1
|
Jiménez-Jiménez C, Grobe K, Guerrero I. Hedgehog on the Move: Glypican-Regulated Transport and Gradient Formation in Drosophila. Cells 2024; 13:418. [PMID: 38474382 PMCID: PMC10930589 DOI: 10.3390/cells13050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Glypicans (Glps) are a family of heparan sulphate proteoglycans that are attached to the outer plasma membrane leaflet of the producing cell by a glycosylphosphatidylinositol anchor. Glps are involved in the regulation of many signalling pathways, including those that regulate the activities of Wnts, Hedgehog (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), among others. In the Hh-signalling pathway, Glps have been shown to be essential for ligand transport and the formation of Hh gradients over long distances, for the maintenance of Hh levels in the extracellular matrix, and for unimpaired ligand reception in distant recipient cells. Recently, two mechanistic models have been proposed to explain how Hh can form the signalling gradient and how Glps may contribute to it. In this review, we describe the structure, biochemistry, and metabolism of Glps and their interactions with different components of the Hh-signalling pathway that are important for the release, transport, and reception of Hh.
Collapse
Affiliation(s)
- Carlos Jiménez-Jiménez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Isabel Guerrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| |
Collapse
|
2
|
Lee C, Yi J, Park J, Ahn B, Won YW, Jeon J, Lee BJ, Cho WJ, Park JW. Hedgehog signalling is involved in acquired resistance to KRAS G12C inhibitors in lung cancer cells. Cell Death Dis 2024; 15:56. [PMID: 38225225 PMCID: PMC10789740 DOI: 10.1038/s41419-024-06436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Although KRASG12C inhibitors have shown promising activity in lung adenocarcinomas harbouring KRASG12C, acquired resistance to these therapies eventually occurs in most patients. Re-expression of KRAS is thought to be one of the main causes of acquired resistance. However, the mechanism through which cancer cells re-express KRAS is not fully understood. Here, we report that the Hedgehog signal is induced by KRASG12C inhibitors and mediates KRAS re-expression in cancer cells treated with a KRASG12C inhibitor. Further, KRASG12C inhibitors induced the formation of primary cilia and activated the Hedgehog-GLI-1 pathway. GLI-1 binds to the KRAS promoter region, enhancing KRAS promoter activity and KRAS expression. Inhibition of GLI using siRNA or the smoothened (Smo) inhibitor suppressed re-expression of KRAS in cells treated with a KRASG12C inhibitor. In addition, we demonstrate that KRASG12C inhibitors decreased Aurora kinase A (AURKA) levels in cancer cells, and inhibition of AURKA using siRNA or inhibitors led to increased expression levels of GLI-1 and KRAS even in the absence of KRAS inhibitor. Ectopic expression of AURKA attenuated the effect of KRASG12C inhibitors on the expression of GLI-1 and re-expression of KRAS. Together, these findings demonstrate the important role of AURKA, primary cilia, and Hedgehog signals in the re-expression of KRAS and therefore the induction of acquired resistance to KRASG12C inhibitors, and provide a rationale for targeting Hedgehog signalling to overcome acquired resistance to KRASG12C inhibitors.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Young-Wook Won
- Department of Biomedical Engineering, University of North Texas, Texas, USA
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
| | - JiHeung Jeon
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Wha Ja Cho
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea.
| |
Collapse
|
3
|
Zhang J, Liu Y, Wang C, Vander Kooi CW, Jia J. Phosphatidic acid binding to Patched contributes to the inhibition of Smoothened and Hedgehog signaling in Drosophila wing development. Sci Signal 2023; 16:eadd6834. [PMID: 37847757 PMCID: PMC10661859 DOI: 10.1126/scisignal.add6834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Hedgehog (Hh) signaling controls growth and patterning during embryonic development and homeostasis in adult tissues. Hh binding to the receptor Patched (Ptc) elicits intracellular signaling by relieving Ptc-mediated inhibition of the transmembrane protein Smoothened (Smo). We uncovered a role for the lipid phosphatidic acid (PA) in the regulation of the Hh pathway in Drosophila melanogaster. Deleting the Ptc C-terminal tail or mutating the predicted PA-binding sites within it prevented Ptc from inhibiting Smo in wing discs and in cultured cells. The C-terminal tail of Ptc directly interacted with PA in vitro, an association that was reduced by Hh, and increased the amount of PA at the plasma membrane in cultured cells. Smo also interacted with PA in vitro through a binding pocket located in the transmembrane region, and mutating residues in this pocket reduced Smo activity in vivo and in cells. By genetically manipulating PA amounts in vivo or treating cultured cells with PA, we demonstrated that PA promoted Smo activation. Our findings suggest that Ptc may sequester PA in the absence of Hh and release it in the presence of Hh, thereby increasing the amount of PA that is locally available to promote Smo activation.
Collapse
Affiliation(s)
- Jie Zhang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Yajuan Liu
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jianhang Jia
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol 2023; 24:668-687. [PMID: 36932157 DOI: 10.1038/s41580-023-00591-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal - Hedgehog protein - is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute and Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Abstract
Ligands of the Hedgehog (HH) pathway are paracrine signaling molecules that coordinate tissue development in metazoans. A remarkable feature of HH signaling is the repeated use of cholesterol in steps spanning ligand biogenesis, secretion, dispersal, and reception on target cells. A cholesterol molecule covalently attached to HH ligands is used as a molecular baton by transfer proteins to guide their secretion, spread, and reception. On target cells, a signaling circuit composed of a cholesterol transporter and sensor regulates transmission of HH signals across the plasma membrane to the cytoplasm. The repeated use of cholesterol in signaling supports the view that the HH pathway likely evolved by coopting ancient systems to regulate the abundance or organization of sterol-like lipids in membranes.
Collapse
Affiliation(s)
- Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom;
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
6
|
Liu XZ, Guo H, Long GJ, Ma YF, Gong LL, Zhang MQ, Hull JJ, Dewer Y, Liu LW, He M, He P. Functional characterization of five developmental signaling network genes in the white-backed planthopper: Potential application for pest management. PEST MANAGEMENT SCIENCE 2023. [PMID: 36942746 DOI: 10.1002/ps.7464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The white-backed planthopper (WBPH, Sogatella furcifera) is a major rice pest that exhibits condition dependent wing dimorphisms - a macropterous (long wing) form and a brachypterous (short wing) form. Although, the gene cascade that regulates wing development and dimorphic differentiation has been largely defined, the utility of these genes as targets for pest control has yet to be fully explored. RESULTS Five genes typically associated with the developmental signaling network, armadillo (arm), apterous A (apA), scalloped (sd), dachs (d), and yorkie (yki) were identified from the WBPH genome and their roles in wing development assessed following RNA interference (RNAi)-mediated knockdown. At 5 days-post injection, transcript levels for all five targets were substantially decreased compared with the dsGFP control group. Among the treatment groups, those injected with dsSfarm had the most pronounced effects on transcript reduction, mortality (95 ± 3%), and incidence (45 ± 3%) of wing deformities, whereas those injected with dsSfyki had the lowest incidence (6.7 ± 4%). To assess the utility of topical RNAi for Sfarm, we used a spray-based approach that complexed a large-scale, bacteria-based double-stranded RNA (dsRNA) expression pipeline with star polycation (SPc) nanoparticles. Rice seedlings infested with third and fourth instar nymphs were sprayed with SPc-dsRNA formulations and RNAi phenotypic effects were assessed over time. At 2 days post-spray, Sfarm transcript levels decreased by 86 ± 9.5% compared with dsGFP groups, and the subsequent incidences of mortality and wing defects were elevated in the treatment group. CONCLUSIONS This study characterized five genes in the WBPH developmental signaling cascade, assessed their impact on survival and wing development via RNAi, and developed a nanoparticle-dsRNA spray approach for potential field control of WBPH. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| |
Collapse
|
7
|
Ihog proteins contribute to integrin-mediated focal adhesions. SCIENCE CHINA. LIFE SCIENCES 2023; 66:366-375. [PMID: 36103028 DOI: 10.1007/s11427-022-2154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 10/14/2022]
Abstract
Integrin expression forms focal adhesions, but how this process is physiologically regulated is unclear. Ihog proteins are evolutionarily conserved, playing roles in Hedgehog signaling and serving as trans-homophilic adhesion molecules to mediate cell-cell interactions. Whether these proteins are also engaged in other cell adhesion processes remains unknown. Here, we report that Drosophila Ihog proteins function in the integrin-mediated adhesions. Removal of Ihog proteins causes blister and spheroidal muscle in wings and embryos, respectively. We demonstrate that Ihog proteins interact with integrin via the extracellular portion and that their removal perturbs integrin distribution. Finally, we show that Boc, a mammalian Ihog protein, rescues the embryonic defects caused by removing its Drosophila homologs. We thus propose that Ihog proteins contribute to integrin-mediated focal adhesions.
Collapse
|
8
|
Abstract
Hedgehog (Hh) proteins constitute one family of a small number of secreted signaling proteins that together regulate multiple aspects of animal development, tissue homeostasis and regeneration. Originally uncovered through genetic analyses in Drosophila, their subsequent discovery in vertebrates has provided a paradigm for the role of morphogens in positional specification. Most strikingly, the Sonic hedgehog protein was shown to mediate the activity of two classic embryonic organizing centers in vertebrates and subsequent studies have implicated it and its paralogs in a myriad of processes. Moreover, dysfunction of the signaling pathway has been shown to underlie numerous human congenital abnormalities and diseases, especially certain types of cancer. This review focusses on the genetic studies that uncovered the key components of the Hh signaling system and the subsequent, biochemical, cell and structural biology analyses of their functions. These studies have revealed several novel processes and principles, shedding new light on the cellular and molecular mechanisms underlying cell-cell communication. Notable amongst these are the involvement of cholesterol both in modifying the Hh proteins and in activating its transduction pathway, the role of cytonemes, filipodia-like extensions, in conveying Hh signals between cells; and the central importance of the Primary Cilium as a cellular compartment within which the components of the signaling pathway are sequestered and interact.
Collapse
Affiliation(s)
- Philip William Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
9
|
Jia J, Jiang J. Regulation of Smoothened Trafficking and Abundance in Hedgehog Signaling. Front Cell Dev Biol 2022; 10:847844. [PMID: 35321245 PMCID: PMC8936432 DOI: 10.3389/fcell.2022.847844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
The GPCR-family protein Smoothened (Smo) is essential for Hedgehog (Hh) signal transduction in both insects and vertebrates. The regulation of subcellular localization and abundance of Smo is a critical step in Hh signaling. Recent studies have demonstrated that Smo is subjected to ubiquitination mediated by multiple E3 ubiquitin ligases, leading to Smo endocytosis and subsequent degradation through the proteasome- and lysosome-mediated pathways in Drosophila. Ubiquitination of Smo also promotes its ciliary exit in mammalian cells. Hh inhibits Smo ubiquitination by blocking E3 ligase recruitment and promoting Smo deubiquitination through the ubiquitin-specific protease 8 (USP8) in Drosophila. Inhibition of Smo ubiquitination by Hh promotes Smo cell surface accumulation in Drosophila and ciliary accumulation in mammalian cells. Interestingly, Hh also induces sumoylation of Smo in both Drosophila and mammalian cells, which promotes Smo cell surface/ciliary accumulation. This review focuses on how ubiquitination and sumoylation regulate Smo intracellular trafficking and abundance and how these processes are regulated by Hh.
Collapse
Affiliation(s)
- Jianhang Jia
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
10
|
Daly CA, Hall ET, Ogden SK. Regulatory mechanisms of cytoneme-based morphogen transport. Cell Mol Life Sci 2022; 79:119. [PMID: 35119540 PMCID: PMC8816744 DOI: 10.1007/s00018-022-04148-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/07/2023]
Abstract
During development and tissue homeostasis, cells must communicate with their neighbors to ensure coordinated responses to instructional cues. Cues such as morphogens and growth factors signal at both short and long ranges in temporal- and tissue-specific manners to guide cell fate determination, provide positional information, and to activate growth and survival responses. The precise mechanisms by which such signals traverse the extracellular environment to ensure reliable delivery to their intended cellular targets are not yet clear. One model for how this occurs suggests that specialized filopodia called cytonemes extend between signal-producing and -receiving cells to function as membrane-bound highways along which information flows. A growing body of evidence supports a crucial role for cytonemes in cell-to-cell communication. Despite this, the molecular mechanisms by which cytonemes are initiated, how they grow, and how they deliver specific signals are only starting to be revealed. Herein, we discuss recent advances toward improved understanding of cytoneme biology. We discuss similarities and differences between cytonemes and other types of cellular extensions, summarize what is known about how they originate, and discuss molecular mechanisms by which their activity may be controlled in development and tissue homeostasis. We conclude by highlighting important open questions regarding cytoneme biology, and comment on how a clear understanding of their function may provide opportunities for treating or preventing disease.
Collapse
Affiliation(s)
- Christina A Daly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, MS 1500, Memphis, TN, 38105, USA
| | - Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA.
| |
Collapse
|
11
|
Yang S, Wu X, Daoutidou EI, Zhang Y, Shimell M, Chuang KH, Peterson AJ, O'Connor MB, Zheng X. The NDNF-like factor Nord is a Hedgehog-induced extracellular BMP modulator that regulates Drosophila wing patterning and growth. eLife 2022; 11:e73357. [PMID: 35037619 PMCID: PMC8856659 DOI: 10.7554/elife.73357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/15/2022] [Indexed: 11/23/2022] Open
Abstract
Hedgehog (Hh) and Bone Morphogenetic Proteins (BMPs) pattern the developing Drosophila wing by functioning as short- and long-range morphogens, respectively. Here, we show that a previously unknown Hh-dependent mechanism fine-tunes the activity of BMPs. Through genome-wide expression profiling of the Drosophila wing imaginal discs, we identify nord as a novel target gene of the Hh signaling pathway. Nord is related to the vertebrate Neuron-Derived Neurotrophic Factor (NDNF) involved in congenital hypogonadotropic hypogonadism and several types of cancer. Loss- and gain-of-function analyses implicate Nord in the regulation of wing growth and proper crossvein patterning. At the molecular level, we present biochemical evidence that Nord is a secreted BMP-binding protein and localizes to the extracellular matrix. Nord binds to Decapentaplegic (Dpp) or the heterodimer Dpp-Glass-bottom boat (Gbb) to modulate their release and activity. Furthermore, we demonstrate that Nord is a dosage-dependent BMP modulator, where low levels of Nord promote and high levels inhibit BMP signaling. Taken together, we propose that Hh-induced Nord expression fine-tunes both the range and strength of BMP signaling in the developing Drosophila wing.
Collapse
Affiliation(s)
- Shu Yang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Xuefeng Wu
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Euphrosyne I Daoutidou
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Ya Zhang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - MaryJane Shimell
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Kun-Han Chuang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Aidan J Peterson
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| |
Collapse
|
12
|
Gradilla AC, Guerrero I. Hedgehog on track: Long-distant signal transport and transfer through direct cell-to-cell contact. Curr Top Dev Biol 2022; 150:1-24. [DOI: 10.1016/bs.ctdb.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Liu B, Ding Y, Sun B, Liu Q, Zhou Z, Zhan M. The Hh pathway promotes cell apoptosis through Ci-Rdx-Diap1 axis. Cell Death Discov 2021; 7:263. [PMID: 34561426 PMCID: PMC8463586 DOI: 10.1038/s41420-021-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Apoptosis is a strictly coordinated process to eliminate superfluous or damaged cells, and its deregulation leads to birth defects and various human diseases. The regulatory mechanism underlying apoptosis still remains incompletely understood. To identify novel components in apoptosis, we carry out a modifier screen and find that the Hh pathway aggravates Hid-induced apoptosis. In addition, we reveal that the Hh pathway triggers apoptosis through its transcriptional target gene rdx, which encodes an E3 ubiquitin ligase. Rdx physically binds Diap1 to promote its K63-linked polyubiquitination, culminating in attenuating Diap1-Dronc interaction without affecting Diap1 stability. Taken together, our findings unexpectedly uncover the oncogenic Hh pathway is able to promote apoptosis through Ci-Rdx-Diap1 module, raising a concern to choose Hh pathway inhibitors as anti-tumor drugs.
Collapse
Affiliation(s)
- Bin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yan Ding
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Bing Sun
- Department of Anorectum, the First affiliated Hospital of Shandong First Medical University, Ji'nan, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China.
| |
Collapse
|
14
|
Mechanisms of Smoothened Regulation in Hedgehog Signaling. Cells 2021; 10:cells10082138. [PMID: 34440907 PMCID: PMC8391454 DOI: 10.3390/cells10082138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
The seven-transmembrane protein, Smoothened (SMO), has shown to be critical for the hedgehog (HH) signal transduction on the cell membrane (and the cilium in vertebrates). SMO is subjected to multiple types of post-translational regulations, including phosphorylation, ubiquitination, and sumoylation, which alter SMO intracellular trafficking and cell surface accumulation. Recently, SMO is also shown to be regulated by small molecules, such as oxysterol, cholesterol, and phospholipid. The activity of SMO must be very well balanced by these different mechanisms in vivo because the malfunction of SMO will not only cause developmental defects in early stages, but also induce cancers in late stages. Here, we discuss the activation and inactivation of SMO by different mechanisms to better understand how SMO is regulated by the graded HH signaling activity that eventually governs distinct development outcomes.
Collapse
|
15
|
Simon E, Jiménez-Jiménez C, Seijo-Barandiarán I, Aguilar G, Sánchez-Hernández D, Aguirre-Tamaral A, González-Méndez L, Ripoll P, Guerrero I. Glypicans define unique roles for the Hedgehog co-receptors boi and ihog in cytoneme-mediated gradient formation. eLife 2021; 10:64581. [PMID: 34355694 PMCID: PMC8410076 DOI: 10.7554/elife.64581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
The conserved family of Hedgehog (Hh) signaling proteins plays a key role in cell–cell communication in development, tissue repair, and cancer progression, inducing distinct concentration-dependent responses in target cells located at short and long distances. One simple mechanism for long distance dispersal of the lipid modified Hh is the direct contact between cell membranes through filopodia-like structures known as cytonemes. Here we have analyzed in Drosophila the interaction between the glypicans Dally and Dally-like protein, necessary for Hh signaling, and the adhesion molecules and Hh coreceptors Ihog and Boi. We describe that glypicans are required to maintain the levels of Ihog, but not of Boi. We also show that the overexpression of Ihog, but not of Boi, regulates cytoneme dynamics through their interaction with glypicans, the Ihog fibronectin III domains being essential for this interaction. Our data suggest that the regulation of glypicans over Hh signaling is specifically given by their interaction with Ihog in cytonemes. Contrary to previous data, we also show that there is no redundancy of Ihog and Boi functions in Hh gradient formation, being Ihog, but not of Boi, essential for the long-range gradient.
Collapse
Affiliation(s)
- Eléanor Simon
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Carlos Jiménez-Jiménez
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Irene Seijo-Barandiarán
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Gustavo Aguilar
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain.,Growth and Development, University of Basel, Biozentrum, Switzerland
| | - David Sánchez-Hernández
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Adrián Aguirre-Tamaral
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Laura González-Méndez
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Pedro Ripoll
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Isabel Guerrero
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, Spain
| |
Collapse
|
16
|
Yang S, Zhang Y, Yang C, Wu X, El Oud SM, Chen R, Cai X, Wu XS, Lan G, Zheng X. Competitive coordination of the dual roles of the Hedgehog co-receptor in homophilic adhesion and signal reception. eLife 2021; 10:65770. [PMID: 34003115 PMCID: PMC8131103 DOI: 10.7554/elife.65770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Hedgehog (Hh) signaling patterns embryonic tissues and contributes to homeostasis in adults. In Drosophila, Hh transport and signaling are thought to occur along a specialized class of actin-rich filopodia, termed cytonemes. Here, we report that Interference hedgehog (Ihog) not only forms a Hh receptor complex with Patched to mediate intracellular signaling, but Ihog also engages in trans-homophilic binding leading to cytoneme stabilization in a manner independent of its role as the Hh receptor. Both functions of Ihog (trans-homophilic binding for cytoneme stabilization and Hh binding for ligand sensing) involve a heparin-binding site on the first fibronectin repeat of the extracellular domain. Thus, the Ihog-Ihog interaction and the Hh-Ihog interaction cannot occur simultaneously for a single Ihog molecule. By combining experimental data and mathematical modeling, we determined that Hh-Ihog heterophilic interaction dominates and Hh can disrupt and displace Ihog molecules involved in trans-homophilic binding. Consequently, we proposed that the weaker Ihog-Ihog trans interaction promotes and stabilizes direct membrane contacts along cytonemes and that, as the cytoneme encounters secreted Hh ligands, the ligands trigger release of Ihog from trans Ihog-Ihog complex enabling transport or internalization of the Hh ligand-Ihog-Patched -receptor complex. Thus, the seemingly incompatible functions of Ihog in homophilic adhesion and ligand binding cooperate to assist Hh transport and reception along the cytonemes.
Collapse
Affiliation(s)
- Shu Yang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Ya Zhang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Chuxuan Yang
- Department of Physics, George Washington University, Washington, United States
| | - Xuefeng Wu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Sarah Maria El Oud
- Department of Physics, George Washington University, Washington, United States
| | - Rongfang Chen
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Xudong Cai
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Xufeng S Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ganhui Lan
- Department of Physics, George Washington University, Washington, United States
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| |
Collapse
|
17
|
Gore T, Matusek T, D'Angelo G, Giordano C, Tognacci T, Lavenant-Staccini L, Rabouille C, Thérond PP. The GTPase Rab8 differentially controls the long- and short-range activity of the Hedgehog morphogen gradient by regulating Hedgehog apico-basal distribution. Development 2021; 148:dev.191791. [PMID: 33547132 DOI: 10.1242/dev.191791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023]
Abstract
The Hedgehog (Hh) morphogen gradient is required for patterning during metazoan development, yet the mechanisms involved in Hh apical and basolateral release and how this influences short- and long-range target induction are poorly understood. We found that depletion of the GTPase Rab8 in Hh-producing cells induces an imbalance between the level of apically and laterally released Hh. This leads to non-cell-autonomous differential effects on the expression of Hh target genes, namely an increase in its short-range targets and a concomitant decrease in long-range targets. We further found that Rab8 regulates the endocytosis and apico-basal distribution of Ihog, a transmembrane protein known to bind to Hh and to be crucial for establishment of the Hh gradient. Our data provide new insights into morphogen gradient formation, whereby morphogen activity is functionally distributed between apically and basolaterally secreted pools.
Collapse
Affiliation(s)
- Tanvi Gore
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Tamás Matusek
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Gisela D'Angelo
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France.,Institut Curie, UMR144 CNRS, 12 Rue Lhomond, 75005 Paris, France
| | - Cécile Giordano
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France.,Institut Curie, UMR144 CNRS, 12 Rue Lhomond, 75005 Paris, France
| | - Thomas Tognacci
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Laurence Lavenant-Staccini
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Catherine Rabouille
- Department of Cell Biology, Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences & University Medical Center Utrecht, 3584 CT Utrecht, Netherlands.,Department of Biomedical Science of Cells and Systems, University Medical Center Groningen, 9700 AD Groningen, Netherlands
| | - Pascal P Thérond
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| |
Collapse
|
18
|
Hall ET, Dillard ME, Stewart DP, Zhang Y, Wagner B, Levine RM, Pruett-Miller SM, Sykes A, Temirov J, Cheney RE, Mori M, Robinson CG, Ogden SK. Cytoneme delivery of Sonic Hedgehog from ligand-producing cells requires Myosin 10 and a Dispatched-BOC/CDON co-receptor complex. eLife 2021; 10:61432. [PMID: 33570491 PMCID: PMC7968926 DOI: 10.7554/elife.61432] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Morphogens function in concentration-dependent manners to instruct cell fate during tissue patterning. The cytoneme morphogen transport model posits that specialized filopodia extend between morphogen-sending and responding cells to ensure that appropriate signaling thresholds are achieved. How morphogens are transported along and deployed from cytonemes, how quickly a cytoneme-delivered, receptor-dependent signal is initiated, and whether these processes are conserved across phyla are not known. Herein, we reveal that the actin motor Myosin 10 promotes vesicular transport of Sonic Hedgehog (SHH) morphogen in mouse cell cytonemes, and that SHH morphogen gradient organization is altered in neural tubes of Myo10-/- mice. We demonstrate that cytoneme-mediated deposition of SHH onto receiving cells induces a rapid, receptor-dependent signal response that occurs within seconds of ligand delivery. This activity is dependent upon a novel Dispatched (DISP)-BOC/CDON co-receptor complex that functions in ligand-producing cells to promote cytoneme occurrence and facilitate ligand delivery for signal activation.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Miriam E Dillard
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Daniel P Stewart
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Ben Wagner
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, United States
| | - Rachel M Levine
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, United States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, United States
| | - April Sykes
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, United States
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Richard E Cheney
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, United States
| | - Motomi Mori
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, United States
| | - Camenzind G Robinson
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, United States
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
19
|
Hong M, Christ A, Christa A, Willnow TE, Krauss RS. Cdon mutation and fetal alcohol converge on Nodal signaling in a mouse model of holoprosencephaly. eLife 2020; 9:60351. [PMID: 32876567 PMCID: PMC7467722 DOI: 10.7554/elife.60351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Holoprosencephaly (HPE), a defect in midline patterning of the forebrain and midface, arises ~1 in 250 conceptions. It is associated with predisposing mutations in the Nodal and Hedgehog (HH) pathways, with penetrance and expressivity graded by genetic and environmental modifiers, via poorly understood mechanisms. CDON is a multifunctional co-receptor, including for the HH pathway. In mice, Cdon mutation synergizes with fetal alcohol exposure, producing HPE phenotypes closely resembling those seen in humans. We report here that, unexpectedly, Nodal signaling is a major point of synergistic interaction between Cdon mutation and fetal alcohol. Window-of-sensitivity, genetic, and in vitro findings are consistent with a model whereby brief exposure of Cdon mutant embryos to ethanol during gastrulation transiently and partially inhibits Nodal pathway activity, with consequent effects on midline patterning. These results illuminate mechanisms of gene-environment interaction in a multifactorial model of a common birth defect.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Annabel Christ
- Max-Delbruck-Center for Molecular Medicine, Berlin, Germany
| | - Anna Christa
- Max-Delbruck-Center for Molecular Medicine, Berlin, Germany
| | | | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
20
|
González‐Méndez L, Gradilla A, Sánchez‐Hernández D, González E, Aguirre‐Tamaral A, Jiménez‐Jiménez C, Guerra M, Aguilar G, Andrés G, Falcón‐Pérez JM, Guerrero I. Polarized sorting of Patched enables cytoneme-mediated Hedgehog reception in the Drosophila wing disc. EMBO J 2020; 39:e103629. [PMID: 32311148 PMCID: PMC7265244 DOI: 10.15252/embj.2019103629] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hedgehog (Hh) signal molecules play a fundamental role in development, adult stem cell maintenance and cancer. Hh can signal at a distance, and we have proposed that its graded distribution across Drosophila epithelia is mediated by filopodia-like structures called cytonemes. Hh reception by Patched (Ptc) happens at discrete sites along presenting and receiving cytonemes, reminiscent of synaptic processes. Here, we show that a vesicle fusion mechanism mediated by SNARE proteins is required for Ptc placement at contact sites. Transport of Ptc to these sites requires multivesicular bodies (MVBs) formation via ESCRT machinery, in a manner different to that regulating Ptc/Hh lysosomal degradation after reception. These MVBs include extracellular vesicle (EV) markers and, accordingly, Ptc is detected in the purified exosomal fraction from cultured cells. Blockage of Ptc trafficking and fusion to basolateral membranes result in low levels of Ptc presentation for reception, causing an extended and flattened Hh gradient.
Collapse
Affiliation(s)
- Laura González‐Méndez
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Ana‐Citlali Gradilla
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - David Sánchez‐Hernández
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Esperanza González
- Exosomes Lab. Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
| | - Adrián Aguirre‐Tamaral
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Carlos Jiménez‐Jiménez
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Milagros Guerra
- Electron Microscopy UnitCentro de Biología Molecular Severo Ochoa(CSIC‐UAM)Nicolás Cabrera 1Universidad Autonoma de MadridMadridSpain
| | - Gustavo Aguilar
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
- Growth and DevelopmentBiozentrumUniversity of BaselBaselSwitzerland
| | - Germán Andrés
- Electron Microscopy UnitCentro de Biología Molecular Severo Ochoa(CSIC‐UAM)Nicolás Cabrera 1Universidad Autonoma de MadridMadridSpain
| | - Juan M Falcón‐Pérez
- Exosomes Lab. Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)DerioSpain
| | - Isabel Guerrero
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
21
|
Rajabi H, Aslani S, Abhari A, Sanajou D. Expression Profiles of MicroRNAs in Stem Cells Differentiation. Curr Pharm Biotechnol 2020; 21:906-918. [PMID: 32072899 DOI: 10.2174/1389201021666200219092520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Stem cells are undifferentiated cells and have a great potential in multilineage differentiation. These cells are classified into adult stem cells like Mesenchymal Stem Cells (MSCs) and Embryonic Stem Cells (ESCs). Stem cells also have potential therapeutic utility due to their pluripotency, self-renewal, and differentiation ability. These properties make them a suitable choice for regenerative medicine. Stem cells differentiation toward functional cells is governed by different signaling pathways and transcription factors. Recent studies have demonstrated the key role of microRNAs in the pathogenesis of various diseases, cell cycle regulation, apoptosis, aging, cell fate decisions. Several types of stem cells have different and unique miRNA expression profiles. Our review summarizes novel regulatory roles of miRNAs in the process of stem cell differentiation especially adult stem cells into a variety of functional cells through signaling pathways and transcription factors modulation. Understanding the mechanistic roles of miRNAs might be helpful in elaborating clinical therapies using stem cells and developing novel biomarkers for the early and effective diagnosis of pathologic conditions.
Collapse
Affiliation(s)
- Hadi Rajabi
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Aslani
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Sanajou
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Zhang J, Liu Y, Jiang K, Jia J. Hedgehog signaling promotes lipolysis in adipose tissue through directly regulating Bmm/ATGL lipase. Dev Biol 2019; 457:128-139. [PMID: 31550483 DOI: 10.1016/j.ydbio.2019.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/21/2019] [Accepted: 09/20/2019] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) signaling has been shown to regulate multiple developmental processes, however, it is unclear how it regulates lipid metabolism. Here, we demonstrate that Hh signaling exhibits potent activity in Drosophila fat body, which is induced by both locally expressed and midgut-derived Hh proteins. Inactivation of Hh signaling increases, whereas activation of Hh signaling decreases lipid accumulation. The major lipase Brummer (Bmm) acts downstream of Smoothened (Smo) in Hh signaling to promote lipolysis, therefore, the breakdown of triacylglycerol (TAG). We identify a critical Ci binding site in bmm promoter that is responsible to mediate Bmm expression induced by Hh signaling. Genomic mutation of the Ci binding site significantly reduces the expression of Bmm and dramatically decreases the responsiveness to Ci overexpression. Together, our findings provide a model for lipolysis to be regulated by Hh signaling, raising the possibility for Hh signaling to be involved in lipid metabolic and/or lipid storage diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Yajuan Liu
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kai Jiang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
23
|
Kowatsch C, Woolley RE, Kinnebrew M, Rohatgi R, Siebold C. Structures of vertebrate Patched and Smoothened reveal intimate links between cholesterol and Hedgehog signalling. Curr Opin Struct Biol 2019; 57:204-214. [PMID: 31247512 PMCID: PMC6744280 DOI: 10.1016/j.sbi.2019.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022]
Abstract
The Hedgehog (HH) signalling pathway is a cell-cell communication system that controls the patterning of multiple tissues during embryogenesis in metazoans. In adults, HH signals regulate tissue stem cells and regenerative responses. Abnormal signalling can cause birth defects and cancer. The HH signal is received on target cells by Patched (PTCH1), the receptor for HH ligands, and then transmitted across the plasma membrane by Smoothened (SMO). Recent structural and biochemical studies have pointed to a sterol lipid, likely cholesterol itself, as the elusive second messenger that communicates the HH signal between PTCH1 and SMO, thus linking ligand reception to transmembrane signalling.
Collapse
Affiliation(s)
- Christiane Kowatsch
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rachel E Woolley
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Wu X, Zhang Y, Chuang KH, Cai X, Ajaz H, Zheng X. The Drosophila Hedgehog receptor component Interference hedgehog (Ihog) mediates cell-cell interactions through trans-homophilic binding. J Biol Chem 2019; 294:12339-12348. [PMID: 31209108 DOI: 10.1074/jbc.ra119.008744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/12/2019] [Indexed: 11/06/2022] Open
Abstract
Hedgehog (Hh) signaling is crucial for establishing complex cellular patterns in embryonic tissues and maintaining homeostasis in adult organs. In Drosophila, Interference hedgehog (Ihog) or its close paralogue Brother of Ihog (Boi) forms a receptor complex with Patched to mediate intracellular Hh signaling. Ihog proteins (Ihog and Boi) also contribute to cell segregation in wing imaginal discs through an unknown mechanism independent of their role in transducing the Hh signal. Here, we report a molecular mechanism by which the Ihog proteins mediate cell-cell interactions. We found that Ihog proteins are enriched at the site of cell-cell contacts and engage in trans-homophilic interactions in a calcium-independent manner. The region that we identified as mediating the trans-Ihog-Ihog interaction overlaps with the Ihog-Hh interface on the first fibronectin repeat of the extracellular domain of Ihog. We further demonstrate that Hh interferes with Ihog-mediated homophilic interactions by competing for Ihog binding. These results, thus, not only reveal a mechanism for Ihog-mediated cell-cell interactions but also suggest a direct Hh-mediated regulation of both intracellular signaling and cell adhesion through Ihog.
Collapse
Affiliation(s)
- Xuefeng Wu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052
| | - Ya Zhang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052
| | - Kun-Han Chuang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052
| | - Xudong Cai
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052
| | - Humna Ajaz
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052.
| |
Collapse
|
25
|
Zhang Y, Bulkley DP, Xin Y, Roberts KJ, Asarnow DE, Sharma A, Myers BR, Cho W, Cheng Y, Beachy PA. Structural Basis for Cholesterol Transport-like Activity of the Hedgehog Receptor Patched. Cell 2018; 175:1352-1364.e14. [PMID: 30415841 PMCID: PMC6326742 DOI: 10.1016/j.cell.2018.10.026] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/01/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
Hedgehog protein signals mediate tissue patterning and maintenance by binding to and inactivating their common receptor Patched, a 12-transmembrane protein that otherwise would suppress the activity of the 7-transmembrane protein Smoothened. Loss of Patched function, the most common cause of basal cell carcinoma, permits unregulated activation of Smoothened and of the Hedgehog pathway. A cryo-EM structure of the Patched protein reveals striking transmembrane domain similarities to prokaryotic RND transporters. A central hydrophobic conduit with cholesterol-like contents courses through the extracellular domain and resembles that used by other RND proteins to transport substrates, suggesting Patched activity in cholesterol transport. Cholesterol activity in the inner leaflet of the plasma membrane is reduced by PTCH1 expression but rapidly restored by Hedgehog stimulation, suggesting that PTCH1 regulates Smoothened by controlling cholesterol availability.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94158, USA
| | - David P Bulkley
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yao Xin
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kelsey J Roberts
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel E Asarnow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ashutosh Sharma
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benjamin R Myers
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94158, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Biochemistry and Urology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Hedgehog mediated degradation of Ihog adhesion proteins modulates cell segregation in Drosophila wing imaginal discs. Nat Commun 2017; 8:1275. [PMID: 29097673 PMCID: PMC5668237 DOI: 10.1038/s41467-017-01364-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2017] [Indexed: 11/08/2022] Open
Abstract
The Drosophila Hedgehog receptor functions to regulate the essential downstream pathway component, Smoothened, and to limit the range of signaling by sequestering Hedgehog protein signal within imaginal disc epithelium. Hedgehog receptor function requires both Patched and Ihog activity, the latter interchangeably encoded by interference hedgehog (ihog) or brother of ihog (boi). Here we show that Patched and Ihog activity are mutually required for receptor endocytosis and degradation, triggered by Hedgehog protein binding, and causing reduced levels of Ihog/Boi proteins in a stripe of cells at the anterior/posterior compartment boundary of the wing imaginal disc. This Ihog spatial discontinuity may contribute to classically defined cell segregation and lineage restriction at the anterior/posterior wing disc compartment boundary, as suggested by our observations that Ihog activity mediates aggregation of otherwise non-adherent cultured cells and that loss of Ihog activity disrupts wing disc cell segregation, even with downstream genetic rescue of Hedgehog signal response.
Collapse
|
27
|
IGDB-2, an Ig/FNIII protein, binds the ion channel LGC-34 and controls sensory compartment morphogenesis in C. elegans. Dev Biol 2017; 430:105-112. [PMID: 28803967 DOI: 10.1016/j.ydbio.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022]
Abstract
Sensory organ glia surround neuronal receptive endings (NREs), forming a specialized compartment important for neuronal activity, and reminiscent of glia-ensheathed synapses in the central nervous system. We previously showed that DAF-6, a Patched-related protein, is required in glia of the C. elegans amphid sensory organ to restrict sensory compartment size. LIT-1, a Nemo-like kinase, and SNX-1, a retromer component, antagonize DAF-6 and promote compartment expansion. To further explore the machinery underlying compartment size control, we sought genes whose inactivation restores normal compartment size to daf-6 mutants. We found that mutations in igdb-2, encoding a single-pass transmembrane protein containing Ig-like and fibronectin type III domains, suppress daf-6 mutant defects. IGDB-2 acts in glia, where it localizes to glial membranes surrounding NREs, and, together with LIT-1 and SNX-1, regulates compartment morphogenesis. Immunoprecipitation followed by mass spectrometry demonstrates that IGDB-2 binds to LGC-34, a predicted ligand-gated ion channel, and lgc-34 mutations inhibit igdb-2 suppression of daf-6. Our findings reveal a novel membrane protein complex and suggest possible mechanisms for how sensory compartment size is controlled.
Collapse
|
28
|
Abstract
Communication between cells pervades the development and physiology of metazoans. In animals, this process is carried out by a relatively small number of signaling pathways, each consisting of a chain of biochemical events through which extracellular stimuli control the behavior of target cells. One such signaling system is the Hedgehog pathway, which is crucial in embryogenesis and is implicated in many birth defects and cancers. Although Hedgehog pathway components were identified by genetic analysis more than a decade ago, our understanding of the molecular mechanisms of signaling is far from complete. In this review, we focus on the biochemistry and cell biology of the Hedgehog pathway. We examine the unique biosynthesis of the Hedgehog ligand, its specialized release from cells into extracellular space, and the poorly understood mechanisms involved in ligand reception and pathway activation at the surface of target cells. We highlight several critical questions that remain open.
Collapse
Affiliation(s)
- Kostadin Petrov
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Bradley M Wierbowski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
29
|
Simon E, Aguirre-Tamaral A, Aguilar G, Guerrero I. Perspectives on Intra- and Intercellular Trafficking of Hedgehog for Tissue Patterning. J Dev Biol 2016; 4:jdb4040034. [PMID: 29615597 PMCID: PMC5831803 DOI: 10.3390/jdb4040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Intercellular communication is a fundamental process for correct tissue development. The mechanism of this process involves, among other things, the production and secretion of signaling molecules by specialized cell types and the capability of these signals to reach the target cells in order to trigger specific responses. Hedgehog (Hh) is one of the best-studied signaling pathways because of its importance during morphogenesis in many organisms. The Hh protein acts as a morphogen, activating its targets at a distance in a concentration-dependent manner. Post-translational modifications of Hh lead to a molecule covalently bond to two lipid moieties. These lipid modifications confer Hh high affinity to lipidic membranes, and intense studies have been carried out to explain its release into the extracellular matrix. This work reviews Hh molecule maturation, the intracellular recycling needed for its secretion and the proposed carriers to explain Hh transportation to the receiving cells. Special focus is placed on the role of specialized filopodia, also named cytonemes, in morphogen transport and gradient formation.
Collapse
Affiliation(s)
- Eléanor Simon
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Adrián Aguirre-Tamaral
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Gustavo Aguilar
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Isabel Guerrero
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
30
|
Li T, Fan J, Blanco-Sánchez B, Giagtzoglou N, Lin G, Yamamoto S, Jaiswal M, Chen K, Zhang J, Wei W, Lewis MT, Groves AK, Westerfield M, Jia J, Bellen HJ. Ubr3, a Novel Modulator of Hh Signaling Affects the Degradation of Costal-2 and Kif7 through Poly-ubiquitination. PLoS Genet 2016; 12:e1006054. [PMID: 27195754 PMCID: PMC4873228 DOI: 10.1371/journal.pgen.1006054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Junkai Fan
- Markey Cancer Center and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Nikolaos Giagtzoglou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Zhang
- Markey Cancer Center and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wei Wei
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael T. Lewis
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew K. Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Jianhang Jia
- Markey Cancer Center and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Christ A, Herzog K, Willnow TE. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev Dyn 2016; 245:569-79. [PMID: 26872844 DOI: 10.1002/dvdy.24394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/31/2022] Open
Abstract
To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Katja Herzog
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| |
Collapse
|
32
|
Jiang K, Liu Y, Fan J, Zhang J, Li XA, Evers BM, Zhu H, Jia J. PI(4)P Promotes Phosphorylation and Conformational Change of Smoothened through Interaction with Its C-terminal Tail. PLoS Biol 2016; 14:e1002375. [PMID: 26863604 PMCID: PMC4749301 DOI: 10.1371/journal.pbio.1002375] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/07/2016] [Indexed: 12/29/2022] Open
Abstract
In Hedgehog (Hh) signaling, binding of Hh to the Patched-Interference Hh (Ptc-Ihog) receptor complex relieves Ptc inhibition on Smoothened (Smo). A longstanding question is how Ptc inhibits Smo and how such inhibition is relieved by Hh stimulation. In this study, we found that Hh elevates production of phosphatidylinositol 4-phosphate (PI(4)P). Increased levels of PI(4)P promote, whereas decreased levels of PI(4)P inhibit, Hh signaling activity. We further found that PI(4)P directly binds Smo through an arginine motif, which then triggers Smo phosphorylation and activation. Moreover, we identified the pleckstrin homology (PH) domain of G protein-coupled receptor kinase 2 (Gprk2) as an essential component for enriching PI(4)P and facilitating Smo activation. PI(4)P also binds mouse Smo (mSmo) and promotes its phosphorylation and ciliary accumulation. Finally, Hh treatment increases the interaction between Smo and PI(4)P but decreases the interaction between Ptc and PI(4)P, indicating that, in addition to promoting PI(4)P production, Hh regulates the pool of PI(4)P associated with Ptc and Smo.
Collapse
Affiliation(s)
- Kai Jiang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Yajuan Liu
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Junkai Fan
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jie Zhang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jianhang Jia
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
The Hedgehog (Hh) signaling pathway play critical roles in embryonic development and adult tissue homeostasis. A critical step in Hh signal transduction is how Hh receptor Patched (Ptc) inhibits the atypical G protein-coupled receptor Smoothened (Smo) in the absence of Hh and how this inhibition is release by Hh stimulation. It is unlikely that Ptc inhibits Smo by direct interaction. Here we discuss how Hh regulates the phosphorylation and ubiquitination of Smo, leading to cell surface and ciliary accumulation of Smo in Drosophila and vertebrate cells, respectively. In addition, we discuss how PI(4)P phospholipid acts in between Ptc and Smo to regulate Smo phosphorylation and activation in response to Hh stimulation.
Collapse
Affiliation(s)
- Kai Jiang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
34
|
Sánchez Ó, Calvo J, Ibáñez C, Guerrero I, Soler J. Modeling Hedgehog Signaling Through Flux-Saturated Mechanisms. Methods Mol Biol 2015; 1322:19-33. [PMID: 26179036 DOI: 10.1007/978-1-4939-2772-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Hedgehog (Hh) molecules act as morphogens directing cell fate during development by activating various target genes in a concentration dependent manner. Hitherto, modeling morphogen gradient formation in multicellular systems has employed linear diffusion, which is very far from physical reality and needs to be replaced by a deeper understanding of nonlinearities. We have developed a novel mathematical approach by applying flux-limited spreading (FLS) to Hh morphogenetic actions. In the new model, the characteristic velocity of propagation of each morphogen is a new key biological parameter. Unlike in linear diffusion models, FLS modeling predicts concentration fronts and correct patterns and cellular responses over time. In addition, FLS considers not only extracellular binding partners influence, but also channels or bridges of information transfer, such as specialized filopodia or cytonemes as a mechanism of Hh transport. We detect and measure morphogen particle velocity in cytonemes in the Drosophila wing imaginal disc. Indeed, this novel approach to morphogen gradient formation can contribute to future research in the field.
Collapse
Affiliation(s)
- Óscar Sánchez
- Departamento de Matemática Aplicada, Universidad de Granada, Campus de Fuentenueva, Granada, 18071, Spain
| | | | | | | | | |
Collapse
|
35
|
Lee HJ, Jo SB, Romer AI, Lim HJ, Kim MJ, Koo SH, Krauss RS, Kang JS. Overweight in mice and enhanced adipogenesis in vitro are associated with lack of the hedgehog coreceptor boc. Diabetes 2015; 64:2092-103. [PMID: 25576054 PMCID: PMC4439556 DOI: 10.2337/db14-1017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/01/2015] [Indexed: 12/27/2022]
Abstract
Obesity arises from a combination of genetic, environmental, and behavioral factors. However, the processes that regulate white adipose tissue (WAT) expansion at the level of the adipocyte are not well understood. The Hedgehog (HH) pathway plays a conserved role in adipogenesis, inhibiting fat formation in vivo and in vitro, but it has not been shown that mice with reduced HH pathway activity have enhanced adiposity. We report that mice lacking the HH coreceptor BOC displayed age-related overweight and excess WAT. They also displayed alterations in some metabolic parameters but normal food intake. Furthermore, they had an exacerbated response to a high-fat diet, including enhanced weight gain and adipocyte hypertrophy, livers with greater fat accumulation, and elevated expression of genes related to adipogenesis, lipid metabolism, and adipokine production. Cultured Boc(-/-) mouse embryo fibroblasts showed enhanced adipogenesis relative to Boc(+/+) cells, and they expressed reduced levels of HH pathway target genes. Therefore, a loss-of-function mutation in an HH pathway component is associated with WAT accumulation and overweight in mice. Variant alleles of such HH regulators may contribute to WAT accumulation in human individuals with additional genetic or lifestyle-based predisposition to obesity.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Shin-Bum Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Anthony I Romer
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hyo-Jeong Lim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Min-Jung Kim
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Robert S Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| |
Collapse
|
36
|
Hsia EYC, Gui Y, Zheng X. Regulation of Hedgehog signaling by ubiquitination. FRONTIERS IN BIOLOGY 2015; 10:203-220. [PMID: 26366162 PMCID: PMC4564008 DOI: 10.1007/s11515-015-1343-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hedgehog (Hh) signaling pathway plays crucial roles both in embryonic development and in adult stem cell function. The timing, duration and location of Hh signaling activity need to be tightly controlled. Abnormalities of Hh signal transduction lead to birth defects or malignant tumors. Recent data point to ubiquitination-related posttranslational modifications of several key Hh pathway components as an important mechanism of regulation of the Hh pathway. Here we review how ubiquitination regulates the localization, stability and activity of the key Hh signaling components.
Collapse
Affiliation(s)
- Elaine Y. C. Hsia
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Yirui Gui
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Xiaoyan Zheng
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
37
|
Swarup S, Pradhan-Sundd T, Verheyen EM. Genome-wide identification of phospho-regulators of Wnt signaling in Drosophila. Development 2015; 142:1502-15. [DOI: 10.1242/dev.116715] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evolutionarily conserved intercellular signaling pathways regulate embryonic development and adult tissue homeostasis in metazoans. The precise control of the state and amplitude of signaling pathways is achieved in part through the kinase- and phosphatase-mediated reversible phosphorylation of proteins. In this study, we performed a genome-wide in vivo RNAi screen for kinases and phosphatases that regulate the Wnt pathway under physiological conditions in the Drosophila wing disc. Our analyses have identified 54 high-confidence kinases and phosphatases capable of modulating the Wnt pathway, including 22 novel regulators. These candidates were also assayed for a role in the Notch pathway, and numerous phospho-regulators were identified. Additionally, each regulator of the Wnt pathway was evaluated in the wing disc for its ability to affect the mechanistically similar Hedgehog pathway. We identified 29 dual regulators that have the same effect on the Wnt and Hedgehog pathways. As proof of principle, we established that Cdc37 and Gilgamesh/CK1γ inhibit and promote signaling, respectively, by functioning at analogous levels of these pathways in both Drosophila and mammalian cells. The Wnt and Hedgehog pathways function in tandem in multiple developmental contexts, and the identification of several shared phospho-regulators serve as potential nodes of control under conditions of aberrant signaling and disease.
Collapse
Affiliation(s)
- Sharan Swarup
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| | - Tirthadipa Pradhan-Sundd
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| | - Esther M. Verheyen
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| |
Collapse
|
38
|
Song JY, Holtz AM, Pinskey JM, Allen BL. Distinct structural requirements for CDON and BOC in the promotion of Hedgehog signaling. Dev Biol 2015; 402:239-52. [PMID: 25848697 DOI: 10.1016/j.ydbio.2015.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/03/2015] [Accepted: 03/25/2015] [Indexed: 01/20/2023]
Abstract
Proper levels of Hedgehog (HH) signaling are essential during embryonic development and adult tissue homeostasis. A central mechanism to control HH pathway activity is through the regulation of secreted HH ligands at the plasma membrane. Recent studies have revealed a collective requirement for the cell surface co-receptors GAS1, CDON and BOC in HH signal transduction. Despite their requirement in HH pathway function, the mechanisms by which these proteins act to promote HH signaling remain poorly understood. Here we focus on the function of the two structurally related co-receptors, CDON and BOC. We utilized an in vivo gain-of-function approach in the developing chicken spinal cord to dissect the structural requirements for CDON and BOC function in HH signal transduction. Notably, we find that although CDON and BOC display functional redundancy during HH-dependent ventral neural patterning, these molecules utilize distinct molecular mechanisms to execute their HH-promoting effects. Specifically, we define distinct membrane attachment requirements for CDON and BOC function in HH signal transduction. Further, we identify novel and separate extracellular motifs in CDON and BOC that are required to promote HH signaling. Together, these data suggest that HH co-receptors employ distinct mechanisms to mediate HH pathway activity.
Collapse
Affiliation(s)
- Jane Y Song
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander M Holtz
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justine M Pinskey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
39
|
Pereira J, Johnson WE, O’Brien SJ, Jarvis ED, Zhang G, Gilbert MTP, Vasconcelos V, Antunes A. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh) in vertebrates. PLoS One 2014; 9:e74132. [PMID: 25549322 PMCID: PMC4280113 DOI: 10.1371/journal.pone.0074132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022] Open
Abstract
The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.
Collapse
Affiliation(s)
- Joana Pereira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Warren E. Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - Stephen J. O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
- Oceanographic Center, N. Ocean Drive, Nova Southeastern University, Ft. Lauderdale, Florida, United States of America
| | - Erich D. Jarvis
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zoon, Yantian District, Shenzhen, China
| | - M. Thomas P. Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
40
|
McCabe JM, Leahy DJ. Smoothened goes molecular: new pieces in the hedgehog signaling puzzle. J Biol Chem 2014; 290:3500-7. [PMID: 25519909 DOI: 10.1074/jbc.r114.617936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A general aim of studies of signal transduction is to identify mediators of specific signals, order them into pathways, and understand the nature of interactions between individual components and how these interactions alter pathway behavior. Despite years of intensive study and its central importance to animal development and human health, our understanding of the Hedgehog (Hh) signaling pathway remains riddled with gaps, question marks, assumptions, and poorly understood connections. In particular, understanding how interactions between Hh and Patched (Ptc), a 12-pass integral membrane protein, lead to modulation of the function of Smoothened (Smo), a 7-pass integral membrane protein, has defied standard biochemical characterization. Recent structural and biochemical characterizations of Smoothened domains have begun to unlock this riddle, however, and lay the groundwork for improved cancer therapies.
Collapse
Affiliation(s)
- Jacqueline M McCabe
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Daniel J Leahy
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
41
|
Kornberg TB. Cytonemes and the dispersion of morphogens. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:445-63. [PMID: 25186102 PMCID: PMC4199865 DOI: 10.1002/wdev.151] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/10/2014] [Accepted: 07/25/2014] [Indexed: 01/07/2023]
Abstract
Filopodia are cellular protrusions that have been implicated in many types of mechanosensory activities. Morphogens are signaling proteins that regulate the patterned development of embryos and tissues. Both have long histories that date to the beginnings of cell and developmental biology in the early 20th century, but recent findings tie specialized filopodia called cytonemes to morphogen movement and morphogen signaling. This review explores the conceptual and experimental background for a model of paracrine signaling in which the exchange of morphogens between cells is directed to sites where cytonemes directly link cells that produce morphogens to cells that receive and respond to them.
Collapse
Affiliation(s)
- Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
42
|
Hedgehog-regulated atypical PKC promotes phosphorylation and activation of Smoothened and Cubitus interruptus in Drosophila. Proc Natl Acad Sci U S A 2014; 111:E4842-50. [PMID: 25349414 DOI: 10.1073/pnas.1417147111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Smoothened (Smo) is essential for transduction of the Hedgehog (Hh) signal in both insects and vertebrates. Cell surface/cilium accumulation of Smo is thought to play an important role in Hh signaling, but how the localization of Smo is controlled remains poorly understood. In this study, we demonstrate that atypical PKC (aPKC) regulates Smo phosphorylation and basolateral accumulation in Drosophila wings. Inactivation of aPKC by either RNAi or a mutation inhibits Smo basolateral accumulation and attenuates Hh target gene expression. In contrast, expression of constitutively active aPKC elevates basolateral accumulation of Smo and promotes Hh signaling. The aPKC-mediated phosphorylation of Smo at Ser680 promotes Ser683 phosphorylation by casein kinase 1 (CK1), and these phosphorylation events elevate Smo activity in vivo. Moreover, aPKC has an additional positive role in Hh signaling by regulating the activity of Cubitus interruptus (Ci) through phosphorylation of the Zn finger DNA-binding domain. Finally, the expression of aPKC is up-regulated by Hh signaling in a Ci-dependent manner. Our findings indicate a direct involvement of aPKC in Hh signaling beyond its role in cell polarity.
Collapse
|
43
|
Detergent-solubilized Patched purified from Sf9 cells fails to interact strongly with cognate Hedgehog or Ihog homologs. Protein Expr Purif 2014; 104:92-102. [PMID: 25261717 DOI: 10.1016/j.pep.2014.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 01/20/2023]
Abstract
Patched (Ptc) is a twelve-pass transmembrane protein that functions as a receptor for the Hedgehog (Hh) family of morphogens. In addition to Ptc, several accessory proteins including the CDO/Ihog family of co-receptors are necessary for proper Hh signaling. Structures of Hh proteins bound to members of the CDO/Ihog family are known, but the nature of the full Hh receptor complex is not well understood. We have expressed the Drosophila Patched and Mouse Patched-1 proteins in Sf9 cells and find that Sonic Hedgehog will bind to Mouse Patched-1 in isolated Sf9 cell membranes but that purified, detergent-solubilized Ptc proteins do not interact strongly with cognate Hh and CDO/Ihog homologs. These results may reflect a nonnative conformation of detergent-solubilized Ptc or that an additional factor or factors lost during purification are required for high-affinity Ptc binding to Hh.
Collapse
|
44
|
The Shh receptor Boc promotes progression of early medulloblastoma to advanced tumors. Dev Cell 2014; 31:34-47. [PMID: 25263791 DOI: 10.1016/j.devcel.2014.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/25/2014] [Accepted: 08/07/2014] [Indexed: 12/23/2022]
Abstract
During cerebellar development, Sonic hedgehog (Shh) signaling drives the proliferation of granule cell precursors (GCPs). Aberrant activation of Shh signaling causes overproliferation of GCPs, leading to medulloblastoma. Although the Shh-binding protein Boc associates with the Shh receptor Ptch1 to mediate Shh signaling, whether Boc plays a role in medulloblastoma is unknown. Here, we show that BOC is upregulated in medulloblastomas and induces GCP proliferation. Conversely, Boc inactivation reduces proliferation and progression of early medulloblastomas to advanced tumors. Mechanistically, we find that Boc, through elevated Shh signaling, promotes high levels of DNA damage, an effect mediated by CyclinD1. High DNA damage in the presence of Boc increases the incidence of Ptch1 loss of heterozygosity, an important event in the progression from early to advanced medulloblastoma. Together, our results indicate that DNA damage promoted by Boc leads to the demise of its own coreceptor, Ptch1, and consequently medulloblastoma progression.
Collapse
|
45
|
Camp D, Haitian He B, Li S, Althaus IW, Holtz AM, Allen BL, Charron F, van Meyel DJ. Ihog and Boi elicit Hh signaling via Ptc but do not aid Ptc in sequestering the Hh ligand. Development 2014; 141:3879-88. [PMID: 25231763 DOI: 10.1242/dev.103564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) proteins are secreted molecules essential for tissue development in vertebrates and invertebrates. Hh reception via the 12-pass transmembrane protein Patched (Ptc) elicits intracellular signaling through Smoothened (Smo). Hh binding to Ptc is also proposed to sequester the ligand, limiting its spatial range of activity. In Drosophila, Interference hedgehog (Ihog) and Brother of ihog (Boi) are two conserved and redundant transmembrane proteins that are essential for Hh pathway activation. How Ihog and Boi activate signaling in response to Hh remains unknown; each can bind both Hh and Ptc and so it has been proposed that they are essential for both Hh reception and sequestration. Using genetic epistasis we established here that Ihog and Boi, and their orthologs in mice, act upstream or at the level of Ptc to allow Hh signal transduction. In the Drosophila developing wing model we found that it is through Hh pathway activation that Ihog and Boi maintain the boundary between the anterior and posterior compartments. We dissociated the contributions of Ptc from those of Ihog/Boi and, surprisingly, found that cells expressing Ptc can retain and sequester the Hh ligand without Ihog and Boi, but that Ihog and Boi cannot do so without Ptc. Together, these results reinforce the central role for Ptc in Hh binding in vivo and demonstrate that, although Ihog and Boi are dispensable for Hh sequestration, they are essential for pathway activation because they allow Hh to inhibit Ptc and thereby relieve its repression of Smo.
Collapse
Affiliation(s)
- Darius Camp
- McGill Centre for Research in Neuroscience and the McGill University Health Centre Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4 Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7 Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada H3A 1A3
| | - Billy Haitian He
- McGill Centre for Research in Neuroscience and the McGill University Health Centre Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | - Sally Li
- McGill Centre for Research in Neuroscience and the McGill University Health Centre Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | - Irene W Althaus
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander M Holtz
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frédéric Charron
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7 Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada H3A 1A3 Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4 Program in Neuroengineering, McGill University, Montreal, Quebec, Canada H3A 2K6 Department of Medicine, University of Montreal, Montreal, Quebec, Canada H3T 1J4 Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Donald J van Meyel
- McGill Centre for Research in Neuroscience and the McGill University Health Centre Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4 Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada H3A 1A3 Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4 Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
46
|
Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nat Commun 2014; 5:4272. [PMID: 25001599 PMCID: PMC4102123 DOI: 10.1038/ncomms5272] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Patterning of the vertebrate optic vesicle into proximal/optic stalk and distal/neural retina involves midline-derived Hedgehog (Hh) signalling, which promotes stalk specification. In the absence of Hh signalling, the stalks are not specified, causing cyclopia. Recent studies showed that the cell adhesion molecule Cdon forms a heteromeric complex with the Hh receptor Patched 1 (Ptc1). This receptor complex binds Hh and enhances signalling activation, indicating that Cdon positively regulates the pathway. Here we show that in the developing zebrafish and chick optic vesicle, in which cdon and ptc1 are expressed with a complementary pattern, Cdon acts as a negative Hh signalling regulator. Cdon predominantly localizes to the basolateral side of neuroepithelial cells, promotes the enlargement of the neuroepithelial basal end-foot and traps Hh protein, thereby limiting its dispersion. This Ptc-independent function protects the retinal primordium from Hh activity, defines the stalk/retina boundary and thus the correct proximo-distal patterning of the eye. The Drosophila homologue of the vertebrate cell surface glycoprotein Cdon binds Hedgehog ligand and thereby prevents its diffusion. Here, the authors provide evidence for a similar mechanism during vertebrate optic vesicle patterning, where Cdon acts as a negative regulator of Hedgehog signalling to define the boundary between the optic stalk and the retina.
Collapse
|
47
|
Guerrero I, Kornberg TB. Hedgehog and its circuitous journey from producing to target cells. Semin Cell Dev Biol 2014; 33:52-62. [PMID: 24994598 DOI: 10.1016/j.semcdb.2014.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The hedgehog (Hh) signaling protein has essential roles in the growth, development and regulation of many vertebrate and invertebrate organs. The processes that make Hh and prepare it for release from producing cells and that move it to target cells are both diverse and complex. This article reviews the essential features of these processes and highlights recent work that provides a novel framework to understand how these processes contribute to an integrated pathway.
Collapse
Affiliation(s)
- Isabel Guerrero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain.
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
48
|
Hartl TA, Scott MP. Wing tips: The wing disc as a platform for studying Hedgehog signaling. Methods 2014; 68:199-206. [PMID: 24556557 DOI: 10.1016/j.ymeth.2014.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/26/2022] Open
Abstract
Hedgehog (Hh) signal transduction is necessary for the development of most mammalian tissues and can go awry and cause birth defects or cancer. Hh signaling was initially described in Drosophila, and much of what we know today about mammalian Hh signaling was directly guided by discoveries in the fly. Indeed, Hh signaling is a wonderful example of the use of non-vertebrate model organisms to make basic discoveries that lead to new disease treatment. The first pharmaceutical to treat hyperactive Hh signaling in Basal Cell Carcinoma was released in 2012, approximately 30 years after the isolation of Hh mutants in Drosophila. The study of Hh signaling has been greatly facilitated by the imaginal wing disc, a tissue with terrific experimental advantages. Studies using the wing disc have led to an understanding of Hh ligand processing, packaging into particles for transmission, secretion, reception, signal transduction, target gene activation, and tissue patterning. Here we describe the imaginal wing disc, how Hh patterns this tissue, and provide methods to use wing discs to study Hh signaling in Drosophila. The tools and approaches we highlight form the cornerstone of research efforts in many laboratories that use Drosophila to study Hh signaling, and are essential for ongoing discoveries.
Collapse
Affiliation(s)
- Tom A Hartl
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
49
|
Filmus J, Capurro M. The role of glypicans in Hedgehog signaling. Matrix Biol 2014; 35:248-52. [PMID: 24412155 DOI: 10.1016/j.matbio.2013.12.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 01/13/2023]
Abstract
Glypicans (GPCs) are a family of proteoglycans that are bound to the cell surface by a glycosylphosphatidylinositol anchor. Six glypicans have been found in the mammalian genome (GPC1 to GPC6). GPCs regulate several signaling pathways, including the pathway triggered by Hedgehogs (Hhs). This regulation, which could be stimulatory or inhibitory, occurs at the signal reception level. In addition, GPCs have been shown to be involved in the formation of Hh gradients in the imaginal wing disks in Drosophila. In this review we will discuss the role of various glypicans in specific developmental events in the embryo that are regulated by Hh signaling. In addition, we will discuss the mechanism by which loss-of-function GPC3 mutations alter Hh signaling in the Simpson-Golabi-Behmel overgrowth syndrome, and the molecular basis of the GPC5-induced stimulation of Hh signaling and tumor progression in rhabdomyosarcomas.
Collapse
Affiliation(s)
- Jorge Filmus
- Platform of Biological Sciences, Sunnybrook Research Institute, ON, Canada; Dept. of Medical Biophysics, University of Toronto, ON, Canada.
| | - Mariana Capurro
- Platform of Biological Sciences, Sunnybrook Research Institute, ON, Canada; Dept. of Medical Biophysics, University of Toronto, ON, Canada
| |
Collapse
|
50
|
Fan J, Jiang K, Liu Y, Jia J. Hrs promotes ubiquitination and mediates endosomal trafficking of smoothened in Drosophila hedgehog signaling. PLoS One 2013; 8:e79021. [PMID: 24244405 PMCID: PMC3823941 DOI: 10.1371/journal.pone.0079021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022] Open
Abstract
In Hedgehog (Hh) signaling, the seven-transmembrane protein Smoothened (Smo) acts as a signal transducer that is regulated by phosphorylation, ubiquitination, and cell surface accumulation. However, it is not clear how Smo cell surface accumulation and intracellular trafficking are regulated. Here, we demonstrate that inactivation of Hrs by deletion or RNAi accumulates Smo in the late endosome that is marked by late endosome markers. Inactivation of Hrs enhances the wing defects caused by dominant-negative Smo. We show that Hrs promotes Smo ubiquitination, deleting the ubiquitin-interacting-motif (UIM) in Hrs abolishes the ability of Hrs to regulate Smo ubiquitination. However, the UIM domain neither recognizes the ubiquitinated Smo nor directly interacts with Smo. Hrs lacking UIM domain still downregulates Smo activity even though to a less extent. We have characterized that the N-terminus of Hrs directly interacts with the PKA/CK1 phosphorylation clusters to prevent Smo phosphorylation and activation, indicating an ubiquitin-independent regulation of Smo by Hrs. Finally, we found that knockdown of Tsg101 accumulates Smo that is co-localized with Hrs and other late endosome markers. Taken together, our data indicate that Hrs mediates Smo trafficking in the late endosome by not only promoting Smo ubiquitination but also blocking Smo phosphorylation.
Collapse
Affiliation(s)
- Junkai Fan
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, The University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Kai Jiang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, The University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Yajuan Liu
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, The University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, The University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| |
Collapse
|