains. Microb Genom 2022; 8. [PMID: 35084299 PMCID: PMC8914354 DOI: 10.1099/mgen.0.000749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii has emerged as an important opportunistic pathogen worldwide, being responsible for large outbreaks for nosocomial infections, primarily in intensive care units. A. baumannii ATCC 19606T is the species type strain, and a reference organism in many laboratories due to its low virulence, amenability to genetic manipulation and extensive antibiotic susceptibility. We wondered if frequent propagation of A. baumannii ATCC 19606T in different laboratories may have driven micro- and macro-evolutionary events that could determine inter-laboratory differences of genome-based data. By combining Illumina MiSeq, MinION and Sanger technologies, we generated a high-quality whole-genome sequence of A. baumannii ATCC 19606T, then performed a comparative genome analysis between A. baumannii ATCC 19606T strains from several research laboratories and a reference collection. Differences between publicly available ATCC 19606T genome sequences were observed, including SNPs, macro- and micro-deletions, and the uneven presence of a 52 kb prophage belonging to genus Vieuvirus. Two plasmids, pMAC and p1ATCC19606, were invariably detected in all tested strains. The presence of a putative replicase, a replication origin containing four 22-mer direct repeats, and a toxin-antitoxin system implicated in plasmid stability were predicted by in silico analysis of p1ATCC19606, and experimentally confirmed. This work refines the sequence, structure and functional annotation of the A. baumannii ATCC 19606T genome, and highlights some remarkable differences between domesticated strains, likely resulting from genetic drift.
Collapse
Affiliation(s)
- Irene Artuso
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Massimiliano Lucidi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.,Santa Lucia Fundation IRCCS, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giulia Capecchi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.,Santa Lucia Fundation IRCCS, Via Ardeatina 306-354, 00179 Rome, Italy
| |
Collapse
|
36
|
Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Crit Rev Biochem Mol Biol 2021; 57:305-332. [PMID: 34937434 DOI: 10.1080/10409238.2021.2015747] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilms are assemblages of bacteria embedded within a matrix of extracellular polymeric substances (EPS) attached to a substratum. The process of biofilm formation is a complex phenomenon regulated by the intracellular and intercellular signaling systems. Various secondary messenger molecules such as cyclic dimeric guanosine 3',5'-monophosphate (c-di-GMP), cyclic adenosine 3',5'-monophosphate (cAMP), and cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) are involved in complex signaling networks to regulate biofilm development in several bacteria. Moreover, the cell to cell communication system known as Quorum Sensing (QS) also regulates biofilm formation via diverse mechanisms in various bacterial species. Bacteria often switch to the biofilm lifestyle in the presence of toxic pollutants to improve their survivability. Bacteria within a biofilm possess several advantages with regard to the degradation of harmful pollutants, such as increased protection within the biofilm to resist the toxic pollutants, synthesis of extracellular polymeric substances (EPS) that helps in the sequestration of pollutants, elevated catabolic gene expression within the biofilm microenvironment, higher cell density possessing a large pool of genetic resources, adhesion ability to a wide range of substrata, and metabolic heterogeneity. Therefore, a comprehensive account of the various factors regulating biofilm development would provide valuable insights to modulate biofilm formation for improved bioremediation practices. This review summarizes the complex regulatory networks that influence biofilm development in bacteria, with a major focus on the applications of bacterial biofilms for environmental restoration.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Swetambari Kumari
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| |
Collapse
|
37
|
Abdollahi S, Raoufi Z, Fakoor MH. Physicochemical and structural characterization, epitope mapping and vaccine potential investigation of a new protein containing Tetratrico Peptide Repeats of Acinetobacter baumannii: An in-silico and in-vivo approach. Mol Immunol 2021; 140:22-34. [PMID: 34649027 DOI: 10.1016/j.molimm.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Acinetobacter baumannii is an opportunistic multidrug-resistant pathogen that causes a significant mortality rate. The proteins containing Tetratrico Peptide Repeats (TPRs) are involved in the pathogenicity and virulence of bacteria and have different roles such as transfer of bacterial virulence factors to host cells, binding to the host cells and inhibition of phagolysosomal maturation. So, in this study, physicochemical properties of a new protein containing TPRs in A. baumannii which was named PcTPRs1 by this study were characterized and its 3D structure was predicted by in-silico tools. The protein B and T cell epitopes were mapped and its vaccine potential was in-silico and in-vivo investigated. Domain analysis indicated that the protein contains the Flp pilus assembly protein TadD domain which has three TPRs. The helix is dominant in the protein structure, and this protein is an outer membrane antigen which, is extremely conserved among A. baumannii strains; thus, has good properties to be applied as a recombinant vaccine. The best-predicted and refined model was applied in ligand-binding sites and conformational epitopes prediction. Based on epitope mapping results, several epitopes were characterized which could stimulate both immune systems. BLAST results showed the introduced epitopes are completely conserved among A. baumannii strains. The in-vivo analysis indicates that a 101 amino acid fragment of the protein which contains the best selected epitope, can produce a good protectivity against A. baumannii as well as the whole TPR protein and thus could be investigated as an effective subunit and potential vaccines.
Collapse
Affiliation(s)
- Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | | |
Collapse
|
38
|
Wijers CDM, Pham L, Menon S, Boyd KL, Noel HR, Skaar EP, Gaddy JA, Palmer LD, Noto MJ. Identification of Two Variants of Acinetobacter baumannii Strain ATCC 17978 with Distinct Genotypes and Phenotypes. Infect Immun 2021; 89:e0045421. [PMID: 34460288 PMCID: PMC8594612 DOI: 10.1128/iai.00454-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/11/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that exhibits substantial genomic plasticity. Here, the identification of two variants of A. baumannii ATCC 17978 that differ based on the presence of a 44-kb accessory locus, named AbaAL44 (A. baumannii accessory locus 44 kb), is described. Analyses of existing deposited data suggest that both variants are found in published studies of A. baumannii ATCC 17978 and that American Type Culture Collection (ATCC)-derived laboratory stocks comprise a mix of these two variants. Yet, each variant exhibits distinct interactions with the host in vitro and in vivo. Infection with the variant that harbors AbaAL44 (A. baumannii 17978 UN) results in decreased bacterial burdens and increased neutrophilic lung inflammation in a mouse model of pneumonia, and affects the production of interleukin 1 beta (IL-1β) and IL-10 by infected macrophages. AbaAL44 harbors putative pathogenesis genes, including those predicted to encode a type I pilus cluster, a catalase, and a cardiolipin synthase. The accessory catalase increases A. baumannii resistance to oxidative stress and neutrophil-mediated killing in vitro. The accessory cardiolipin synthase plays a dichotomous role by promoting bacterial uptake and increasing IL-1β production by macrophages, but also by enhancing bacterial resistance to cell envelope stress. Collectively, these findings highlight the phenotypic consequences of the genomic dynamism of A. baumannii through the evolution of two variants of a common type strain with distinct infection-related attributes.
Collapse
Affiliation(s)
- Christiaan D. M. Wijers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Swapna Menon
- AnalyzeDat Consulting Services, Ernakulam, Kerala, India
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hannah R. Noel
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Michael J. Noto
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
39
|
Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol Biol Rep 2021; 48:6987-6998. [PMID: 34460060 PMCID: PMC8403534 DOI: 10.1007/s11033-021-06690-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii has become a major concern for scientific attention due to extensive antimicrobial resistance. This resistance causes an increase in mortality rate because strains resistant to antimicrobial agents are a major challenge for physicians and healthcare workers regarding the eradication of either hospital or community-based infections. These strains with emerging resistance are a serious issue for patients in the intensive care unit (ICU). Antibiotic resistance has increased because of the acquirement of mobile genetic elements such as transposons, plasmids, and integrons and causes the prevalence of multidrug resistance strains (MDR). In addition, an increase in carbapenem resistance, which is used as last line antibiotic treatment to eliminate infections with multidrug-resistant Gram-negative bacteria, is a major concern. Carbapenems resistant A. baumannii (CR-Ab) is a worldwide problem. Because these strains are often resistant to all other commonly used antibiotics. Therefore, pathogenic multi-drug resistance A. baumannii (MDR-Ab) associated infections become hard to eradicate. Plasmid-mediated resistance causes outbreaks of extensive drug-resistant. A. baumannii (XDR-Ab). In addition, recent outbreaks relating to livestock and community settings illustrate the existence of large MDR-Ab strain reservoirs within and outside hospital settings. The purpose of this review, proper monitoring, prevention, and treatment are required to control (XDR-Ab) infections. Attachment, the formation of biofilms and the secretion of toxins, and low activation of inflammatory responses are mechanisms used by pathogenic A. baumannii strain. This review will discuss some aspects associated with antibiotics resistance in A. baumannii as well as cover briefly phage therapy as an alternative therapeutic treatment.
Collapse
Affiliation(s)
- Susan Ibrahim
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| | - Nadal Al-Saryi
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| | - Israa M S Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq.
| | - Sarah Naji Aziz
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| |
Collapse
|
40
|
Khadke SK, Lee JH, Kim YG, Raj V, Lee J. Assessment of Antibiofilm Potencies of Nervonic and Oleic Acid against Acinetobacter baumannii Using In Vitro and Computational Approaches. Biomedicines 2021; 9:biomedicines9091133. [PMID: 34572317 PMCID: PMC8466663 DOI: 10.3390/biomedicines9091133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen, and its biofilms are tolerant to desiccation, nutrient starvation, and antimicrobial treatment on biotic and abiotic surfaces, tissues, and medical devices. Biofilm formation by A. baumannii is triggered by a quorum sensing cascade, and we hypothesized that fatty acids might inhibit its biofilm formation by interfering with quorum sensing. Initially, we investigated the antibiofilm activities of 24 fatty acids against A. baumannii ATCC 17978 and two clinical isolates. Among these fatty acids, two unsaturated fatty acids, nervonic and oleic acid, at 20 μg/mL significantly inhibited A. baumannii biofilm formation without affecting its planktonic cell growth (MICs were >500 μg/mL) and markedly decreased the motility of A. baumannii but had no toxic effect on the nematode Caenorhabditis elegans. Interestingly, molecular dynamic simulations showed that both fatty acids bind to the quorum sensing acyl homoserine lactone synthase (AbaI), and decent conformational stabilities of interactions between the fatty acids and AbaI were exhibited. Our results demonstrate that nervonic and oleic acid inhibit biofilm formation by A. baumannii strains and may be used as lead molecules for the control of persistent A. baumannii infections.
Collapse
Affiliation(s)
| | | | | | | | - Jintae Lee
- Correspondence: ; Tel.: +82-53-810-2533; Fax: +82-53-810-4631
| |
Collapse
|
41
|
Colistin and Carbapenem-Resistant Acinetobacter baumannii Aci46 in Thailand: Genome Analysis and Antibiotic Resistance Profiling. Antibiotics (Basel) 2021; 10:antibiotics10091054. [PMID: 34572636 PMCID: PMC8468411 DOI: 10.3390/antibiotics10091054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the last-line antibiotics against invasive Gram-negative bacterial infection is a rising concern in public health. Multidrug resistant (MDR) Acinetobacter baumannii Aci46 can resist colistin and carbapenems with a minimum inhibitory concentration of 512 µg/mL as determined by microdilution method and shows no zone of inhibition by disk diffusion method. These phenotypic characteristics prompted us to further investigate the genotypic characteristics of Aci46. Next generation sequencing was applied in this study to obtain whole genome data. We determined that Aci46 belongs to Pasture ST2 and is phylogenetically clustered with international clone (IC) II as the predominant strain in Thailand. Interestingly, Aci46 is identical to Oxford ST1962 that previously has never been isolated in Thailand. Two plasmids were identified (pAci46a and pAci46b), neither of which harbors any antibiotic resistance genes but pAci46a carries a conjugational system (type 4 secretion system or T4SS). Comparative genomics with other polymyxin and carbapenem-resistant A. baumannii strains (AC30 and R14) identified shared features such as CzcCBA, encoding a cobalt/zinc/cadmium efflux RND transporter, as well as a drug transporter with a possible role in colistin and/or carbapenem resistance in A. baumannii. Single nucleotide polymorphism (SNP) analyses against MDR ACICU strain showed three novel mutations i.e., Glu229Asp, Pro200Leu, and Ala138Thr, in the polymyxin resistance component, PmrB. Overall, this study focused on Aci46 whole genome data analysis, its correlation with antibiotic resistance phenotypes, and the presence of potential virulence associated factors.
Collapse
|
42
|
Le C, Pimentel C, Tuttobene MR, Subils T, Escalante J, Nishimura B, Arriaga S, Rodgers D, Bonomo RA, Sieira R, Tolmasky ME, Ramírez MS. Involvement of the Histone-Like Nucleoid Structuring Protein (H-NS) in Acinetobacter baumannii's Natural Transformation. Pathogens 2021; 10:1083. [PMID: 34578115 PMCID: PMC8470039 DOI: 10.3390/pathogens10091083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Most Acinetobacter baumannii strains are naturally competent. Although some information is available about factors that enhance or reduce the frequency of the transformation of this bacterium, the regulatory elements and mechanisms are barely understood. In this article, we describe studies on the role of the histone-like nucleoid structuring protein, H-NS, in the regulation of the expression of genes related to natural competency and the ability to uptake foreign DNA. The expression levels of the natural transformation-related genes pilA, pilT, pilQ, comEA, comEC, comF, and drpA significantly increased in a Δhns derivative of A. baumannii A118. The complementation of the mutant with a recombinant plasmid harboring hns restored the expression levels of six of these genes (pilT remained expressed at high levels) to those of the wild-type strain. The transformation frequency of the A. baumannii A118 Δhns strain was significantly higher than that of the wild-type. Similar, albeit not identical, there were consequences when hns was deleted from the hypervirulent A. baumannii AB5075 strain. In the AB5075 complemented strain, the reduction in gene expression in a few cases was not so pronounced that it reached wild-type levels, and the expression of comEA was enhanced further. In conclusion, the expression of all seven transformation-related genes was enhanced after deleting hns in A. baumannii A118 and AB5075, and these modifications were accompanied by an increase in the cells' transformability. The results highlight a role of H-NS in A. baumannii's natural competence.
Collapse
Affiliation(s)
- Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Marisel R. Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina;
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario S2002LRK, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2002LRK, Argentina;
| | - Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Susana Arriaga
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Deja Rodgers
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Rodrigo Sieira
- Fundación Instituto Leloir—IIBBA CONICET, Buenos Aires C1405BWE, Argentina;
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| |
Collapse
|
43
|
Ma P, Phillips-Jones MK. Membrane Sensor Histidine Kinases: Insights from Structural, Ligand and Inhibitor Studies of Full-Length Proteins and Signalling Domains for Antibiotic Discovery. Molecules 2021; 26:molecules26165110. [PMID: 34443697 PMCID: PMC8399564 DOI: 10.3390/molecules26165110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
There is an urgent need to find new antibacterial agents to combat bacterial infections, including agents that inhibit novel, hitherto unexploited targets in bacterial cells. Amongst novel targets are two-component signal transduction systems (TCSs) which are the main mechanism by which bacteria sense and respond to environmental changes. TCSs typically comprise a membrane-embedded sensory protein (the sensor histidine kinase, SHK) and a partner response regulator protein. Amongst promising targets within SHKs are those involved in environmental signal detection (useful for targeting specific SHKs) and the common themes of signal transmission across the membrane and propagation to catalytic domains (for targeting multiple SHKs). However, the nature of environmental signals for the vast majority of SHKs is still lacking, and there is a paucity of structural information based on full-length membrane-bound SHKs with and without ligand. Reasons for this lack of knowledge lie in the technical challenges associated with investigations of these relatively hydrophobic membrane proteins and the inherent flexibility of these multidomain proteins that reduces the chances of successful crystallisation for structural determination by X-ray crystallography. However, in recent years there has been an explosion of information published on (a) methodology for producing active forms of full-length detergent-, liposome- and nanodisc-solubilised membrane SHKs and their use in structural studies and identification of signalling ligands and inhibitors; and (b) mechanisms of signal sensing and transduction across the membrane obtained using sensory and transmembrane domains in isolation, which reveal some commonalities as well as unique features. Here we review the most recent advances in these areas and highlight those of potential use in future strategies for antibiotic discovery. This Review is part of a Special Issue entitled “Interactions of Bacterial Molecules with Their Ligands and Other Chemical Agents” edited by Mary K. Phillips-Jones.
Collapse
Affiliation(s)
- Pikyee Ma
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland;
| | - Mary K. Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Correspondence:
| |
Collapse
|
44
|
Sun X, Ni Z, Tang J, Ding Y, Wang X, Li F. The abaI/ abaR Quorum Sensing System Effects on Pathogenicity in Acinetobacter baumannii. Front Microbiol 2021; 12:679241. [PMID: 34322102 PMCID: PMC8312687 DOI: 10.3389/fmicb.2021.679241] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen that has emerged as one of the most troublesome pathogens for healthcare institutions globally. Bacterial quorum sensing (QS) is a process of cell-to-cell communication that relies on the production, secretion, and detection of autoinducer (AI) signals to share information about cell density and regulate gene expression accordingly. The molecular and genetic bases of A. baumannii virulence remains poorly understood. Therefore, the contribution of the abaI/abaR QS system to growth characteristics, morphology, biofilm formation, resistance, motility, and virulence of A. baumannii was studied in detail. RNA sequencing (RNA-seq) analysis indicated that genes involved in various aspects of energy production and conversion; valine, leucine, and isoleucine degradation; and lipid transport and metabolism are associated with bacterial pathogenicity. Our work provides a new insight into the abaI/abaR QS system effects on pathogenicity in A. baumannii. We propose that targeting the acyl homoserine lactone (AHL) synthase enzyme abaI could provide an effective strategy for attenuating virulence. On the contrary, interdicting the AI synthase receptor abaR elicits unpredictable consequences, which may lead to enhanced bacterial virulence.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Zhaohui Ni
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Jie Tang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Yue Ding
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China.,Key Laboratory for Biomedical Materials of Jilin Province, Jilin University, Changchun, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China
| |
Collapse
|
45
|
Gregory TV, Ellis K, Valeriani R, Khan F, Wu X, Murin L, Alibayov B, Vidal AGJ, Zhao T, Vidal JE. MoWa: A Disinfectant for Hospital Surfaces Contaminated With Methicillin-Resistant Staphylococcus aureus (MRSA) and Other Nosocomial Pathogens. Front Cell Infect Microbiol 2021; 11:676638. [PMID: 34295834 PMCID: PMC8291128 DOI: 10.3389/fcimb.2021.676638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Staphylococcus aureus strains, including methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA), are a main cause of nosocomial infection in the world. The majority of nosocomial S. aureus-infection are traced back to a source of contaminated surfaces including surgery tables. We assessed the efficacy of a mixture of levulinic acid (LA) and sodium dodecyl sulfate (SDS), hereafter called MoWa, to eradicate nosocomial pathogens from contaminated surfaces. Methods and Results A dose response study demonstrated that MoWa killed 24 h planktonic cultures of S. aureus strains starting at a concentration of (LA) 8.2/(SDS) 0.3 mM while 24 h preformed biofilms were eradicated with 32/1.3 mM. A time course study further showed that attached MRSA bacteria were eradicated within 4 h of incubation with 65/2 mM MoWa. Staphylococci were killed as confirmed by bacterial counts, and fluorescence micrographs that were stained with the live/dead bacterial assay. We then simulated contamination of hospital surfaces by inoculating bacteria on a surface prone to contamination. Once dried, contaminated surfaces were sprayed with MoWa or mock-treated, and treated contaminated surfaces were swabbed and bacteria counted. While bacteria in the mock-treated samples grew at a density of ~104 cfu/cm2, those treated for ~1 min with MoWa (1.0/0.04 M) had been eradicated below limit of detection. A similar eradication efficacy was obtained when surfaces were contaminated with other nosocomial pathogens, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, or Staphylococcus epidermidis. Conclusions MoWa kills planktonic and biofilms made by MRSA and MSSA strains and showed great efficacy to disinfect MRSA-, and MSSA-contaminated, surfaces and surfaces contaminated with other important nosocomial pathogens.
Collapse
Affiliation(s)
- Tyler V. Gregory
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
- Biomedical Sciences Master of Science Program, University of Mississippi Medical Center, Jackson, MS, United States
| | - Karen Ellis
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Renzo Valeriani
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Faidad Khan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Xueqing Wu
- Department of Infectious Disease, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Landon Murin
- Base Pair Program Murrah- University of Mississippi Medical Center, Jackson, MS, United States
| | - Babek Alibayov
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana G. Jop Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Tong Zhao
- Center for Food Safety, University of Georgia, Griffin, GA, United States
| | - Jorge E. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
46
|
Discrimination of hospital isolates of Acinetobacter baumannii using repeated sequences and whole genome alignment differential analysis. J Appl Genet 2021; 62:511-521. [PMID: 34105103 PMCID: PMC8357709 DOI: 10.1007/s13353-021-00640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022]
Abstract
An optimized method for bacterial strain differentiation, based on combination of Repeated Sequences and Whole Genome Alignment Differential Analysis (RS&WGADA), is presented in this report. In this analysis, 51 Acinetobacter baumannii multidrug-resistance strains from one hospital environment and patients from 14 hospital wards were classified on the basis of polymorphisms of repeated sequences located in CRISPR region, variation in the gene encoding the EmrA-homologue of E. coli, and antibiotic resistance patterns, in combination with three newly identified polymorphic regions in the genomes of A. baumannii clinical isolates. Differential analysis of two similarity matrices between different genotypes and resistance patterns allowed to distinguish three significant correlations (p < 0.05) between 172 bp DNA insertion combined with resistance to chloramphenicol and gentamycin. Interestingly, 45 and 55 bp DNA insertions within the CRISPR region were identified, and combined during analyses with resistance/susceptibility to trimethoprim/sulfamethoxazole. Moreover, 184 or 1374 bp DNA length polymorphisms in the genomic region located upstream of the GTP cyclohydrolase I gene, associated mainly with imipenem susceptibility, was identified. In addition, considerable nucleotide polymorphism of the gene encoding the gamma/tau subunit of DNA polymerase III, an enzyme crucial for bacterial DNA replication, was discovered. The differentiation analysis performed using the above described approach allowed us to monitor the distribution of A. baumannii isolates in different wards of the hospital in the time frame of several years, indicating that the optimized method may be useful in hospital epidemiological studies, particularly in identification of the source of primary infections.
Collapse
|
47
|
Biochemical characterization of a recombinant acid phosphatase from Acinetobacter baumannii. PLoS One 2021; 16:e0252377. [PMID: 34077475 PMCID: PMC8172068 DOI: 10.1371/journal.pone.0252377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/15/2021] [Indexed: 11/27/2022] Open
Abstract
Genomic sequence analysis of Acinetobacter baumannii revealed the presence of a putative Acid Phosphatase (AcpA; EC 3.1.3.2). A plasmid construct was made, and recombinant protein (rAcpA) was expressed in E. coli. PAGE analysis (carried out under denaturing/reducing conditions) of nickel-affinity purified protein revealed the presence of a near-homogeneous band of approximately 37 kDa. The identity of the 37 kDa species was verified as rAcpA by proteomic analysis with a molecular mass of 34.6 kDa from the deduced sequence. The dependence of substrate hydrolysis on pH was broad with an optimum observed at 6.0. Kinetic analysis revealed relatively high affinity for PNPP (Km = 90 μM) with Vmax, kcat, and Kcat/Km values of 19.2 pmoles s-1, 4.80 s-1(calculated on the basis of 37 kDa), and 5.30 x 104 M-1s-1, respectively. Sensitivity to a variety of reagents, i.e., detergents, reducing, and chelating agents as well as classic acid phosphatase inhibitors was examined in addition to assessment of hydrolysis of a number of phosphorylated compounds. Removal of phosphate from different phosphorylated compounds is supportive of broad, i.e., ‘nonspecific’ substrate specificity; although, the enzyme appears to prefer phosphotyrosine and/or peptides containing phosphotyrosine in comparison to serine and threonine. Examination of the primary sequence indicated the absence of signature sequences characteristic of Type A, B, and C nonspecific bacterial acid phosphatases.
Collapse
|
48
|
Ma C, McClean S. Mapping Global Prevalence of Acinetobacter baumannii and Recent Vaccine Development to Tackle It. Vaccines (Basel) 2021; 9:vaccines9060570. [PMID: 34205838 PMCID: PMC8226933 DOI: 10.3390/vaccines9060570] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii is a leading cause of nosocomial infections that severely threaten public health. The formidable adaptability and resistance of this opportunistic pathogen have hampered the development of antimicrobial therapies which consequently leads to very limited treatment options. We mapped the global prevalence of multidrug-resistant A. baumannii and showed that carbapenem-resistant A. baumannii is widespread throughout Asia and the Americas. Moreover, when antimicrobial resistance rates of Acinetobacter spp. exceed a threshold level, the proportion of A. baumannii isolates from clinical samples surges. Therefore, vaccines represent a realistic alternative strategy to tackle this pathogen. Research into anti-A. baumannii vaccines have enhanced in the past decade and multiple antigens have been investigated preclinically with varying results. This review summarises the current knowledge of virulence factors relating to A. baumannii–host interactions and its implication in vaccine design, with a view to understanding the current state of A. baumannii vaccine development and the direction of future efforts.
Collapse
|
49
|
Ayerbe-Algaba R, Bayó N, Verdú E, Parra-Millán R, Seco J, Teixidó M, Pachón J, Giralt E, Smani Y. AOA-2 Derivatives as Outer Membrane Protein A Inhibitors for Treatment of Gram-Negative Bacilli Infections. Front Microbiol 2021; 12:634323. [PMID: 33643267 PMCID: PMC7907166 DOI: 10.3389/fmicb.2021.634323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Previously, we identified that a cyclic hexapeptide AOA-2 inhibited the interaction of Gram-negative bacilli (GNB) like Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli to host cells thereby preventing the development of infection in vitro and in a murine sepsis peritoneal model. In this work, we aimed to evaluate in vitro a library of AOA-2 derivatives in order to improve the effect of AOA-2 against GNB infections. Ten AOA-2 derivatives were synthetized for the in vitro assays. Their toxicities to human lung epithelial cells (A549 cells) for 24 h were evaluated by determining the A549 cells viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of these peptide derivatives and AOA-2 at 250, 125, 62.5, and 31.25 μg/mL on the attachment of A. baumannii ATCC 17978, P. aeruginosa PAO1 and E. coli ATCC 25922 strains to A549 cells was characterized by adherence and viability assays. None of the 10 derivatives showed toxicity to A549 cells. RW01 and RW06 have reduced more the adherence of ATCC 17978, PAO1 and ATCC 2599 strains to A549 cells when compared with the original compound AOA-2. Moreover, both peptides have increased slightly the viability of infected A549 cells by PAO1 and ATCC 25922 than those observed with AOA-2. Finally, RW01 and RW06 have potentiated the activity of colistin against ATCC 17978 strain in the same level with AOA-2. The optimization program of AOA-2 has generated two derivatives (RW01 and RW06) with best effect against interaction of GNB with host cells, specifically against P. aeruginosa and E. coli.
Collapse
Affiliation(s)
- Rafael Ayerbe-Algaba
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Nuria Bayó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Ester Verdú
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Raquel Parra-Millán
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Jesús Seco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain.,Department of Medicine, University of Seville, Seville, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.,Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| |
Collapse
|
50
|
Jie J, Chu X, Li D, Luo Z. A set of shuttle plasmids for gene expression in Acinetobacter baumannii. PLoS One 2021; 16:e0246918. [PMID: 33566854 PMCID: PMC7875395 DOI: 10.1371/journal.pone.0246918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
Infections caused by the emerging opportunistic bacterial pathogen Acinetobacter baumannii are occurring at increasingly alarming rates, and such increase in incidence is further compounded by the development of wide spread multidrug-resistant strains. Yet, our understanding of its pathogenesis and biology remains limited which can be attributed in part to the scarce of tools for molecular genetic analysis of this bacterium. Plasmids based on pWH1277 originally isolated from Acinetobacter calcoaceticus are the only vehicles currently available for ectopic gene expression in Acinetobacter species, which restricts experiments that require simultaneous analysis of multiple genes. Here, we found that plasmids of the IncQ group are able to replicate in A. baumannii and can stably co-reside with derivatives of pWH1277. Furthermore, we have constructed a series of four plasmids that allow inducible expression of Flag-tagged proteins in A. baumannii by arabinose or isopropyl β-d-1-thiogalactopyranoside. Together with constructs previously developed, these plasmids will accommodate the need in genetic analysis of this increasingly important pathogen.
Collapse
Affiliation(s)
- Jing Jie
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- * E-mail: (DL); (ZL)
| | - Zhaoqing Luo
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- * E-mail: (DL); (ZL)
| |
Collapse
|