1
|
Taghbalout A, Tung CH, Clow PA, Wang P, Tjong H, Wong CH, Mao DD, Maurya R, Huang MF, Ngan CY, Kim AH, Wei CL. Extrachromosomal DNA Associates with Nuclear Condensates and Reorganizes Chromatin Structures to Enhance Oncogenic Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613488. [PMID: 39345460 PMCID: PMC11429754 DOI: 10.1101/2024.09.17.613488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Extrachromosomal, circular DNA (ecDNA) is a prevalent oncogenic alteration in cancer genomes, often associated with aggressive tumor behavior and poor patient outcome. While previous studies proposed a chromatin-based mobile enhancer model for ecDNA-driven oncogenesis, its precise mechanism and impact remains unclear across diverse cancer types. Our study, utilizing advanced multi-omics profiling, epigenetic editing, and imaging approaches in three cancer models, reveals that ecDNA hubs are an integrated part of nuclear condensates and exhibit cancer-type specific chromatin connectivity. Epigenetic silencing of the ecDNA-specific regulatory modules or chemically disrupting liquid-liquid phase separation breaks down ecDNA hubs, displaces MED1 co-activator binding, inhibits oncogenic transcription, and promotes cell death. These findings substantiate the trans -activator function of ecDNA and underscore a structural mechanism driving oncogenesis. This refined understanding expands our views of oncogene regulation and opens potential avenues for novel therapeutic strategies in cancer treatment.
Collapse
|
2
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
3
|
Nuechterlein N, Shelbourn A, Szulzewsky F, Arora S, Casad M, Pattwell S, Merino-Galan L, Sulman E, Arowa S, Alvinez N, Jung M, Brown D, Tang K, Jackson S, Stoica S, Chittaboina P, Banasavadi-Siddegowda YK, Wirsching HG, Stella N, Shapiro L, Paddison P, Patel AP, Gilbert MR, Abdullaev Z, Aldape K, Pratt D, Holland EC, Cimino PJ. Haploinsufficiency of phosphodiesterase 10A activates PI3K/AKT signaling independent of PTEN to induce an aggressive glioma phenotype. Genes Dev 2024; 38:273-288. [PMID: 38589034 PMCID: PMC11065166 DOI: 10.1101/gad.351350.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Allison Shelbourn
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Michelle Casad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Siobhan Pattwell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington 98145, USA
| | - Leyre Merino-Galan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington 98145, USA
| | - Erik Sulman
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York 11220, USA
| | - Sumaita Arowa
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Neriah Alvinez
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Miyeon Jung
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Desmond Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Kayen Tang
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Sadhana Jackson
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Stefan Stoica
- Neurosurgery Unit for Pituitary and Inheritable Diseases, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Prashant Chittaboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Yeshavanth K Banasavadi-Siddegowda
- Molecular and Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Hans-Georg Wirsching
- Department of Neurology, University Hospital, University of Zurich, Zurich 8091, Switzerland
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Linda Shapiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Patrick Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Anoop P Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina 27710, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA;
| |
Collapse
|
4
|
Gregorczyk M, Parkes EE. Targeting mitotic regulators in cancer as a strategy to enhance immune recognition. DNA Repair (Amst) 2023; 132:103583. [PMID: 37871511 DOI: 10.1016/j.dnarep.2023.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Eukaryotic DNA has evolved to be enclosed within the nucleus to protect the cellular genome from autoinflammatory responses driven by the immunogenic nature of cytoplasmic DNA. Cyclic GMP-AMP Synthase (cGAS) is the cytoplasmic dsDNA sensor, which upon activation of Stimulator of Interferon Genes (STING), mediates production of pro-inflammatory interferons (IFNs) and interferon stimulated genes (ISGs). However, although this pathway is crucial in detection of viral and microbial genetic material, cytoplasmic DNA is not always of foreign origin. It is now recognised that specifically in genomic instability, a hallmark of cancer, extranuclear material in the form of micronuclei (MN) can be generated as a result of unresolved DNA lesions during mitosis. Activation of cGAS-STING in cancer has been shown to regulate numerous tumour-immune interactions such as acquisition of 'immunologically hot' phenotype which stimulates immune-mediated elimination of transformed cells. Nonetheless, a significant percentage of poorly prognostic cancers is 'immunologically cold'. As this state has been linked with low proportion of tumour-infiltrating lymphocytes (TILs), improving immunogenicity of cold tumours could be clinically relevant by exhibiting synergy with immunotherapy. This review aims to present how inhibition of vital mitotic regulators could provoke cGAS-STING response in cancer and improve the efficacy of current immunotherapy regimens.
Collapse
Affiliation(s)
- Mateusz Gregorczyk
- Oxford Centre for Immuno-Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Eileen E Parkes
- Oxford Centre for Immuno-Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
5
|
Tateishi K, Miyake Y, Nakamura T, Iwashita H, Hayashi T, Oshima A, Honma H, Hayashi H, Sugino K, Kato M, Satomi K, Fujii S, Komori T, Yamamoto T, Cahill DP, Wakimoto H. Genetic alterations that deregulate RB and PDGFRA signaling pathways drive tumor progression in IDH2-mutant astrocytoma. Acta Neuropathol Commun 2023; 11:186. [PMID: 38012788 PMCID: PMC10680361 DOI: 10.1186/s40478-023-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
In IDH-mutant astrocytoma, IDH2 mutation is quite rare and biological mechanisms underlying tumor progression in IDH2-mutant astrocytoma remain elusive. Here, we report a unique case of IDH2 mutant astrocytoma, CNS WHO grade 3 that developed tumor progression. We performed a comprehensive genomic and epigenomic analysis for primary and recurrent tumors and found that both tumors harbored recurrent IDH2R172K and TP53R248W mutation with CDKN2A/B hemizygous deletion. We also found amplifications of CDK4 and MDM2 with PDGFRA gain in the recurrent tumor and upregulated protein expressions of these genes. We further developed, for the first time, a xenograft mouse model of IDH2R172K and TP53R248W mutant astrocytoma from the recurrent tumor, but not from the primary tumor. Consistent with parent recurrent tumor cells, amplifications of CDK4 and MDM2 and PDGFRA gain were found, while CDKN2A/B was identified as homozygous deletion in the xenografts, qualifying for integrated diagnosis of astrocytoma, IDH2-mutant, CNS WHO grade 4. Cell viability assay found that CDK4/6 inhibitor and PDGFR inhibitor potently decreased cell viability in recurrent tumor cells, as compared to primary tumor cells. These findings suggest that gene alterations that activate retinoblastoma (RB) signaling pathways and PDGFR may drive tumor progression and xenograft formation in IDH2-mutant astrocytoma, which is equivalent to progressive IDH1-mutant astrocytoma. Also, our findings suggest that these genomic alterations may represent therapeutic targets in IDH2-mutant astrocytoma.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan.
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan.
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan.
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiromichi Iwashita
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Takahiro Hayashi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Akito Oshima
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hirokuni Honma
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiroaki Hayashi
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kyoka Sugino
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Miyui Kato
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Satoshi Fujii
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Molecular Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Ognibene M, De Marco P, Amoroso L, Fragola M, Zara F, Parodi S, Pezzolo A. Neuroblastoma Patients' Outcome and Chromosomal Instability. Int J Mol Sci 2023; 24:15514. [PMID: 37958497 PMCID: PMC10648898 DOI: 10.3390/ijms242115514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Chromosomal instability (CIN) induces a high rate of losses or gains of whole chromosomes or parts of chromosomes. It is a hallmark of most human cancers and one of the causes of aneuploidy and intra-tumor heterogeneity. The present study aimed to evaluate the potential prognostic role of CIN in NB patients at diagnosis. We performed array comparative genomic hybridization analyses on 451 primary NB patients at the onset of the disease. To assess global chromosomal instability with high precision, we focused on the total number of DNA breakpoints of gains or losses of chromosome arms. For each tumor, an array-CGH-based breakpoint instability index (BPI) was assigned which defined the total number of chromosomal breakpoints per genome. This approach allowed us to quantify CIN related to whole genome disruption in all NB cases analyzed. We found differences in chromosomal breakages among the NB clinical risk groups. High BPI values are negatively associated with survival of NB patients. This association remains significant when correcting for stage, age, and MYCN status in the Cox model. Stratified analysis confirms the prognostic effect of BPI index in low-risk NB patients with non-amplified MYCN and with segmental chromosome aberrations.
Collapse
Affiliation(s)
- Marzia Ognibene
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
| | - Patrizia De Marco
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
| | - Loredana Amoroso
- U.O.C. Oncologia Pediatrica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Martina Fragola
- Epidemiologia e Biostatistica, Direzione Scientifica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.F.); (S.P.)
| | - Federico Zara
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
| | - Stefano Parodi
- Epidemiologia e Biostatistica, Direzione Scientifica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.F.); (S.P.)
| | | |
Collapse
|
7
|
Cui S, Ye J. A protein-lipid complex that detoxifies free fatty acids. Bioessays 2023; 45:e2200210. [PMID: 36585363 PMCID: PMC9974861 DOI: 10.1002/bies.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
Fatty acids (FAs) are well known to serve as substrates for reactions that provide cells with membranes and energy. In contrast to these metabolic reactions, the physiological importance of FAs themselves known as free FAs (FFAs) in cells remains obscure. Since accumulation of FFAs in cells is toxic, cells must develop mechanisms to detoxify FFAs. One such mechanism is to sequester free polyunsaturated FAs (PUFAs) into a droplet-like structure assembled by Fas-Associated Factor 1 (FAF1), a cytosolic protein. This sequestration limits access of PUFAs to Fe2+ , thereby preventing Fe2+ -catalyzed PUFA peroxidation. Consequently, assembly of the FAF1-FFA complex is critical to protect cells from ferroptosis, a cell death pathway triggered by PUFA peroxidation. The observations that free PUFAs in cytosol are not randomly diffused but rather sequestered into a membraneless complex should open new directions to explore signaling pathways by which FFAs regulate cellular physiology.
Collapse
Affiliation(s)
- Shaojie Cui
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Yi E, Chamorro González R, Henssen AG, Verhaak RGW. Extrachromosomal DNA amplifications in cancer. Nat Rev Genet 2022; 23:760-771. [PMID: 35953594 PMCID: PMC9671848 DOI: 10.1038/s41576-022-00521-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 12/19/2022]
Abstract
Extrachromosomal DNA (ecDNA) amplification is an important driver alteration in cancer. It has been observed in most cancer types and is associated with worse patient outcome. The functional impact of ecDNA has been linked to its unique properties, such as its circular structure that is associated with altered chromatinization and epigenetic regulatory landscape, as well as its ability to randomly segregate during cell division, which fuels intercellular copy number heterogeneity. Recent investigations suggest that ecDNA is structurally more complex than previously anticipated and that it localizes to specialized nuclear bodies (hubs) and can act in trans as an enhancer for genes on other ecDNAs or chromosomes. In this Review, we synthesize what is currently known about how ecDNA is generated and how its genetic and epigenetic architecture affects proto-oncogene deregulation in cancer. We discuss how recently identified ecDNA functions may impact oncogenesis but also serve as new therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Eunhee Yi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Rocío Chamorro González
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
| | - Anton G Henssen
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany.
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
- German Cancer Consortium (DKTK), partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Guo T, Bao A, Xie Y, Qiu J, Piao H. Single-Cell Sequencing Analysis Identified ASTN2 as a Migration Biomarker in Adult Glioblastoma. Brain Sci 2022; 12:1472. [PMID: 36358398 PMCID: PMC9688571 DOI: 10.3390/brainsci12111472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma is the most common and aggressive primary central nervous system malignant tumors. With the development of targeted sequencing and proteomic profiling technology, some new tumor types have been established and a series of novel molecular markers have also been identified. The 2021 updated World Health Organization classification of central nervous system tumors first mentioned the classification of adult glioma and pediatric glioma based on the molecular diagnosis. Thus, we used single-cell RNA sequencing analysis to explore the diversity and similarities in the occurrence and development of adult and pediatric types. ASTN2, which primarily encodes astrotactin, has been reported to be dysregulated in various neurodevelopmental disorders. Although some studies have demonstrated that ASTN2 plays an important role in glial-guided neuronal migration, there are no studies about its impact on glioblastoma cell migration. Subsequent single-cell RNA sequencing revealed ASTN2 to be a hub gene of a cell cluster which had a poor effect on clinical prognosis. Eventually, a western blot assay and a wound-healing assay first confirmed that ASTN2 expression in glioblastoma cell lines is higher than that in normal human astrocytes and affects the migration ability of glioblastoma cells, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Tangjun Guo
- Graduate School, Dalian Medical University, Dalian 116000, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Aijun Bao
- Department of Neurosurgery, Affiliated Hefei Hospital of Anhui Medical University, The Second People’s Hospital of Hefei, Hefei 230000, China
| | - Yandong Xie
- Graduate School, Nanjing Medical University, Nanjing 210029, China
| | - Jianting Qiu
- Department of Neurology, The People’s Hospital of Liaoning Province, Shenyang 110042, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| |
Collapse
|
10
|
Ding J, Li X, Khan S, Zhang C, Gao F, Sen S, Wasylishen AR, Zhao Y, Lozano G, Koul D, Alfred Yung WK. EGFR suppresses p53 function by promoting p53 binding to DNA-PKcs: a noncanonical regulatory axis between EGFR and wild-type p53 in glioblastoma. Neuro Oncol 2022; 24:1712-1725. [PMID: 35474131 PMCID: PMC9527520 DOI: 10.1093/neuonc/noac105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) amplification and TP53 mutation are the two most common genetic alterations in glioblastoma multiforme (GBM). A comprehensive analysis of the TCGA GBM database revealed a subgroup with near mutual exclusivity of EGFR amplification and TP53 mutations indicative of a role of EGFR in regulating wild-type-p53 (wt-p53) function. The relationship between EGFR amplification and wt-p53 function remains undefined and this study describes the biological significance of this interaction in GBM. METHODS Mass spectrometry was used to identify EGFR-dependent p53-interacting proteins. The p53 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) interaction was detected by co-immunoprecipitation. We used CRISPR-Cas9 gene editing to knockout EGFR and DNA-PKcs and the Edit-R CRIPSR-Cas9 system for conditional knockout of EGFR. ROS activity was measured with a CM-H2DCFDA probe, and real-time PCR was used to quantify expression of p53 target genes. RESULTS Using glioma sphere-forming cells (GSCs), we identified, DNA-PKcs as a p53 interacting protein that functionally inhibits p53 activity. We demonstrate that EGFR knockdown increased wt-p53 transcriptional activity, which was associated with decreased binding between p53 and DNA-PKcs. We further show that inhibition of DNA-PKcs either by siRNA or an inhibitor (nedisertib) increased wt-p53 transcriptional activity, which was not enhanced further by EGFR knockdown, indicating that EGFR suppressed wt-p53 activity through DNA-PKcs binding with p53. Finally, using conditional EGFR-knockout GSCs, we show that depleting EGFR increased animal survival in mice transplanted with wt-p53 GSCs. CONCLUSION This study demonstrates that EGFR signaling inhibits wt-p53 function in GBM by promoting an interaction between p53 and DNA-PKcs.
Collapse
Affiliation(s)
- Jie Ding
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaolong Li
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sabbir Khan
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chen Zhang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Gao
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shayak Sen
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amanda R Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yang Zhao
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
11
|
Cui S, Simmons G, Vale G, Deng Y, Kim J, Kim H, Zhang R, McDonald JG, Ye J. FAF1 blocks ferroptosis by inhibiting peroxidation of polyunsaturated fatty acids. Proc Natl Acad Sci U S A 2022; 119:e2107189119. [PMID: 35467977 PMCID: PMC9169925 DOI: 10.1073/pnas.2107189119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/25/2022] [Indexed: 10/22/2023] Open
Abstract
Iron-dependent peroxidation of polyunsaturated fatty acids (PUFAs) leads to ferroptosis. While detoxification reactions removing lipid peroxides in phospholipids such as that catalyzed by glutathione peroxidase 4 (GPX4) protect cells from ferroptosis, the mechanism through which cells prevent PUFA peroxidation was not completely understood. We previously identified Fas-associated factor 1 (FAF1) as a protein directly interacting with free PUFAs through its UAS domain. Here we report that this interaction is crucial to protect cells from ferroptosis. In the absence of FAF1, cultured cells became sensitive to ferroptosis upon exposure to physiological levels of PUFAs, and mice developed hepatic injury upon consuming a diet enriched in PUFA. Mechanistically, we demonstrate that FAF1 assembles a globular structure that sequesters free PUFAs into a hydrophobic core, a reaction that prevents PUFA peroxidation by limiting its access to iron. Our study suggests that peroxidation of free PUFAs contributes to ferroptosis, and FAF1 acts upstream of GPX4 to prevents initiation of ferroptosis by limiting peroxidation of free PUFAs.
Collapse
Affiliation(s)
- Shaojie Cui
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Glenn Simmons
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Goncalo Vale
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yaqin Deng
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jungyeon Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hyeonwoo Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ruihui Zhang
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jeffrey G. McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
12
|
Qi M, Stenson PD, Ball EV, Tainer JA, Bacolla A, Kehrer-Sawatzki H, Cooper DN, Zhao H. Distinct sequence features underlie microdeletions and gross deletions in the human genome. Hum Mutat 2021; 43:328-346. [PMID: 34918412 PMCID: PMC9069542 DOI: 10.1002/humu.24314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Microdeletions and gross deletions are important causes (~20%) of human inherited disease and their genomic locations are strongly influenced by the local DNA sequence environment. This notwithstanding, no study has systematically examined their underlying generative mechanisms. Here, we obtained 42,098 pathogenic microdeletions and gross deletions from the Human Gene Mutation Database (HGMD) that together form a continuum of germline deletions ranging in size from 1 to 28,394,429 bp. We analyzed the DNA sequence within 1 kb of the breakpoint junctions and found that the frequencies of non‐B DNA‐forming repeats, GC‐content, and the presence of seven of 78 specific sequence motifs in the vicinity of pathogenic deletions correlated with deletion length for deletions of length ≤30 bp. Further, we found that the presence of DR, GQ, and STR repeats is important for the formation of longer deletions (>30 bp) but not for the formation of shorter deletions (≤30 bp) while significantly (χ2, p < 2E−16) more microhomologies were identified flanking short deletions than long deletions (length >30 bp). We provide evidence to support a functional distinction between microdeletions and gross deletions. Finally, we propose that a deletion length cut‐off of 25–30 bp may serve as an objective means to functionally distinguish microdeletions from gross deletions.
Collapse
Affiliation(s)
- Mengling Qi
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Edward V Ball
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| |
Collapse
|
13
|
Lu W, Chen H, Liang B, Ou C, Zhang M, Yue Q, Xie J. Integrative Analyses and Verification of the Expression and Prognostic Significance for RCN1 in Glioblastoma Multiforme. Front Mol Biosci 2021; 8:736947. [PMID: 34722631 PMCID: PMC8548715 DOI: 10.3389/fmolb.2021.736947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma multiform is a lethal primary brain tumor derived from astrocytic, with a poor prognosis in adults. Reticulocalbin-1 (RCN1) is a calcium-binding protein, dysregulation of which contributes to tumorigenesis and progression in various cancers. The present study aimed to identify the impact of RCN1 on the outcomes of patients with Glioblastoma multiforme (GBM). The study applied two public databases to require RNA sequencing data of Glioblastoma multiform samples with clinical data for the construction of a training set and a validation set, respectively. We used bioinformatic analyses to determine that RCN1 could be an independent factor for the overall survival of Glioblastoma multiform patients. In the training set, the study constructed a predictive prognostic model based on the combination of RCN1 with various clinical parameters for overall survival at 0.5-, 1.0-, and 1.5-years, as well as developed a nomogram, which was further validated by validation set. Pathways analyses indicated that RCN1 was involved in KEAS and MYC pathways and apoptosis. In vitro experiments indicated that RCN1 promoted cell invasion of Glioblastoma multiform cells. These results illustrated the prognostic role of RCN1 for overall survival in Glioblastoma multiform patients, indicated the promotion of RCN1 in cell invasion, and suggested the probability of RCN1 as a potential targeted molecule for treatment in Glioblastoma multiform.
Collapse
Affiliation(s)
- Weicheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Hong Chen
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Chaopeng Ou
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Mingwei Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qiuyuan Yue
- Department of Radiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Jingdun Xie
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| |
Collapse
|
14
|
Karami Fath M, Akbari Oryani M, Ramezani A, Barjoie Mojarad F, Khalesi B, Delazar S, Anjomrooz M, Taghizadeh A, Taghizadeh S, Payandeh Z, Pourzardosht N. Extra chromosomal DNA in different cancers: Individual genome with important biological functions. Crit Rev Oncol Hematol 2021; 166:103477. [PMID: 34534658 DOI: 10.1016/j.critrevonc.2021.103477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer can be caused by various factors, including the malfunction of tumor suppressor genes and the hyper-activation of proto-oncogenes. Tumor-associated extrachromosomal circular DNA (eccDNA) has been shown to adversely affect human health and accelerate malignant actions. Whole-genome sequencing (WGS) on different cancer types suggested that the amplification of ecDNA has increased the oncogene copy number in various cancers. The unique structure and function of ecDNA, its profound significance in cancer, and its help in the comprehension of current cancer genome maps, renders it as a hotspot to explore the tumor pathogenesis and evolution. Illumination of the basic mechanisms of ecDNA may provide more insights into cancer therapeutics. Despite the recent advances, different features of ecDNA require further elucidation. In the present review, we primarily discussed the characteristics, biogenesis, genesis, and origin of ecDNA and later highlighted its functions in both tumorigenesis and therapeutic resistance of different cancers.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arefeh Ramezani
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Barjoie Mojarad
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Sina Delazar
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Taghizadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Taghizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
15
|
Multiregional Sequencing of IDH-WT Glioblastoma Reveals High Genetic Heterogeneity and a Dynamic Evolutionary History. Cancers (Basel) 2021; 13:cancers13092044. [PMID: 33922652 PMCID: PMC8122908 DOI: 10.3390/cancers13092044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Glioblastoma is the most common and aggressive primary brain malignancy in adults. In addition to extensive inter-patient heterogeneity, glioblastoma shows intra-tumor extensive cellular and molecular heterogeneity, both spatially and temporally. This heterogeneity is one of the main reasons for the poor prognosis and overall survival. Moreover, it raises the important question of whether the molecular characterization of a single biopsy sample, as performed in standard diagnostics, actually represents the entire lesion. In this study, we sequenced the whole exome of nine spatially different cancer regions of three primary glioblastomas. We characterized their mutational profiles and copy number alterations, with implications for our understanding of tumor biology in relation to clonal architecture and evolutionary dynamics, as well as therapeutically relevant alterations. Abstract Glioblastoma is one of the most common and lethal primary neoplasms of the brain. Patient survival has not improved significantly over the past three decades and the patient median survival is just over one year. Tumor heterogeneity is thought to be a major determinant of therapeutic failure and a major reason for poor overall survival. This work aims to comprehensively define intra- and inter-tumor heterogeneity by mapping the genomic and mutational landscape of multiple areas of three primary IDH wild-type (IDH-WT) glioblastomas. Using whole exome sequencing, we explored how copy number variation, chromosomal and single loci amplifications/deletions, and mutational burden are spatially distributed across nine different tumor regions. The results show that all tumors exhibit a different signature despite the same diagnosis. Above all, a high inter-tumor heterogeneity emerges. The evolutionary dynamics of all identified mutations within each region underline the questionable value of a single biopsy and thus the therapeutic approach for the patient. Multiregional collection and subsequent sequencing are essential to try to address the clinical challenge of precision medicine. Especially in glioblastoma, this approach could provide powerful support to pathologists and oncologists in evaluating the diagnosis and defining the best treatment option.
Collapse
|
16
|
Nuechterlein N, Li B, Feroze A, Holland EC, Shapiro L, Haynor D, Fink J, Cimino PJ. Radiogenomic modeling predicts survival-associated prognostic groups in glioblastoma. Neurooncol Adv 2021; 3:vdab004. [PMID: 33615222 PMCID: PMC7883769 DOI: 10.1093/noajnl/vdab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Combined whole-exome sequencing (WES) and somatic copy number alteration (SCNA) information can separate isocitrate dehydrogenase (IDH)1/2-wildtype glioblastoma into two prognostic molecular subtypes, which cannot be distinguished by epigenetic or clinical features. The potential for radiographic features to discriminate between these molecular subtypes has yet to be established. Methods Radiologic features (n = 35 340) were extracted from 46 multisequence, pre-operative magnetic resonance imaging (MRI) scans of IDH1/2-wildtype glioblastoma patients from The Cancer Imaging Archive (TCIA), all of whom have corresponding WES/SCNA data. We developed a novel feature selection method that leverages the structure of extracted MRI features to mitigate the dimensionality challenge posed by the disparity between a large number of features and the limited patients in our cohort. Six traditional machine learning classifiers were trained to distinguish molecular subtypes using our feature selection method, which was compared to least absolute shrinkage and selection operator (LASSO) feature selection, recursive feature elimination, and variance thresholding. Results We were able to classify glioblastomas into two prognostic subgroups with a cross-validated area under the curve score of 0.80 (±0.03) using ridge logistic regression on the 15-dimensional principle component analysis (PCA) embedding of the features selected by our novel feature selection method. An interrogation of the selected features suggested that features describing contours in the T2 signal abnormality region on the T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI sequence may best distinguish these two groups from one another. Conclusions We successfully trained a machine learning model that allows for relevant targeted feature extraction from standard MRI to accurately predict molecularly-defined risk-stratifying IDH1/2-wildtype glioblastoma patient groups.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Beibin Li
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Abdullah Feroze
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Linda Shapiro
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - David Haynor
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - James Fink
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Patrick J Cimino
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Pathology, Division of Neuropathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Di Cintio F, Dal Bo M, Baboci L, De Mattia E, Polano M, Toffoli G. The Molecular and Microenvironmental Landscape of Glioblastomas: Implications for the Novel Treatment Choices. Front Neurosci 2020; 14:603647. [PMID: 33324155 PMCID: PMC7724040 DOI: 10.3389/fnins.2020.603647] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary central nervous system tumor. Surgery followed by radiotherapy and chemotherapy with alkylating agents constitutes standard first-line treatment of GBM. Complete resection of the GBM tumors is generally not possible given its high invasive features. Although this combination therapy can prolong survival, the prognosis is still poor due to several factors including chemoresistance. In recent years, a comprehensive characterization of the GBM-associated molecular signature has been performed. This has allowed the possibility to introduce a more personalized therapeutic approach for GBM, in which novel targeted therapies, including those employing tyrosine kinase inhibitors (TKIs), could be employed. The GBM tumor microenvironment (TME) exerts a key role in GBM tumor progression, in particular by providing an immunosuppressive state with low numbers of tumor-infiltrating lymphocytes (TILs) and other immune effector cell types that contributes to tumor proliferation and growth. The use of immune checkpoint inhibitors (ICIs) has been successfully introduced in numerous advanced cancers as well as promising results have been shown for the use of these antibodies in untreated brain metastases from melanoma and from non-small cell lung carcinoma (NSCLC). Consequently, the use of PD-1/PD-L1 inhibitors has also been proposed in several clinical trials for the treatment of GBM. In the present review, we will outline the main GBM molecular and TME aspects providing also the grounds for novel targeted therapies and immunotherapies using ICIs for GBM.
Collapse
Affiliation(s)
- Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
18
|
Gu X, Yu J, Chai P, Ge S, Fan X. Novel insights into extrachromosomal DNA: redefining the onco-drivers of tumor progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:215. [PMID: 33046109 PMCID: PMC7552444 DOI: 10.1186/s13046-020-01726-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Extrachromosomal DNA (ecDNA), gene-encoding extrachromosomal particles of DNA, is often present in tumor cells. Recent studies have revealed that oncogene amplification via ecDNA is widespread across a diverse range of cancers. ecDNA is involved in increasing tumor heterogeneity, reverting tumor phenotypes, and enhancing gene expression and tumor resistance to chemotherapy, indicating that it plays a significant role in tumorigenesis. In this review, we summarize the characteristics and genesis of ecDNA, connect these characteristics with their concomitant influences on tumorigenesis, enumerate the oncogenes encoded by ecDNA in multiple cancers, elaborate the roles of ecDNA in tumor pathogenesis and progression, and propose the considerable research and therapeutic prospects of ecDNA in cancer.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China.
| |
Collapse
|
19
|
Kim H, Nguyen NP, Turner K, Wu S, Gujar AD, Luebeck J, Liu J, Deshpande V, Rajkumar U, Namburi S, Amin SB, Yi E, Menghi F, Schulte JH, Henssen AG, Chang HY, Beck CR, Mischel PS, Bafna V, Verhaak RGW. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat Genet 2020; 52:891-897. [PMID: 32807987 PMCID: PMC7484012 DOI: 10.1038/s41588-020-0678-2] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022]
Abstract
Extrachromosomal DNA (ecDNA) amplification promotes intratumoral genetic heterogeneity and accelerated tumor evolution1-3; however, its frequency and clinical impact are unclear. Using computational analysis of whole-genome sequencing data from 3,212 cancer patients, we show that ecDNA amplification frequently occurs in most cancer types but not in blood or normal tissue. Oncogenes were highly enriched on amplified ecDNA, and the most common recurrent oncogene amplifications arose on ecDNA. EcDNA amplifications resulted in higher levels of oncogene transcription compared to copy number-matched linear DNA, coupled with enhanced chromatin accessibility, and more frequently resulted in transcript fusions. Patients whose cancers carried ecDNA had significantly shorter survival, even when controlled for tissue type, than patients whose cancers were not driven by ecDNA-based oncogene amplification. The results presented here demonstrate that ecDNA-based oncogene amplification is common in cancer, is different from chromosomal amplification and drives poor outcome for patients across many cancer types.
Collapse
Affiliation(s)
- Hoon Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Nam-Phuong Nguyen
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
- Boundless Bio, La Jolla, CA, USA
| | - Kristen Turner
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
- Boundless Bio, La Jolla, CA, USA
| | - Sihan Wu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Amit D Gujar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
- Bioinformatics & Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Jihe Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Viraj Deshpande
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
- Illumina, San Diego, CA, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Sandeep Namburi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Eunhee Yi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Johannes H Schulte
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Anton G Henssen
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Pathology, University of California, San Diego, San Diego, CA, USA.
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| |
Collapse
|
20
|
Mirchia K, Richardson TE. Beyond IDH-Mutation: Emerging Molecular Diagnostic and Prognostic Features in Adult Diffuse Gliomas. Cancers (Basel) 2020; 12:E1817. [PMID: 32640746 PMCID: PMC7408495 DOI: 10.3390/cancers12071817] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Diffuse gliomas are among the most common adult central nervous system tumors with an annual incidence of more than 16,000 cases in the United States. Until very recently, the diagnosis of these tumors was based solely on morphologic features, however, with the publication of the WHO Classification of Tumours of the Central Nervous System, revised 4th edition in 2016, certain molecular features are now included in the official diagnostic and grading system. One of the most significant of these changes has been the division of adult astrocytomas into IDH-wildtype and IDH-mutant categories in addition to histologic grade as part of the main-line diagnosis, although a great deal of heterogeneity in the clinical outcome still remains to be explained within these categories. Since then, numerous groups have been working to identify additional biomarkers and prognostic factors in diffuse gliomas to help further stratify these tumors in hopes of producing a more complete grading system, as well as understanding the underlying biology that results in differing outcomes. The field of neuro-oncology is currently in the midst of a "molecular revolution" in which increasing emphasis is being placed on genetic and epigenetic features driving current diagnostic, prognostic, and predictive considerations. In this review, we focus on recent advances in adult diffuse glioma biomarkers and prognostic factors and summarize the state of the field.
Collapse
Affiliation(s)
- Kanish Mirchia
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA;
| | | |
Collapse
|
21
|
Bonjoch L, Franch-Expósito S, Garre P, Belhadj S, Muñoz J, Arnau-Collell C, Díaz-Gay M, Gratacós-Mulleras A, Raimondi G, Esteban-Jurado C, Soares de Lima Y, Herrera-Pariente C, Cuatrecasas M, Ocaña T, Castells A, Fillat C, Capellá G, Balaguer F, Caldés T, Valle L, Castellví-Bel S. Germline Mutations in FAF1 Are Associated With Hereditary Colorectal Cancer. Gastroenterology 2020; 159:227-240.e7. [PMID: 32179092 DOI: 10.1053/j.gastro.2020.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS A significant proportion of colorectal cancer (CRC) cases have familial aggregation but little is known about the genetic factors that contribute to these cases. We performed an exhaustive functional characterization of genetic variants associated with familial CRC. METHODS We performed whole-exome sequencing analyses of 75 patients from 40 families with a history of CRC (including early-onset cases) of an unknown germline basis (discovery cohort). We also sequenced specific genes in DNA from an external replication cohort of 473 families, including 488 patients with colorectal tumors that had normal expression of mismatch repair proteins (validation cohort). We disrupted the Fas-associated factor 1 gene (FAF1) in DLD-1 CRC cells using CRISPR/Cas9 gene editing; some cells were transfected with plasmids that express FAF1 missense variants. Cells were analyzed by immunoblots, quantitative real-time polymerase chain reaction, and functional assays monitoring apoptosis, proliferation, and assays for Wnt signaling or nuclear factor (NF)-kappa-B activity. RESULTS We identified predicted pathogenic variant in the FAF1 gene (c.1111G>A; p.Asp371Asn) in the discovery cohort; it was present in 4 patients of the same family. We identified a second variant in FAF1 in the validation cohort (c.254G>C; p.Arg85Pro). Both variants encoded unstable FAF1 proteins. Expression of these variants in CRC cells caused them to become resistant to apoptosis, accumulate beta-catenin in the cytoplasm, and translocate NF-kappa-B to the nucleus. CONCLUSIONS In whole-exome sequencing analyses of patients from families with a history of CRC, we identified variants in FAF1 that associate with development of CRC. These variants encode unstable forms of FAF1 that increase resistance of CRC cells to apoptosis and increase activity of beta-catenin and NF-kappa-B.
Collapse
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Sebastià Franch-Expósito
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Pilar Garre
- Molecular Oncology Laboratory, Centro Investigación Biomédica en Red de Cáncer (CIBERONC). Hospital Clínico San Carlos. Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Jenifer Muñoz
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Coral Arnau-Collell
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Marcos Díaz-Gay
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Anna Gratacós-Mulleras
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Giulia Raimondi
- Gene Therapy and Cancer, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, Barcelona, Spain
| | - Clara Esteban-Jurado
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yasmin Soares de Lima
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Herrera-Pariente
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) and Tumor Bank-Biobank, Hospital Clínic, Barcelona, Spain
| | - Teresa Ocaña
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Castells
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Fillat
- Gene Therapy and Cancer, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Trinidad Caldés
- Molecular Oncology Laboratory, Centro Investigación Biomédica en Red de Cáncer (CIBERONC). Hospital Clínico San Carlos. Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
Yang J, Chen Y, Luo H, Cai H. The Landscape of Somatic Copy Number Alterations in Head and Neck Squamous Cell Carcinoma. Front Oncol 2020; 10:321. [PMID: 32226775 PMCID: PMC7080958 DOI: 10.3389/fonc.2020.00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/24/2020] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Somatic copy number alterations (CNAs) play a significant role in the development of this lethal cancer. In this study, we present a meta-analysis of CNAs for a total of 1,395 HNSCC samples. Publicly available R packages and in-house scripts were used for genomic array data processing, including normalization, segmentation and CNA calling. We detected 125 regions of significant gains or losses using GISTIC algorithm and found several potential driver genes in these regions. The incidence of chromothripsis in HNSCC was estimated to be 6%, and the chromosome pulverization hotspot regions were detected. We determined 323 genomic locations significantly enriched for breakpoints, which indicate HNSCC-specific genomic instability regions. Unsupervised clustering of genome-wide CNA data revealed a sub-cluster predominantly composed of nasopharynx tumors and presented a large proportion of HPV-positive samples. These results will facilitate the discovery of therapeutic candidates and extend our molecular understanding of HNSCC.
Collapse
Affiliation(s)
- Jian Yang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Luo
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Li Z, Zhang X, Hou C, Zhou Y, Chen J, Cai H, Ye Y, Liu J, Huang N. Comprehensive identification and characterization of somatic copy number alterations in triple‑negative breast cancer. Int J Oncol 2019; 56:522-530. [PMID: 31894314 PMCID: PMC6959384 DOI: 10.3892/ijo.2019.4950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/30/2019] [Indexed: 12/27/2022] Open
Abstract
Triple‑negative breast cancer (TNBC) accounts for ~15% of all breast cancer diagnoses each year. Patients with TNBC tend to have a higher risk for early relapse and a worse prognosis. TNBC is characterized by extensive somatic copy number alterations (CNAs). However, the DNA CNA profile of TNBC remains to be extensively investigated. The present study assessed the genomic profile of CNAs in 201 TNBC samples, aiming to identify recurrent CNAs that may drive the pathogenesis of TNBC. In total, 123 regions of significant amplification and deletion were detected using the Genomic Identification of Significant Targets in Cancer algorithm, and potential driver genes for TNBC were identified. A total of 31 samples exhibited signs of chromothripsis and revealed chromosome pulverization hotspot regions. The present study further determined 199 genomic locations that were significantly enriched for breakpoints, which indicated TNBC‑specific genomic instability regions. Unsupervised hierarchical clustering of tumors resulted in three main subgroups that exhibited distinct CNA profiles, which may reveal the heterogeneity of molecular mechanisms in TNBC subgroups. These results will extend the molecular understanding of TNBC and will facilitate the discovery of therapeutic and diagnostic target candidates.
Collapse
Affiliation(s)
- Zaibing Li
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao Zhang
- Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Chenxin Hou
- West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuqing Zhou
- West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Junli Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haoyang Cai
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio‑Resources and Eco‑Environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Yifeng Ye
- Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Jinping Liu
- Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Ning Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
24
|
Barthel FP, Johnson KC, Varn FS, Moskalik AD, Tanner G, Kocakavuk E, Anderson KJ, Abiola O, Aldape K, Alfaro KD, Alpar D, Amin SB, Ashley DM, Bandopadhayay P, Barnholtz-Sloan JS, Beroukhim R, Bock C, Brastianos PK, Brat DJ, Brodbelt AR, Bruns AF, Bulsara KR, Chakrabarty A, Chakravarti A, Chuang JH, Claus EB, Cochran EJ, Connelly J, Costello JF, Finocchiaro G, Fletcher MN, French PJ, Gan HK, Gilbert MR, Gould PV, Grimmer MR, Iavarone A, Ismail A, Jenkinson MD, Khasraw M, Kim H, Kouwenhoven MCM, LaViolette PS, Li M, Lichter P, Ligon KL, Lowman AK, Malta TM, Mazor T, McDonald KL, Molinaro AM, Nam DH, Nayyar N, Ng HK, Ngan CY, Niclou SP, Niers JM, Noushmehr H, Noorbakhsh J, Ormond DR, Park CK, Poisson LM, Rabadan R, Radlwimmer B, Rao G, Reifenberger G, Sa JK, Schuster M, Shaw BL, Short SC, Smitt PAS, Sloan AE, Smits M, Suzuki H, Tabatabai G, Van Meir EG, Watts C, Weller M, Wesseling P, Westerman BA, Widhalm G, Woehrer A, Yung WKA, Zadeh G, Huse JT, De Groot JF, Stead LF, Verhaak RGW. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 2019; 576:112-120. [PMID: 31748746 PMCID: PMC6897368 DOI: 10.1038/s41586-019-1775-1] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse glioma remain unclear1,2. Here we analysed temporally separated DNA-sequencing data and matched clinical annotation from 222 adult patients with glioma. By analysing mutations and copy numbers across the three major subtypes of diffuse glioma, we found that driver genes detected at the initial stage of disease were retained at recurrence, whereas there was little evidence of recurrence-specific gene alterations. Treatment with alkylating agents resulted in a hypermutator phenotype at different rates across the glioma subtypes, and hypermutation was not associated with differences in overall survival. Acquired aneuploidy was frequently detected in recurrent gliomas and was characterized by IDH mutation but without co-deletion of chromosome arms 1p/19q, and further converged with acquired alterations in the cell cycle and poor outcomes. The clonal architecture of each tumour remained similar over time, but the presence of subclonal selection was associated with decreased survival. Finally, there were no differences in the levels of immunoediting between initial and recurrent gliomas. Collectively, our results suggest that the strongest selective pressures occur during early glioma development and that current therapies shape this evolution in a largely stochastic manner.
Collapse
Affiliation(s)
- Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Pathology, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kevin C Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Frederick S Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Georgette Tanner
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Emre Kocakavuk
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- DKFZ Division of Translational Neurooncology at the West German Cancer Center, German Cancer Consortium Partner Site, University Hospital Essen, Essen, Germany
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Kevin J Anderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Olajide Abiola
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kristin D Alfaro
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donat Alpar
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - David M Ashley
- Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, NC, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Jill S Barnholtz-Sloan
- Department of Population and Quantitative Health Sciences, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rameen Beroukhim
- Broad Institute, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew R Brodbelt
- Department of Neurosurgery, University of Liverpool & Walton Centre NHS Trust, Liverpool, UK
| | - Alexander F Bruns
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Ketan R Bulsara
- Division of Neurosurgery, The University of Connecticut Health Center, Farmington, CT, USA
| | - Aruna Chakrabarty
- Department of Cellular and Molecular Pathology, Leeds Teaching Hospital NHS Trust, St James's University Hospital, Leeds, UK
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State Comprehensive Cancer Center-Arthur G. James Cancer Hospital, Columbus, OH, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Elizabeth B Claus
- Yale University School of Public Health, New Haven, CT, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Elizabeth J Cochran
- Department of Pathology & Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph F Costello
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Michael N Fletcher
- Division of Molecular Genetics, Heidelberg Center for Personalized Oncology, German Cancer Research Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pim J French
- Department of Neurology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hui K Gan
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Victoria, Australia
- La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Institutes of Health, Bethesda, MD, USA
| | - Peter V Gould
- Anatomic Pathology Service, Hôpital de l'Enfant-Jésus, CHU de Québec-Université Laval, Quebec, Quebec, Canada
| | - Matthew R Grimmer
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Antonio Iavarone
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Azzam Ismail
- Department of Cellular and Molecular Pathology, Leeds Teaching Hospital NHS Trust, St James's University Hospital, Leeds, UK
| | - Michael D Jenkinson
- Department of Neurosurgery, University of Liverpool & Walton Centre NHS Trust, Liverpool, UK
| | - Mustafa Khasraw
- Cooperative Trials Group for Neuro-Oncology (COGNO) NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Hoon Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mathilde C M Kouwenhoven
- Department of Neurology, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter S LaViolette
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Meihong Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Peter Lichter
- Division of Molecular Genetics, Heidelberg Center for Personalized Oncology, German Cancer Research Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Keith L Ligon
- Broad Institute, Cambridge, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Allison K Lowman
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tathiane M Malta
- Department of Neurosurgery, Henry Ford Health System, Henry Ford Cancer Institute, Detroit, MI, USA
| | - Tali Mazor
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Kerrie L McDonald
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Annette M Molinaro
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Do-Hyun Nam
- Department of Neurosurgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea
| | - Naema Nayyar
- Division of Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Ho Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Chew Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Simone P Niclou
- Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Johanna M Niers
- Department of Neurology, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Henry Ford Cancer Institute, Detroit, MI, USA
| | - Javad Noorbakhsh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Laila M Poisson
- Department of Public Health Sciences, Henry Ford Health System, Henry Ford Cancer Institute, Detroit, MI, USA
| | - Raul Rabadan
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, Heidelberg Center for Personalized Oncology, German Cancer Research Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jason K Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Brian L Shaw
- Division of Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Susan C Short
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Peter A Sillevis Smitt
- Department of Neurology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Andrew E Sloan
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosurgery, Case Western Reserve University, Cleveland, OH, USA
- Seidman Cancer Center and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Ghazaleh Tabatabai
- Interdiscplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, DKTK Partner Site Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Erwin G Van Meir
- Department of Neurosurgery, School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Colin Watts
- Institute of Cancer Genome Sciences, Department of Neurosurgery, University of Birmingham, Birmingham, UK
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Pieter Wesseling
- Department of Pathology, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Bart A Westerman
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University Health Network, Toronto, Ontario, Canada
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John F De Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucy F Stead
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| |
Collapse
|
25
|
Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro Oncol 2019; 20:873-884. [PMID: 29432615 PMCID: PMC6280138 DOI: 10.1093/neuonc/noy020] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their families. The Cancer Genome Atlas and similar projects have provided a comprehensive understanding of the somatic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal Analysis Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS initiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to reveal targetable vulnerabilities and, ultimately, improved outcomes for a patient population in need.
Collapse
|
26
|
Cimino PJ, McFerrin L, Wirsching HG, Arora S, Bolouri H, Rabadan R, Weller M, Holland EC. Copy number profiling across glioblastoma populations has implications for clinical trial design. Neuro Oncol 2019; 20:1368-1373. [PMID: 29982740 DOI: 10.1093/neuonc/noy108] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Copy number alterations form prognostic molecular subtypes of glioblastoma with clear differences in median overall survival. In this study, we leverage molecular data from several glioblastoma cohorts to define the distribution of copy number subtypes across random cohorts as well as cohorts with selection biases for patients with inherently better outcome. Methods Copy number subtype frequency was established for 4 glioblastoma patient cohorts. Two randomly selected cohorts include The Cancer Genome Atlas (TCGA) and the German Glioma Network (GGN). Two more selective cohorts include the phase II trial ARTE in elderly patients with newly diagnosed glioblastoma and a multi-institutional cohort focused on paired resected initial/recurrent glioblastoma. The paired initial/recurrent cohort also had exome data available, which allowed for evaluation of multidimensional scaling analysis. Results Smaller selective glioblastoma cohorts are enriched for copy number subtypes that are associated with better survival, reflecting the selection of patients who do well enough to enter a clinical trial or who are deemed well enough to undergo resection at recurrence. Adding exome data to copy number data provides additional data reflective of outcome. Conclusions The overall outcome for diffuse glioma patients is predicted by DNA structure at initial tumor resection. Molecular signature shifts across glioblastoma populations reflect the inherent bias of patient selection toward longer survival in clinical trials. Therefore it may be important to include molecular profiling, including copy number, when enrolling patients for clinical trials in order to balance arms and extrapolate relevance to the general glioblastoma population.
Collapse
Affiliation(s)
- Patrick J Cimino
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, Washington, USA.,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lisa McFerrin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hans-Georg Wirsching
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Brain Tumor Center and Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hamid Bolouri
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Raul Rabadan
- Department of Biomedical Informatics and Department of Systems Biology, Columbia University, New York, New York, USA
| | - Michael Weller
- Brain Tumor Center and Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
27
|
Hu X, Wang Q, Tang M, Barthel F, Amin S, Yoshihara K, Lang FM, Martinez-Ledesma E, Lee SH, Zheng S, Verhaak RGW. TumorFusions: an integrative resource for cancer-associated transcript fusions. Nucleic Acids Res 2019; 46:D1144-D1149. [PMID: 29099951 PMCID: PMC5753333 DOI: 10.1093/nar/gkx1018] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/17/2017] [Indexed: 01/29/2023] Open
Abstract
Gene fusion represents a class of molecular aberrations in cancer and has been exploited for therapeutic purposes. In this paper we describe TumorFusions, a data portal that catalogues 20 731 gene fusions detected in 9966 well characterized cancer samples and 648 normal specimens from The Cancer Genome Atlas (TCGA). The portal spans 33 cancer types in TCGA. Fusion transcripts were identified via a uniform pipeline, including filtering against a list of 3838 transcript fusions detected in a panel of 648 non-neoplastic samples. Fusions were mapped to somatic DNA rearrangements identified using whole genome sequencing data from 561 cancer samples as a means of validation. We observed that 65% of transcript fusions were associated with a chromosomal alteration, which is annotated in the portal. Other features of the portal include links to SNP array-based copy number levels and mutational patterns, exon and transcript level expressions of the partner genes, and a network-based centrality score for prioritizing functional fusions. Our portal aims to be a broadly applicable and user friendly resource for cancer gene annotation and is publicly available at http://www.tumorfusions.org.
Collapse
Affiliation(s)
- Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Program in Bioinformatics and Biostatistics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Qianghu Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Floris Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Samirkumar Amin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Frederick M Lang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Soo Hyun Lee
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siyuan Zheng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| |
Collapse
|
28
|
Abstract
Recent reports have demonstrated that oncogene amplification on extrachromosomal DNA (ecDNA) is a frequent event in cancer, providing new momentum to explore a phenomenon first discovered several decades ago. The direct consequence of ecDNA gains in these cases is an increase in DNA copy number of the oncogenes residing on the extrachromosomal element. A secondary effect, perhaps even more important, is that the unequal segregation of ecDNA from a parental tumour cell to offspring cells rapidly increases tumour heterogeneity, thus providing the tumour with an additional array of responses to microenvironment-induced and therapy-induced stress factors and perhaps providing an evolutionary advantage. This Perspectives article discusses the current knowledge and potential implications of oncogene amplification on ecDNA in cancer.
Collapse
Affiliation(s)
- Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Vineet Bafna
- Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, San Diego, La Jolla, CA, USA.
- UCSD School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
29
|
Barthel FP, Wesseling P, Verhaak RGW. Reconstructing the molecular life history of gliomas. Acta Neuropathol 2018; 135:649-670. [PMID: 29616301 PMCID: PMC5904231 DOI: 10.1007/s00401-018-1842-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
At the time of their clinical manifestation, the heterogeneous group of adult and pediatric gliomas carries a wide range of diverse somatic genomic alterations, ranging from somatic single-nucleotide variants to structural chromosomal rearrangements. Somatic abnormalities may have functional consequences, such as a decrease, increase or change in mRNA transcripts, and cells pay a penalty for maintaining them. These abnormalities, therefore, must provide cells with a competitive advantage to become engrained into the glioma genome. Here, we propose a model of gliomagenesis consisting of the following five consecutive phases that glioma cells have traversed prior to clinical manifestation: (I) initial growth; (II) oncogene-induced senescence; (III) stressed growth; (IV) replicative senescence/crisis; (V) immortal growth. We have integrated the findings from a large number of studies in biology and (neuro)oncology and relate somatic alterations and other results discussed in these papers to each of these five phases. Understanding the story that each glioma tells at presentation may ultimately facilitate the design of novel, more effective therapeutic approaches.
Collapse
Affiliation(s)
- Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA.
- Department of Pathology, VU University Medical Center/Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center/Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
30
|
Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat Genet 2018; 50:708-717. [PMID: 29686388 PMCID: PMC5934307 DOI: 10.1038/s41588-018-0105-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023]
Abstract
To understand how genomic heterogeneity of glioblastoma contributes to the poor response to therapy characteristic of this disease, we performed DNA and RNA sequencing on GBM tumor samples and the neurospheres and orthotopic xenograft models derived from them. We used the resulting data set to show that somatic driver alterations including single nucleotide variants, focal DNA alterations, and oncogene amplification on extrachromosomal DNA (ecDNA) elements were in majority propagated from tumor to model systems. In several instances, ecDNAs and chromosomal alterations demonstrated divergent inheritance patterns and clonal selection dynamics during cell culture and xenografting. We infer that ecDNA inherited unevenly between offspring cells, a characteristic that affects the oncogenic potential of cells with more or fewer ecDNAs. Longitudinal patient tumor profiling found that oncogenic ecDNAs are frequently retained throughout the course of disease. Our analysis shows that extrachromosomal elements allow rapid increase of genomic heterogeneity during glioblastoma evolution, independent of chromosomal DNA alterations.
Collapse
|
31
|
Abstract
The most aggressive brain malignancy, glioblastoma, accounts for 60-70% of all gliomas and is uniformly fatal. According to the molecular signature, glioblastoma is divided into four subtypes (proneural, neural, classical, and mesenchymal), each with its own genetic background. The Cancer Genome Atlas project provides information about the most common genetic changes in glioblastoma. They involve mutations in TP53, TERT, and PTEN, and amplifications in EFGR, PDGFRA, CDK4, CDK6, MDM2, and MDM4. Recently, epigenetics was used to demonstrate the oncogenic roles of miR-124, miR-137, and miR-128. The most important findings so far are mutations in IDH1/2 and MGMT promoter methylation, which are routinely used as predictive biomarkers in patient care. Current clinical treatment leaves patients with only a 10% chance for 5-year survival. Attempts to define the mutational profile of glioblastoma to identify clinically relevant changes have not yet yielded significant results. This can be attributed to inter- and intra-tumor heterogeneity that is present in most glioblastomas, as well as hypermutation that appears as a consequence of chemotherapy. The evolving field of radiogenomics aims to classify glioblastoma using a combination of magnetic resonance imaging and genomic information. In the era of genomic medicine, next-generation sequencing is extensively used in glioblastoma research because it can detect multiple changes in a single biological sample; its potential in detecting circulating cell-free DNA has been tested in cerebrospinal fluid and plasma, and it shows promise in the examination of the cellular content of extracellular vesicles as a potential source of biomarkers. Next-generation sequencing is making its way into glioblastoma diagnostics. Gene panels like GlioSeq, which includes the most commonly mutated genes, are currently being tested on snap frozen and formalin fixed paraffin embedded tissues. This new methodology is helping to define the "next generation of glioblastomas" - clinically defined and better understood, with greater potential to improve patient care. However, limitations of the necessary infrastructure, space for data storage, technical expertise, and data ownership need to be considered carefully.
Collapse
Affiliation(s)
- Ivana Jovčevska
- a Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
32
|
Ubiquitin Specific Peptidase 15 (USP15) suppresses glioblastoma cell growth via stabilization of HECTD1 E3 ligase attenuating WNT pathway activity. Oncotarget 2017; 8:110490-110502. [PMID: 29299163 PMCID: PMC5746398 DOI: 10.18632/oncotarget.22798] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023] Open
Abstract
Expression based prediction of new genomic alterations in glioblastoma identified the de-ubiquitinase Ubiquitin Specific Peptidase 15 (USP15) as potential tumor suppressor gene associated with genomic deletions (11%). Ectopic expression of USP15 in glioblastoma cell-lines reduced colony formation and growth in soft agar, while overexpression of its functional mutant had the opposite effect. Evaluation of the protein binding network of USP15 by Mass Spectrometry in glioblastoma cells uncovered eight novel interacting proteins, including HECT Domain Containing E3 Ubiquitin Protein Ligase 1 (HECTD1), whose mouse homologue has been associated with an inhibitory effect on the WNT-pathway. USP15 de-ubiquitinated and thereby stabilized HECTD1 in glioblastoma cells, while depletion of USP15 led to decreased HECTD1 protein levels. Expression of USP15 in glioblastoma cells attenuated WNT-pathway activity, while expression of the functional mutant enhanced the activity. Modulation of HECTD1 expression pheno-copied the effects observed for USP15. In accordance, human glioblastoma display a weak but significant negative correlation between USP15 and AXIN2 expression. Taken together, the data provide evidence that USP15 attenuates the canonical WNT pathway mediated by stabilization of HECTD1, supporting a tumor suppressing role of USP15 in a subset of glioblastoma.
Collapse
|
33
|
Zhao Y, Song WM, Zhang F, Zhou MM, Zhang W, Walsh MJ, Zhang B. Distinct distributions of genomic features of the 5’ and 3’ partners of coding somatic cancer gene fusions: arising mechanisms and functional implications. Oncotarget 2017; 8:66769-66783. [PMID: 28977995 PMCID: PMC5620135 DOI: 10.18632/oncotarget.10734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
The genomic features and arising mechanisms of coding cancer somatic gene fusions (CSGFs) largely remain elusive. In this study, we show the gene origin stratification pattern of CSGF partners that fusion partners in human cancers are significantly enriched for genes with the gene age ofEuteleostomes and with the gene family age of Bilateria. GC skew (a measurement of G, C nucleotide content bias, (G-C)/(G+C)) is a useful measurement to indicate the DNA leading strand, lagging strand, replication origin, and replication terminal and DNA-RNA R-loop formation. We find that GC skew bias at the 5 prime (5′) but not the 3 prime (3’) partners of CSGFs, coincident with the polarity feature of gene expression breadth that the 5’ partners are more ubiquitous while the 3’ fusion partners are more tissue specific in general. We reveal distinct length and composition distributions of 5’ and 3’ of CSGFs, including sequence features corresponded to the 5’ untranslated regions (UTRs), 3’ UTRs, and the N-terminal sequences of the encoded proteins. Oncogenic somatic gene fusions are most enriched for the 5’ and 3’ genes’ somatic amplification alongside a substantial proportion of other types of combinations. At the function level, 5’ partners of CSGFs appear more likely to be tumour suppressor genes while many 3’ partners appear to be proto-oncogene. Such distinct polarities of CSGFs at the evolutionary, structural, genomic and functional levels indicate the heterogeneous arsing mechanisms of CSGFs including R-loops and suggest potential novel targeted therapeutics specific to CSGF functional categories.
Collapse
Affiliation(s)
- Yongzhong Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Fan Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Weijia Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Martin J. Walsh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| |
Collapse
|
34
|
Harewood L, Kishore K, Eldridge MD, Wingett S, Pearson D, Schoenfelder S, Collins VP, Fraser P. Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours. Genome Biol 2017; 18:125. [PMID: 28655341 PMCID: PMC5488307 DOI: 10.1186/s13059-017-1253-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/08/2017] [Indexed: 12/02/2022] Open
Abstract
Chromosomal rearrangements occur constitutionally in the general population and somatically in the majority of cancers. Detection of balanced rearrangements, such as reciprocal translocations and inversions, is troublesome, which is particularly detrimental in oncology where rearrangements play diagnostic and prognostic roles. Here we describe the use of Hi-C as a tool for detection of both balanced and unbalanced chromosomal rearrangements in primary human tumour samples, with the potential to define chromosome breakpoints to bp resolution. In addition, we show copy number profiles can also be obtained from the same data, all at a significantly lower cost than standard sequencing approaches.
Collapse
Affiliation(s)
- Louise Harewood
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK. .,Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Cambridge, UK.
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Steven Wingett
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Danita Pearson
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | - V Peter Collins
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
35
|
Smida J, Xu H, Zhang Y, Baumhoer D, Ribi S, Kovac M, von Luettichau I, Bielack S, O'Leary VB, Leib-Mösch C, Frishman D, Nathrath M. Genome-wide analysis of somatic copy number alterations and chromosomal breakages in osteosarcoma. Int J Cancer 2017; 141:816-828. [DOI: 10.1002/ijc.30778] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Jan Smida
- Institute of Radiation Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
- Pediatric Oncology Center; Department of Pediatrics, Technical University of Munich and Comprehensive Cancer Center; Munich Germany
| | - Hongen Xu
- Department of Bioinformatics; Wissenschaftszentrum Weihenstephan, Technical University of Munich; Freising Germany
| | - Yanping Zhang
- Department of Bioinformatics; Wissenschaftszentrum Weihenstephan, Technical University of Munich; Freising Germany
| | - Daniel Baumhoer
- Bone Tumour Reference Center; Institute of Pathology, University Hospital Basel; Switzerland
| | - Sebastian Ribi
- Bone Tumour Reference Center; Institute of Pathology, University Hospital Basel; Switzerland
| | - Michal Kovac
- Bone Tumour Reference Center; Institute of Pathology, University Hospital Basel; Switzerland
| | - Irene von Luettichau
- Pediatric Oncology Center; Department of Pediatrics, Technical University of Munich and Comprehensive Cancer Center; Munich Germany
| | - Stefan Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart Olgahospital; Stuttgart Germany
| | - Valerie B. O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
| | - Christine Leib-Mösch
- Institute of Virology, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
| | - Dmitrij Frishman
- Department of Bioinformatics; Wissenschaftszentrum Weihenstephan, Technical University of Munich; Freising Germany
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
- St Petersburg State Polytechnic University; St Petersburg Russia
| | - Michaela Nathrath
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
- Pediatric Oncology Center; Department of Pediatrics, Technical University of Munich and Comprehensive Cancer Center; Munich Germany
- Department of Pediatric Hematology and Oncology; Klinikum Kassel; Germany
| |
Collapse
|
36
|
Erson-Omay EZ, Henegariu O, Omay SB, Harmancı AS, Youngblood MW, Mishra-Gorur K, Li J, Özduman K, Carrión-Grant G, Clark VE, Çağlar C, Bakırcıoğlu M, Pamir MN, Tabar V, Vortmeyer AO, Bilguvar K, Yasuno K, DeAngelis LM, Baehring JM, Moliterno J, Günel M. Longitudinal analysis of treatment-induced genomic alterations in gliomas. Genome Med 2017; 9:12. [PMID: 28153049 PMCID: PMC5290635 DOI: 10.1186/s13073-017-0401-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) constitutes nearly half of all malignant brain tumors and has a median survival of 15 months. The standard treatment for these lesions includes maximal resection, radiotherapy, and chemotherapy; however, individual tumors display immense variability in their response to these approaches. Genomic techniques such as whole-exome sequencing (WES) provide an opportunity to understand the molecular basis of this variability. Methods Here, we report WES-guided treatment of a patient with a primary GBM and two subsequent recurrences, demonstrating the dynamic nature of treatment-induced molecular changes and their implications for clinical decision-making. We also analyze the Yale-Glioma cohort, composed of 110 whole exome- or whole genome-sequenced tumor-normal pairs, to assess the frequency of genomic events found in the presented case. Results Our longitudinal analysis revealed how the genomic profile evolved under the pressure of therapy. Specifically targeted approaches eradicated treatment-sensitive clones while enriching for resistant ones, generated due to chromothripsis, which we show to be a frequent event in GBMs based on our extended analysis of 110 gliomas in the Yale-Glioma cohort. Despite chromothripsis and the later acquired mismatch-repair deficiency, genomics-guided personalized treatment extended survival to over 5 years. Interestingly, the case displayed a favorable response to immune checkpoint inhibition after acquiring mismatch repair deficiency. Conclusions Our study demonstrates the importance of longitudinal genomic profiling to adjust to the dynamic nature of treatment-induced molecular changes to improve the outcomes of precision therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0401-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Zeynep Erson-Omay
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Octavian Henegariu
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA.,Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - S Bülent Omay
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Akdes Serin Harmancı
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Mark W Youngblood
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Ketu Mishra-Gorur
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA.,Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Jie Li
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Koray Özduman
- Department of Neurosurgery, Acıbadem University School of Medicine, Istanbul, Turkey
| | - Geneive Carrión-Grant
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Victoria E Clark
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Caner Çağlar
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Mehmet Bakırcıoğlu
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - M Necmettin Pamir
- Department of Neurosurgery, Acıbadem University School of Medicine, Istanbul, Turkey
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kaya Bilguvar
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.,Yale Center for Genome Analysis, Yale School of Medicine, Orange, CT, USA
| | - Katsuhito Yasuno
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Lisa M DeAngelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joachim M Baehring
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Department of Neurology, Yale School of Medicine, New Haven, CT, USA.,Yale Brain Tumor Center, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer Moliterno
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Yale Brain Tumor Center, Yale School of Medicine, New Haven, CT, USA
| | - Murat Günel
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA. .,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA. .,Department of Genetics, Yale School of Medicine, New Haven, CT, USA. .,Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA. .,Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA. .,Yale Brain Tumor Center, Yale School of Medicine, New Haven, CT, USA. .,Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT, USA. .,Yale Neurosurgery, PO Box 208082, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
37
|
Abstract
Objective: To summary the recent advances in molecular research of glioblastoma (GBM) and current trends in personalized therapy of this disease. Data Sources: Data cited in this review were obtained mainly from PubMed in English up to 2015, with keywords “molecular”, “genetics”, “GBM”, “isocitrate dehydrogenase”, “telomerase reverse transcriptase”, “epidermal growth factor receptor”, “PTPRZ1-MET”, and “clinical treatment”. Study Selection: Articles regarding the morphological pathology of GBM, the epidemiology of GBM, genetic alteration of GBM, and the development of treatment for GBM patients were identified, retrieved, and reviewed. Results: There is a large amount of data supporting the view that these recurrent genetic aberrations occur in a specific context of cellular origin, co-oncogenic hits and are present in distinct patient populations. Primary and secondary GBMs are distinct disease entities that affect different age groups of patients and develop through distinct genetic aberrations. These differences are important, especially because they may affect sensitivity to radio- and chemo-therapy and should thus be considered in the identification of targets for novel therapeutic approaches. Conclusion: This review highlights the molecular and genetic alterations of GBM, indicating that they are of potential value in the diagnosis and treatment for patients with GBM.
Collapse
Affiliation(s)
| | | | - Cheng-Yin Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing 100050, China
| |
Collapse
|
38
|
Alcantara Llaguno SR, Xie X, Parada LF. Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:31-36. [PMID: 27815542 PMCID: PMC6353557 DOI: 10.1101/sqb.2016.81.030973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM.
Collapse
Affiliation(s)
- Sheila R Alcantara Llaguno
- Brain Tumor Center and Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Xuanhua Xie
- Brain Tumor Center and Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Luis F Parada
- Brain Tumor Center and Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
39
|
Bacolla A, Tainer JA, Vasquez KM, Cooper DN. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. Nucleic Acids Res 2016; 44:5673-88. [PMID: 27084947 PMCID: PMC4937311 DOI: 10.1093/nar/gkw261] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
Gross chromosomal rearrangements (including translocations, deletions, insertions and duplications) are a hallmark of cancer genomes and often create oncogenic fusion genes. An obligate step in the generation of such gross rearrangements is the formation of DNA double-strand breaks (DSBs). Since the genomic distribution of rearrangement breakpoints is non-random, intrinsic cellular factors may predispose certain genomic regions to breakage. Notably, certain DNA sequences with the potential to fold into secondary structures [potential non-B DNA structures (PONDS); e.g. triplexes, quadruplexes, hairpin/cruciforms, Z-DNA and single-stranded looped-out structures with implications in DNA replication and transcription] can stimulate the formation of DNA DSBs. Here, we tested the postulate that these DNA sequences might be found at, or in close proximity to, rearrangement breakpoints. By analyzing the distribution of PONDS-forming sequences within ±500 bases of 19 947 translocation and 46 365 sequence-characterized deletion breakpoints in cancer genomes, we find significant association between PONDS-forming repeats and cancer breakpoints. Specifically, (AT)n, (GAA)n and (GAAA)n constitute the most frequent repeats at translocation breakpoints, whereas A-tracts occur preferentially at deletion breakpoints. Translocation breakpoints near PONDS-forming repeats also recur in different individuals and patient tumor samples. Hence, PONDS-forming sequences represent an intrinsic risk factor for genomic rearrangements in cancer genomes.
Collapse
Affiliation(s)
- Albino Bacolla
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave., Houston, TX 77030, USA Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave., Houston, TX 77030, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
40
|
Venkatesan S, Lamfers MLM, Dirven CMF, Leenstra S. Genetic biomarkers of drug response for small-molecule therapeutics targeting the RTK/Ras/PI3K, p53 or Rb pathway in glioblastoma. CNS Oncol 2016; 5:77-90. [PMID: 26986934 DOI: 10.2217/cns-2015-0005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma is the most deadly and frequently occurring primary malignant tumor of the central nervous system. Genomic studies have shown that mutated oncogenes and tumor suppressor genes in glioblastoma mainly occur in three pathways: the RTK/Ras/PI3K signaling, the p53 and the Rb pathways. In this review, we summarize the modulatory effects of genetic aberrations in these three pathways to drugs targeting these specific pathways. We also provide an overview of the preclinical efforts made to identify genetic biomarkers of response and resistance. Knowledge of biomarkers will finally promote patient stratification in clinical trials, a prerequisite for trial design in the era of precision medicine.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands.,UCL Cancer Institute, Paul O'Gorman Building, London, UK
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Neurosurgery, Elisabeth Hospital, Tilburg, The Netherlands
| |
Collapse
|
41
|
Franz A, Pirson PA, Pilger D, Halder S, Achuthankutty D, Kashkar H, Ramadan K, Hoppe T. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun 2016; 7:10612. [PMID: 26842564 PMCID: PMC4743000 DOI: 10.1038/ncomms10612] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
The coordinated activity of DNA replication factors is a highly dynamic process that involves ubiquitin-dependent regulation. In this context, the ubiquitin-directed ATPase CDC-48/p97 recently emerged as a key regulator of chromatin-associated degradation in several of the DNA metabolic pathways that assure genome integrity. However, the spatiotemporal control of distinct CDC-48/p97 substrates in the chromatin environment remained unclear. Here, we report that progression of the DNA replication fork is coordinated by UBXN-3/FAF1. UBXN-3/FAF1 binds to the licensing factor CDT-1 and additional ubiquitylated proteins, thus promoting CDC-48/p97-dependent turnover and disassembly of DNA replication factor complexes. Consequently, inactivation of UBXN-3/FAF1 stabilizes CDT-1 and CDC-45/GINS on chromatin, causing severe defects in replication fork dynamics accompanied by pronounced replication stress and eventually resulting in genome instability. Our work identifies a critical substrate selection module of CDC-48/p97 required for chromatin-associated protein degradation in both Caenorhabditis elegans and humans, which is relevant to oncogenesis and aging. Cdc48/p97 is a key component of the ubiquitin-proteasome system, acting as a ubiquitin-directed segregase to regulate multiple cellular functions. Here the authors identify UBXN-3/FAF1 as a crucial regulator of chromatin-associated protein degradation that recruits Cdc48/p97 to DNA replication forks.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Paul A Pirson
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Domenic Pilger
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.,Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Swagata Halder
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Divya Achuthankutty
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne and Institute for Medical Microbiology, Immunology and Hygiene at CECAD Research Center, University Hospital of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Kristijan Ramadan
- Department of Oncology, University of Oxford, Cancer Research UK/Medical Research Council Oxford, Institute for Radiation Oncology, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Thorsten Hoppe
- Institute for Genetics and CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
42
|
Lichti CF, Wildburger NC, Shavkunov AS, Mostovenko E, Liu H, Sulman EP, Nilsson CL. The proteomic landscape of glioma stem-like cells. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Furgason JM, Koncar RF, Michelhaugh SK, Sarkar FH, Mittal S, Sloan AE, Barnholtz-Sloan JS, Bahassi EM. Whole genome sequence analysis links chromothripsis to EGFR, MDM2, MDM4, and CDK4 amplification in glioblastoma. Oncoscience 2015; 2:618-28. [PMID: 26328271 PMCID: PMC4549359 DOI: 10.18632/oncoscience.178] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Findings based on recent advances in next-generation sequence analysis suggest that, in some tumors, a single catastrophic event, termed chromothripsis, results in several simultaneous tumorigenic alterations. Previous studies have suggested that glioblastoma (GBM) may exhibit chromothripsis at a higher rate (39%) than other tumors (9%). Primary glioblastoma is an aggressive form of brain cancer that typically appears suddenly in older adults. With aggressive treatment, the median survival time is only 15 months. Their acute onset and widespread genomic instability indicates that chromothripsis may play a key role in their initiation and progression. GBMs are often characterized by EGFR amplification, CDKN2A and PTEN deletion, although approximately 20% of GBMs harbor additional amplifications in MDM2 or MDM4 with CDK4. METHODS We used the chromothripsis prediction tool, Shatterproof, in conjunction with a custom whole genome sequence analysis pipeline in order to generate putative regions of chromothripsis. The data derived from this study was further expanded on using fluorescence in situ hybridization (FISH) analysis and susceptibility studies with colony formation assays. RESULTS We show that primary GBMs are associated with higher chromothripsis scores and establish a link between chromothripsis and gene amplification of receptor tyrosine kinases (RTKs), as well as modulators of the TP53 and RB1 pathways. CONCLUSIONS Utilizing a newly introduced bioinformatic tool, we provide evidence that chromothripsis is associated with the formation of amplicons containing several oncogenes involved in key pathways that are likely essential for post-chromothriptic cell survival.
Collapse
Affiliation(s)
- John M Furgason
- Department of Internal Medicine, Division of Hematology/Oncology and UC Brain Tumor Center, University of Cincinnati, Cincinnati OH, USA
| | - Robert F Koncar
- Department of Internal Medicine, Division of Hematology/Oncology and UC Brain Tumor Center, University of Cincinnati, Cincinnati OH, USA
| | - Sharon K Michelhaugh
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Fazlul H Sarkar
- Department of Pathology, Wayne State University College of Medicine, Detroit, MI, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Andrew E Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA ; Department of Neurological Surgery, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - El Mustapha Bahassi
- Department of Internal Medicine, Division of Hematology/Oncology and UC Brain Tumor Center, University of Cincinnati, Cincinnati OH, USA
| |
Collapse
|
44
|
Brat DJ, Verhaak RGW, Aldape KD, Yung WKA, Salama SR, Cooper LAD, Rheinbay E, Miller CR, Vitucci M, Morozova O, Robertson AG, Noushmehr H, Laird PW, Cherniack AD, Akbani R, Huse JT, Ciriello G, Poisson LM, Barnholtz-Sloan JS, Berger MS, Brennan C, Colen RR, Colman H, Flanders AE, Giannini C, Grifford M, Iavarone A, Jain R, Joseph I, Kim J, Kasaian K, Mikkelsen T, Murray BA, O'Neill BP, Pachter L, Parsons DW, Sougnez C, Sulman EP, Vandenberg SR, Van Meir EG, von Deimling A, Zhang H, Crain D, Lau K, Mallery D, Morris S, Paulauskis J, Penny R, Shelton T, Sherman M, Yena P, Black A, Bowen J, Dicostanzo K, Gastier-Foster J, Leraas KM, Lichtenberg TM, Pierson CR, Ramirez NC, Taylor C, Weaver S, Wise L, Zmuda E, Davidsen T, Demchok JA, Eley G, Ferguson ML, Hutter CM, Mills Shaw KR, Ozenberger BA, Sheth M, Sofia HJ, Tarnuzzer R, Wang Z, Yang L, Zenklusen JC, Ayala B, Baboud J, Chudamani S, Jensen MA, Liu J, Pihl T, Raman R, Wan Y, Wu Y, Ally A, Auman JT, Balasundaram M, Balu S, Baylin SB, Beroukhim R, Bootwalla MS, Bowlby R, Bristow CA, Brooks D, Butterfield Y, Carlsen R, Carter S, Chin L, Chu A, Chuah E, Cibulskis K, Clarke A, Coetzee SG, Dhalla N, Fennell T, Fisher S, Gabriel S, Getz G, Gibbs R, Guin R, Hadjipanayis A, Hayes DN, Hinoue T, Hoadley K, Holt RA, Hoyle AP, Jefferys SR, Jones S, Jones CD, Kucherlapati R, Lai PH, Lander E, Lee S, Lichtenstein L, Ma Y, Maglinte DT, Mahadeshwar HS, Marra MA, Mayo M, Meng S, Meyerson ML, Mieczkowski PA, Moore RA, Mose LE, Mungall AJ, Pantazi A, Parfenov M, Park PJ, Parker JS, Perou CM, Protopopov A, Ren X, Roach J, Sabedot TS, Schein J, Schumacher SE, Seidman JG, Seth S, Shen H, Simons JV, Sipahimalani P, Soloway MG, Song X, Sun H, Tabak B, Tam A, Tan D, Tang J, Thiessen N, Triche T, Van Den Berg DJ, Veluvolu U, Waring S, Weisenberger DJ, Wilkerson MD, Wong T, Wu J, Xi L, Xu AW, Yang L, Zack TI, Zhang J, Aksoy BA, Arachchi H, Benz C, Bernard B, Carlin D, Cho J, DiCara D, Frazer S, Fuller GN, Gao J, Gehlenborg N, Haussler D, Heiman DI, Iype L, Jacobsen A, Ju Z, Katzman S, Kim H, Knijnenburg T, Kreisberg RB, Lawrence MS, Lee W, Leinonen K, Lin P, Ling S, Liu W, Liu Y, Liu Y, Lu Y, Mills G, Ng S, Noble MS, Paull E, Rao A, Reynolds S, Saksena G, Sanborn Z, Sander C, Schultz N, Senbabaoglu Y, Shen R, Shmulevich I, Sinha R, Stuart J, Sumer SO, Sun Y, Tasman N, Taylor BS, Voet D, Weinhold N, Weinstein JN, Yang D, Yoshihara K, Zheng S, Zhang W, Zou L, Abel T, Sadeghi S, Cohen ML, Eschbacher J, Hattab EM, Raghunathan A, Schniederjan MJ, Aziz D, Barnett G, Barrett W, Bigner DD, Boice L, Brewer C, Calatozzolo C, Campos B, Carlotti CG, Chan TA, Cuppini L, Curley E, Cuzzubbo S, Devine K, DiMeco F, Duell R, Elder JB, Fehrenbach A, Finocchiaro G, Friedman W, Fulop J, Gardner J, Hermes B, Herold-Mende C, Jungk C, Kendler A, Lehman NL, Lipp E, Liu O, Mandt R, McGraw M, Mclendon R, McPherson C, Neder L, Nguyen P, Noss A, Nunziata R, Ostrom QT, Palmer C, Perin A, Pollo B, Potapov A, Potapova O, Rathmell WK, Rotin D, Scarpace L, Schilero C, Senecal K, Shimmel K, Shurkhay V, Sifri S, Singh R, Sloan AE, Smolenski K, Staugaitis SM, Steele R, Thorne L, Tirapelli DPC, Unterberg A, Vallurupalli M, Wang Y, Warnick R, Williams F, Wolinsky Y, Bell S, Rosenberg M, Stewart C, Huang F, Grimsby JL, Radenbaugh AJ, Zhang J. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med 2015; 372:2481-98. [PMID: 26061751 PMCID: PMC4530011 DOI: 10.1056/nejmoa1402121] [Citation(s) in RCA: 2219] [Impact Index Per Article: 246.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).
Collapse
|
45
|
Martínez E, Yoshihara K, Kim H, Mills GM, Treviño V, Verhaak RGW. Comparison of gene expression patterns across 12 tumor types identifies a cancer supercluster characterized by TP53 mutations and cell cycle defects. Oncogene 2015; 34:2732-40. [PMID: 25088195 PMCID: PMC4317393 DOI: 10.1038/onc.2014.216] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/23/2014] [Accepted: 06/15/2014] [Indexed: 12/15/2022]
Abstract
Transcriptional profile-based subtypes of cancer are often viewed as identifying different diseases from the same tissue origin. Understanding the mechanisms driving the subtypes may be key in development of novel therapeutics but is challenged by lineage-specific expression signals. Using a t-test statistics approach, we compared gene expression subtypes across 12 tumor types, which identified eight transcriptional superclusters characterized by commonly activated disease pathways and similarities in gene expression. One of the largest superclusters was determined by the upregulation of a proliferation signature, significant enrichment in TP53 mutations, genomic loss of CDKN2A (p16(ARF)), evidence of increased numbers of DNA double strand breaks and high expression of cyclin B1 protein. These correlations suggested that abrogation of the P53-mediated apoptosis response to DNA damage results in activation of cell cycle pathways and represents a common theme in cancer. A second consistent pattern, observed in 9 of 11 solid tumor types, was a subtype related to an activated tumor-associated stroma. The similarity in transcriptional footprints across cancers suggested that tumor subtypes are commonly unified by a limited number of molecular themes.
Collapse
Affiliation(s)
- Emmanuel Martínez
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Catedra de Bioinformatica, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64849, Mexico
| | - Kosuke Yoshihara
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, 951-8510, Japan
| | - Hoon Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gordon M. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Victor Treviño
- Catedra de Bioinformatica, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64849, Mexico
| | - Roel GW Verhaak
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
46
|
Molecular Analysis of a Recurrent Sarcoma Identifies a Mutation in FAF1. Sarcoma 2015; 2015:839182. [PMID: 25861239 PMCID: PMC4377510 DOI: 10.1155/2015/839182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/11/2015] [Indexed: 11/25/2022] Open
Abstract
A patient presented with a recurrent sarcoma (diagnosed as leiomyosarcoma) 12 years after the removal of an initial cancer (diagnosed as extracompartmental osteosarcoma) distally on the same limb. Following surgery, the sarcoma and unaffected muscle and bone were subjected to measurements of DNA exome sequence, RNA and protein expression, and transcription factor binding. The investigation provided corroboration of the diagnosis leiomyosarcoma, as the major upregulations in this tumor comprise muscle-specific gene products and calcium-regulating molecules (calcium is an important second messenger in smooth muscle cells). A likely culprit for the disease is the point mutation S181G in FAF1, which may cause a loss of apoptotic function consecutive to transforming DNA damage. The RNA levels of genes for drug transport and metabolism were extensively skewed in the tumor tissue as compared to muscle and bone. The results suggest that the tumor represents a recurrence of a dormant metastasis from an originally misdiagnosed neoplasm. A loss of FAF1 function could cause constitutive WNT pathway activity (consistent with the downstream inductions of IGF2BP1 and E2F1 in this cancer). While the study has informed on drug transport and drug metabolism pharmacogenetics, it has fallen short of identifying a suitable target for molecular therapy.
Collapse
|
47
|
Kim H, Zheng S, Amini SS, Virk SM, Mikkelsen T, Brat DJ, Grimsby J, Sougnez C, Muller F, Hu J, Sloan AE, Cohen ML, Van Meir EG, Scarpace L, Laird PW, Weinstein JN, Lander ES, Gabriel S, Getz G, Meyerson M, Chin L, Barnholtz-Sloan JS, Verhaak RGW. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 2015; 25:316-27. [PMID: 25650244 PMCID: PMC4352879 DOI: 10.1101/gr.180612.114] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Siyuan Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Seyed S Amini
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Selene M Virk
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Tom Mikkelsen
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | - Daniel J Brat
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jonna Grimsby
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Carrie Sougnez
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Florian Muller
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Andrew E Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA; Brain Tumor and Neuro-oncology Center, Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve School of Medicine, Cleveland, Ohio 44106, USA
| | - Mark L Cohen
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Erwin G Van Meir
- Department of Neurosurgery and Hematology and Medical Oncology, Winship Cancer Institute and School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Lisa Scarpace
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Eric S Lander
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Stacey Gabriel
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Matthew Meyerson
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Lynda Chin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Roel G W Verhaak
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
| |
Collapse
|
48
|
Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, Verhaak RGW. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 2014; 34:4845-54. [PMID: 25500544 PMCID: PMC4468049 DOI: 10.1038/onc.2014.406] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/23/2014] [Accepted: 09/27/2014] [Indexed: 12/17/2022]
Abstract
Transcript fusions as a result of chromosomal rearrangements have been a focus of attention in cancer as they provide attractive therapeutic targets. To identify novel fusion transcripts with the potential to be exploited therapeutically, we analyzed RNA sequencing, DNA copy number and gene mutation data from 4,366 primary tumor samples. To avoid false positives, we implemented stringent quality criteria that included filtering of fusions detected in RNAseq data from 364 normal tissue samples. Our analysis identified 7,887 high confidence fusion transcripts across 13 tumor types. Our fusion prediction was validated by evidence of a genomic rearrangement for 78 of 79 fusions in 48 glioma samples where whole genome sequencing data was available. Cancers with higher levels of genomic instability showed a corresponding increase in fusion transcript frequency, whereas tumor samples harboring fusions contained statistically significantly fewer driver gene mutations, suggesting an important role for tumorigenesis. We identified at least one in-frame protein kinase fusion in 324 of 4,366 samples (7.4%). Potentially druggable kinase fusions involving ALK, ROS, RET, NTRK, and FGFR gene families were detected in bladder carcinoma (3.3%), glioblastoma (4.4%), head and neck cancer (1.0%), low grade glioma (1.5%), lung adenocarcinoma (1.6%), lung squamous cell carcinoma (2.3%), and thyroid carcinoma (8.7%), suggesting a potential for application of kinase inhibitors across tumor types. In-frame fusion transcripts involving histone methyltransferase or histone demethylase genes were detected in 111 samples (2.5%) and may additionally be considered as therapeutic targets. In summary, we described the landscape of transcript fusions detected across a large number of tumor samples and revealed fusion events with clinical relevance that have not been previously recognized. Our results support the concept of basket clinical trials where patients are matched with experimental therapies based on their genomic profile rather than the tissue where the tumor originated.
Collapse
Affiliation(s)
- K Yoshihara
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Q Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Torres-Garcia
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Vegesna
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R G W Verhaak
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genome Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Vyazunova I, Maklakova VI, Berman S, De I, Steffen MD, Hong W, Lincoln H, Morrissy AS, Taylor MD, Akagi K, Brennan CW, Rodriguez FJ, Collier LS. Sleeping Beauty mouse models identify candidate genes involved in gliomagenesis. PLoS One 2014; 9:e113489. [PMID: 25423036 PMCID: PMC4244117 DOI: 10.1371/journal.pone.0113489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/27/2014] [Indexed: 01/01/2023] Open
Abstract
Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma.
Collapse
Affiliation(s)
- Irina Vyazunova
- School of Pharmacy and University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI, United States of America
| | - Vilena I. Maklakova
- School of Pharmacy and University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI, United States of America
| | - Samuel Berman
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ishani De
- School of Pharmacy and University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI, United States of America
| | - Megan D. Steffen
- School of Pharmacy and University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI, United States of America
| | - Won Hong
- School of Pharmacy and University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI, United States of America
| | - Hayley Lincoln
- School of Pharmacy and University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI, United States of America
| | - A. Sorana Morrissy
- Division of Neurosurgery, Arthur & Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D. Taylor
- Division of Neurosurgery, Arthur & Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Keiko Akagi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Cameron W. Brennan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Fausto J. Rodriguez
- Department of Pathology, Division of Neuropathology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Lara S. Collier
- School of Pharmacy and University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI, United States of America
| |
Collapse
|
50
|
Bi WL, Beroukhim R. Beating the odds: extreme long-term survival with glioblastoma. Neuro Oncol 2014; 16:1159-60. [PMID: 25096192 DOI: 10.1093/neuonc/nou166] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenya Linda Bi
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (W.L.B.)Departments of Medicine and Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (R.B.)
| | - Rameen Beroukhim
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (W.L.B.)Departments of Medicine and Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (R.B.)
| |
Collapse
|