1
|
Ávila BM, Zanini BM, Luduvico KP, Oliveira TL, Hense JD, Garcia DN, Prosczek J, Stefanello FM, da Cruz PH, Giongo JL, Vaucher RA, Mason JB, Masternak MM, Schneider A. Effect of senolytic drugs in young female mice chemically induced to estropause. Life Sci 2024; 357:123073. [PMID: 39307182 DOI: 10.1016/j.lfs.2024.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
AIMS This study aimed to assess metabolic responses and senescent cell burden in young female mice induced to estropause and treated with senolytic drugs. MAIN METHODS Estropause was induced by 4-vinylcyclohexene diepoxide (VCD) injection in two-month-old mice. The senolytics dasatinib and quercetin (D + Q) or fisetin were given by oral gavage once a month from five to 11 months of age. KEY FINDINGS VCD-induced estropause led to increased body mass and reduced albumin concentrations compared to untreated cyclic mice, without affecting insulin sensitivity, lipid profile, liver enzymes, or total proteins. Estropause decreased catalase activity in adipose tissue but had no significant effect on other redox parameters in adipose and hepatic tissues. Fisetin treatment reduced ROS levels in the hepatic tissue of estropause mice. Estropause did not influence senescence-associated beta-galactosidase activity in adipose and hepatic tissues but increased senescent cell markers and fibrosis in ovaries. Senolytic treatment did not decrease ovarian cellular senescence induced by estropause. SIGNIFICANCE Overall, the findings suggest that estropause leads to minor metabolic changes in young females, and the senolytics D + Q and fisetin had no protective effects despite increased ovarian senescence.
Collapse
Affiliation(s)
- Bianca M Ávila
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bianka M Zanini
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Karina P Luduvico
- Center of Chemical, Pharmaceutical, and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thais L Oliveira
- Biotechnology Center, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica D Hense
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane Prosczek
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Center of Chemical, Pharmaceutical, and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pedro H da Cruz
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Janice L Giongo
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo A Vaucher
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
2
|
Yamauchi S, Sugiura Y, Yamaguchi J, Zhou X, Takenaka S, Odawara T, Fukaya S, Fujisawa T, Naguro I, Uchiyama Y, Takahashi A, Ichijo H. Mitochondrial fatty acid oxidation drives senescence. SCIENCE ADVANCES 2024; 10:eado5887. [PMID: 39454000 PMCID: PMC11506141 DOI: 10.1126/sciadv.ado5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Cellular senescence is a stress-induced irreversible cell cycle arrest involved in tumor suppression and aging. Many stresses, such as telomere shortening and oncogene activation, induce senescence by damaging nuclear DNA. However, the mechanisms linking DNA damage to senescence remain unclear. Here, we show that DNA damage response (DDR) signaling to mitochondria triggers senescence. A genome-wide small interfering RNA screen implicated the outer mitochondrial transmembrane protein BNIP3 in senescence induction. We found that BNIP3 is phosphorylated by the DDR kinase ataxia telangiectasia mutated (ATM) and contributes to an increase in the number of mitochondrial cristae. Stable isotope labeling metabolomics indicated that the increase in cristae enhances fatty acid oxidation (FAO) to acetyl-coenzyme A (acetyl-CoA). This promotes histone acetylation and expression of the cyclin-dependent kinase inhibitor p16INK4a. Notably, pharmacological activation of FAO alone induced senescence both in vitro and in vivo. Thus, mitochondrial energy metabolism plays a critical role in senescence induction and is a potential intervention target to control senescence.
Collapse
Affiliation(s)
- Shota Yamauchi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto 606-8507, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Xiangyu Zhou
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Satoshi Takenaka
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takeru Odawara
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shunsuke Fukaya
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
3
|
Lazarchuk P, Nguyen MM, Curca CM, Pavlova MN, Oshima J, Sidorova JM. Werner syndrome RECQ helicase participates in and directs maintenance of the protein complexes of constitutive heterochromatin in proliferating human cells. Aging (Albany NY) 2024; null:206132. [PMID: 39422615 DOI: 10.18632/aging.206132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Werner syndrome of premature aging is caused by mutations in the WRN RECQ helicase/exonuclease, which functions in DNA replication, repair, transcription, and telomere maintenance. How the loss of WRN accelerates aging is not understood in full. Here we show that WRN is necessary for optimal constitutive heterochromatin levels in proliferating human fibroblasts. Locally, WRN deficiency derepresses SATII pericentromeric satellite repeats but does not reduce replication fork progression on SATII repeats. Globally, WRN loss reduces a subset of protein-protein interactions responsible for the organization of constitutive heterochromatin in the nucleus, namely, the interactions involving Lamin B1 and Lamin B receptor, LBR. Both the mRNA level and subcellular distribution of LBR are affected by WRN deficiency, and unlike the former, the latter phenotype does not require WRN catalytic activities. The phenotypes of heterochromatin disruption seen in WRN-deficient proliferating fibroblasts are also observed in WRN-proficient fibroblasts undergoing replicative or oncogene-induced senescence. WRN interacts with histone deacetylase 2, HDAC2; WRN/HDAC2 association is mediated by heterochromatin protein alpha, HP1α, and WRN complexes with HP1α and HDAC2 are downregulated in senescing cells. The data suggest that the effect of WRN loss on heterochromatin is separable from senescence program, but mimics at least some of the heterochromatin changes associated with it.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew Manh Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Crina M Curca
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Parse Biosciences, Seattle, WA 98109, USA
| | - Maria N Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Julia M Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Zhu J, Zhong X, He H, Cao J, Zhou Z, Dong J, Li H, Zhang A, Lyu Y, Li C, Guan J, Deng H. Generation of human expandable limb-bud-like progenitors via chemically induced dedifferentiation. Cell Stem Cell 2024:S1934-5909(24)00363-1. [PMID: 39442525 DOI: 10.1016/j.stem.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/15/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
In certain highly regenerative animals, cellular dedifferentiation occurs after injury, allowing specialized cells to become progenitor cells for regeneration. However, this capacity is restricted in human cells due to reduced plasticity. Here, we introduce a chemical-induced dedifferentiation approach that reverts the differentiated cells to a progenitor-like state, conferring the features of human limb bud cells from human adult somatic cells. These chemically induced human limb-bud-like progenitors (hCiLBP cells) show a high degree of transcriptomic similarity to human embryonic limb bud progenitors. Importantly, we established culture conditions that allow hCiLBP cells to undergo extensive expansion while maintaining population homogeneity and long-term self-renewal capacity. Moreover, hCiLBP cells exhibit increased osteochondrogenic differentiation ability, providing an innovative platform for generation of skeletal lineage cell types. These results highlight a potential therapeutic approach for repairing damaged human tissues through reversal of developmental pathways from mature cells to expandable progenitor cells.
Collapse
Affiliation(s)
- Jialiang Zhu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; BeiCell Therapeutics, Beijing, China; BeiCell Therapeutics, Suzhou, China
| | - Xinxing Zhong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huanjing He
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jingxiao Cao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Zhengyang Zhou
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jiebin Dong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Honggang Li
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Anqi Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yulin Lyu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Jingyang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Ningbo Institute of Marine Medicine, Peking University, Beijing, China.
| | - Hongkui Deng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China; Changping Laboratory, Beijing, China.
| |
Collapse
|
5
|
Qi H, Wu Y, Zhang W, Yu N, Lu X, Liu J. The syntaxin-binding protein STXBP5 regulates progerin expression. Sci Rep 2024; 14:23376. [PMID: 39379476 PMCID: PMC11461833 DOI: 10.1038/s41598-024-74621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Hutchinson-Gilfor progeria syndrome (HGPS) is caused by a mutation in Lamin A resulting in the production of a protein called progerin. The accumulation of progerin induces inflammation, cellular senescence and activation of the P53 pathway. In this study, through public dataset analysis, we identified Syntaxin Binding Protein 5 (STXBP5) as an influencing factor of progerin expression. STXBP5 overexpression accelerated the onset of senescence, while STXBP5 deletion suppressed progerin expression, delayed senility, and decreased the expression of senescence-related factors. STXBP5 and progerin have synergistic effects and a protein-protein interaction. Through bioinformatics analysis, we found that STXBP5 affects ageing-related signalling pathways such as the mitogen-activated protein kinase (MAPK) pathway, the hippo pathway and the interleukin 17 (IL17) signalling pathway in progerin-expressing cells. In addition, STXBP5 overexpression induced changes in transposable elements (TEs), such as the human endogenous retrovirus H internal coding sequence (HERVH-int) changes. Our protein coimmunoprecipitation (Co-IP) results indicated that STXBP5 bound directly to progerin. Therefore, decreasing STXBP5 expression is a potential new therapeutic strategy for treating ageing-related phenotypes in patients with HGPS.
Collapse
Affiliation(s)
- Hongqian Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yingying Wu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Weiyu Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853-2703, USA
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Jinchao Liu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China.
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Wei E, Mitanoska A, O'Brien Q, Porter K, Molina M, Ahsan H, Jung U, Mills L, Kyba M, Bosnakovski D. Pharmacological targeting of P300/CBP reveals EWS::FLI1-mediated senescence evasion in Ewing sarcoma. Mol Cancer 2024; 23:222. [PMID: 39367409 PMCID: PMC11453018 DOI: 10.1186/s12943-024-02115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
Ewing sarcoma (ES) poses a significant therapeutic challenge due to the difficulty in targeting its main oncodriver, EWS::FLI1. We show that pharmacological targeting of the EWS::FLI1 transcriptional complex via inhibition of P300/CBP drives a global transcriptional outcome similar to direct knockdown of EWS::FLI1, and furthermore yields prognostic risk factors for ES patient outcome. We find that EWS::FLI1 upregulates LMNB1 via repetitive GGAA motif recognition and acetylation codes in ES cells and EWS::FLI1-permissive mesenchymal stem cells, which when reversed by P300 inhibition leads to senescence of ES cells. P300-inhibited senescent ES cells can then be eliminated by senolytics targeting the PI3K signaling pathway. The vulnerability of ES cells to this combination therapy suggests an appealing synergistic strategy for future therapeutic exploration.
Collapse
Affiliation(s)
- Erdong Wei
- Department of Pediatrics, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
- , Minneapolis, USA
| | - Ana Mitanoska
- Department of Pediatrics, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
- , Minneapolis, USA
| | - Quinn O'Brien
- Department of Pediatrics, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
- , Minneapolis, USA
| | - Kendall Porter
- Department of Pediatrics, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
- , Minneapolis, USA
| | - MacKenzie Molina
- Department of Pediatrics, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
- , Minneapolis, USA
| | - Haseeb Ahsan
- Department of Pediatrics, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
- , Minneapolis, USA
| | - Usuk Jung
- Department of Pediatrics, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
- , Minneapolis, USA
| | - Lauren Mills
- Department of Pediatrics, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
- , Minneapolis, USA
| | - Michael Kyba
- Department of Pediatrics, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
- , Minneapolis, USA
| | - Darko Bosnakovski
- Department of Pediatrics, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- , Minneapolis, USA.
| |
Collapse
|
7
|
Cifuentes SJ, Theran-Suarez NA, Rivera-Crespo C, Velez-Roman L, Thacker B, Glass C, Domenech M. Heparan Sulfate-Collagen Surface Multilayers Support Serum-Free Microcarrier Culture of Mesenchymal Stem Cells. ACS Biomater Sci Eng 2024; 10:5739-5751. [PMID: 39187752 DOI: 10.1021/acsbiomaterials.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing cost of high-volume cultures and dependence on serum and growth factor supplementation limit the affordability of mesenchymal stromal cell (MSC) therapies. This has spurred interest in developing strategies that support adherent cell expansion while reducing raw material costs. Culture surfaces coated with sulfated glycosaminoglycans (GAGs), specifically heparan sulfate (HS), are an alternative to prolong growth factor retention in cell cultures. Unlike heparin, recombinant HS (rHS) offers strong binding affinity for multiple growth factors and extracellular matrix components, such as collagen I, without undesirable anticoagulant effects or xenobiotic health risks. The potential of rHS as a factor reservoir in MSC cultures remains underexplored. This study investigated the impact of rHS on the growth and anti-inflammatory properties of undifferentiated bone marrow MSCs in both planar and microcarrier-based cultures. It was hypothesized that rHS would enable MSC growth with minimal growth factor supplementation in a sulfation level-dependent manner. Cell culture surfaces were assembled via the layer-by-layer (LbL) method, combining alternating collagen I (COL) and rHS. These bilayers support cell adhesion and enable the incorporation of distinct sulfation levels on the culture surface. Examination of pro-mitogenic FGF and immunostimulatory IFN-γ release dynamics confirmed prolonged availability and sulfate level dependencies. Sulfated surfaces supported cell growth in low serum (2% FBS) and serum-free (SF) media at levels equivalent to standard culture conditions. Cell growth on rHS-coated surfaces in SF was comparable to that on heparin-coated surfaces and commercial surface-coated microcarriers in low serum. These growth benefits were observed in both planar and microcarrier (μCs) cultures. Additionally, rHS surfaces reduced β-galactosidase expression relative to uncoated surfaces, delaying cell senescence. Multivariate analysis of cytokines in conditioned media indicated that rHS-containing surfaces enhanced cytokine levels relative to uncoated surfaces during IFN-γ stimulation and correlated with decreased pro-inflammatory macrophage activity. Overall, utilizing highly sulfated rHS with COL reduces the need for exogenous growth factors and effectively supports MSC growth and anti-inflammatory potency on planar and microcarrier surfaces under minimal factor supplementation.
Collapse
Affiliation(s)
- Said J Cifuentes
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
- Bioengineering Department, Moffitt Cancer Center, Tampa, Florida 32611, United States
| | - Natalia A Theran-Suarez
- Chemical Engineering Department, University of Puerto Rico Mayaguez, 3550 General Atomics Ct, G02-102, Mayaguez, Puerto Rico 00681-9000, United States
| | - Carolina Rivera-Crespo
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| | - Leonel Velez-Roman
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| | - Bryan Thacker
- TEGA Therapeutics, Inc., 3550 General Atomics Ct, G02-102, San Diego, California 92121, United States
| | - Charles Glass
- TEGA Therapeutics, Inc., 3550 General Atomics Ct, G02-102, San Diego, California 92121, United States
| | - Maribella Domenech
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
- Chemical Engineering Department, University of Puerto Rico Mayaguez, 3550 General Atomics Ct, G02-102, Mayaguez, Puerto Rico 00681-9000, United States
| |
Collapse
|
8
|
Zhang X, Wang T. YIPF2 regulates genome integrity. Cell Biosci 2024; 14:114. [PMID: 39238039 PMCID: PMC11376028 DOI: 10.1186/s13578-024-01300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Understanding of the mechanisms for genome integrity maintenance can help in developing effective intervention strategies to combat aging. A whole-genome RNAi screen was conducted to identify novel factors involved in maintaining genome stability. The potential target genes identified in the screening are related to the cell cycle, proteasome, and spliceosomes. Unexpectedly, the Golgi protein YIPF2 has been found to play a critical role in maintaining genome stability. The depletion of YIPF2 hinders the process of homologous recombination (HR) repair, which then triggers DNA damage response mechanisms, ultimately leading to cellular senescence. The overexpression of YIPF2 facilitated cellular recovery from DNA damage induced by chemotherapy agents or replicative senescence-associated DNA damage. Our findings indicate that only the intact Golgi apparatus containing YIPF2 provides a protective effect on genome integrity.
Collapse
Affiliation(s)
- Xiao Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint, Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory On Stem Cell and Regenerative Medicine, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint, Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China.
- GIBH-CUHK Joint Research Laboratory On Stem Cell and Regenerative Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Li X, Yu H, Li D, Liu N. LINE-1 transposable element renaissance in aging and age-related diseases. Ageing Res Rev 2024; 100:102440. [PMID: 39059477 DOI: 10.1016/j.arr.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Transposable elements (TEs) are essential components of eukaryotic genomes and subject to stringent regulatory mechanisms to avoid their potentially deleterious effects. However, numerous studies have verified the resurrection of TEs, particularly long interspersed nuclear element-1 (LINE-1), during preimplantation development, aging, cancer, and other age-related diseases. The LINE-1 family has also been implicated in several aging-related processes, including genomic instability, loss of heterochromatin, DNA methylation, and the senescence-associated secretory phenotype (SASP). Additionally, the role of the LINE-1 family in cancer development has also been substantiated. Research in this field has offered valuable insights into the functional mechanisms underlying LINE-1 activity, enhancing our understanding of aging regulation. This review provides a comprehensive summary of current findings on LINE-1 and their roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Xiang Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
Yoshioka Y, Huang Y, Jin X, Ngo KX, Kumaki T, Jin M, Toyoda S, Takayama S, Inotsume M, Fujita K, Homma H, Ando T, Tanaka H, Okazawa H. PQBP3 prevents senescence by suppressing PSME3-mediated proteasomal Lamin B1 degradation. EMBO J 2024; 43:3968-3999. [PMID: 39103492 PMCID: PMC11405525 DOI: 10.1038/s44318-024-00192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Senescence of nondividing neurons remains an immature concept, with especially the regulatory molecular mechanisms of senescence-like phenotypes and the role of proteins associated with neurodegenerative diseases in triggering neuronal senescence remaining poorly explored. In this study, we reveal that the nucleolar polyglutamine binding protein 3 (PQBP3; also termed NOL7), which has been linked to polyQ neurodegenerative diseases, regulates senescence as a gatekeeper of cytoplasmic DNA leakage. PQBP3 directly binds PSME3 (proteasome activator complex subunit 3), a subunit of the 11S proteasome regulator complex, decreasing PSME3 interaction with Lamin B1 and thereby preventing Lamin B1 degradation and senescence. Depletion of endogenous PQBP3 causes nuclear membrane instability and release of genomic DNA from the nucleus to the cytosol. Among multiple tested polyQ proteins, ataxin-1 (ATXN1) partially sequesters PQBP3 to inclusion bodies, reducing nucleolar PQBP3 levels. Consistently, knock-in mice expressing mutant Atxn1 exhibit decreased nuclear PQBP3 and a senescence phenotype in Purkinje cells of the cerebellum. Collectively, these results suggest homologous roles of the nucleolar protein PQBP3 in cellular senescence and neurodegeneration.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yong Huang
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Xiaocen Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kien Xuan Ngo
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomohiro Kumaki
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Meihua Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Saori Toyoda
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Sumire Takayama
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Maiko Inotsume
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Research Center for Child Mental Development, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
11
|
Kültz D, Gardell AM, DeTomaso A, Stoney G, Rinkevich B, Qarri A, Hamar J. Proteome-wide 4-hydroxy-2-nonenal signature of oxidative stress in the marine invasive tunicate Botryllus schlosseri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604351. [PMID: 39211222 PMCID: PMC11360967 DOI: 10.1101/2024.07.19.604351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The colonial ascidian Boytryllus schlosseri is an invasive marine chordate that thrives under conditions of anthropogenic climate change. We show that the B. schlosseri expressed proteome contains unusually high levels of proteins that are adducted with 4-hydroxy-2-nonenal (HNE). HNE represents a prominent posttranslational modification resulting from oxidative stress. Although numerous studies have assessed oxidative stress in marine organisms HNE protein modification has not previously been determined in any marine species. LC/MS proteomics was used to identify 1052 HNE adducted proteins in B. schlosseri field and laboratory populations. Adducted amino acid residues were ascertained for 1849 modified sites, of which 1195 had a maximum amino acid localization score. Most HNE modifications were at less reactive lysines (rather than more reactive cysteines). HNE prevelance on most sites was high. These observations suggest that B. schlosseri experiences and tolerates high intracellular reactive oxygen species levels, resulting in substantial lipid peroxidation. HNE adducted B. schlosseri proteins show enrichment in mitochondrial, proteostasis, and cytoskeletal functions. Based on these results we propose that redox signaling contributes to regulating energy metabolism, the blastogenic cycle, oxidative burst defenses, and cytoskeleton dynamics during B. schlosseri development and physiology. A DIA assay library was constructed to quantify HNE adduction at 72 sites across 60 proteins that represent a holistic network of functionally discernable oxidative stress bioindicators. We conclude that the vast amount of HNE protein adduction in this circumpolar tunicate is indicative of high oxidative stress tolerance contributing to its range expansion into diverse environments. NEW & NOTEWORTHY Oxidative stress results from environmental challenges that increase in frequency and severity during the Anthropocene. Oxygen radical attack causes lipid peroxidation leading to HNE production. Proteome-wide HNE adduction is highly prevalent in Botryllus schlosseri , a widely distributed, highly invasive, and economically important biofouling ascidian and the first marine species to be analyzed for proteome HNE modification. HNE adduction of specific proteins physiologically sequesters reactive oxygen species, which enhances fitness and resilience during environmental change.
Collapse
|
12
|
Nishizawa H, Matsumoto M, Yamanaka M, Irikura R, Nakajima K, Tada K, Nakayama Y, Konishi M, Itoh N, Funayama R, Nakayama K, Igarashi K. BACH1 inhibits senescence, obesity, and short lifespan by ferroptotic FGF21 secretion. Cell Rep 2024; 43:114403. [PMID: 38943639 DOI: 10.1016/j.celrep.2024.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/14/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron-dependent lipid peroxidation. A model cell system is constructed to induce ferroptosis by re-expressing the transcription factor BACH1, a potent ferroptosis inducer, in immortalized mouse embryonic fibroblasts (iMEFs). The transfer of the culture supernatant from ferroptotic iMEFs activates the proliferation of hepatoma cells and other fibroblasts and suppresses cellular senescence-like features. The BACH1-dependent secretion of the longevity factor FGF21 is increased in ferroptotic iMEFs. The anti-senescent effects of the culture supernatant from these iMEFs are abrogated by Fgf21 knockout. BACH1 activates the transcription of Fgf21 by promoting ferroptotic stress and increases FGF21 protein expression by suppressing its autophagic degradation through transcriptional Sqstm1 and Lamp2 repression. The BACH1-induced ferroptotic FGF21 secretion suppresses obesity in high-fat diet-fed mice and the short lifespan of progeria mice. The inhibition of these aging-related phenotypes can be physiologically significant regarding ferroptosis.
Collapse
Affiliation(s)
- Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Mie Yamanaka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Gladstone Institute of Neurological Disease, Gladstone Institute, San Francisco, CA 94158, USA
| | - Riko Irikura
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuma Nakajima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keisuke Tada
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshiaki Nakayama
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Ryo Funayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keiko Nakayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
13
|
Lorman-Carbó N, Martínez-Sáez O, Fernandez-Martinez A, Galván P, Chic N, Garcia-Fructuoso I, Rodríguez A, Gómez-Bravo R, Schettini F, Blasco P, Castillo O, González-Farré B, Adamo B, Vidal M, Muñoz M, Perou CM, Malumbres M, Gavilá J, Pascual T, Prat A, Brasó-Maristany F. Comparative biological activity of palbociclib and ribociclib in hormone receptor-positive breast cancer. Sci Rep 2024; 14:16030. [PMID: 38992220 PMCID: PMC11239654 DOI: 10.1038/s41598-024-67126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
This study examines the biological effects of palbociclib and ribociclib in hormone receptor-positive breast cancer, pivotal to the HARMONIA prospective phase III clinical trial. We explore the downstream impacts of these CDK4/6 inhibitors, focusing on cell lines and patient-derived tumor samples. We treated HR+ breast cancer cell lines (T47D, MCF7, and BT474) with palbociclib or ribociclib (100 nM or 500 nM), alone or combined with fulvestrant (1 nM), over periods of 24, 72, or 144 h. Our assessments included PAM50 gene expression, RB1 phosphorylation, Lamin-B1 protein levels, and senescence-associated β-galactosidase activity. We further analyzed PAM50 gene signatures from the CORALLEEN and NeoPalAna phase II trials. Both CDK4/6 inhibitors similarly inhibited proliferation across the cell lines. At 100 nM, both drugs partially reduced p-RB1, with further decreases at 500 nM over 144 h. Treatment led to reduced Lamin-B1 expression and increased senescence-associated β-galactosidase activity. Both drugs enhanced Luminal A and reduced Luminal B and proliferation signatures at both doses. However, the HER2-enriched signature significantly diminished only at the higher dose of 500 nM. Corresponding changes were observed in tumor samples from the CORALLEEN and NeoPalAna studies. At 2 weeks of treatment, both drugs significantly reduced the HER2-enriched signature, but at surgery, this reduction was consistent only with ribociclib. Our findings suggest that while both CDK4/6 inhibitors effectively modulate key biological pathways in HR+/HER2- breast cancer, nuances in their impact, particularly on the HER2-enriched signature, are dose-dependent, influenced by the addition of fulvestrant and warrant further investigation.
Collapse
Affiliation(s)
- Natàlia Lorman-Carbó
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Olga Martínez-Sáez
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Aranzazu Fernandez-Martinez
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Patricia Galván
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
| | - Nuria Chic
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Isabel Garcia-Fructuoso
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Adela Rodríguez
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Raquel Gómez-Bravo
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Paula Blasco
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
| | - Oleguer Castillo
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
| | - Blanca González-Farré
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Pathology Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Barbara Adamo
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Maria Vidal
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- SOLTI Cooperative Group, Barcelona, Spain
- Institute of Oncology-Hospital Quirónsalud, Barcelona, Spain
| | - Montserrat Muñoz
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- SOLTI Cooperative Group, Barcelona, Spain
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Marcos Malumbres
- Cancer Cell Cycle Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Joaquín Gavilá
- SOLTI Cooperative Group, Barcelona, Spain
- Department of Medical Oncology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Tomás Pascual
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- SOLTI Cooperative Group, Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Institute of Oncology-Hospital Quirónsalud, Barcelona, Spain
- Reveal Genomics, S.L, Barcelona, Spain
| | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Casanova, 143, 08036, Barcelona, Spain.
- Reveal Genomics, S.L, Barcelona, Spain.
| |
Collapse
|
14
|
Lee PY, Sitorus MA, Kuo CH, Tsai BCK, Kuo WW, Lin KH, Lu SY, Lin YM, Ho TJ, Huang CY. Platycodi radix aqueous extract salvages doxorubicin-induced senescence by mitochondrial reactive oxygen species reduction in umbilical cord matrix stem cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3872-3882. [PMID: 38558324 DOI: 10.1002/tox.24240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Platycodi radix is a widely used herbal medicine that contains numerous phytochemicals beneficial to health. The health and biological benefits of P. radix have been found across various diseases. The utilization of umbilical cord stromal stem cells, derived from Wharton's jelly of the human umbilical cord, has emerged as a promising approach for treating degenerative diseases. Nevertheless, growing evidence indicates that the function of stem cells declines with age, thereby limiting their regenerative capacity. The primary objective in this study is to investigate the beneficial effects of P. radix in senescent stem cells. We conducted experiments to showcase that diminished levels of Lamin B1 and Sox-2, along with an elevation in p21, which serve as indicative markers for the senescent stem cells. Our findings revealed the loss of Lamin B1 and Sox-2, coupled with an increase in p21, in umbilical cord stromal stem cells subjected to a low-dose (0.1 μM) doxorubicin (Dox) stimulation. However, P. radix restored the Dox-damage in the umbilical cord stromal stem cells. P. radix reversed the senescent conditions when the umbilical cord stromal stem cells exposed to Dox-induced reactive oxygen species (ROS) and mitochondrial membrane potential are significantly changed. In Dox-challenged aged umbilical cord stromal stem cells, P. radix reduced senescence, increased longevity, prevented mitochondrial dysfunction and ROS and protected against senescence-associated apoptosis. This study suggests that P. radix might be as a therapeutic and rescue agent for the aging effect in stem cells. Inhibition of cell death, mitochondrial dysfunction and aging-associated ROS with P. radix provides additional insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Pei-Ying Lee
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Maria Angelina Sitorus
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
- Department of Kinesiology and Health, College of William and Mary, Williamsburg, Virginia, USA
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Kuan-Ho Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
15
|
Stuart A, de Lange T. Replicative senescence is ATM driven, reversible, and accelerated by hyperactivation of ATM at normoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600514. [PMID: 38979390 PMCID: PMC11230194 DOI: 10.1101/2024.06.24.600514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Programmed telomere shortening limits tumorigenesis through the induction of replicative senescence. Here we address three long-standing questions concerning senescence. First, we show that the ATM kinase is solely responsible for the induction of replicative senescence. Senescence was delayed by ATM inhibition (ATMi) or overexpression of TRF2, the shelterin subunit dedicated to ATM repression. In contrast, there was no evidence for ATR signaling contributing to replicative senescence even when ATMi was combined with ATR inhibition. Second, we show ATMi can induce apparently normal cell divisions in a subset of senescent cells, indicating that senescence can be reversed. Third, we show that the extended replicative life span at low (physiological) oxygen is due to diminished ATM activity. At low oxygen, cells show a decreased ATM response to dysfunctional telomeres and genome-wide DSBs compared to 20% oxygen. As this effect could be reversed by NAC, the attenuated response of ATM to critically short telomeres and the resulting extended life span at low oxygen is likely due to ROS-induced formation of cysteine disulfide-bridges that crosslink ATM dimers into a form that is not activated by DSBs. These findings show how primary human cells detect shortened telomeres and reveal the molecular mechanism underlying the telomere tumor suppressor pathway.
Collapse
Affiliation(s)
- Alexander Stuart
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| |
Collapse
|
16
|
He K, Zhou D, Pu Z, Chen S, Shen Y, Zhao S, Qian X, Hu Q, Wu X, Xie Z, Xu X. Cellular Senescence in Acute Liver Injury: What Happens to the Young Liver? Aging Dis 2024:AD.2024.0586. [PMID: 38913043 DOI: 10.14336/ad.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Cellular senescence, characterized by irreversible cell cycle arrest, not only exists in age-related physiological states, but has been found to exist in various diseases. It plays a crucial role in both physiological and pathological processes and has become a trending topic in global research in recent years. Acute liver injury (ALI) has a high incidence worldwide, and recent studies have shown that hepatic senescence can be induced following ALI. Therefore, we reviewed the significance of cellular senescence in ALI. To minimize the potential confounding effects of aging on cellular senescence and ALI outcomes, we selected studies involving young individuals to identify the characteristics of senescent cells, the value of cellular senescence in liver repair, its regulation mechanisms in ALI, its potential as a biomarker for ALI, the prospect of treatment, and future research directions.
Collapse
|
17
|
Cunha A, Perazzio S. Effects of immune exhaustion and senescence of innate immunity in autoimmune disorders. Braz J Med Biol Res 2024; 57:e13225. [PMID: 38896644 PMCID: PMC11186593 DOI: 10.1590/1414-431x2024e13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Innate immune system activation is crucial in the inflammatory response, but uncontrolled activation can lead to autoimmune diseases. Cellular exhaustion and senescence are two processes that contribute to innate immune tolerance breakdown. Exhausted immune cells are unable to respond adequately to specific antigens or stimuli, while senescent cells have impaired DNA replication and metabolic changes. These processes can impair immune system function and disrupt homeostasis, leading to the emergence of autoimmunity. However, the influence of innate immune exhaustion and senescence on autoimmune disorders is not well understood. This review aims to describe the current findings on the role of innate immune exhaustion and senescence in autoimmunity, focusing on the cellular and molecular changes involved in each process. Specifically, the article explores the markers and pathways associated with immune exhaustion, such as PD-1 and TIM-3, and senescence, including Β-galactosidase (β-GAL), lamin B1, and p16ink4a, and their impact on autoimmune diseases, namely type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and immune-mediated myopathies. Understanding the mechanisms underlying innate immune exhaustion and senescence in autoimmunity may provide insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- A.L.S. Cunha
- Divisão de Reumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - S.F. Perazzio
- Divisão de Reumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Divisão de Imunologia, Laboratório Fleury, São Paulo, SP, Brasil
- Laboratório Central, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
18
|
Hassanein F, Fadel HH, Shehata AI, Hamdy NA, Masoud IM. In silico study to explore the mechanism of Toxoplasma-induced inflammation and target therapy based on sero and salivary Toxoplasma. Sci Rep 2024; 14:13600. [PMID: 38866852 PMCID: PMC11169245 DOI: 10.1038/s41598-024-63735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
We aimed to assess salivary and seroprevalence of Toxoplasma immunoglobulins in risky populations and evaluate drug docking targeting TgERP. A cross-sectional study was conducted in Alexandria University hospitals' outpatient clinics. 192 participants were enrolled from September 2022 to November 2023. Anti-Toxoplasma IgG and IgM were determined in serum and saliva by ELISA. An in-Silico study examined TgERP's protein-protein interactions (PPIs) with pro-inflammatory cytokine receptors, anti-inflammatory cytokine, cell cycle progression regulatory proteins, a proliferation marker, and nuclear envelope integrity-related protein Lamin B1. Our findings revealed that anti-T. gondii IgG were detected in serum (66.1%) and saliva (54.7%), with 2.1% of both samples were positive for IgM. Salivary IgG had 75.59% sensitivity, 86.15% specificity, 91.40% PPV, 64.40% NPP, 79.17% accuracy and fair agreement with serum IgG. On the other hand, the sensitivity, specificity, PPV, NPV, and accuracy in detecting salivary IgM were 75.0%, 99.47%, 75.0%, 99.47%, and 98.96%. AUC 0.859 indicates good discriminatory power. Examined synthetic drugs and natural products can target specific amino acids residues of TgERP that lie at the same binding interface with LB1 and Ki67, subsequently, hindering their interaction. Hence, salivary samples can be a promising diagnostic approach. The studied drugs can counteract the pro-inflammatory action of TgERP.
Collapse
Affiliation(s)
- Faika Hassanein
- Department of Microbiology & Immunology, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt.
| | - Hewida H Fadel
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Amany I Shehata
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Noha Alaa Hamdy
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Inas M Masoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
19
|
Guo S, Tang Q, Gao X, Hu L, Hu K, Zhang H, Zhang Q, Lai Y, Liu Y, Wang Z, Chang S, Zhang Y, Hu H, An D, Peng Y, Cai H, Shi J. EZH2 inhibition induces senescence via ERK1/2 signaling pathway in multiple myeloma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1055-1064. [PMID: 38804044 PMCID: PMC11322866 DOI: 10.3724/abbs.2024077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/04/2024] [Indexed: 05/29/2024] Open
Abstract
Epigenetic modifications play an important role in cellular senescence, and enhancer of zeste homolog 2 (EZH2) is a key methyltransferase involved in epigenetic remodeling in multiple myeloma (MM) cells. We have previously demonstrated that GSK126, a specific EZH2 inhibitor, exhibits anti-MM therapeutic efficacy and safety in vivo and in vitro; however, its specific mechanism remains unclear. This study shows that GSK126 induces cellular senescence in MM, which is characterized by the accumulation of senescence-associated heterochromatin foci (SAHF) and p21, and increased senescence-associated β galactosidase activity. Furthermore, EZH2 is inhibited in ribonucleotide reductase regulatory subunit M2 (RRM2)-overexpressing OCI-MY5 and RPMI-8226 cells. RRM2 overexpression inhibits the methyltransferase function of EZH2 and promotes its degradation through the ubiquitin-proteasome pathway, thereby inducing cellular senescence. In this senescence model, Lamin B1, a key component of the nuclear envelope and a marker of senescence, does not decrease but instead undergoes aberrant accumulation. Meanwhile, phosphorylation of extracellular signal-regulated protein kinase (ERK1/2) is significantly increased. The inhibition of ERK1/2 phosphorylation in turn partially restores Lamin B1 level and alleviates senescence. These findings suggest that EZH2 inhibition increases Lamin B1 level and induces senescence by promoting ERK1/2 phosphorylation. These data indicate that EZH2 plays an important role in MM cellular senescence and provide insights into the relationships among Lamin B1, p-ERK1/2, and cellular senescence.
Collapse
Affiliation(s)
- Shushan Guo
- Shanghai Clinical CollegeAnhui Medical UniversityShanghai200072China
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei230022China
| | - Qiongwei Tang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xuejie Gao
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Liangning Hu
- Department of HematologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310016China
| | - Ke Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Hui Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Qikai Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yue Lai
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yujie Liu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhuning Wang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Shuaikang Chang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yifei Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Huifang Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Dong An
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yu Peng
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Haiyan Cai
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jumei Shi
- Shanghai Clinical CollegeAnhui Medical UniversityShanghai200072China
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei230022China
| |
Collapse
|
20
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
En A, Takemoto K, Yamakami Y, Nakabayashi K, Fujii M. Upregulated expression of lamin B receptor increases cell proliferation and suppresses genomic instability: implications for cellular immortalization. FEBS J 2024; 291:2155-2171. [PMID: 38462947 DOI: 10.1111/febs.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/04/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Mammalian somatic cells undergo terminal proliferation arrest after a limited number of cell divisions, a phenomenon termed cellular senescence. However, cells acquire the ability to proliferate infinitely (cellular immortalization) through multiple genetic alterations. Inactivation of tumor suppressor genes such as p53, RB and p16 is important for cellular immortalization, although additional molecular alterations are required for cellular immortalization to occur. Here, we aimed to gain insights into these molecular alterations. Given that cellular immortalization is the escape of cells from cellular senescence, genes that regulate cellular senescence are likely to be involved in cellular immortalization. Because senescent cells show altered heterochromatin organization, we investigated the implications of lamin A/C, lamin B1 and lamin B receptor (LBR), which regulate heterochromatin organization, in cellular immortalization. We employed human immortalized cell lines, KMST-6 and SUSM-1, and found that expression of LBR was upregulated upon cellular immortalization and downregulated upon cellular senescence. In addition, knockdown of LBR induced cellular senescence with altered chromatin configuration. Additionally, enforced expression of LBR increased cell proliferation likely through suppression of genome instability in human primary fibroblasts that expressed the simian virus 40 large T antigen (TAg), which inactivates p53 and RB. Furthermore, expression of TAg or knockdown of p53 led to upregulated LBR expression. These observations suggested that expression of LBR might be upregulated to suppress genome instability in TAg-expressing cells, and, consequently, its upregulated expression assisted the proliferation of TAg-expressing cells (i.e. p53/RB-defective cells). Our findings suggest a crucial role for LBR in the process of cellular immortalization.
Collapse
Affiliation(s)
- Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Kentaro Takemoto
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Yoshimi Yamakami
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, Japan
| |
Collapse
|
22
|
Wang X, Fukumoto T, Noma KI. Therapeutic strategies targeting cellular senescence for cancer and other diseases. J Biochem 2024; 175:525-537. [PMID: 38366629 PMCID: PMC11058315 DOI: 10.1093/jb/mvae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Cellular senescence occurs in response to endogenous or exogenous stresses and is characterized by stable cell cycle arrest, alterations in nuclear morphology and secretion of proinflammatory factors, referred to as the senescence-associated secretory phenotype (SASP). An increase of senescent cells is associated with the development of several types of cancer and aging-related diseases. Therefore, senolytic agents that selectively remove senescent cells may offer opportunities for developing new therapeutic strategies against such cancers and aging-related diseases. This review outlines senescence inducers and the general characteristics of senescent cells. We also discuss the involvement of senescent cells in certain cancers and diseases. Finally, we describe a series of senolytic agents and their utilization in therapeutic strategies.
Collapse
Affiliation(s)
- Xuebing Wang
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ken-ichi Noma
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR 97403, USA
| |
Collapse
|
23
|
Khan D, Zhou H, You J, Kaiser VA, Khajuria RK, Muhammad S. Tobacco smoke condensate-induced senescence in endothelial cells was ameliorated by colchicine treatment via suppression of NF-κB and MAPKs P38 and ERK pathways activation. Cell Commun Signal 2024; 22:214. [PMID: 38570838 PMCID: PMC10988825 DOI: 10.1186/s12964-024-01594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Smoking is the major cause of cardiovascular diseases and cancer. It induces oxidative stress, leading to DNA damage and cellular senescence. Senescent cells increase the expression and release of pro-inflammatory molecules and matrix metalloproteinase, which are known to play a vital role in the initiation and progression of cardiovascular diseases and metastasis in cancer. The current study investigated the smoking induced cellular senescence and employed colchicine that blocked senescence in endothelial cells exposed to tobacco smoke condensate. Colchicine prevented oxidative stress and DNA damage in tobacco smoke-condensate-treated endothelial cells. Colchicin reduced β-gal activity, improved Lamin B1, and attenuated cell growth arrest markers P21 and P53. Colchicine also ameliorated the expression of SASP factors and inhibited the activation of NF-kB and MAPKs P38 and ERK. In summary, colchicine inhibited tobacco smoke condensate-induced senescence in endothelial cells by blocking the activation of NF-kB and MAPKs P38 and ERK.
Collapse
Affiliation(s)
- Dilaware Khan
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany
| | - Huakang Zhou
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany
| | - Jinliang You
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany
| | - Vera Annika Kaiser
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany
| | - Rajiv K Khajuria
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany.
- Department of Neurosurgery, University Hospital Helsinki, Topeliuksenkatu 5, Helsinki, 00260, Finland.
| |
Collapse
|
24
|
Albuquerque-Souza E, Shelling B, Jiang M, Xia XJ, Rattanaprukskul K, Sahingur SE. Fusobacterium nucleatum triggers senescence phenotype in gingival epithelial cells. Mol Oral Microbiol 2024; 39:29-39. [PMID: 37718958 PMCID: PMC10939983 DOI: 10.1111/omi.12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/04/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023]
Abstract
The prevalence of periodontitis increases with physiological aging. However, whether bacteria associated with periodontal diseases foster aging and the mechanisms by which they may do so are unknown. Herein, we hypothesize that Fusobacterium nucleatum, a microorganism associated with periodontitis and several other age-related disorders, triggers senescence, a chief hallmark of aging responsible to reduce tissue repair capacity. Our study analyzed the senescence response of gingival epithelial cells and their reparative capacity upon long-term exposure to F. nucleatum. Specifically, we assessed (a) cell cycle arrest by analyzing the cyclin-dependent kinase inhibitors p16INK4a and p14ARF and their downstream cascade (pRb, p53, and p21) at both gene and protein levels, (b) lysosomal mediated dysfunction by using assays targeting the expression and activity of the senescence-associated β-galactosidase (SA-β-Gal) enzyme, and (c) nuclear envelope breakdown by assessing the expression of Lamin-B1. The consequences of the senescence phenotype mediated by F. nucleatum were further assessed using wound healing assays. Our results revealed that prolonged exposure to F. nucleatum promotes an aging-like phenotype as evidenced by the increased expression of pro-senescence markers (p16INK4a , p21, and pRb) and SA-β-Gal activity and reduced expression of the counter-balancing cascade (p14ARF and p53) and Lamin-B1. Furthermore, we also noted impaired wound healing capacity of gingival epithelial cells upon prolong bacterial exposure, which was consistent with the senescence-induced phenotype. Together, our findings provide a proof-of-concept evidence that F. nucleatum triggers a pro-senescence response in gingival epithelial cells. This might affect periodontal tissue homeostasis by reducing its repair capacity and, consequently, increasing susceptibility to periodontitis during aging.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lipid Mediator Unit, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Benjamin Shelling
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xia-Juan Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kantapon Rattanaprukskul
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Sato Y, Hayashi MT. Micronucleus is not a potent inducer of the cGAS/STING pathway. Life Sci Alliance 2024; 7:e202302424. [PMID: 38307626 PMCID: PMC10837050 DOI: 10.26508/lsa.202302424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Micronuclei (MN) have been associated with the innate immune response. The abrupt rupture of MN membranes results in the accumulation of cGAS, potentially activating STING and downstream interferon-responsive genes. However, direct evidence connecting MN and cGAS activation has been lacking. We have developed the FuVis2 reporter system, which enables the visualization of the cell nucleus carrying a single sister chromatid fusion and, consequently, MN. Using this FuVis2 reporter equipped with cGAS and STING reporters, we rigorously assessed the potency of cGAS activation by MN in individual living cells. Our findings reveal that cGAS localization to membrane-ruptured MN during interphase is infrequent, with cGAS primarily capturing MN during mitosis and remaining bound to cytosolic chromatin. We found that cGAS accumulation during mitosis neither activates STING in the subsequent interphase nor triggers the interferon response. Gamma-ray irradiation activates STING independently of MN formation and cGAS localization to MN. These results suggest that cGAS accumulation in cytosolic MN is not a robust indicator of its activation and that MN are not the primary trigger of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Yuki Sato
- https://ror.org/02kpeqv85 Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- https://ror.org/02kpeqv85 IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto T Hayashi
- https://ror.org/02kpeqv85 IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
26
|
García-Trejo SS, Gómez-Sierra T, Eugenio-Pérez D, Medina-Campos ON, Pedraza-Chaverri J. Protective Effect of Curcumin on D-Galactose-Induced Senescence and Oxidative Stress in LLC-PK1 and HK-2 Cells. Antioxidants (Basel) 2024; 13:415. [PMID: 38671863 PMCID: PMC11047423 DOI: 10.3390/antiox13040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
D-galactose has been widely used as an inducer of cellular senescence and pathophysiological processes related to aging because it induces oxidative stress. On the other hand, the consumption of antioxidants such as curcumin can be an effective strategy to prevent phenotypes related to the enhanced production of reactive oxygen species (ROS), such as aging and senescence. This study aimed to evaluate the potential protective effect of curcumin on senescence and oxidative stress and endoplasmic reticulum stress induced by D-galactose treatment in Lilly Laboratories Culture-Porcine Kidney 1 (LLC-PK1) and human kidney 2 (HK-2) proximal tubule cell lines from pig and human, respectively. For senescence induction, cells were treated with 300 mM D-galactose for 120 h and, to evaluate the protective effect of the antioxidant, cells were treated with 5 µM curcumin for 24 h and subsequently treated with curcumin + D-galactose for 120 h. In LLC-PK1 cells, curcumin treatment decreased by 20% the number of cells positive for senescence-associated (SA)-β-D-galactosidase staining and by 25% the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and increased by 40% lamin B1 expression. In HK-2 cells, curcumin treatment increased by 60% the expression of proliferating cell nuclear antigen (PCNA, 50% Klotho levels, and 175% catalase activity. In both cell lines, this antioxidant decreased the production of ROS (20% decrease for LLC-PK1 and 10 to 20% for HK-2). These data suggest that curcumin treatment has a moderate protective effect on D-galactose-induced senescence in LLC-PK1 and HK-2 cells.
Collapse
Affiliation(s)
| | | | | | | | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (S.S.G.-T.); (T.G.-S.); (D.E.-P.); (O.N.M.-C.)
| |
Collapse
|
27
|
Zhou S, Cui J, Shi Y. Serine Metabolism Regulates the Replicative Senescence of Human Dental Pulp Cells through Histone Methylation. Curr Issues Mol Biol 2024; 46:2856-2870. [PMID: 38666909 PMCID: PMC11049641 DOI: 10.3390/cimb46040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Tissue regeneration therapy based on human dental pulp cells (hDPCs) faces the distinct challenge of cellular senescence during massive expansion in vitro. To further explore the regulatory mechanism of cellular senescence in hDPCs, we conduct experiments on young cells (Passage 5, P5) and replicative senescent (Passage 12, P12) hDPCs. The results confirm that hDPCs undergo replicative senescence with passaging, during which their ability to proliferate and osteogenic differentiation decreases. Notably, during replicative senescence, phosphoglycerate dehydrogenase (PHGDH), the key enzyme of the serine synthesis pathway (SSP), is significantly downregulated, as well as S-adenosylmethionine (SAM) levels, resulting in reduced H3K36me3 modification on Sirtuin 1 (SIRT1)and Runt-related transcription factor 2 (RUNX2) promoters. Inhibition of PHGDH leads to the same phenotype as replicative senescence. Serine supplementation fails to rescue the senescence phenotype caused by replicative senescence and inhibitors, in which folate metabolism-related genes, including serine hydroxymethyl transferase 2 (SHMT2), methylenetetrahydrofolate dehydrogenase 1(MTHFD1), methylenetetrahydrofolate dehydrogenase 2(MTHFD2), are notably decreased. Our research raised a possibility that PHGDH may be involved in cellular senescence by affecting folate metabolism and histone methylation in addition to serine biosynthesis, providing potential targets to prevent senescence.
Collapse
Affiliation(s)
- Shuhan Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Z.); (J.C.)
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Z.); (J.C.)
- Department of Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Z.); (J.C.)
| |
Collapse
|
28
|
Pujadas Liwag EM, Wei X, Acosta N, Carter LM, Yang J, Almassalha LM, Jain S, Daneshkhah A, Rao SSP, Seker-Polat F, MacQuarrie KL, Ibarra J, Agrawal V, Aiden EL, Kanemaki MT, Backman V, Adli M. Depletion of lamins B1 and B2 promotes chromatin mobility and induces differential gene expression by a mesoscale-motion-dependent mechanism. Genome Biol 2024; 25:77. [PMID: 38519987 PMCID: PMC10958841 DOI: 10.1186/s13059-024-03212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND B-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology. RESULTS Using live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains. CONCLUSIONS Our findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease.
Collapse
Affiliation(s)
- Emily M Pujadas Liwag
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaolong Wei
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Nicolas Acosta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lucas M Carter
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jiekun Yang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Surbhi Jain
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ali Daneshkhah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, 77030, USA
- School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fidan Seker-Polat
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
| | - Kyle L MacQuarrie
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Pediatrics, Northwestern University, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Joe Ibarra
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Pediatrics, Northwestern University, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Erez Lieberman Aiden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77030, USA
- Departments of Computer Science and Computational and Applied Mathematics, Rice University, Houston, TX, 77030, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
- Department of Biological Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Mazhar Adli
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
29
|
Raviola S, Griffante G, Iannucci A, Chandel S, Lo Cigno I, Lacarbonara D, Caneparo V, Pasquero S, Favero F, Corà D, Trisolini E, Boldorini R, Cantaluppi V, Landolfo S, Gariglio M, De Andrea M. Human cytomegalovirus infection triggers a paracrine senescence loop in renal epithelial cells. Commun Biol 2024; 7:292. [PMID: 38459109 PMCID: PMC10924099 DOI: 10.1038/s42003-024-05957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen causing severe diseases in immunosuppressed individuals. To replicate its double-stranded DNA genome, HCMV induces profound changes in cellular homeostasis that may resemble senescence. However, it remains to be determined whether HCMV-induced senescence contributes to organ-specific pathogenesis. Here, we show a direct cytopathic effect of HCMV on primary renal proximal tubular epithelial cells (RPTECs), a natural setting of HCMV disease. We find that RPTECs are fully permissive for HCMV replication, which endows them with an inflammatory gene signature resembling the senescence-associated secretory phenotype (SASP), as confirmed by the presence of the recently established SenMayo gene set, which is not observed in retina-derived epithelial (ARPE-19) cells. Although HCMV-induced senescence is not cell-type specific, as it can be observed in both RPTECs and human fibroblasts (HFFs), only infected RPTECs show downregulation of LAMINB1 and KI67 mRNAs, and enhanced secretion of IL-6 and IL-8, which are well-established hallmarks of senescence. Finally, HCMV-infected RPTECs have the ability to trigger a senescence/inflammatory loop in an IL-6-dependent manner, leading to the development of a similar senescence/inflammatory phenotype in neighboring uninfected cells. Overall, our findings raise the intriguing possibility that this unique inflammatory loop contributes to HCMV-related pathogenesis in the kidney.
Collapse
Affiliation(s)
- Stefano Raviola
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Gloria Griffante
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Andrea Iannucci
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Shikha Chandel
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Irene Lo Cigno
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Lacarbonara
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Valeria Caneparo
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
| | - Selina Pasquero
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Francesco Favero
- Bioinformatics Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Bioinformatics Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Corà
- Bioinformatics Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Bioinformatics Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Elena Trisolini
- Pathology Unit, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Marisa Gariglio
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy.
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| |
Collapse
|
30
|
Dennery PA, Yao H. Emerging role of cellular senescence in normal lung development and perinatal lung injury. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:10-16. [PMID: 38567372 PMCID: PMC10987039 DOI: 10.1016/j.pccm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cellular senescence is a status of irreversible growth arrest, which can be triggered by the p53/p21cip1 and p16INK4/Rb pathways via intrinsic and external factors. Senescent cells are typically enlarged and flattened, and characterized by numerous molecular features. The latter consists of increased surfaceome, increased residual lysosomal activity at pH 6.0 (manifested by increased activity of senescence-associated beta-galactosidase [SA-β-gal]), senescence-associated mitochondrial dysfunction, cytoplasmic chromatin fragment, nuclear lamin b1 exclusion, telomere-associated foci, and the senescence-associated secretory phenotype. These features vary depending on the stressor leading to senescence and the type of senescence. Cellular senescence plays pivotal roles in organismal aging and in the pathogenesis of aging-related diseases. Interestingly, senescence can also both promote and inhibit wound healing processes. We recently report that senescence as a programmed process contributes to normal lung development. Lung senescence is also observed in Down Syndrome, as well as in premature infants with bronchopulmonary dysplasia and in a hyperoxia-induced rodent model of this disease. Furthermore, this senescence results in neonatal lung injury. In this review, we briefly discuss the molecular features of senescence. We then focus on the emerging role of senescence in normal lung development and in the pathogenesis of bronchopulmonary dysplasia as well as putative signaling pathways driving senescence. Finally, we discuss potential therapeutic approaches targeting senescent cells to prevent perinatal lung diseases.
Collapse
Affiliation(s)
- Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
31
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
32
|
Pho M, Berrada Y, Gunda A, Lavallee A, Chiu K, Padam A, Currey ML, Stephens AD. Actin contraction controls nuclear blebbing and rupture independent of actin confinement. Mol Biol Cell 2024; 35:ar19. [PMID: 38088876 PMCID: PMC10881147 DOI: 10.1091/mbc.e23-07-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024] Open
Abstract
The nucleus is a mechanically stable compartment of the cell that contains the genome and performs many essential functions. Nuclear mechanical components chromatin and lamins maintain nuclear shape, compartmentalization, and function by resisting antagonistic actin contraction and confinement. Studies have yet to compare chromatin and lamins perturbations side-by-side as well as modulated actin contraction while holding confinement constant. To accomplish this, we used nuclear localization signal green fluorescent protein to measure nuclear shape and rupture in live cells with chromatin and lamin perturbations. We then modulated actin contraction while maintaining actin confinement measured by nuclear height. Wild type, chromatin decompaction, and lamin B1 null present bleb-based nuclear deformations and ruptures dependent on actin contraction and independent of actin confinement. Actin contraction inhibition by Y27632 decreased nuclear blebbing and ruptures while activation by CN03 increased rupture frequency. Lamin A/C null results in overall abnormal shape also reliant on actin contraction, but similar blebs and ruptures as wild type. Increased DNA damage is caused by nuclear blebbing or abnormal shape which can be relieved by inhibition of actin contraction which rescues nuclear shape and decreases DNA damage levels in all perturbations. Thus, actin contraction drives nuclear blebbing, bleb-based ruptures, and abnormal shape independent of changes in actin confinement.
Collapse
Affiliation(s)
- Mai Pho
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Yasmin Berrada
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Aachal Gunda
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Anya Lavallee
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Katherine Chiu
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Arimita Padam
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Marilena L. Currey
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
33
|
Sakarin S, Rungsipipat A, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Charoenlappanit S, Thaisakun S, Surachetpong SD. Proteomic analysis of pulmonary arteries and lung tissues from dogs affected with pulmonary hypertension secondary to degenerative mitral valve disease. PLoS One 2024; 19:e0296068. [PMID: 38181036 PMCID: PMC10769092 DOI: 10.1371/journal.pone.0296068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
In dogs with degenerative mitral valve disease (DMVD), pulmonary hypertension (PH) is a common complication characterized by abnormally elevated pulmonary arterial pressure (PAP). Pulmonary arterial remodeling is the histopathological changes of pulmonary artery that has been recognized in PH. The underlying mechanisms that cause this arterial remodeling are poorly understood. This study aimed to perform shotgun proteomics to investigate changes in protein expression in pulmonary arteries and lung tissues of DMVD dogs with PH compared to normal control dogs and DMVD dogs without PH. Tissue samples were collected from the carcasses of 22 small-sized breed dogs and divided into three groups: control (n = 7), DMVD (n = 7) and DMVD+PH groups (n = 8). Differentially expressed proteins were identified, and top three upregulated and downregulated proteins in the pulmonary arteries of DMVD dogs with PH including SIK family kinase 3 (SIK3), Collagen type I alpha 1 chain (COL1A1), Transforming growth factor alpha (TGF-α), Apoptosis associated tyrosine kinase (AATYK), Hepatocyte growth factor activator (HGFA) and Tyrosine-protein phosphatase non-receptor type 13 (PTPN13) were chosen. Results showed that some of the identified proteins may play a role in the pathogenesis of pulmonary arterial remodeling. This study concluded shotgun proteomics has potential as a tool for exploring candidate proteins associated with the pathogenesis of PH secondary to DMVD in dogs.
Collapse
Affiliation(s)
- Siriwan Sakarin
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | |
Collapse
|
34
|
Martins C, Magalhães S, Almeida I, Neto V, Rebelo S, Nunes A. Metabolomics to Study Human Aging: A Review. Curr Mol Med 2024; 24:457-477. [PMID: 37026499 DOI: 10.2174/1566524023666230407123727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 04/08/2023]
Abstract
In the last years, with the increase in the average life expectancy, the world's population is progressively aging, which entails social, health and economic problems. In this sense, the need to better understand the physiology of the aging process becomes an urgent need. Since the study of aging in humans is challenging, cellular and animal models are widely used as alternatives. Omics, namely metabolomics, have emerged in the study of aging, with the aim of biomarker discovering, which may help to uncomplicate this complex process. This paper aims to summarize different models used for aging studies with their advantages and limitations. Also, this review gathers the published articles referring to biomarkers of aging already discovered using metabolomics approaches, comparing the results obtained in the different studies. Finally, the most frequently used senescence biomarkers are described, along with their importance in understanding aging.
Collapse
Affiliation(s)
- Claudia Martins
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Sandra Magalhães
- Department of Surgery and Physiology, Faculty of Medicine, UnIC@RISE, Cardiovascular Research & Development Centre, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Idália Almeida
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
- CICECO: Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Vanessa Neto
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Alexandra Nunes
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| |
Collapse
|
35
|
Rex N, Melk A, Schmitt R. Cellular senescence and kidney aging. Clin Sci (Lond) 2023; 137:1805-1821. [PMID: 38126209 PMCID: PMC10739085 DOI: 10.1042/cs20230140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Life expectancy is increasing worldwide, and by 2050 the proportion of the world's population over 65 years of age is estimated to surpass 1.5 billion. Kidney aging is associated with molecular and physiological changes that cause a loss of renal function and of regenerative potential. As the aging population grows, it is crucial to understand the mechanisms underlying these changes, as they increase the susceptibility to developing acute kidney injury (AKI) and chronic kidney disease (CKD). Various cellular processes and molecular pathways take part in the complex process of kidney aging. In this review, we will focus on the phenomenon of cellular senescence as one of the involved mechanisms at the crossroad of kidney aging, age-related disease, and CKD. We will highlight experimental and clinical findings about the role of cellular senescence in kidney aging and CKD. In addition, we will review challenges in senescence research and emerging therapeutic aspects. We will highlight the great potential of senolytic strategies for the elimination of harmful senescent cells to promote healthy kidney aging and to avoid age-related disease and CKD. This review aims to give insight into recent discoveries and future developments, providing a comprehensive overview of current knowledge on cellular senescence and anti-senescent therapies in the kidney field.
Collapse
Affiliation(s)
- Nikolai Rex
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Medical School Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
36
|
Wang SY, Xiang QM, Zhu JQ, Mu CK, Wang CL, Hou CC. The Functions of Pt-DIC and Pt-Lamin B in Spermatogenesis of Portunus trituberculatus. Int J Mol Sci 2023; 25:112. [PMID: 38203284 PMCID: PMC10778907 DOI: 10.3390/ijms25010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Cytoplasmic Dynein is a multiple-subunit macromolecular motor protein involved in the transport process of cells. The Dynein intermediate chain (DIC) is one of the subunits of Dynein-1. In our previous studies, we showed that Pt-DIC may play an important role in the nuclear deformation of spermiogenesis in Portunus trituberculatus. Lamin B is essential for maintaining nuclear structure and functions. Surprisingly, Pt-Lamin B was expressed not only in the perinucleus but also in the pro-acrosome during spermiogenesis in P. trituberculatus. Studies have also shown that Dynein-1 can mediate the transport of Lamin B in mammals. Thus, to study the relationship of Pt-DIC and Pt-Lamin B in the spermatogenesis of P. trituberculatus, we knocked down the Pt-DIC gene in P. trituberculatus by RNAi. The results showed that the distribution of Pt-DIC and Pt-Lamin B in spermiogenesis was abnormal, and the colocalization was weakened. Moreover, we verified the interaction of Pt-DIC and Pt-Lamin B via coimmunoprecipitation. Therefore, our results suggested that both Pt-DIC and Pt-Lamin B were involved in the spermatogenesis of P. trituberculatus, and one of the functions of Dynein-1 is to mediate the transport of Lamin B in the spermiogenesis of P. trituberculatus.
Collapse
Affiliation(s)
| | | | | | | | | | - Cong-Cong Hou
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China; (S.-Y.W.); (Q.-M.X.); (J.-Q.Z.); (C.-K.M.); (C.-L.W.)
| |
Collapse
|
37
|
Belakova B, Wedige NK, Awad EM, Hess S, Oszwald A, Fellner M, Khan SY, Resch U, Lipovac M, Šmejkal K, Uhrin P, Breuss JM. Lipophilic Statins Eliminate Senescent Endothelial Cells by inducing Anoikis-Related Cell Death. Cells 2023; 12:2836. [PMID: 38132158 PMCID: PMC10742095 DOI: 10.3390/cells12242836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Pre-clinical studies from the recent past have indicated that senescent cells can negatively affect health and contribute to premature aging. Targeted eradication of these cells has been shown to improve the health of aged experimental animals, leading to a clinical interest in finding compounds that selectively eliminate senescent cells while sparing non-senescent ones. In our study, we identified a senolytic capacity of statins, which are lipid-lowering drugs prescribed to patients at high risk of cardiovascular events. Using two different models of senescence in human vascular endothelial cells (HUVECs), we found that statins preferentially eliminated senescent cells, while leaving non-senescent cells unharmed. We observed that the senolytic effect of statins could be negated with the co-administration of mevalonic acid and that statins induced cell detachment leading to anoikis-like apoptosis, as evidenced by real-time visualization of caspase-3/7 activation. Our findings suggest that statins possess a senolytic property, possibly also contributing to their described beneficial cardiovascular effects. Further studies are needed to explore the potential of short-term, high-dose statin treatment as a candidate senolytic therapy.
Collapse
Affiliation(s)
- Barbora Belakova
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - Nicholas K. Wedige
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - Ezzat M. Awad
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Hess
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - André Oszwald
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Marlene Fellner
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - Shafaat Y. Khan
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
- Department of Zoology, Government College University Lahore, Lahore 54000, Pakistan
| | - Ulrike Resch
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - Markus Lipovac
- Karl Landsteiner Institute for Cell-Based Therapy in Gynecology, 2100 Korneuburg, Austria
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic
| | - Pavel Uhrin
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| | - Johannes M. Breuss
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria (E.M.A.); (A.O.); (S.Y.K.); (U.R.)
| |
Collapse
|
38
|
Kim Y. The impact of altered lamin B1 levels on nuclear lamina structure and function in aging and human diseases. Curr Opin Cell Biol 2023; 85:102257. [PMID: 37806292 DOI: 10.1016/j.ceb.2023.102257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023]
Abstract
The role of lamin B1 in human health and aging has attracted increasing attention as mounting evidence reveals its significance in diverse cellular processes. Both upregulation and downregulation of lamin B1 have been implicated in age-associated organ dysfunctions and various human diseases, including central nervous system disorders. Additionally, lamin B1 levels undergo alterations in cancer cells, and a tumor-specific association exists between lamin B1 abundance and cancer aggressiveness. Investigating the connectivity between lamin B1 abundance and human health is of utmost importance for further research. This review presents recent advancements in understanding lamin B1's role in nuclear lamina function and its implications for human health.
Collapse
Affiliation(s)
- Youngjo Kim
- Department of Integrated Biomedical Science and Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheon-an 31151, Republic of Korea.
| |
Collapse
|
39
|
Zhou H, Khan D, Hussain SM, Gerdes N, Hagenbeck C, Rana M, Cornelius JF, Muhammad S. Colchicine prevents oxidative stress-induced endothelial cell senescence via blocking NF-κB and MAPKs: implications in vascular diseases. J Inflamm (Lond) 2023; 20:41. [PMID: 38001470 PMCID: PMC10675905 DOI: 10.1186/s12950-023-00366-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Smoking, alcohol abuse, and hypertension are - among others, potential risk factors for cardiovascular diseases. These risk factors generate oxidative stress and cause oxidative stress-induced DNA damage, resulting in cellular senescence and senescence-associated secretory phenotype (SASP). The SASP factors in feed-forward response exacerbate inflammation and cause tissue remodeling, resulting in atherosclerotic plaque formation and rupture. RESULTS Colchicine inhibited ROS generation and mitigated oxidative stress-induced DNA damage. It dampened oxidative stress-induced endothelial cell senescence and improved the expression of DNA repair protein KU80 and aging marker Lamin B1. The drug attenuated the expression of senescence marker P21 at mRNA and protein levels. The pathway analysis showed that colchicine inhibited NF-κB and MAPKs pathways and subdued mTOR activation. Colchicine also attenuated mRNA expression of interleukin (IL)-1β, IL-6, IL-8, MCP-1, ICAM-1, and E-selectin. Furthermore, colchicine reduced the mRNA and protein expression of matrix metalloproteinase (MMP-2). CONCLUSION In summary, colchicine blocked oxidative stress-induced senescence and SASP by inhibiting the activation of NF-κB and MAPKs pathways.
Collapse
Affiliation(s)
- Huakang Zhou
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Sajid Muhammad Hussain
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931, Cologne, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Cardiovascular Reasearch Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine- University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Carsten Hagenbeck
- Clinic for Gynecology and Obstetrics, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Majeed Rana
- Department of Oral-, Maxillofacial and Facial Plastic Surgery, University Hospital Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Department of Neurosurgery, University Hospital Helsinki, Topeliuksenkatu 5, Helsinki, 00260, Finland
- Department of Neurosurgery, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
40
|
Manohar S, Estrada ME, Uliana F, Vuina K, Alvarez PM, de Bruin RAM, Neurohr GE. Genome homeostasis defects drive enlarged cells into senescence. Mol Cell 2023; 83:4032-4046.e6. [PMID: 37977116 PMCID: PMC10659931 DOI: 10.1016/j.molcel.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Cellular senescence refers to an irreversible state of cell-cycle arrest and plays important roles in aging and cancer biology. Because senescence is associated with increased cell size, we used reversible cell-cycle arrests combined with growth rate modulation to study how excessive growth affects proliferation. We find that enlarged cells upregulate p21, which limits cell-cycle progression. Cells that re-enter the cell cycle encounter replication stress that is well tolerated in physiologically sized cells but causes severe DNA damage in enlarged cells, ultimately resulting in mitotic failure and permanent cell-cycle withdrawal. We demonstrate that enlarged cells fail to recruit 53BP1 and other non-homologous end joining (NHEJ) machinery to DNA damage sites and fail to robustly initiate DNA damage-dependent p53 signaling, rendering them highly sensitive to genotoxic stress. We propose that an impaired DNA damage response primes enlarged cells for persistent replication-acquired damage, ultimately leading to cell division failure and permanent cell-cycle exit.
Collapse
Affiliation(s)
- Sandhya Manohar
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Marianna E Estrada
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Federico Uliana
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Karla Vuina
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Patricia Moyano Alvarez
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Robertus A M de Bruin
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Gabriel E Neurohr
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland.
| |
Collapse
|
41
|
Zhou H, Li X, Rana M, Cornelius JF, Khan D, Muhammad S. mTOR Inhibitor Rapalink-1 Prevents Ethanol-Induced Senescence in Endothelial Cells. Cells 2023; 12:2609. [PMID: 37998344 PMCID: PMC10670449 DOI: 10.3390/cells12222609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The cardiovascular risk factors, including smoking, ethanol, and oxidative stress, can induce cellular senescence. The senescent cells increase the expression and release of pro-inflammatory molecules and matrix metalloproteinase (MMPs). These pro-inflammatory molecules and MMPs promote the infiltration and accumulation of inflammatory cells in the vascular tissue, exacerbating vascular tissue inflammation. MMPs damage vascular tissue by degenerating the extracellular matrix. Consequently, these cellular and molecular events promote the initiation and progression of cardiovascular diseases. We used Rapalink-1, an mTOR inhibitor, to block ethanol-induced senescence. Rapalink-1 inhibited oxidative-stress-induced DNA damage and senescence in endothelial cells exposed to ethanol. It attenuated the relative protein expression of senescence marker P21 and improved the relative protein expression of DNA repair protein KU70 and aging marker Lamin B1. It inhibited the activation of NF-κB, MAPKs (P38 and ERK), and mTOR pathway proteins (mTOR, 4EBP-1, and S6). Moreover, Rapalink-1 suppressed ethanol-induced mRNA expression of ICAM-1, E-selectin, MCP-1, IL-8, MMP-2, and TIMP-2. Rapalink-1 also reduced the relative protein expression of MMP-2. In summary, Rapalink-1 prevented senescence, inhibited pro-inflammatory pathway activation, and ameliorated pro-inflammatory molecule expression and MMP-2.
Collapse
Affiliation(s)
- Huakang Zhou
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Xuanchen Li
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Majeed Rana
- Department of Oral and Maxillofacial Surgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
- Department of Neurosurgery, University Hospital Helsinki, Topeliuksenkatu 5, 00260 Helsinki, Finland
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
42
|
Kim HR, Cho HB, Lee S, Park JI, Kim HJ, Park KH. Fusogenic liposomes encapsulating mitochondria as a promising delivery system for osteoarthritis therapy. Biomaterials 2023; 302:122350. [PMID: 37864947 DOI: 10.1016/j.biomaterials.2023.122350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Many attempts have been made to use mitochondria (MT) to treat human diseases; however, MT are large, making them difficult to deliver effectively. Therefore, a transfer strategy based on membrane fusion was established. Fusogenic mitochondrial capsules (FMCs) comprising a neutral lipid (PE), a cationic lipid (DOTAP), an aromatic lipid (Liss Rhod PE), and three types of liposome (FMC0, FMC1, and FMC2), were designed and synthesized. The amount of DOTAP, which affects membrane fusion efficiency, differed between FMC preparations. The characteristics of these FMCs were analyzed by DLS, TEM, and AFM, and the encapsulation and fusion efficiency between FMC-MT and FMC-chondrocytes were confirmed by FRET, mtDNA copy number, and CLSM, respectively. Compared with naked MT, delivery of FMCs to chondrocytes was faster and more efficient. Moreover, fusion was a more stable delivery method than endocytosis, as evidenced by reduced induction of mitophagy. In vitro and in vivo experiments revealed that FMCs reduced expression of inflammatory cytokines and MMP13, increased expression of extracellular matrix components, and promoted cartilage regeneration. These findings suggest that FMCs are a highly effective and promising strategy for delivery of MT to promote cartilage regeneration, and highlight their potential as a novel platform for MT transfer therapy.
Collapse
Affiliation(s)
- Hye-Ryoung Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hui Bang Cho
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Sujeong Lee
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Ji-In Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hye Jin Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| | - Keun-Hong Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
43
|
Saleh T, Bloukh S, Hasan M, Al Shboul S. Therapy-induced senescence as a component of tumor biology: Evidence from clinical cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188994. [PMID: 37806641 DOI: 10.1016/j.bbcan.2023.188994] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Therapy-Induced Senescence (TIS) is an established response to anticancer therapy in a variety of cancer models. Ample evidence has characterized the triggers, hallmarks, and functional outcomes of TIS in preclinical studies; however, limited evidence delineates TIS in clinical cancer (human tumor samples). We examined the literature that investigated the induction of TIS in samples derived from human cancers and highlighted the major findings that suggested that TIS represents a main constituent of tumor biology. The most frequently utilized approach to identify TIS in human cancers was to investigate the protein expression of senescence-associated markers (such as cyclins, cyclin-dependent kinase inhibitors, Ki67, DNA damage repair response markers, DEC1, and DcR1) via immunohistochemical techniques using formalin-fixed paraffin-embedded (FFPE) tissue samples and/or testing the upregulation of Senescence-Associated β-galactosidase (SA-β-gal) in frozen sections of unfixed tumor samples. Collectively, and in studies where the extent of TIS was determined, TIS was detected in 31-66% of tumors exposed to various forms of chemotherapy. Moreover, TIS was not only limited to both malignant and non-malignant components of tumoral tissue but was also identified in samples of normal (non-transformed) tissue upon chemo- or radiotherapy exposure. Nevertheless, the available evidence continues to be limited and requires a more rigorous assessment of in vivo senescence based on novel approaches and more reliable molecular signatures. The accurate assessment of TIS will be beneficial for determining its relevant contribution to the overall outcome of cancer therapy and the potential translatability of senotherapeutics.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13115, Jordan.
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mira Hasan
- Department of Medicine, University of Connecticut Health Center, Farmington, USA
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13115, Jordan
| |
Collapse
|
44
|
Shevelyov YY. Interactions of Chromatin with the Nuclear Lamina and Nuclear Pore Complexes. Int J Mol Sci 2023; 24:15771. [PMID: 37958755 PMCID: PMC10649103 DOI: 10.3390/ijms242115771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Heterochromatin and euchromatin form different spatial compartments in the interphase nucleus, with heterochromatin being localized mainly at the nuclear periphery. The mechanisms responsible for peripheral localization of heterochromatin are still not fully understood. The nuclear lamina and nuclear pore complexes were obvious candidates for the role of heterochromatin binders. This review is focused on recent studies showing that heterochromatin interactions with the nuclear lamina and nuclear pore complexes maintain its peripheral localization. Differences in chromatin interactions with the nuclear envelope in cell populations and in individual cells are also discussed.
Collapse
Affiliation(s)
- Yuri Y Shevelyov
- Laboratory of Analysis of Gene Regulation, National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
45
|
Martyshkina YS, Tereshchenko VP, Bogdanova DA, Rybtsov SA. Reliable Hallmarks and Biomarkers of Senescent Lymphocytes. Int J Mol Sci 2023; 24:15653. [PMID: 37958640 PMCID: PMC10647376 DOI: 10.3390/ijms242115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The phenomenon of accumulation of senescent adaptive immunity cells in the elderly is attracting attention due to the increasing risk of global epidemics and aging of the global population. Elderly people are predisposed to various infectious and age-related diseases and are at higher risk of vaccination failure. The accumulation of senescent cells increases age-related background inflammation, "Inflammaging", causing lymphocyte exhaustion and cardiovascular, neurodegenerative, autoimmune and cancer diseases. Here, we present a comprehensive contemporary review of the mechanisms and phenotype of senescence in the adaptive immune system. Although modern research has not yet identified specific markers of aging lymphocytes, several sets of markers facilitate the separation of the aging population based on normal memory and exhausted cells for further genetic and functional analysis. The reasons for the higher predisposition of CD8+ T-lymphocytes to senescence compared to the CD4+ population are also discussed. We point out approaches for senescent-lymphocyte-targeting markers using small molecules (senolytics), antibodies and immunization against senescent cells. The suppression of immune senescence is the most relevant area of research aimed at developing anti-aging and anti-cancer therapy for prolonging the lifespan of the global population.
Collapse
Affiliation(s)
- Yuliya S. Martyshkina
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Valeriy P. Tereshchenko
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| | - Daria A. Bogdanova
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Stanislav A. Rybtsov
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| |
Collapse
|
46
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
47
|
Tanaka S, Sakaue H, Koiwai T, Okuda N, Okuyama K, Horioka Y, Hiramatsu Y, Kawashima M, Ishiguro N, Sato T. Near-infrared radiation causes sebaceous gland enlargement along with an ROS-dependent augmentation of epidermal growth factor receptor expression in hamsters. Exp Dermatol 2023; 32:1717-1724. [PMID: 37401827 DOI: 10.1111/exd.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
As near-infrared radiation (NIR), which is a composition of sunlight with an 780-1400 nm wavelength, is associated with skin aging such as wrinkles and slacks, the biological actions of NIR with high dermal penetration remains unclear. In the present study, we found that NIR irradiation (40 J/cm2 ) at different levels of irradiance (95-190 mW/cm2 ) using a laboratory device with a xenon flash lamp (780-1700 nm) caused sebaceous gland enlargement concomitantly with skin thickening in the auricle skin of hamsters. The sebaceous gland enlargement resulted from the proliferation of sebocytes due to an increase in the number of proliferating cell nuclear antigen (PCNA)- and lamin B1-positive cells in vivo. In addition, NIR irradiation transcriptionally augmented the production of epidermal growth factor receptor (EGFR) accompanied with an increase in the reactive oxygen species (ROS) level in hamster sebocytes in vitro. Furthermore, the administration of hydrogen peroxide increased the level of EGFR mRNA in the sebocytes. Therefore, these results provide novel evidence that NIR irradiation causes the hyperplasia of sebaceous glands in hamsters by mechanisms in which EGFR production is transcriptionally augmented through ROS-dependent pathways in sebocytes.
Collapse
Affiliation(s)
- Shiho Tanaka
- Department of Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroaki Sakaue
- Department of Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Toshikazu Koiwai
- Department of Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Natsuki Okuda
- Department of Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Katsuki Okuyama
- Department of Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | | | - Makoto Kawashima
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Naoko Ishiguro
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Sato
- Department of Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
48
|
Buchwalter A. Intermediate, but not average: The unusual lives of the nuclear lamin proteins. Curr Opin Cell Biol 2023; 84:102220. [PMID: 37619289 DOI: 10.1016/j.ceb.2023.102220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
The nuclear lamins are polymeric intermediate filament proteins that scaffold the nucleus and organize the genome in nearly all eukaryotic cells. This review focuses on the dynamic regulation of lamin filaments through their biogenesis, assembly, disassembly, and degradation. The lamins are unusually long-lived proteins under homeostatic conditions, but their turnover can be induced in select contexts that are highlighted in this review. Finally, we discuss recent investigations into the influence of laminopathy-linked mutations on the assembly, folding, and stability of the nuclear lamins.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
49
|
Sakai C, Ueda K, Goda K, Fujita R, Maeda J, Nakayama S, Sotomaru Y, Tashiro S, Yoshizumi M, Ishida T, Ishida M. A possible role for proinflammatory activation via cGAS-STING pathway in atherosclerosis induced by accumulation of DNA double-strand breaks. Sci Rep 2023; 13:16470. [PMID: 37777633 PMCID: PMC10542807 DOI: 10.1038/s41598-023-43848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/28/2023] [Indexed: 10/02/2023] Open
Abstract
DNA damage contributes to atherosclerosis. However, causative links between DNA double-strand breaks (DSBs) and atherosclerosis have yet to be established. Here, we investigated the role of DSBs in atherosclerosis using mice and vascular cells deficient in Ku80, a DSB repair protein. After 4 weeks of a high-fat diet, Ku80-deficient apolipoprotein E knockout mice (Ku80+/-ApoE-/-) displayed increased plaque size and DSBs in the aorta compared to those of ApoE-/- control. In the preatherosclerotic stages (two-week high-fat diet), the plaque size was similar in both the Ku80+/-ApoE-/- and ApoE-/- control mice, but the number of DSBs and mRNA levels of inflammatory cytokines such as IL-6 and MCP-1 were significantly increased in the Ku80+/-ApoE-/- aortas. We further investigated molecular links between DSBs and inflammatory responses using vascular smooth muscle cells isolated from Ku80 wild-type and Ku80+/- mice. The Ku80+/- cells displayed senescent features and elevated levels of inflammatory cytokine mRNAs. Moreover, the cytosolic DNA-sensing cGAS-STING pathway was activated in the Ku80+/- cells. Inhibiting the cGAS-STING pathway reduced IL-6 mRNA level. Notably, interferon regulatory factor 3 (IRF3), a downstream effector of the cGAS-STING pathway, was activated, and the depletion of IRF3 also reduced IL-6 mRNA levels in the Ku80+/- cells. Finally, DSBs accumulation in normal cells also activated the cGAS-STING-IRF3 pathway. In addition, cGAS inhibition attenuated DNA damage-induced IL-6 expression and cellular senescence in these cells. These results suggest that DSBs accumulation promoted atherosclerosis by upregulating proinflammatory responses and cellular senescence via the cGAS-STING (-IRF3) pathway.
Collapse
Affiliation(s)
- Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Keitaro Ueda
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Kohei Goda
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Rikuto Fujita
- National Hospital Organization, Higashihiroshima Medical Center, Hiroshima City, Japan
| | - Junji Maeda
- Department of Cardiology, Tsuchiya General Hospital, Hiroshima City, Japan
| | - Shinya Nakayama
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima City, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima City, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima City, Japan
| | - Masao Yoshizumi
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.
| |
Collapse
|
50
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|