1
|
Cheng M, Zhu Y, Yu H, Shao L, Zhang Y, Li L, Tu H, Xie L, Chao H, Zhang P, Xin S, Feng C, Ivanisenko V, Orlov Y, Chen D, Wong A, Yang YE, Chen M. Non-coding RNA notations, regulations and interactive resources. Funct Integr Genomics 2024; 24:217. [PMID: 39557706 DOI: 10.1007/s10142-024-01494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
An increasing number of non-coding RNAs (ncRNAs) are found to have roles in gene expression and cellular regulations. However, there are still a large number of ncRNAs whose functions remain to be studied. Despite decades of research, the field continues to evolve, with each newly identified ncRNA undergoing processes such as biogenesis, identification, and functional annotation. Bioinformatics methodologies, alongside traditional biochemical experimental methods, have played an important role in advancing ncRNA research across various stages. Presently, over 50 types of ncRNAs have been characterized, each exhibiting diverse functions. However, there remains a need for standardization and integration of these ncRNAs within a unified framework. In response to this gap, this review traces the historical trajectory of ncRNA research and proposes a unified notation system. Additionally, we comprehensively elucidate the ncRNA interactome, detailing its associations with DNAs, RNAs, proteins, complexes, and chromatin. A web portal named ncRNA Hub ( https://bis.zju.edu.cn/nchub/ ) is also constructed to provide detailed notations of ncRNAs and share a collection of bioinformatics resources. This review aims to provide a broader perspective and standardized paradigm for advancing ncRNA research.
Collapse
Affiliation(s)
- Mengwei Cheng
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Yinhuan Zhu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
- Wenzhou Institute, The University of Chinese Academy of Science, Wenzhou, 325001, China
| | - Han Yu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Linlin Shao
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Yiming Zhang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
- Wenzhou Institute, The University of Chinese Academy of Science, Wenzhou, 325001, China
| | - Lanxing Li
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Haohong Tu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Luyao Xie
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peijing Zhang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Saige Xin
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630060, Novosibirsk, Russia
| | - Yuriy Orlov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630060, Novosibirsk, Russia
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991, Moscow, Russia
| | - Dijun Chen
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Aloysius Wong
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Yixin Eric Yang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Ming Chen
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, China.
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Liang J, Wang J, Wang K, Feng H, Huang L. VmRDR2 of Valsa mali mediates the generation of VmR2-siR1 that suppresses apple resistance by RNA interference. THE NEW PHYTOLOGIST 2024; 243:1154-1171. [PMID: 38822646 DOI: 10.1111/nph.19867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Cross-kingdom RNA interference (RNAi) is a crucial mechanism in host-pathogen interactions, with RNA-dependent RNA polymerase (RdRP) playing a vital role in signal amplification during RNAi. However, the role of pathogenic fungal RdRP in siRNAs generation and the regulation of plant-pathogen interactions remains elusive. Using deep sequencing, molecular, genetic, and biochemical approaches, this study revealed that VmRDR2 of Valsa mali regulates VmR2-siR1 to suppress the disease resistance-related gene MdLRP14 in apple. Both VmRDR1 and VmRDR2 are essential for the pathogenicity of V. mali in apple, with VmRDR2 mediating the generation of endogenous siRNAs, including an infection-related siRNA, VmR2-siR1. This siRNA specifically degrades the apple intracellular LRR-RI protein gene MdLRP14 in a sequence-specific manner, and overexpression of MdLRP14 enhances apple resistance against V. mali, which can be suppressed by VmR2-siR1. Conversely, MdLRP14 knockdown reduces resistance. In summary, this study demonstrates that VmRDR2 contributes to the generation of VmR2-siR1, which silences the host's intracellular LRR protein gene, thereby inhibiting host resistance. These findings offer novel insights into the fungi-mediated pathogenicity mechanism through RNAi.
Collapse
Affiliation(s)
- Jiahao Liang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kai Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
4
|
Pardo-Medina J, Dahlmann TA, Nowrousian M, Limón MC, Avalos J. The RNAi Machinery in the Fungus Fusarium fujikuroi Is Not Very Active in Synthetic Medium and Is Related to Transposable Elements. Noncoding RNA 2024; 10:31. [PMID: 38804363 PMCID: PMC11130915 DOI: 10.3390/ncrna10030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Small RNAS (sRNAs) participate in regulatory RNA interference (RNAi) mechanisms in a wide range of eukaryotic organisms, including fungi. The fungus Fusarium fujikuroi, a model for the study of secondary metabolism, contains a complete set of genes for RNAi pathways. We have analyzed by high-throughput sequencing the content of sRNAs in total RNA samples of F. fujikuroi grown in synthetic medium in the dark or after 1 h of illumination, using libraries below 150 nt, covering sRNAs and their precursors. For comparison, a parallel analysis with Fusarium oxysporum was carried out. The sRNA reads showed a higher proportion of 5' uracil in the RNA samples of the expected sizes in both species, indicating the occurrence of genuine sRNAs, and putative miRNA-like sRNAs (milRNAS) were identified with prediction software. F. fujikuroi carries at least one transcriptionally expressed Ty1/copia-like retrotransposable element, in which sRNAs were found in both sense and antisense DNA strands, while in F. oxysporum skippy-like elements also show sRNA formation. The finding of sRNA in these mobile elements indicates an active sRNA-based RNAi pathway. Targeted deletion of dcl2, the only F. fujikuroi Dicer gene with significant expression under the conditions tested, did not produce appreciable phenotypic or transcriptomic alterations.
Collapse
Affiliation(s)
- Javier Pardo-Medina
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| | - Tim A. Dahlmann
- Department of Molecular and Cellular Botany, Ruhr-University Bochum, ND 7/176 Universitätsstr. 150, 44780 Bochum, Germany; (T.A.D.); (M.N.)
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-University Bochum, ND 7/176 Universitätsstr. 150, 44780 Bochum, Germany; (T.A.D.); (M.N.)
| | - M. Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| |
Collapse
|
5
|
Resistance strategies for defense against Albugo candida causing white rust disease. Microbiol Res 2023; 270:127317. [PMID: 36805163 DOI: 10.1016/j.micres.2023.127317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Albugo candida, the causal organism of white rust, is an oomycete obligate pathogen infecting crops of Brassicaceae family occurred on aerial part, including vegetable and oilseed crops at all growth stages. The disease expression is characterized by local infection appearing on the abaxial region developing white or creamy yellow blister (sori) on leaves and systemic infections cause hypertrophy and hyperplasia leading to stag-head of reproductive organ. To overcome this problem, several disease management strategies like fungicide treatments were used in the field and disease-resistant varieties have also been developed using conventional and molecular breeding. Due to high variability among A. candida isolates, there is no single approach available to understand the diverse spectrum of disease symptoms. In absence of resistance sources against pathogen, repetitive cultivation of genetically-similar varieties locally tends to attract oomycete pathogen causing heavy yield losses. In the present review, a deep insight into the underlying role of the non-host resistance (NHR) defence mechanism available in plants, and the strategies to exploit available gene pools from plant species that are non-host to A. candida could serve as novel sources of resistance. This work summaries the current knowledge pertaining to the resistance sources available in non-host germ plasm, the understanding of defence mechanisms and the advance strategies covers molecular, biochemical and nature-based solutions in protecting Brassica crops from white rust disease.
Collapse
|
6
|
Cui R, Li H, Zhao J, Li X, Gan J, Ma J. Structural insights into the dual activities of the two-barrel RNA polymerase QDE-1. Nucleic Acids Res 2022; 50:10169-10186. [PMID: 36039765 PMCID: PMC9508822 DOI: 10.1093/nar/gkac727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/27/2022] [Indexed: 11/19/2022] Open
Abstract
Neurospora crassa protein QDE-1, a member of the two-barrel polymerase superfamily, possesses both DNA- and RNA-dependent RNA polymerase (DdRP and RdRP) activities. The dual activities are essential for the production of double-stranded RNAs (dsRNAs), the precursors of small interfering RNAs (siRNAs) in N. crassa. Here, we report five complex structures of N-terminal truncated QDE-1 (QDE-1ΔN), representing four different reaction states: DNA/RNA-templated elongation, the de novo initiation of RNA synthesis, the first step of nucleotide condensation during de novo initiation and initial NTP loading. The template strand is aligned by a bridge-helix and double-psi beta-barrels 2 (DPBB2), the RNA product is held by DPBB1 and the slab domain. The DNA template unpairs with the RNA product at position –7, but the RNA template remains paired. The NTP analog coordinates with cations and is precisely positioned at the addition site by a rigid trigger loop and a proline-containing loop in the active center. The unique C-terminal tail from the QDE-1 dimer partner inserts into the substrate-binding cleft and plays regulatory roles in RNA synthesis. Collectively, this work elucidates the conserved mechanisms for DNA/RNA-dependent dual activities by QDE-1 and other two-barrel polymerase superfamily members.
Collapse
Affiliation(s)
- Ruixue Cui
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hao Li
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jin Zhao
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xuhang Li
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinbiao Ma
- Huashan Hospital affiliated to Fudan University, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Jin Y, Zhao JH, Zhao P, Zhang T, Wang S, Guo HS. A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180309. [PMID: 30967013 DOI: 10.1098/rstb.2018.0309] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MiRNAs in animals and plants play crucial roles in diverse developmental processes under both normal and stress conditions. miRNA-like small RNAs (milRNAs) identified in some fungi remain functionally uncharacterized. Here, we identified a number of milRNAs in Verticillium dahliae, a soil-borne fungal pathogen responsible for devastating wilt diseases in many crops. Accumulation of a V. dahliae milRNA1, named VdmilR1, was detected by RNA gel blotting. We show that the precursor gene VdMILR1 is transcribed by RNA polymerase II and is able to produce the mature VdmilR1, in a process independent of V. dahliae DCL (Dicer-like) and AGO (Argonaute) proteins. We found that an RNaseIII domain-containing protein, VdR3, is essential for V. dahliae and participates in VdmilR1 biogenesis. VdmilR1 targets a hypothetical protein-coding gene, VdHy1, at the 3'UTR for transcriptional repression through increased histone H3K9 methylation of VdHy1. Pathogenicity analysis reveals that VdHy1 is essential for fungal virulence. Together with the time difference in the expression patterns of VdmilR1 and VdHy1 during fungal infection in cotton plants, our findings identify a novel milRNA, VdmilR1, in V. dahliae synthesized by a noncanonical pathway that plays a regulatory role in pathogenicity and uncover an epigenetic mechanism for VdmilR1 in regulating a virulence target gene. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Yun Jin
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Jian-Hua Zhao
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Pan Zhao
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Tao Zhang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Sheng Wang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 College of Life Sciences, University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hui-Shan Guo
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 College of Life Sciences, University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
8
|
Zhao W, Li Q, Cui F. Potential functional pathways of plant RNA virus-derived small RNAs in a vector insect. Methods 2019; 183:38-42. [PMID: 31654749 DOI: 10.1016/j.ymeth.2019.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
During infection, RNA viruses can produce two types of virus-derived small RNAs (vsRNAs), small interfering RNA (siRNA) and microRNA (miRNA), that play a key role in RNA silencing-mediated antiviral mechanisms in various hosts by associating with different Argonaute (Ago) proteins. Ago1 has been widely identified as an essential part of the miRNA pathway, while Ago2 is required for the siRNA pathway. Thus, analysis of the interaction between vsRNAs and Ago proteins can provide a clue about which pathway the vsRNA may be involved in. In this study, using rice stripe virus (RSV)-small brown planthoppers (Laodelphax striatellus, Fallen) as an infection model, the interactions of eight vsRNAs derived from four viral genomic RNA fragments and Ago1 or Ago2 were detected via the RNA immunoprecipitation (RIP) method. vsRNA4-1 and vsRNA4-2 derived from RSV RNA4 were significantly enriched in Ago1-immunoprecipitated complexes, whereas vsRNA2-1 and vsRNA3-2 seemed enriched in Ago2-immunoprecipitated complexes. vsRNA1-2 and vsRNA2-2 were detected in both of the two Ago-immunoprecipitated complexes. In contrast, vsRNA1-1 and vsRNA3-1 did not accumulate in either Ago1- or Ago2-immunoprecipitated complexes, indicating that regulatory pathways other than miRNA or siRNA pathways might be employed. In addition, two conserved L. striatellus miRNAs were analysed via the RIP method. Both miRNAs accumulated in Ago1-immunoprecipitated complexes, which was consistent with previous studies, suggesting that our experimental system can be widely used. In conclusion, our study provides an accurate and convenient detection system to determine the potential pathway of vsRNAs, and this method may also be suitable for studying other sRNAs.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Bhattacharjee S, Roche B, Martienssen RA. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 2019; 16:1133-1146. [PMID: 31213126 DOI: 10.1080/15476286.2019.1621624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatic regions of the genome are epigenetically regulated to maintain a heritable '"silent state"'. In fission yeast and other organisms, epigenetic silencing is guided by nascent transcripts, which are targeted by the RNA interference pathway. The key effector complex of the RNA interference pathway consists of small interfering RNA molecules (siRNAs) associated with Argonaute, assembled into the RNA-induced transcriptional silencing (RITS) complex. This review focuses on our current understanding of how RITS promotes heterochromatin formation, and in particular on the role of Argonaute-containing complexes in many other functions such as quelling, release of RNA polymerases, cellular quiescence and genome defense.
Collapse
Affiliation(s)
- Sonali Bhattacharjee
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Benjamin Roche
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Robert A Martienssen
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| |
Collapse
|
10
|
Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 2018; 360:1126-1129. [PMID: 29773668 DOI: 10.1126/science.aar4142] [Citation(s) in RCA: 657] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/12/2018] [Indexed: 01/01/2023]
Abstract
Some pathogens and pests deliver small RNAs (sRNAs) into host cells to suppress host immunity. Conversely, hosts also transfer sRNAs into pathogens and pests to inhibit their virulence. Although sRNA trafficking has been observed in a wide variety of interactions, how sRNAs are transferred, especially from hosts to pathogens and pests, is still unknown. Here, we show that host Arabidopsis cells secrete exosome-like extracellular vesicles to deliver sRNAs into fungal pathogen Botrytis cinerea These sRNA-containing vesicles accumulate at the infection sites and are taken up by the fungal cells. Transferred host sRNAs induce silencing of fungal genes critical for pathogenicity. Thus, Arabidopsis has adapted exosome-mediated cross-kingdom RNA interference as part of its immune responses during the evolutionary arms race with the pathogen.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Lulu Qiao
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.,Department of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Ming Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Baoye He
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Feng-Mao Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Jared Palmquist
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Sienna-Da Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| |
Collapse
|
11
|
Jiang X, Qiao F, Long Y, Cong H, Sun H. MicroRNA-like RNAs in plant pathogenic fungus Fusarium oxysporum f. sp. niveum are involved in toxin gene expression fine tuning. 3 Biotech 2017; 7:354. [PMID: 29062675 DOI: 10.1007/s13205-017-0951-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-like RNAs (milRNAs) are short non-coding regulatory sRNAs which play an important role in regulating gene expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. To explore the presence of milRNAs in Fusarium oxysporum f. sp. niveum (Fon) and analyze their expression at different propagules, two categories of sRNAs were identified from Fon hyphae and microconidia using illumina sequencing. A total of 650,960 and 561,114 unique sRNAs were obtained from the hyphae and microconidia samples. With a previously constructed pipeline to search for microRNAs, 74 and 56 milRNA candidates were identified in hyphae and microconidia, respectively, based on the short hairpin structure analysis. Global expression analysis showed an extensively differential expression of sRNAs between the two propagules. Altogether, 78 significantly differently expressed milRNAs were identified in two libraries. Target prediction revealed two interesting genes involved in trichothecene production, necrosis and ethylene-inducing peptide 1 (NEP1) biosynthesis and in silico analysis indicated that they were down-regulated by Fon-miR7696a-3p and Fon-miR6108a. The expression levels of these two milRNAs were further validated by qRT-PCR and the results were consistent. The negative correlation of the expression levels between these two milRNAs and their potential target genes imply that they play a role in trichothecene and NEP1 biosynthesis. And this negative regulation for toxin-related gene expression is more specific in microconidia. The present study provides the first large-scale characterization of milRNAs in Fon and the comparison between hyphae and microconidia propagules gives an insight into how milRNAs are involve in toxin biosynthesis.
Collapse
|
12
|
Raman V, Simon SA, Demirci F, Nakano M, Meyers BC, Donofrio NM. Small RNA Functions Are Required for Growth and Development of Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:517-530. [PMID: 28504560 DOI: 10.1094/mpmi-11-16-0236-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
RNA interference (RNAi) is conserved in eukaryotic organisms, and it has been well studied in many animal and plant species and some fungal species, yet it is not well studied in fungal plant pathogens. In the rice blast fungus Magnaporthe oryzae, we examined small RNA (sRNA) and their biogenesis in the context of growth and pathogenicity. Through genetic and genomic analyses, we demonstrate that loss of a single gene encoding Dicer, RNA-dependent RNA polymerase, or Argonaute reduces sRNA levels. These three proteins are required for the biogenesis of sRNA-matching genome-wide regions (coding regions, repeats, and intergenic regions). The loss of one Argonaute reduced both sRNA and fungal virulence on barley leaves. Transcriptome analysis of multiple mutants revealed that sRNA play an important role in transcriptional regulation of repeats and intergenic regions in M. oryzae. Together, these data support that M. oryzae sRNA regulate developmental processes including, fungal growth and virulence.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
| | - Stacey A Simon
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Feray Demirci
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Mayumi Nakano
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Blake C Meyers
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Nicole M Donofrio
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
| |
Collapse
|
13
|
Torres-Martínez S, Ruiz-Vázquez RM. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions. Annu Rev Microbiol 2017; 71:371-391. [PMID: 28657888 DOI: 10.1146/annurev-micro-090816-093352] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is a conserved eukaryotic mechanism that uses small RNA molecules to suppress gene expression through sequence-specific messenger RNA degradation, translational repression, or transcriptional inhibition. In filamentous fungi, the protective function of RNAi in the maintenance of genome integrity is well known. However, knowledge of the regulatory role of RNAi in fungi has had to wait until the recent identification of different endogenous small RNA classes, which are generated by distinct RNAi pathways. In addition, RNAi research on new fungal models has uncovered the role of small RNAs and RNAi pathways in the regulation of diverse biological functions. In this review, we give an up-to-date overview of the different classes of small RNAs and RNAi pathways in fungi and their roles in the defense of genome integrity and regulation of fungal physiology and development, as well as in the interaction of fungi with biotic and abiotic environments.
Collapse
|
14
|
Villalobos-Escobedo JM, Herrera-Estrella A, Carreras-Villaseñor N. The interaction of fungi with the environment orchestrated by RNAi. Mycologia 2017; 108:556-71. [DOI: 10.3852/15-246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/07/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad. Cinvestav Campus Guanajuato. Km 9.6 Libramiento Norte, carretera Irapuato-León. 36821 Irapuato, Guanajuato, Mexico
| | - Nohemí Carreras-Villaseñor
- StelaGenomics México, S de RL de CV, Av. Camino Real de Guanajuato S/N, 36821 Irapuato, Guanajuato, Mexico
| |
Collapse
|
15
|
Lin R, He L, He J, Qin P, Wang Y, Deng Q, Yang X, Li S, Wang S, Wang W, Liu H, Li P, Zheng A. Comprehensive analysis of microRNA-Seq and target mRNAs of rice sheath blight pathogen provides new insights into pathogenic regulatory mechanisms. DNA Res 2016; 23:415-425. [PMID: 27374612 PMCID: PMC5066168 DOI: 10.1093/dnares/dsw024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/12/2016] [Indexed: 02/03/2023] Open
Abstract
MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNAs that regulate gene expression by targeting mRNAs for degradation or inhibiting protein translation. To investigate whether miRNAs regulate the pathogenesis in necrotrophic fungus Rhizoctonia solani AG1 IA, which causes significant yield loss in main economically important crops, and to determine the regulatory mechanism occurring during pathogenesis, we constructed hyphal small RNA libraries from six different infection periods of the rice leaf. Through sequencing and analysis, 177 miRNA-like small RNAs (milRNAs) were identified, including 15 candidate pathogenic novel milRNAs predicted by functional annotations of their target mRNAs and expression patterns of milRNAs and mRNAs during infection. Reverse transcription-quantitative polymerase chain reaction results for randomly selected milRNAs demonstrated that our novel comprehensive predictions had a high level of accuracy. In our predicted pathogenic protein-protein interaction network of R. solani, we added the related regulatory milRNAs of these core coding genes into the network, and could understand the relationships among these regulatory factors more clearly at the systems level. Furthermore, the putative pathogenic Rhi-milR-16, which negatively regulates target gene expression, was experimentally validated to have regulatory functions by a dual-luciferase reporter assay. Additionally, 23 candidate rice miRNAs that may involve in plant immunity against R. solani were discovered. This first study on novel pathogenic milRNAs of R. solani AG1 IA and the recognition of target genes involved in pathogenicity, as well as rice miRNAs, participated in defence against R. solani could provide new insights into revealing the pathogenic mechanisms of the severe rice sheath blight disease.
Collapse
Affiliation(s)
- Runmao Lin
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Liye He
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Jiayu He
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Peigang Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yanran Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaoting Yang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiquan Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenming Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu 611130, China
| | - Huainian Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Generation of a high resolution map of sRNAs from Fusarium graminearum and analysis of responses to viral infection. Sci Rep 2016; 6:26151. [PMID: 27189438 PMCID: PMC4870495 DOI: 10.1038/srep26151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/28/2016] [Indexed: 01/18/2023] Open
Abstract
Previously, we characterized F. graminearum hypovirus 1 (FgHV1) and F. graminearum hypovirus 2 (FgHV2), which are the only two hypoviruses in F. graminearum that are closely related to Cryphonectria hypovirus 1 (CHV1) and Cryphonectria hypovirus 2 (CHV2) in the Hypoviridae family. In this study, we preliminarily elucidated the RNA silencing mechanism of the F. graminearum/hypovirus system from a small RNA (sRNA) perspective by using HiSeq deep sequencing. The length distributions of F. graminearum sRNA were altered by hypoviral infection. Potential microRNA-like (milRNA) candidates were differentially expressed between the hypovirus-free and hypovirus-infected library types. Extensive virus-derived small interfering RNAs (vsiRNAs) were also principally defined. The 1,831,081 and 3,254,758 total reads generated from the FgHV1 and FgHV2 genomes in F. graminearum yielded the first high-resolution sRNA maps of fungal viruses. In addition, extensive bioinformatics searches identified a large number of transcripts that are potentially targeted by vsiRNAs, several of which were effectively down-regulated. In particular, the RNA silencing-related genes FgDicer1 and FgRdRp5 were predicted targets of FgHV1- and FgHV2-derived siRNAs, possibly revealing a novel anti-RNA silencing strategy employed by mycoviruses.
Collapse
|
17
|
Novel Intronic RNA Structures Contribute to Maintenance of Phenotype in Saccharomyces cerevisiae. Genetics 2016; 203:1469-81. [PMID: 27194751 PMCID: PMC4937481 DOI: 10.1534/genetics.115.185363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/13/2016] [Indexed: 12/18/2022] Open
Abstract
The Saccharomyces cerevisiae genome has undergone extensive intron loss during its evolutionary history. It has been suggested that the few remaining introns (in only 5% of protein-coding genes) are retained because of their impact on function under stress conditions. Here, we explore the possibility that novel noncoding RNA structures (ncRNAs) are embedded within intronic sequences and are contributing to phenotype and intron retention in yeast. We employed de novo RNA structure prediction tools to screen intronic sequences in S. cerevisiae and 36 other fungi. We identified and validated 19 new intronic RNAs via RNA sequencing (RNA-seq) and RT-PCR. Contrary to the common belief that excised introns are rapidly degraded, we found that, in six cases, the excised introns were maintained intact in the cells. In another two cases we showed that the ncRNAs were further processed from their introns. RNA-seq analysis confirmed that introns in ribosomal protein genes are more highly expressed when they contain predicted RNA structures. We deleted the novel intronic RNA structure within the GLC7 intron and showed that this region, rather than the intron itself, is responsible for the cell’s ability to respond to salt stress. We also showed a direct association between the in cis presence of the intronic RNA and GLC7 expression. Overall, these data support the notion that some introns may have been maintained in the genome because they harbor functional RNA structures.
Collapse
|
18
|
Tóth KF, Pezic D, Stuwe E, Webster A. The piRNA Pathway Guards the Germline Genome Against Transposable Elements. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:51-77. [PMID: 26659487 DOI: 10.1007/978-94-017-7417-8_4] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transposable elements (TEs) have the capacity to replicate and insert into new genomic locations. This contributs significantly to evolution of genomes, but can also result in DNA breaks and illegitimate recombination, and therefore poses a significant threat to genomic integrity. Excess damage to the germ cell genome results in sterility. A specific RNA silencing pathway, termed the piRNA pathway operates in germ cells of animals to control TE activity. At the core of the piRNA pathway is a ribonucleoprotein complex consisting of a small RNA, called piRNA, and a protein from the PIWI subfamily of Argonaute nucleases. The piRNA pathway relies on the specificity provided by the piRNA sequence to recognize complementary TE targets, while effector functions are provided by the PIWI protein. PIWI-piRNA complexes silence TEs both at the transcriptional level - by attracting repressive chromatin modifications to genomic targets - and at the posttranscriptional level - by cleaving TE transcripts in the cytoplasm. Impairment of the piRNA pathway leads to overexpression of TEs, significantly compromised genome structure and, invariably, germ cell death and sterility.The piRNA pathway is best understood in the fruit fly, Drosophila melanogaster, and in mouse. This Chapter gives an overview of current knowledge on piRNA biogenesis, and mechanistic details of both transcriptional and posttranscriptional TE silencing by the piRNA pathway. It further focuses on the importance of post-translational modifications and subcellular localization of the piRNA machinery. Finally, it provides a brief description of analogous pathways in other systems.
Collapse
Affiliation(s)
- Katalin Fejes Tóth
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA.
| | - Dubravka Pezic
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Evelyn Stuwe
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Alexandre Webster
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| |
Collapse
|
19
|
Ruiz-Vázquez RM, Nicolás FE, Torres-Martínez S, Garre V. Distinct RNAi Pathways in the Regulation of Physiology and Development in the Fungus Mucor circinelloides. ADVANCES IN GENETICS 2015; 91:55-102. [DOI: 10.1016/bs.adgen.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Zhang DX, Spiering MJ, Nuss DL. Characterizing the roles of Cryphonectria parasitica RNA-dependent RNA polymerase-like genes in antiviral defense, viral recombination and transposon transcript accumulation. PLoS One 2014; 9:e108653. [PMID: 25268858 PMCID: PMC4182546 DOI: 10.1371/journal.pone.0108653] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/03/2014] [Indexed: 01/24/2023] Open
Abstract
An inducible RNA-silencing pathway, involving a single Dicer protein, DCL2, and a single Argonaute protein, AGL2, was recently shown to serve as an effective antiviral defense response in the chestnut blight fungus Cryphonectria parasitica. Eukaryotic RNA-dependent RNA polymerases (RdRPs) are frequently involved in transcriptional and posttranscriptional gene silencing and antiviral defense. We report here the identification and characterization of four RdRP genes (rdr1–4) in the C. parasitica genome. Sequence relationships with other eukaryotic RdRPs indicated that RDR1 and RDR2 were closely related to QDE-1, an RdRP involved in RNA silencing (“quelling”) in Neurospora crassa, whereas RDR3 was more closely related to the meiotic silencing gene SAD-1 in N. crassa. The RdRP domain of RDR4, related to N. crassa RRP-3 of unknown function, was truncated and showed evidence of alternative splicing. Similar to reports for dcl2 and agl2, the expression levels for rdr3 and rdr4 increased after hypovirus CHV-1/EP713 infection, while expression levels of rdr1 and rdr2 were unchanged. The virus-responsive induction patterns for rdr3 and rdr4 were altered in the Δdcl2 and Δagl2 strains, suggesting some level of interaction between rdr3 and rdr4 and the dcl2/agl2 silencing pathway. Single rdr gene knockouts Δrdr1–4, double knockouts Δrdr1/2, Δrdr2/3, Δrdr1/3, and a triple knockout, Δrdr1/2/3, were generated and evaluated for effects on fungal phenotype, the antiviral defense response, viral RNA recombination activity and transposon expression. None of the single or multiple rdr knockout strains displayed any phenotypic differences from the parental strains with or without viral infection or any significant changes in viral RNA accumulation or recombination activity or transposon RNA accumulation, indicating no detectable contribution by the C. parasitica rdr genes to these processes.
Collapse
Affiliation(s)
- Dong-Xiu Zhang
- Institute for Bioscience and Biotechnology Research and Department of Cell Biology and Molecular Genetics, University of Maryland, Rockville, Maryland, United States of America
| | - Martin J. Spiering
- Institute for Bioscience and Biotechnology Research and Department of Cell Biology and Molecular Genetics, University of Maryland, Rockville, Maryland, United States of America
| | - Donald L. Nuss
- Institute for Bioscience and Biotechnology Research and Department of Cell Biology and Molecular Genetics, University of Maryland, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
RNAi is conserved and has been studied in a broad cross-section of the fungal kingdom, including Neurospora crassa, Schizosaccharomyces pombe, Cryptococcus neoformans, and Mucor circinelloides. And yet well known species, including the model yeast Saccharomyces cerevisiae and the plant pathogen Ustilago maydis, have lost RNAi, providing insights and opportunities to illuminate benefits conferred both by the presence of RNAi and its loss. Some of the earliest studies of RNAi were conducted in Neurospora, contemporaneously with the elucidation of RNAi in Caenorhabditis elegans. RNAi is a key epigenetic mechanism for maintaining genomic stability and integrity, as well as to defend against viruses, and given its ubiquity was likely present in the last eukaryotic common ancestor. In this review, we describe the diversity of RNAi mechanisms found in the fungi, highlighting recent work in Neurospora, S. pombe, and Cryptococcus. Finally, we consider frequent, independent losses of RNAi in diverse fungal lineages and both review and speculate on evolutionary forces that may drive the losses or result therefrom.
Collapse
|
22
|
Sun J, Li X, Feng P, Zhang J, Xie Z, Song E, Xi L. RNAi-mediated silencing of fungal acuD gene attenuates the virulence of Penicillium marneffei. Med Mycol 2014; 52:167-78. [DOI: 10.1093/mmy/myt006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
23
|
Nicolás FE, Ruiz-Vázquez RM. Functional diversity of RNAi-associated sRNAs in fungi. Int J Mol Sci 2013; 14:15348-60. [PMID: 23887655 PMCID: PMC3759863 DOI: 10.3390/ijms140815348] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022] Open
Abstract
Yeast and filamentous fungi have been essential model systems for unveiling the secrets of RNA interference (RNAi). Research on these organisms has contributed to identifying general mechanisms and conserved eukaryotic RNAi machinery that can be found from fungi to mammals. The development of deep sequencing technologies has brought on the last wave of studies on RNAi in fungi, which has been focused on the identification of new types of functional small RNAs (sRNAs). These studies have discovered an unexpected diversity of sRNA, biogenesis pathways and new functions that are the focus of this review.
Collapse
Affiliation(s)
- Francisco E. Nicolás
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain; E-Mail:
- Regional Campus of International Excellence “Campus Mare Nostrum”, Murcia 30100, Spain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-868-887135; Fax: +34-868-883963
| | - Rosa M. Ruiz-Vázquez
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain; E-Mail:
| |
Collapse
|
24
|
Abstract
In Neurospora crassa, unpaired genes are silenced by a mechanism called meiotic silencing by unpaired DNA (MSUD). Although some RNA interference proteins are necessary for this process, its requirement of small RNAs has yet to be formally established. Here we report the characterization of small RNAs targeting an unpaired region, using Illumina sequencing.
Collapse
|
25
|
Novel proteins required for meiotic silencing by unpaired DNA and siRNA generation in Neurospora crassa. Genetics 2013; 194:91-100. [PMID: 23502675 DOI: 10.1534/genetics.112.148999] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During meiosis in the filamentous fungus Neurospora crassa, unpaired genes are identified and silenced by a process known as meiotic silencing by unpaired DNA (MSUD). Previous work has uncovered six proteins required for MSUD, all of which are also essential for meiotic progression. Additionally, they all localize in the perinuclear region, suggesting that it is a center of MSUD activity. Nevertheless, at least a subset of MSUD proteins must be present inside the nucleus, as unpaired DNA recognition undoubtedly takes place there. In this study, we identified and characterized two new proteins required for MSUD, namely SAD-4 and SAD-5. Both are previously uncharacterized proteins specific to Ascomycetes, with SAD-4 having a range that spans several fungal classes and SAD-5 seemingly restricted to a single order. Both genes appear to be predominantly expressed in the sexual phase, as molecular study combined with analysis of publicly available mRNA-seq datasets failed to detect significant expression of them in the vegetative tissue. SAD-4, like all known MSUD proteins, localizes in the perinuclear region of the meiotic cell. SAD-5, on the other hand, is found in the nucleus (as the first of its kind). Both proteins are unique compared to previously identified MSUD proteins in that neither is required for sexual sporulation. This homozygous-fertile phenotype uncouples MSUD from sexual development and allows us to demonstrate that both SAD-4 and SAD-5 are important for the production of masiRNAs, which are the small RNA molecules associated with meiotic silencing.
Collapse
|
26
|
Sex-induced silencing operates during opposite-sex and unisexual reproduction in Cryptococcus neoformans. Genetics 2013; 193:1163-74. [PMID: 23378067 DOI: 10.1534/genetics.113.149443] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from yeast to hyphae during a-α opposite-sex mating and α-α unisexual reproduction (same-sex mating). Infectious spores are generated during both processes. We previously identified a sex-induced silencing (SIS) pathway in the C. neoformans serotype A var. grubii lineage, in which tandem transgene arrays trigger RNAi-dependent gene silencing at a high frequency during a-α opposite-sex mating, but at an ∼250-fold lower frequency during asexual mitotic vegetative growth. Here we report that SIS also operates during α-α unisexual reproduction. A self-fertile strain containing either SXI2a-URA5 or NEO-URA5 transgene arrays exhibited an elevated silencing frequency during solo and unisexual mating compared with mitotic vegetative growth. We also found that SIS operates at a similar efficiency on transgene arrays of the same copy number during either α-α unisexual reproduction or a-α opposite-sex mating. URA5-derived small RNAs were detected in the silenced progeny of α-α unisexual reproduction and RNAi core components were required, providing evidence that SIS induced by same-sex mating is also mediated by RNAi via sequence-specific small RNAs. In addition, our data show that the SIS RNAi pathway also operates to defend the genome via squelching transposon activity during same-sex mating as it does during opposite-sex mating. Taken together, our results confirm that SIS is conserved between the divergent C. neoformans serotype A and serotype D cryptic sibling species.
Collapse
|
27
|
Both OsRecQ1 and OsRDR1 are required for the production of small RNA in response to DNA-damage in rice. PLoS One 2013; 8:e55252. [PMID: 23383126 PMCID: PMC3559376 DOI: 10.1371/journal.pone.0055252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/27/2012] [Indexed: 12/04/2022] Open
Abstract
Small RNA-mediated gene silencing pathways play important roles in the regulation of development, genome stability and various stress responses in many eukaryotes. Recently, a new type of small interfering RNAs (qiRNAs) approximately 20–21 nucleotides long in Neurospora crassa have been shown to mediate gene silencing in the DNA damage response (DDR) pathway. However, the mechanism for RNA silencing in the DDR pathway is largely unknown in plants. Here, we report that a class of small RNAs (qiRNAs) derived from rDNA was markedly induced after treatment by DNA-damaging agents [ethyl methanesulphonate (EMS and UV-C)], and that aberrant RNAs (aRNAs) as precursors were also highly induced after the DNA damage treatment in rice. However, these RNAs were completely abolished in OsRecQ1 (RecQ DNA helicase homologue) and OsRDR1 (RNA-dependent RNA polymerase homologue) mutant lines where either gene was disrupted by the insertion of rice retrotransposon Tos17 after the same treatment. DNA damage resulted in a more significant increase in cell death and a more severe inhibition of root growth in both mutant lines than in the WT. Together, these results strongly suggest that both OsRecQ1 and OsRDR1 play a pivotal role in the aRNA and qiRNA biogenesis required for the DDR and repair pathway in rice, and it may be a novel mechanism of regulation to the DDR through the production of qiRNA in plants.
Collapse
|
28
|
Yang Q, Li L, Xue Z, Ye Q, Zhang L, Li S, Liu Y. Transcription of the major neurospora crassa microRNA-like small RNAs relies on RNA polymerase III. PLoS Genet 2013; 9:e1003227. [PMID: 23349642 PMCID: PMC3547838 DOI: 10.1371/journal.pgen.1003227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/22/2012] [Indexed: 12/19/2022] Open
Abstract
Most plant and animal microRNAs (miRNAs) are transcribed by RNA polymerase II. We previously discovered miRNA–like small RNAs (milRNAs) in the filamentous fungus Neurospora crassa and uncovered at least four different pathways for milRNA production. To understand the evolutionary origin of milRNAs, we determined the roles of polymerases II and III (Pol II and Pol III) in milRNA transcription. Our results show that Pol III is responsible for the transcription of the major milRNAs produced in this organism. The inhibition of Pol III activity by an inhibitor or by gene silencing abolishes the production of most abundant milRNAs and pri–milRNAs. In addition, Pol III associates with these milRNA producing loci. Even though silencing of Pol II does not affect the synthesis of the most abundant milRNAs, Pol II or both Pol II and Pol III are associated with some milRNA–producing loci, suggesting a regulatory interaction between the two polymerases for some milRNA transcription. Furthermore, we show that one of the Pol III–transcribed milRNAs is derived from a tRNA precursor, and its biogenesis requires RNase Z, which cleaves the tRNA moiety to generate pre–milRNA. Our study identifies the transcriptional machinery responsible for the synthesis of fungal milRNAs and sheds light on the evolutionary origin of eukaryotic small RNAs. microRNAs (miRNAs) are small RNAs that are used by many organisms to regulate a wide variety of molecular, developmental, and physiological activities. In higher eukaryotes, such as animals and plants, the majority of the independent transcribed miRNAs are produced by RNA polymerase II (Pol II), an enzyme that is also responsible for the production of most of the messenger RNAs. On the other hand, only a few tRNA–associated miRNAs are known to be produced by RNA polymerase III (Pol III), an enzyme that is responsible for the production of small sized RNAs such as tRNAs and 5s rRNA. We previously identified the first fungal miRNAs by identifying the small RNAs associated with an Argonaute protein in the filamentous fungus Neurospora crassa. In this study, we examined the role of Pol II and Pol III in the production of Neurospora miRNAs. We showed that, unlike in plants and animals, Pol III appears to be a major RNA polymerase responsible for miRNA production in this fungus. Our study identified the transcriptional machinery responsible for the synthesis of fungal miRNAs and shed light on the evolutionary origin of miRNAs.
Collapse
Affiliation(s)
- Qiuying Yang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Liande Li
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhihong Xue
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qiaohong Ye
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abbott EP, Ianiri G, Castoria R, Idnurm A. Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Appl Microbiol Biotechnol 2012; 97:283-95. [PMID: 23149757 DOI: 10.1007/s00253-012-4561-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/28/2012] [Accepted: 10/29/2012] [Indexed: 12/27/2022]
Abstract
The red yeasts of the Pucciniomycotina have rarely been transformed with DNA molecules. Transformation methods were recently developed for a species of Sporobolomyces, based on selection using uracil auxotrophs and plasmids carrying the wild-type copies of the URA3 and URA5 genes. However, these plasmids were ineffective in the transformation of closely related species. Using the genome-sequenced strain of Rhodotorula graminis as a starting point, the URA3 and URA5 genes were cloned and tested for the transformation ability into different Pucciniomycotina species by biolistic and Agrobacterium-mediated transformations. Transformation success depended on the red yeast species and the origin of the URA3 or URA5 genes, which may be related to the high G + C DNA content found in several species. A new vector was generated to confer resistance to nourseothricin, using a native promoter from R. graminis and the naturally high G + C nourseothricin acetyltransferease gene. This provides a second selectable marker in these species. Targeted gene disruption was tested in Sporobolomyces sp. IAM 13481 using different lengths of homologous DNA with biolistic and Agrobacterium transformation methods. Both DNA delivery methods were effective for targeted replacement of a gene required for carotenoid pigment biosynthesis. The constructs also triggered transgene silencing. These developments open the way to identify and manipulate gene functions in a large group of basidiomycete fungi.
Collapse
Affiliation(s)
- Erika P Abbott
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO, 64110, USA
| | | | | | | |
Collapse
|
30
|
Wang X, Wang P, Sun S, Darwiche S, Idnurm A, Heitman J. Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans. PLoS Genet 2012; 8:e1002885. [PMID: 22916030 PMCID: PMC3420925 DOI: 10.1371/journal.pgen.1002885] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/22/2012] [Indexed: 11/23/2022] Open
Abstract
Introduction of DNA sequences into the genome often results in homology-dependent gene silencing in organisms as diverse as plants, fungi, flies, nematodes, and mammals. We previously showed in Cryptococcus neoformans that a repeat transgene array can induce gene silencing at a high frequency during mating (∼50%), but at a much lower frequency during vegetative growth (∼0.2%). Here we report a robust asexual co-suppression phenomenon triggered by the introduction of a cpa1::ADE2 transgene. Multiple copies of the cpa1::ADE2 transgene were ectopically integrated into the genome, leading to silencing of the endogenous CPA1 and CPA2 genes encoding the cyclosporine A target protein cyclophilin A. Given that CPA1-derived antisense siRNAs were detected in the silenced isolates, and that RNAi components (Rdp1, Ago1, and Dcr2) are required for silencing, we hypothesize that an RNAi pathway is involved, in which siRNAs function as trans factors to silence both the CPA1 and the CPA2 genes. The silencing efficiency of the CPA1 and CPA2 genes is correlated with the transgene copy number and reached ∼90% in the presence of >25 copies of the transgene. We term this transgene silencing phenomenon asexual co-suppression to distinguish it from the related sex-induced silencing (SIS) process. We further show that replication protein A (RPA), a single-stranded DNA binding complex, is required for transgene silencing, suggesting that RPA might play a similar role in aberrant RNA production as observed for quelling in Neurospora crassa. Interestingly, we also observed that silencing of the ADE2 gene occurred at a much lower frequency than the CPA1/2 genes even though it is present in the same transgene array, suggesting that factors in addition to copy number influence silencing. Taken together, our results illustrate that a transgene induced co-suppression process operates during C. neoformans vegetative growth that shares mechanistic features with quelling. The development of gene transfer methods allows the production of transgenic lines in myriad eukaryotes. Frequently, transgenic DNA is integrated into the genome and transmitted as a heritable Mendelian trait. However, the introduced transgenes are in some cases not expressed (silenced). In addition, transgenes can also provoke silencing of endogenous genes with which they share sequence homology. This phenomenon was first observed in plants and named co-suppression. In fungi the best-documented co-suppression phenomenon occurs in vegetative tissue of the filamentous fungus Neurospora crassa and is termed quelling. Here we report a robust asexual co-suppression pathway that operates in the pathogenic fungus Cryptococcus neoformans and shares molecular components with quelling. Compared with the sex induced silencing (SIS) phenomenon previously discovered in C. neoformans, which efficiently silences genes during mating (∼50%) but not during vegetative growth (∼0.2%), asexual co-suppression operates efficiently during vegetative growth to suppress transgene expression and may also silence transposons and other repetitive sequences.
Collapse
Affiliation(s)
- Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ping Wang
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, United States of America
- Department of Pediatrics and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sabrina Darwiche
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
RNA interference (RNAi) is a conserved eukaryotic gene regulatory mechanism that uses small noncoding RNAs to mediate posttranscriptional/transcriptional gene silencing. The fission yeast Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa have served as important model systems for RNAi research. Studies on these two organisms and other fungi have contributed significantly to our understanding of the mechanisms and functions of RNAi in eukaryotes. In addition, surprisingly diverse RNAi-mediated processes and small RNA biogenesis pathways have been discovered in fungi. In this review, we give an overview of different fungal RNAi pathways with a focus on their mechanisms and functions.
Collapse
Affiliation(s)
- Shwu-Shin Chang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | |
Collapse
|
32
|
Nunes CC, Dean RA. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. MOLECULAR PLANT PATHOLOGY 2012; 13:519-29. [PMID: 22111693 PMCID: PMC6638818 DOI: 10.1111/j.1364-3703.2011.00766.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recent discoveries regarding small RNAs and the mechanisms of gene silencing are providing new opportunities to explore fungal pathogen-host interactions and potential strategies for novel disease control. Plant pathogenic fungi are a constant and major threat to global food security; they represent the largest group of disease-causing agents on crop plants on the planet. An initial understanding of RNA silencing mechanisms and small RNAs was derived from model fungi. Now, new knowledge with practical implications for RNA silencing is beginning to emerge from the study of plant-fungus interactions. Recent studies have shown that the expression of silencing constructs in plants designed on fungal genes can specifically silence their targets in invading pathogenic fungi, such as Fusarium verticillioides, Blumeria graminis and Puccinia striiformis f.sp. tritici. Here, we highlight the important general aspects of RNA silencing mechanisms and emphasize recent findings from plant pathogenic fungi. Strategies to employ RNA silencing to investigate the basis of fungal pathogenesis are discussed. Finally, we address important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control fungal disease.
Collapse
Affiliation(s)
- Cristiano C Nunes
- Department of Plant Pathology, Fungal Genomics Laboratory, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27606, USA
| | | |
Collapse
|
33
|
Zhou J, Fu Y, Xie J, Li B, Jiang D, Li G, Cheng J. Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol Genet Genomics 2012; 287:275-82. [DOI: 10.1007/s00438-012-0678-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/14/2012] [Indexed: 12/16/2022]
|
34
|
Affiliation(s)
- César G. Prucca
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| | - Fernando D. Rivero
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| | - Hugo D. Luján
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| |
Collapse
|
35
|
Dang Y, Yang Q, Xue Z, Liu Y. RNA interference in fungi: pathways, functions, and applications. EUKARYOTIC CELL 2011; 10:1148-55. [PMID: 21724934 PMCID: PMC3187057 DOI: 10.1128/ec.05109-11] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small RNA molecules of about 20 to 30 nucleotides function in gene regulation and genomic defense via conserved eukaryotic RNA interference (RNAi)-related pathways. The RNAi machinery consists of three core components: Dicer, Argonaute, and RNA-dependent RNA polymerase. In fungi, the RNAi-related pathways have three major functions: genomic defense, heterochromatin formation, and gene regulation. Studies of Schizosaccharomyces pombe and Neurospora, and other fungi have uncovered surprisingly diverse small RNA biogenesis pathways, suggesting that fungi utilize RNAi-related pathways in various cellular processes to adapt to different environmental conditions. These studies also provided important insights into how RNAi functions in eukaryotic systems in general. In this review, we will discuss our current understanding of the fungal RNAi-related pathways and their functions, with a focus on filamentous fungi. We will also discuss how RNAi can be used as a tool in fungal research.
Collapse
Affiliation(s)
- Yunkun Dang
- Department of Physiology, ND13.214A, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040, USA.
| | | | | | | |
Collapse
|
36
|
Li X, Shen Y, Sun J, Wang B, He Q. A reporter for dsRNA response in Neurospora crassa. FEBS Lett 2011; 585:906-12. [PMID: 21354420 DOI: 10.1016/j.febslet.2011.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/12/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
In the filamentous fungus Neurospora, the production of dsRNA can elicit a dsRNA-induced transcriptional response similar to the interferon response in vertebrates. However, how fungi sense the expression of dsRNA and activate gene expression is unknown. In this study, we established a dsRNA response reporter system in Neurospora crassa. Using the dsRNA-activated RNA-dependent RNA polymerase gene rrp-3 promoter, we created an expression construct (pRRP-3::Myc-Al-1) and introduced it into al-1(KO) mutant. The test dsRNA efficiently induced pRRP-3::Myc-Al-1 expression in the al-1(KO) mutant, resulting in conidia color switching from white to yellow. These results confirm that the dsRNA response is regulated at the transcriptional level and this reporter system can be used for future studies in dsRNA response in filamentous fungi.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Wang X, Hsueh YP, Li W, Floyd A, Skalsky R, Heitman J. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes Dev 2010; 24:2566-82. [PMID: 21078820 DOI: 10.1101/gad.1970910] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cosuppression is a silencing phenomenon triggered by the introduction of homologous DNA sequences into the genomes of organisms as diverse as plants, fungi, flies, and nematodes. Here we report sex-induced silencing (SIS), which is triggered by tandem integration of a transgene array in the human fungal pathogen Cryptococcus neoformans. A SXI2a-URA5 transgene array was found to be post-transcriptionally silenced during sexual reproduction. More than half of the progeny that inherited the SXI2a-URA5 transgene became uracil-auxotrophic due to silencing of the URA5 gene. In vegetative mitotic growth, silencing of this transgene array occurred at an ∼250-fold lower frequency, indicating that silencing is induced during the sexual cycle. Central components of the RNAi pathway-including genes encoding Argonaute, Dicer, and an RNA-dependent RNA polymerase-are all required for both meiotic and mitotic transgene silencing. URA5-derived ∼22-nucleotide (nt) small RNAs accumulated in the silenced isolates, suggesting that SIS is mediated by RNAi via sequence-specific small RNAs. Through deep sequencing of the small RNA population in C. neoformans, we also identified abundant small RNAs mapping to repetitive transposable elements, and these small RNAs were absent in rdp1 mutant strains. Furthermore, a group of retrotransposons was highly expressed during mating of rdp1 mutant strains, and an increased transposition/mutation rate was detected in their progeny, indicating that the RNAi pathway squelches transposon activity during the sexual cycle. Interestingly, Ago1, Dcr1, Dcr2, and Rdp1 are translationally induced in mating cells, and Ago1, Dcr1, and Dcr2 localize to processing bodies (P bodies), whereas Rdp1 appears to be nuclear, providing mechanistic insights into the elevated silencing efficiency during sexual reproduction. We hypothesize that the SIS RNAi pathway operates to defend the genome during sexual development.
Collapse
Affiliation(s)
- Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
39
|
Li L, Chang SS, Liu Y. RNA interference pathways in filamentous fungi. Cell Mol Life Sci 2010; 67:3849-63. [PMID: 20680389 PMCID: PMC4605205 DOI: 10.1007/s00018-010-0471-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/01/2010] [Accepted: 07/14/2010] [Indexed: 11/28/2022]
Abstract
RNA interference is a conserved homology-dependent post-transcriptional/transcriptional gene silencing mechanism in eukaryotes. The filamentous fungus Neurospora crassa is one of the first organisms used for RNAi studies. Quelling and meiotic silencing by unpaired DNA are two RNAi-related phenomena discovered in Neurospora, and their characterizations have contributed significantly to our understanding of RNAi mechanisms in eukaryotes. A type of DNA damage-induced small RNA, microRNA-like small RNAs and Dicer-independent small silencing RNAs were recently discovered in Neurospora. In addition, there are at least six different pathways responsible for the production of these small RNAs, establishing this fungus as an important model system to study small RNA function and biogenesis. The studies in Cryphonectria, Mucor, Aspergillus and other species indicate that RNAi is widely conserved in filamentous fungi and plays important roles in genome defense. This review summarizes our current understanding of RNAi pathways in filamentous fungi.
Collapse
Affiliation(s)
- Liande Li
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| | - Shwu-shin Chang
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| | - Yi Liu
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| |
Collapse
|
40
|
Salame TM, Ziv C, Hadar Y, Yarden O. RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 2010; 89:501-12. [DOI: 10.1007/s00253-010-2928-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022]
|
41
|
Lee HC, Aalto AP, Yang Q, Chang SS, Huang G, Fisher D, Cha J, Poranen MM, Bamford DH, Liu Y. The DNA/RNA-dependent RNA polymerase QDE-1 generates aberrant RNA and dsRNA for RNAi in a process requiring replication protein A and a DNA helicase. PLoS Biol 2010; 8. [PMID: 20957187 PMCID: PMC2950127 DOI: 10.1371/journal.pbio.1000496] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/16/2010] [Indexed: 12/27/2022] Open
Abstract
The Neurospora RNA-dependent RNA polymerase QDE-1 is an RNA polymerase that can use both RNA and DNA as templates, suggesting a new mechanism for small RNA production. The production of aberrant RNA (aRNA) is the initial step in several RNAi pathways. How aRNA is produced and specifically recognized by RNA-dependent RNA polymerases (RdRPs) to generate double-stranded RNA (dsRNA) is not clear. We previously showed that in the filamentous fungus Neurospora, the RdRP QDE-1 is required for rDNA-specific aRNA production, suggesting that QDE-1 may be important in aRNA synthesis. Here we show that a recombinant QDE-1 is both an RdRP and a DNA-dependent RNA polymerase (DdRP). Its DdRP activity is much more robust than the RdRP activity and occurs on ssDNA but not dsDNA templates. We further show that Replication Protein A (RPA), a single-stranded DNA-binding complex that interacts with QDE-1, is essential for aRNA production and gene silencing. In vitro reconstitution assays demonstrate that QDE-1 can produce dsRNA from ssDNA, a process that is strongly promoted by RPA. Furthermore, the interaction between QDE-1 and RPA requires the RecQ DNA helicase QDE-3, a homolog of the human Werner/Bloom Syndrome proteins. Together, these results suggest a novel small RNA biogenesis pathway in Neurospora and a new mechanism for the production of aRNA and dsRNA in RNAi pathways. Small RNA molecules (20–30 nucleotides) play important roles in many cellular processes in eukaryotic organisms by silencing gene expression. To generate the many forms of small RNAs, DNA is first transcribed to produce single-stranded RNA (ssRNA), which then is converted to double-stranded RNA (dsRNA) by an RNA-dependent RNA polymerase (RdRP). However, it is not clear how the ssRNA templates are synthesized from DNA and specifically recognized by RdRPs amidst a sea of single-stranded, cellular RNAs. We previously showed that in the filamentous fungus Neurospora the production of one type of small RNA called qiRNA, which is specifically induced after DNA damage, requires the RdRP QDE-1. Here, we investigated the precise contributions of QDE-1 to the synthesis of ssRNA and dsRNA. We show that QDE-1 is surprisingly promiscuous in its template choice in that it is able to synthesize RNA from both ssRNA and single-stranded DNA (ssDNA). These results suggest that QDE-1 first generates ssRNA from a DNA template and then converts the ssRNA into dsRNA; this combination of activities in one protein ensures the specific action by RdRP on aberrant RNA in lieu of other single-stranded cellular RNA. In addition, we identified Replication Protein A, a ssDNA-binding protein that interacts with QDE-1, as an essential factor for small RNA production. Furthermore, we were able to reconstitute synthesis of dsRNA from ssDNA in a test tube using purified QDE-1 and RPA proteins, demonstrating the ability of this relatively simple biosynthetic system to generate the nucleic acid trigger for gene regulation. Together, these results uncover the details of a new and important small RNA production mechanism in cells.
Collapse
Affiliation(s)
- Heng-Chi Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
H2B- and H3-specific histone deacetylases are required for DNA methylation in Neurospora crassa. Genetics 2010; 186:1207-16. [PMID: 20876559 DOI: 10.1534/genetics.110.123315] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurospora crassa utilizes DNA methylation to inhibit transcription of heterochromatin. DNA methylation is controlled by the histone methyltransferase DIM-5, which trimethylates histone H3 lysine 9, leading to recruitment of the DNA methyltransferase DIM-2. Previous work demonstrated that the histone deacetylase (HDAC) inhibitor trichostatin A caused a reduction in DNA methylation, suggesting involvement of histone deacetylation in DNA methylation. We therefore created mutants of each of the four classical N. crassa HDAC genes and tested their effect on histone acetylation levels and DNA methylation. Global increases in H3 and H4 acetylation levels were observed in both the hda-3 and the hda-4 mutants. Mutation of two of the genes, hda-1 and hda-3, caused partial loss of DNA methylation. The site-specific loss of DNA methylation in hda-1 correlated with loss of H3 lysine 9 trimethylation and increased H3 acetylation. In addition, an increase in H2B acetylation was observed by two-dimensional gel electrophoresis of histones of the hda-1 mutant. We found a similar increase in the Schizosaccharomyces pombe Clr3 mutant, suggesting that this HDAC has a previously unrecognized substrate and raising the possibility that the acetylation state of H2B may play a role in the regulation of DNA methylation and heterochromatin formation.
Collapse
|
43
|
Aalto AP, Poranen MM, Grimes JM, Stuart DI, Bamford DH. In vitro activities of the multifunctional RNA silencing polymerase QDE-1 of Neurospora crassa. J Biol Chem 2010; 285:29367-74. [PMID: 20647305 DOI: 10.1074/jbc.m110.139121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
QDE-1 is an RNA- and DNA-dependent RNA polymerase that has functions in the RNA silencing and DNA repair pathways of the filamentous fungus Neurospora crassa. The crystal structure of the dimeric enzyme has been solved, and the fold of its catalytic core is related closely to that of eukaryotic DNA-dependent RNA polymerases. However, the specific activities of this multifunctional enzyme are still largely unknown. In this study, we characterized the in vitro activities of the N-terminally truncated QDE-1ΔN utilizing structure-based mutagenesis. Our results indicate that QDE-1 displays five distinct catalytic activities, which can be dissected by mutating critical amino acids or by altering reaction conditions. Our data also suggest that the RNA- and DNA-dependent activities have different modes for the initiation of RNA synthesis, which may reflect the mechanism that enables the polymerase to discriminate between template nucleic acids. Moreover, we show that QDE-1 is a highly potent terminal nucleotidyltransferase. Our results suggest that QDE-1 is able to regulate its activity mode depending on the template nucleic acid. This work extends our understanding of the biochemical properties of the QDE-1 enzyme and related RNA polymerases.
Collapse
Affiliation(s)
- Antti P Aalto
- Institute of Biotechnology and Department of Biosciences, Biocenter 2, P.O. Box 56, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
44
|
QIP, a protein that converts duplex siRNA into single strands, is required for meiotic silencing by unpaired DNA. Genetics 2010; 186:119-26. [PMID: 20551436 DOI: 10.1534/genetics.110.118273] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA interference (RNAi) depends on the production of small RNA to regulate gene expression in eukaryotes. Two RNAi systems exist to control repetitive selfish elements in Neurospora crassa. Quelling targets transgenes during vegetative growth, whereas meiotic silencing by unpaired DNA (MSUD) silences unpaired genes during meiosis. The two mechanisms require common RNAi proteins, such as RNA-directed RNA polymerases, Dicers, and Argonaute slicers. We have previously demonstrated that, while Quelling depends on the redundant dicer activity of DCL-1 and DCL-2, only DCL-1 is required for MSUD. Here, we show that QDE-2-interacting protein (QIP), an exonuclease that is important for the production of single-stranded siRNA during Quelling, is also required for MSUD. QIP is crucial for sexual development and is shown to colocalize with other MSUD proteins in the perinuclear region.
Collapse
|
45
|
Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 2010; 25:355-76. [PMID: 19575643 DOI: 10.1146/annurev.cellbio.24.110707.175327] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The evolutionarily conserved Argonaute/PIWI (AGO/PIWI, also known as PAZ-PIWI domain or PPD) family of proteins is crucial for the biogenesis and function of small noncoding RNAs (ncRNAs). This family can be divided into AGO and PIWI subfamilies. The AGO proteins are ubiquitously present in diverse tissues. They bind to small interfering RNAs (siRNAs) and microRNAs (miRNAs). In contrast, the PIWI proteins are predominantly present in the germline and associate with a novel class of small RNAs known as PIWI-interacting RNAs (piRNAs). Tens of thousands of piRNA species, typically 24-32 nucleotide (nt) long, have been found in mammals, zebrafish, and Drosophila. Most piRNAs appear to be generated from a small number of long single-stranded RNA precursors that are often encoded by repetitive intergenic sequences in the genome. PIWI proteins play crucial roles during germline development and gametogenesis of many metazoan species, from germline determination and germline stem cell (GSC) maintenance to meiosis, spermiogenesis, and transposon silencing. These diverse functions may involve piRNAs and may be achieved via novel mechanisms of epigenetic and posttranscriptional regulation.
Collapse
Affiliation(s)
- Travis Thomson
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
46
|
Gene silencing for functional analysis: assessing RNAi as a tool for manipulation of gene expression. Methods Mol Biol 2010; 638:77-100. [PMID: 20238262 DOI: 10.1007/978-1-60761-611-5_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The availability of a large number of gene-disrupted mutants (either from natural mutants' collections or from knockout projects) is a great advantage for functional analysis studies. However, disfunction of many fungal genes, involved in key developmental processes, leads to dramatic and pleotropic changes in cell morphology, conferring a major difficulty in studying null mutants. Therefore, obtaining variable levels of reduction in gene expression, especially of essential genes or genes whose impaired expression confers a pleiotropic phenotype, is extremely beneficial for studying their function. Here, we describe the use of RNAi as a gene silencing mechanism, in a manner that might facilitate the functional analysis of such essential genes. Two alternative strategies for the construction of an RNAi-induced inverted-repeat construct are demonstrated and a third alternative is suggested. In addition, DNA-mediated transformation of conidia by electroporation, RNA extraction from fungal mycelium and northern blot analysis are described in detail.The experimental results presented, demonstrate that RNAi can be employed as a gene silencing tool in Neurospora crassa, both for nonessential (al-2) and essential (cot-1) genes, resulting in a range of stable, partially silenced mutants, exhibiting different phenotypes.
Collapse
|
47
|
Bindschedler LV, Burgis TA, Mills DJS, Ho JTC, Cramer R, Spanu PD. In planta proteomics and proteogenomics of the biotrophic barley fungal pathogen Blumeria graminis f. sp. hordei. Mol Cell Proteomics 2009; 8:2368-81. [PMID: 19602707 PMCID: PMC2758762 DOI: 10.1074/mcp.m900188-mcp200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/11/2009] [Indexed: 11/06/2022] Open
Abstract
To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity.
Collapse
Affiliation(s)
- Laurence V. Bindschedler
- From ‡The BioCentre and
- §School of Biological Sciences, The University of Reading, P. O. Box 221, Reading RG6 6AS, United Kingdom
| | - Timothy A. Burgis
- ¶Centre for Bioinformatics, Imperial College, Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | - Jenny T. C. Ho
- ‖Thermo Fisher Scientific, Stafford House, Boundary Way, Hemel Hempstead, HP2 7GE, United Kingdom
| | - Rainer Cramer
- From ‡The BioCentre and
- **Department of Chemistry, The University of Reading, P. O. Box 224, Reading RG6 6AD, United Kingdom, and
| | - Pietro D. Spanu
- ‡‡Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
48
|
Caribé dos Santos AC, Sena JAL, Santos SC, Dias CV, Pirovani CP, Pungartnik C, Valle RR, Cascardo JCM, Vincentz M. dsRNA-induced gene silencing in Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao. Fungal Genet Biol 2009; 46:825-36. [PMID: 19602443 DOI: 10.1016/j.fgb.2009.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 06/06/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
The genome sequence of the hemibiotrophic fungus Moniliophthora perniciosa revealed genes possibly participating in the RNAi machinery. Therefore, studies were performed in order to investigate the efficiency of gene silencing by dsRNA. We showed that the reporter gfp gene stably introduced into the fungus genome can be silenced by transfection of in vitro synthesized gfpdsRNA. In addition, successful dsRNA-induced silencing of endogenous genes coding for hydrophobins and a peroxiredoxin were also achieved. All genes showed a silencing efficiency ranging from 18% to 98% when compared to controls even 28d after dsRNA treatment, suggesting systemic silencing. Reduction of GFP fluorescence, peroxidase activity levels and survival responses to H(2)O(2) were consistent with the reduction of GFP and peroxidase mRNA levels, respectively. dsRNA transformation of M. perniciosa is shown here to efficiently promote genetic knockdown and can thus be used to assess gene function in this pathogen.
Collapse
Affiliation(s)
- A C Caribé dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus - Itabuna, Km 16, CEP 45662-000 Ilhéus, BA, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee HC, Chang SS, Choudhary S, Aalto AP, Maiti M, Bamford DH, Liu Y. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 2009; 459:274-7. [PMID: 19444217 DOI: 10.1038/nature08041] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 04/08/2009] [Indexed: 01/18/2023]
Abstract
RNA interference pathways use small RNAs to mediate gene silencing in eukaryotes. In addition to small interfering RNAs (siRNAs) and microRNAs, several types of endogenously produced small RNAs have important roles in gene regulation, germ cell maintenance and transposon silencing. The production of some of these RNAs requires the synthesis of aberrant RNAs (aRNAs) or pre-siRNAs, which are specifically recognized by RNA-dependent RNA polymerases to make double-stranded RNA. The mechanism for aRNA synthesis and recognition is largely unknown. Here we show that DNA damage induces the expression of the Argonaute protein QDE-2 and a new class of small RNAs in the filamentous fungus Neurospora crassa. This class of small RNAs, known as qiRNAs because of their interaction with QDE-2, are about 20-21 nucleotides long (several nucleotides shorter than Neurospora siRNAs), with a strong preference for uridine at the 5' end, and originate mostly from the ribosomal DNA locus. The production of qiRNAs requires the RNA-dependent RNA polymerase QDE-1, the Werner and Bloom RecQ DNA helicase homologue QDE-3 and dicers. qiRNA biogenesis also requires DNA-damage-induced aRNAs as precursors, a process that is dependent on both QDE-1 and QDE-3. Notably, our results suggest that QDE-1 is the DNA-dependent RNA polymerase that produces aRNAs. Furthermore, the Neurospora RNA interference mutants show increased sensitivity to DNA damage, suggesting a role for qiRNAs in the DNA-damage response by inhibiting protein translation.
Collapse
Affiliation(s)
- Heng-Chi Lee
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Cecere G, Cogoni C. Quelling targets the rDNA locus and functions in rDNA copy number control. BMC Microbiol 2009; 9:44. [PMID: 19243581 PMCID: PMC2650698 DOI: 10.1186/1471-2180-9-44] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/25/2009] [Indexed: 03/09/2023] Open
Abstract
Background RNA silencing occurs in a broad range of organisms. Although its ancestral function is probably related to the genome defense mechanism against repetitive selfish elements, it has been found that RNA silencing regulates different cellular processes such as gene expression and chromosomal segregation. In Neurospora crassa, a RNA silencing mechanism, called quelling, acts to repress the expression of transgenes and transposons, but until now no other cellular functions have been shown to be regulated by this mechanism. Results Here, we detected by northern blotting endogenous short interfering RNA (siRNAs) from the repetitive ribosomal DNA locus (rDNA) that are loaded onto the argonaute protein QDE-2. Moreover, we found a bidirectional transcription that can generate double strand RNA (dsRNA) molecules. Interestingly, quelling mutants have a reduced rDNA gene copy number. Conclusion Our finding could suggest a new biological function for RNA silencing in the maintenance of the integrity and stability of the Neurospora rDNA locus.
Collapse
Affiliation(s)
- Germano Cecere
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Università La Sapienza, Rome, Italy.
| | | |
Collapse
|